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A B S T R A C T   

Internet of Things (IoT) technologies have been applied to various fields such as manufacturing, automobile 
industry and healthcare. IoT-based healthcare has a significant impact on real-time remote monitoring of pa
tients’ health and consequently improving treatments and reducing healthcare costs. In fact, IoT has made 
healthcare more reliable, efficient, and accessible. Two major drawbacks which IoT suffers from can be expressed 
as: first, the limited battery capacity of the sensors is quickly depleted due to the continuous stream of data; 
second, the dependence of the system on the cloud for computations and processing causes latency in data 
transmission which is not accepted in real-time monitoring applications. 

This research is conducted to develop a real-time, secure, and energy-efficient platform which provides a 
solution for reducing computation load on the cloud and diminishing data transmission delay. In the proposed 
platform, the sensors utilize a state-of-the-art power saving technique known as Compressive Sensing (CS). CS 
allows sensors to retrieve the sensed data using fewer measurements by sending a compressed signal. In this 
framework, the signal reconstruction and processing are computed locally on a Heterogeneous Multicore Plat
form (HMP) device to decrease the dependency on the cloud. In addition, a framework has been implemented to 
control the system, set different parameters, display the data as well as send live notifications to medical experts 
through the cloud in order to alert them of any eventual hazardous event or abnormality and allow quick in
terventions. Finally, a case study of the system is presented demonstrating the acquisition and monitoring of the 
data for a given subject in real-time. The obtained results reveal that the proposed solution reduces 15.4% of 
energy consumption in sensors, that makes this prototype a good candidate for IoT employment in healthcare.   

1. Introduction 

IoT-based real-time remote monitoring has been applied in 
numerous areas such as healthcare, which has witnessed a large growth 
of interest in recent years [1–3]. Connecting smart devices, machines 
and humans in IoT ensures the development of efficient healthcare and 
medical asset monitoring systems. For example, using various types of 
wearable sensors which can track blood pressure, pulse, red blood cells 
counts can develop an effective remote health monitoring system 
capable of sending reports to caregivers and notifying patients to take 
the medications [4]. 

IoT-driven health monitoring systems have enabled the clinicians to 
observe and treat the patients remotely and provided a quick and cost- 
efficient approach for connected healthcare [5]. The integration of IoT 
in healthcare has revolutionized the models in terms of efficiency, time, 
investments and privacy [4]. The continuous stream of data makes the 

sensors vulnerable to energy consumption problems since they are, in 
most cases, battery-driven. Furthermore, these systems are completely 
dependent on the cloud to synthesize and analyze the data yielding to 
latency issues. 

This paper aims at addressing these issues by developing a platform 
which collects health data remotely from elderly patients and monitors 
their state at any time. The platform can also notify caregivers when a 
fall is detected, allowing them to deploy fast and efficient interventions. 

In our platform, the monitoring system consists of three parts as in 
regular IoT designs: wearable medical sensors with embedded 
Compressive Sensing (CS) for measuring and transmitting relevant in
formation to a close-by gateway which is the primary part of this 
framework. The gateway is a Heterogenous Multicore Platform (HMP) 
that oversees data processing incorporating data recovery and other 
analyses covered in our system, and then sends the processed data to the 
cloud to be accessed by caregivers. The gateway can store daily activities 
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and transmit reports periodically or at the end-user request. 
The proposed system monitors ElectroCardioGram (ECG) and kine

matic data, which can be used to diagnose any kinds of arrhythmias or 
abnormalities. Besides, ECG biometric recognition has also been inte
grated into the platform to help identify the patient under supervision. 
Depending on the scenario, our platform enables the user to set different 
parameters to economize battery lifespan and control the processing 
time. This can be performed through a framework or visualization 
platform, which has been developed to provide user-friendly access to 
the system. The caregivers and authorized persons can have access to the 
data through the cloud and receive notifications instantaneously 
permitting a pre-diagnosis and thus saving treatment time. 

The rest of the paper is organized as follows. Related work on IoT- 
based healthcare, CS and fall detection are presented in Section 2. The 
proposed system and its different parts are described in Section 3, and 
Section 4 is concerned with the software implementation of the system. 
Finally, a case study to validate our framework is reported in Section 5 
followed by conclusions in Section 6. 

2. Related work 

IoT-driven remote monitoring systems are network-connected sen
sors continuously gathering and sending data of interest to a nearby 
gateway. The gateway - commonly a smartphone - transmits the data to 
a distant IoT object where the captured information can be monitored 
and examined by the end-user [6]. Due to the growth and evolvement of 
the data collection and transmission technologies, more IoT-based 
healthcare applications have been developed in recent years [7]. In 
[8], the authors discussed the necessity of integrating IoT technology 
and healthcare solutions. They developed and focused on a continuous 
monitoring system for patients at risk of high blood pressure to provide 
them with fast treatment by remote clinical experts. Another effort has 
been made to employ portable devices and several communication 
protocols to generate E-health applications [9]. Moreover [10] proposed 
a model that detects the abnormal interpretations in the ECG and Heart 
Rate (HR) of a patient, and therefore reduce the critical level of the 
patient by following precautionary measures at an earlier time. In [11], 

the authors analyzed the security vulnerabilities and the potential risks 
that the medical applications detect, it has been classified into remote 
monitoring, diagnostic support and treatment support. In addition 
[12,13], the works proposed two techniques to encrypt medical data in 
order to have secure data transmission for sensitive information. 

Recently, the growth of the elderly population derives the attention 
of more research in IoT healthcare monitoring scope to develop efficient 
platforms and applications improving healthcare services and reducing 
the treatment costs for elderlies. For instance, Islam et al. have explored 
several medical IoT-based applications for remote elderly healthcare 
follow-up and fitness programs [14]. In addition, many research has 
been conducted to evaluate the stability and mobility for ageing people; 
Timed Up and Go (TUG) is one of them [15]. TUG studies the time 
needed by a subject to complete different segments of movement 
including getting up from a chair, walking for a 3 m distance, coming 
back and sitting again. Subjects with higher TUG are said to have a 
higher risk of falling. However, these studies do not provide information 
indicating which segment is more indicative of fall risk. 

Several efforts have been dedicated to developing an accurate fall 
detection system using wearable sensors [16]. For instance, to give a 
quantitative evaluation of walk and turn during the TUG, kinematic 
sensors have been widely used permitting a more precise and accurate 
determination of a potential fall [17,18]. Noury et al. have presented an 
elderly monitoring system by employing kinematic sensors to detect falls 
and find the most reliable fall scenarios in order to simulate different fall 
situations [19]. 

There are also some studies with the aim of analyzing the changes of 
the acceleration vector over a fall, and coming up with a fall recognition 
algorithm based on the various stages (i.e. beginning of the fall, shock, 
aftershock and posture) [20]. In order to improve the results and per
formance of the previous works, other researchers applied gyroscopes 
and barometers into their proposed systems [21–23]. Casilari et al. have 
integrated an accelerometer to a smart watch to recognize a fall. Once a 
fall is detected, the data will be transmitted via Bluetooth to a smart
phone, which serves as a gateway and can send an alert to the cloud 
[24]. 

In [25], the authors have presented wearable sensing devices for 

Fig. 1. Proposed IoT system.  
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consistent fall recognition. The sensors were a Micro-Electro-Mechanical 
System (MEMS) based accelerometers transmitting data via Radio Fre
quency (RF). They have also provided a solution to detect the position of 
the person. Wu et al. have used a sensor based on Global System for 
Mobile (GSM) communication and 3D accelerometer to detect and also 
locate a fall [26]. 

Despite all the efforts made in IoT-based remote monitoring and fall 
detection systems, performance of these real-time systems still suffers 
from the energy efficiency and delay issues. In general, transmission of 
the sensed data to the cloud for further processing and analyzing will 
enforce an un-tolerable delay for real-time purposes. Moreover, these 
systems often operate in a long-term mode which imposes a large 
amount of data transmission to the power-limited sensing devices and 
thus, considerable amount of energy is depleted. 

To tackle the power consumption issue, applying data compression 
techniques can be helpful but most of these methods are energy 
consuming and cannot be employed in IoT platforms. Recently, an 
emerging signal processing technique called CS has been developed as 
an alternative method to the Shannon-Nyquist theorem [27]. This 
method provides a reduction form of the sensed data if the signal is 
known to be sparse or compressible [28,29]. In fact, CS gives a solution 
to take a few amount of data at the self-powered sensors and then shift 
the decoding process to the receiver with no energy constrains. How
ever, the signal reconstruction in CS is more complex in comparison to 
the traditional compression techniques [30], the results of our previous 
works reveal that employing CS can reduce the amount of transmitted 
data and hence, decrease significantly the energy consumption at the 
sensor level [31,32]. 

There are some research exploring CS in Wireless Sensor Networks 
(WSN), which operates in long-term data acquisition mode [33–35]. 
Dixon et al. have used CS with ECG data and compressed ECG by almost 
16 times by changing sensing matrix and recovery processes [36]. 
Another study has been conducted to demonstrate the preeminence of 
CS over the wavelet-based ECG compression using the Shimmertm 

sensing device [37]. It is shown that although the wavelet compression 
performs better in terms of quality of the reconstructed signal, CS can 
improve the power consumption of the sensor by 9.7%. In this study, 
noiseless MIT ECG records have been used as the sensor input and thus, 
optimal signal compression has been achieved. Furthermore, they have 
performed CS data recovery remotely by the SPGL1 solver [38]. Besides 
the aforementioned results, there are more studies conducted to prove 
the improvements and advantages of CS and its ability to be employed in 
IoT applications [39,40]. Other compression techniques are also avail
able, in Gurve et al. [41] reported 11-fold compression with very small 

reconstruction error in a lossless algorithm suitable for use on cell 
telephones. 

As mentioned earlier, delay is one of the most important challenges 
in the IoT health monitoring systems, imposed to the system by trans
mitting the sensed data to a cloud for further processing and analyzing. 
In [42], the authors have revealed the good performance of real-time 
healthcare services and urged the need for edge computing by devel
oping a real-time IoT-based gateway monitoring system. Recently, HMP 
has been employed for various processing and analyzing tasks to shift 
the computation load from the cloud. It is shown that by exploiting 
different cores, the processing time can be significantly decreased [43]. 
In [44], the authors succeeded to reconstruct ECG data in real-time on an 
apple smartphone. They used an adjusted form of the Iterative Shrinkage 
Thresholding Algorithm (ISTA) but didn’t take into account tradeoffs 
between the important parameters such as energy consumption, pro
cessing time and dimensions of the signal. In another study, Pareschi 
et al. have presented a solution for live energy efficient ECG data 
decoding developed on an ARM’s Cortex-M4F-microcontroller [45]. 
They compressed the data using a modified rakeness-based sensing 
matrix and hence, could reduce the reconstruction complexity compared 
to the regular sensing matrices. 

This paper presents an IoT-based solution which acquires ECG and 
kinematic data through a CS equipped sensor, processes them on a local 
HMP and notifies medical experts through the cloud. A set of compre
hensive tests using data from the MIT database and Shimmer sensor 
device have also been carried out to evaluate the performance of the 
system. 

The main contributions of this work can be summarized as follows:  

� Signal level: ECG and kinematic data compression performances are 
evaluated by means of signals obtained from the sensor. 

Fig. 2. Different steps of data acquisition and transmission in the modi
fied firmware. 

Table 1 
Shimmer commands.  

Command Description 

SET_SAMPLING_RATE Sets the Shimmer sampling frequency 
SET_SENSORS Activates/deactivates the Shimmer sensor. It 

takes three bytes:  
1. First byte is 0x00 or 0x80 for OFF or 

Accelerometer  
2. Second byte is 0x00 or 0x20 for OFF or 

Battery Sensor  
3. Third byte is 0x00 or 0x10 for OFF or ECG 

Senor 
SHIMMER_COMMANDS Configures the ECG parameters such as gain. It 

takes 10 bytes which can be copied from the 
Shimmer CONSENSYS Software 

SET_WINDOW_AND_MODE Sets the required buffer size and processing 
modes. The command takes three bytes:  
1. First byte is 0x01, 0x02, or 0x03 for real-time 

transmission, 1-second buffer, and 1.5-sec
onds buffer.  

2. Second byte defines the acceleration 
processing mode and can be 0x00, 0x01, 
0x02, or 0x03 for OFF, RAW (no processing), 
ADJUSTED (acceleration samples are placed 
in 14 bits instead of 16 bits per sample), or 
LQ COMPRESS (low quality compression)  

3. The third byte defines the ECG processing 
mode and can be 0x00, 0x01, 0x02, 0x03, or 
0x04 for OFF, RAW, ADJUSTED (8 bits per 
sample instead of 16 bits), HQ COMPRESS 
(high quality compression suitable for 
clinical monitoring) or LQ COMPRESS (low 
quality compression only suitable for data 
analysis) 

START_STREAMING_COMMAND Starts the Shimmer streaming 
STOP_STREAMING_COMMAND Stops the Shimmer streaming  
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� Sensor level: the firmware of the ShimmerTM wearable device is 
modified to send either the actual data or the CS compressed data at 
the user convenience.  
� Gateway level: the data reconstruction is performed on a local HMP 

device using two different algorithms; Subspace Pursuit (SP) and 
Orthogonal Matching Pursuit (OMP). Moreover, identifying the 
subject by using ECG biometric as well as sending a fall alert through 
the cloud, in case of the event occurrence, are implemented on the 
gateway. 

3. System overview 

In our IoT-driven real-time health monitoring system patients are 
monitored in real-time permitting the caregivers to access their data at 
anytime as discussed in [46]. It consists of three parts: wearable sensor, 
gateway and the cloud. The overview of the system is represented in 
Fig. 1. In this system, we have used Shimmer as the sensing device which 
sends data of interest to a close-by gateway. The gateway is an ODROID 
XU4 board which handles various data processing such as data recon
struction, biometric recognition and fall detection. The resulting infor
mation is then transmitted to the clinical experts through the cloud. 

In the following sub-sections, a description of each building block of 
the proposed system is given, namely the wearable sensor, the gateway 
and the mobile App. 

3.1. The wearable sensing device 

The Shimmer3TM ECG/EMG unit is a state-of-the-art sensor able to 
stream ECG and kinematic data simultaneously. On the hardware level, 
it uses a 16 Kb RAM � 16 bit � 24 MHz microcontroller supplied by 
Texas Instruments [47]. Software-wise, the firmware is called LogAnd
Stream and can be modified and compiled through Code Composer 
Studio. It is written in C programming language and hosted on GitHub 
repository [48]. The modified firmware can be uploaded to the Shimmer 
sensor using CONSENSYS software provided by the supplier. The ECG 
unit of the sensor can be set up to record skin electrical signals including 
ECG. In fact, measuring the pathway of the electrical data going to the 
heart can be set up by three-lead body connections. These data can be 
measured during different states of the patient such as exercise and rest, 
and thus, provide information on the heart status during physical 
exertion [49]. Also, the unit includes a kinematic sensor providing a 3D 
acceleration data vector used in the proposed platform to detect a fall. 

3.2. The ODROID IoT device 

A hardkernel ODROID XU4 board featuring ARM’s big.LITTLE het
erogeneous octa-core solution is used as the gateway of the proposed 
system. It runs on Ubuntu or Android and consists of 8 cores; 4 big A15 
cores and 4 LITTLE A7 cores [50]. The reason for selecting this device is 
that its configuration can be found on most of today’s smartphones and 
therefore, it is a good candidate for evaluating the system. 

This gateway is capable of saving daily activities of the patient 

including patterns of the different physical or potential physiological 
observed parameters, in order to be investigated over time. This plat
form enables the end-user to request for instant or periodic reports. 
Moreover, caregivers can be informed of any potentially hazardous 
event by the event emergency (i.e. fall) classification performed at the 
gateway. Once an emergency is reported, the gateway will transmit 
physiological information continuously for early diagnosis. As stated 
before, this methodology reduces system latency and improves the sta
bility issues, imposed by the dependence of computations on the cloud 
[46] and hence, eliminates the extra burden on the cloud. 

Moreover, the ODROID-VU7 is used to visualize the data. It is a 7- 
inch multi-touch screen for ODROIDs that gives users the ability to 
create all-in-one integrated projects such as tablets, game consoles, 
infotainment systems and embedded systems. The 800 � 480 display 
connects to ODROID via an HDMI link board and a micro-USB link board 
which handles power and signal. This high-quality touchscreen is spe
cifically designed to work with both Android and Linux on the ODROID- 
XU4. Our system can also be implemented in a tablet-like form using this 
ODROID multi-touch screen. 

3.3. Mobile application 

This subsection is concerned with the developed application, called 
Vitals Monitoring, which runs on Android devices. The role of this app 
revolves mainly around data visualization for both elderlies and care
givers. It also delivers an alarming feature for caregivers in case of a fall 
event. Regarding the functionality, when a user logs in, the application 
will behave depending on the category the user belongs to. When a 
caregiver signs-in, a list of elderlies will appear. The application enables 
the caregiver to observe details of the patients, visualize the streamed 
data received from the elderlies or even call them for a quick check-up. 
Otherwise, if the logged-in user is an elderly, he/she will gain the ability 
to visualize the data streamed from the Shimmer3ECG connected to 
him/her and ask for help when needed. More details about the features 
of the application and the different interfaces that the patients and 
caregivers can have access to, are presented in Section 5. 

Fig. 3. The main interface of the framework.  

Table 2 
Operational mode scenarios.  

Scenario\Parameter Transmission Type Security Core Frequency 

Regular 
Transmission 

Regular 
transmission 

Off Small 
core 

0.8 GHz 

Minimum 
Consumption 

CS-based 
transmission 

Off Small 
core 

0.8 GHz 

Optimal 
Consumption 

CS-based 
transmission 

Off Big core 1.2 GHz 

Secured Data CS-based 
transmission 

On Big core 1.2 GHz  

Fig. 4. Original and reconstructed ECG signal from the Shimmer device.  
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4. Software implementation 

In this section, software implementation of different parts of the 
system are described namely: acquisition and processing of data, visu
alization framework and the cloud programming 

4.1. Acquisition and processing 

On the original firmware, the Shimmer sensor streams ECG and ac
celeration data at 512 Hz and 60 Hz sampling rate, respectively. The 
continuous flow of data makes the Shimmer vulnerable to power con
sumption. To remedy to this and give the user control over the device’s 
power consumption, the original firmware has been customized to 
perform CS and is discussed in details in our previous works [31,32]. 
Fig. 2 illustrates the steps of sensing and transmitting data (compressed 
or raw) using the modified firmware. 

As discussed earlier, all the processing and analysis are carried out on 
the ODROID device. If the received data at the gateway are raw, no 

further processing is required and data will be sent directly to the 
framework to be displayed. Otherwise, when the received data are 
compressed, signal reconstruction will be carried out on the gateway. 
The user can select between two decoding algorithms available in the 
framework (SP, OMP). 

Data reconstruction in the proposed platform by employing SP or 
OMP algorithm is discussed in details in our previous works [46,43]. 
Besides, the gateway implements some data analytics algorithms on the 
reconstructed data in order to provide more precise information for 
early diagnosis. When the platform is set to monitor ECG, the subject can 
be identified through the ECG biometrics as well. In case of fall detec
tion, the medical experts will be notified instantaneously through a 
cloud alert received on their connected device. 

The processing performed on the gateway was programmed using 
Cþþ and python programming languages. The main python program is 
called Embiot.py and contains a visualization platform. It is considered as 
the parent application which owns upper-level commands for its chil
dren applications. The parent can generate autonomous child processes 
responsible for getting data from the Shimmer. Each child process can 
also produce its own Cþþ processes to do complicated data computa
tions such as CS recovery and data analysis. The operation of the parent 
is based on three classes; the Shimmer class, the Child_Manager class and 
the Bluetooth_Manager class. The latter handles different Bluetooth op
erations such as enabling the application to scan, pair or connect to the 
Bluetooth devices around. It can also filter Bluetooth devices based on 
their address and find the available Shimmers. The Shimmer class con
figures Shimmer devices for a specific data acquisition and sets different 
parameters such as CS, window length, ECG or Acceleration Table 1 
summarizes the Shimmer configuration commands introduced in the 
modified firmware. Finally, the Child_Manager method handles 
communication between various processes. All the data reconstruction 
and analytics algorithms are performed in this class. 

Additionally, different libraries have been used in the proposed 
platform such as Armadillo for linear algebra and scientific computing in 
order to implement matrix operations [51], and ZeroMQ library for 
communication between python and Cþþ through InterProcess- 
Communication (IPC) socket [52]. A common data serializer called 
Google’s Protocol Buffer has also been used due to the ZMQ limitation 
on using serialized data and strings. This data serializer is more 

Fig. 5. Reconstruction quality in terms of PRD.  

Fig. 6. The Shimmer’s power consumption in real-time (RT), i,e. data 
transmitted. 
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convenient for real-time applications since it requires less computation 
in comparison to the conventional JavaScript Object Notation (JSON) 
data serializer [53]. 

4.2. Visualization framework 

A visual framework has been developed using Python Tkinter mod
ule in order to enable the end-users and clinical experts to easily access 
the platform and configure the system. It allows the users to connect the 
platform to the available nearby Shimmer sensors using Bluetooth. The 
users can activate the sensors (ECG or kinematic) and configure them for 
the appropriate data acquisition algorithm (regular or CS-based) via the 
framework. Also, the user can manage the data security; transmission of 
data can be either secure, in case of confidential information, or insecure 
if confidentiality is not required. The framework also permits to control 
data processing on the gateway; this means the user can select an 
appropriate algorithm for data reconstruction (SP or OMP). In the case 
of CS-based data acquisition, the clinical expert can decide on the type 
and number of cores involved for processing as well as their frequencies 
and hence, manage the processing time. Moreover, the framework 
provides different data analytics including biometric recognition for 
ECG and fall detection for the kinematic sensor. Once the system is 
correctly configured, the acquisition of data starts and the interface 
displays the data in question. In case of a fall, a green flashlight will be 
displayed on the interface Fig. 3. The main interface of the framework. 
shows the main interface of the framework. This framework also allows 
communication with the cloud. It permits to visualize the data on a 
remote smartphone equipped with our developed Android application 

and send notifications to alert the user of pertinent events. 
The framework operates on two different modes: analysis mode and 

operational mode. In the analysis mode, the user manually sets the pa
rameters which are divided into two types: acquisition and processing 
parameters. Acquisition parameters are Shimmer associated parameters 
and allow the user to set regular or CS data acquisition, the length of the 
transmitted window (1 s or 1.5 s), and type of data security. Processing 
parameters are those related to ODROID and permit to select the 
reconstruction algorithm, in case of CS-based transmission, and the 
number of cores and frequencies to be employed in computations. In 
operational mode, the parameters are set via a pre-defined scenario, 
which can be selected from a drop-down menu. Once the scenario is 
selected, parameters will be set automatically and data monitoring starts 

Different scenarios of the operational mode are listed in Table 2 
Operational mode scenarios. These scenarios have been discussed in 
details in our previous work [46]. 

Fig. 4 shows A plot of both the original streamed ECG data on the 

shimmer and the reconstructed ECG signal decoded in our framework. 
Besides, results showed in Fig. 5 showed that the reconstruction 

quality improves greatly when the Compression Ratio (CR) increases. In 
this paper, CR is defined to be the percentage ratio of the number of the 
compressed signal elements by the number of elements in the original 
signal i.e.CR ¼ 100*m

n . The reconstruction quality of data is quantified 

using the percentage root-mean-square difference (PRD): PRD ¼ kX� X̂k
kX� μk

where µ denotes the mean of the signal. 
Besides, a reasonable reconstruction quality is achieved when CR 

equals 50% and 55% in which the obtained PRD is 9 for both the MIT 
database and for the Shimmer device respectively. The MIT database 
shows a better recovery performance when compared to the Shimmer 
due to the presence of the noise level in the data of the latter. Moreover, 
it is legitimate to mention that for the case where MIT database is used, 
the results were averaged over all the records belonging to the data set. 
It is worth noting also that when using all the records in the MIT data
base, the obtained result shows to be inferior to the results reported in 
[54]. For instance, taking the case of CR ¼ 0.25, a PRD ¼ 9 and PRD ¼ 12 
has been achieved by this work herein and the work in [54] respectively. 

To further evaluate the performance of the proposed framework, a 
digital-based CS compression has been implemented on the Shimmer 
sensing node. Subsequently, an energy consumption analysis has been 
carried out to quantify the performance of deploying a sparse sensing 
matrix for a CS-based ECG compression. 

The implementation is performed over three different ECG segments 
window sizes N ¼ {180, 360, 514}. 

The Shimmer’s power consumption in Real-Time (RT) (data 

Fig. 7. Request-Response communication with Firebase.  

Fig. 8. ECG biometric interface.  
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transmitted without compression), HQ and LQ scenarios are shown in 
Fig. 6. 

It shows that data directly from the Shimmer without compression is 
reduced by a factor of 15%. Additionally, the results obtained also show 
that using a window of 1.5 sec would reduce power consumption by a 
factor of approximately 1.5. 

In our work, we set up two scenarios for data recovery, high quality 
(HQ) and low quality (LQ). In HQ the reconstructed ECG data is highly 
correlated with the original signal and presents minimal errors and can 
be directly used for human-based diagnosis (PRD < 7), while in the LQ 

Fig. 9. Summary of the system’s functionalities.  

Table 3 
Collected personal information from the subjects.  

Subject # Age (years) Height (cm) Weight (Kg) 

Subject 1 21 172 65 
Subject 2 22 183 100 
Subject 3 21 186 66 
Subject 4 22 188 72 
Subject 5 22 189 98 
Subject 6 21 187 94 
Subject 7 21 190 130  
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setting the ECG data quality is prone to degradation but still its features 
can be detected and employed for computer-based classification (7 <
PRD < 18) [46]. 

4.3. Communication with the cloud 

In this section, the setup of the cloud-hosted database platform is 
described as well as the role of the HMP and mobile application on data 
visualization streamed through the cloud. In the proposed platform, the 

database is meant to act as a temporary buffer of the uploaded data in 
which the data can be accessed remotely by other clients with the cor
rect authenticated privilege. For example, a mobile application which 
can display the stream of accelerometer and/or ECG data. In our 
approach, the stored data is continually updated with the new values, 
while the mobile application “listens” to any changes in the data and 
handles them accordingly. To achieve this, we have employed Firebase 
as the system database on the cloud. 

Firebase platform offers a cloud-hosted database system called the 
Realtime Database that follows the NoSQL mechanism which is simpler 
and less structured than the traditional relational database. This allows 
the real-time storage of large data sets which can be synchronized to all 
the clients connected to the database [55]. 

In this platform, the communication with the Firebase Realtime 
Database is performed on the ODROID XU4. To start the interaction with 
the cloud server, an account must be created on Realtime Database, then 
a Firebase ‘project’ can be set up. In order to implement data using the 
REST API, an appropriate helper library compatible with the program
ming language must be installed. In this case, a separate Python program 
would be run by the HMP which acts as a client device and stands by for 
the data until streaming is required. Therefore, the Pyrebase helper li
brary for Python is installed on the ODROID XU4 to handle the 
communication with the cloud database. 

Once all the setup requirements have been met, the process of 
uploading and storing data in database can be started. A Python program 
is developed to upload and store the received data pool into an array on 
database. By using Pyrebase, the ‘update’ and ‘set’ functions are applied 
to establish a proper connection with the cloud database through the 
internet and then a single HTTP PUT request has been used to send the 
data. As a result, synchronization happens when the data, which are put 
into the cloud database, are in accordance with the database referenced 
from the Python program. 

As discussed earlier, the data can also be visualized on a remote 
Android device connected to internet. In our proposed mobile applica
tion (Vitals Monitoring), ECG streaming is achieved once a flag called 
Stream_Requests on the database is incremented. ODROID XU4 is 
continuously listening to the value of this flag that is specific for the 
appropriate elderly. Once the flag value is incremented, the streaming 
will start and then the ODROID XU4 will populate the ECG_Data 
branches for that elderly simultaneously. Consequently, multiple users 
have the ability to visualize real-time data at the same time. When the 
user (caregiver or elderly) no longer requests for the data, he/she will 
press the Stop Streaming button and therefore, decrement the value of 
Stream_Requests flag by one. This can also be done automatically when 
the application is not running in the foreground (i.e. it is running in the 
background or closed). ODROID XU4 will continue listening to the value 
of the Stream_Requests flag as long as it reaches zero which means no 
one is listening and there is no need for data streaming anymore. This 

Fig. 10. System runs on ODROID IoT device with touch screen.  

Fig. 11. Mobile application interface.  
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achieves a more optimized streaming system. Fig. 7 illustrates the data 
live streaming process through the Firebase. 

5. Case study 

To illustrate different features of our system, a case study is pre
sented here, which is based on an ECG acquisition followed by a bio
metric recognition. The visual framework encompasses the 
configuration of the system and the streaming of data, which will also be 
shown on the mobile app: 

When the framework is running, it will scan the available Bluetooth 
devices around and select the available Shimmer sensors by using 
Ubuntu’s Bluetoothctl module [56]. The system pairs automatically 
with the Shimmer using the supplier provided password which is the 
same for all the Shimmer sensors. Because ECG monitoring was exam
ined in this case study, the leads should be placed in 3-lead connections 
on the subject’s chest. 

Once the setup is ready, the user can configure different parameters 
through the framework. Fig. 8 depicts the framework interface for the 
ECG biometrics. A simple click on the buttons on the left side of the 
interface allows switching to another application (fall detection or ECG 
monitoring). 

It is worth mentioning that there are two types of configurable pa
rameters; acquisition and processing. Acquisition parameters (shown at 
the left side of the interface) are Mode to activate CS-based transmission 
or not, Length to select the size of the window for signal reconstruction, 
and Security to be applied in case of confidential data. Processing pa
rameters (shown at the right side of the interface) includes Fre to set the 
frequency of the ODROID CPUs which ranges from 800 MHz to 2000 
MHz, Cores to select the number of cores involved in processing, and 
Algorithm to select the appropriate decoding algorithm (OMP or SP). 
Fig. 9 summarizes the above-mentioned properties of the system. 

In this study, CS-based data acquisition by selecting HQ for the 
compression rate and 1.5 s window is performed. 1.5 s window indicates 
that the compression is done every 540 values (ECG frequency is 360 Hz 
and 540 corresponds to 1.5 s of data). In this transmission, security is not 
applied. For the processing parameters, 3 cores are selected to operate 
with 1.4 GHz frequency. The reconstruction algorithm is also set to SP. 
When the setup of the parameters is completed, a click on the plot button 
starts ECG streaming and live displaying of the data. 

In order to plot the data, matplotlib module from Python was used. 

Whereas ECG frequency was 360 Hz, the highest frequency in matplotlib 
for displaying real-time data was 100 Hz. This condition imposed un
desired latency to the system that caused the loss of the live streaming 
aspect. To fix this, we stored the reconstructed data in a text file for each 
streaming window and when the last value of the data was received, the 
complete period was plotted. 

A click on the recognize button displays the number related to the 
identified subject. For this purpose, a database is already created using 
several ECG samples from various subjects. Thus, the sensed ECG is 
compared to this database and the closest sample is picked up as the 
recognized subject [57,58]. Table 3 represents the age, height and 
weight of some subjects sampled by Shimmer at frequencies of 512 Hz 
and approximate capturing duration of one minute. In this study, subject 
5 is recognized (see Fig. 8). 

Fig. 10 displays the ODROID IoT device running the framework and 
visualizing the results for subject 5. 

The real-time results of monitoring this subject on our developed 
Vitals Monitoring application is illustrated in Fig. 11. 

There are more features available in this application helping the el
derlies and caregivers to interact with each other and monitor the cur
rent status of the elderly easier. Fig. 12 represents different interfaces 
which a caregiver has access to (a) view the history of a specific patient’s 
fall. This helps the caregiver check all the previously stored data of the 
patient for further analysis; (b) be alerted when a help request is sent; (c) 
be notified when an elderly falls. Two latter features ensure a quick and 
real-time response from the caregivers. 

6. Conclusion 

In this paper, we have presented an IoT-based remote elderly 
monitoring system that addresses the main issues similar platforms are 
dealing with; power consumption in the sensors and network latency. In 
order to increase the lifespan of the wearable medical devices, CS a state 
of the art power saving technique has been implemented on the sensing 
node. The absolute dependency of the processing on the cloud is tackled 
by introducing a local HMP gateway to reduce the burden on the cloud 
and therefore, make the platform faster and more customizable. In 
addition, a framework is developed to access and visualize data through 
a user interface. The data can also be accessed through our developed 
mobile application on an Android device connected to the cloud. In this 
proposed platform, alerts can be sent to the clinical experts to deploy 

Fig. 12. Different feature of vitals monitoring application; (a) checking previous fall records of a specific patient; (b) help request sent by an elderly; (c) a fall 
is detected. 
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faster interventions. A case study has been reported to illustrate different 
functionalities of the system by taking a patient’s ECG, monitoring it and 
identifying the subject via ECG biometrics. The information has also 
been transmitted to a remote Android device. 

As future work, the proposed system could be further developed to 
integrate into other IoT application in the healthcare area such as ro
botic surgery and smart ambulance systems. 
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