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Abstract

Adverse drug events (ADEs) are unintended incidents that involve the taking of a medication. 

ADEs pose significant health and financial problems worldwide. Information about ADEs can 

inform health care and improve patient safety. However, much of this information is buried in 

narrative texts and needs to be extracted with Natural Language Processing techniques, in order to 

be useful to computerized methods. In this paper, we present three methods consisting of a 

Conditional Random Field (CRF), a bi-directional Long Short Term Memory Unit with a CRF (bi-

LSTM+CRF), and several ensembles of the two for extracting ADEs and their reason from FDA 

Drug Labels. We map extracted ADEs to the Medical Dictionary for Regulatory Activities 

(MedDRA) terminology for normalization. We show that each of the CRF and bi-LSTM+CRF 

perform well on our task, but their combination is even stronger, achieving 0.93 F1 in 

identification and 0.54 F1 in normalization.

1 Introduction

Adverse drug events (ADEs) are undesirable incidents that often lead to hospitalization, and 

account for an estimated 12% of all emergency room visits1. The number of serious or life-

threatening ADEs is increasing2. ADEs pose significant health and financial problems 

worldwide3. Advance knowledge of potential ADEs could help health care providers avoid 

these events but most of the information related to these events is documented in narrative 

texts that remain inaccessible to computerized methods. In addition, the FDA provides 

reporting systems for identification of unlabeled adverse events for drugs after they are 

released into the market, e.g. the FDA Adverse Event Reporting System (FAERS). Providing 

information about the labeled ADEs for each drug can help identify unknown adverse 

events. Identifying and normalizing these ADEs to MedDRA (Medical Dictionary for 

REgulatory Activities), the terminology used for FAERS, could speed up the identification 

of new ADEs.

Natural Language Processing (NLP) methods for named entity recognition can identify 

ADEs and put them into a structured format for access by computerized systems, enabling 

their incorporation into, for example, clinical decision support systems, and helping improve 

patient safety and quality of care1. Traditionally, Conditional Random Fields (CRFs) have 
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been shown to perform well for the task of entity recognition4. CRFs are probabilistic 

graphical machine learning algorithms. They are sequence learners which take previous 

annotations into consideration when determining the label of the current term. This property 

makes them well suited for entity recognition tasks.

Recently, deep learning has also been successfully applied to similar tasks. The deep 

learning approach studied in this paper, a bidirectional network with Long short-term 

memory units (LSTMs) and a neural CRF (bi-LSTM+CRF), has also been shown to perform 

well on entity recognition5. LSTMs take as their input not just the current input example, but 

also what they have previously seen in the past. Hence, they have two sources of input: their 

current state and their past states. This allows them to connect previous observations, such as 

words in a sentence, and learn dependencies of these words over arbitrarily long distances. 

In a bi-directional LSTMs, data is processed in both directions with two separate hidden 

layers, which are then fed forward into the same output layer. This allows the system to 

exploit context in both directions. As a final layer, this method contains a neural CRF to 

capture dependencies within the tagging sequence5.

In this work, we adapt both CRFs and bi-LSTM+CRFs to the task of identifying ADEs and 

their reason from FDA drug labels. As an additional step in ADE extraction, we normalize 

extracted terms to MedDRA terminology using dictionaries and deep learning. We analyze 

the strengths of each of CRFs and bi-LSTM+CRFs at ADE extraction, and we propose an 

ensemble learner that can take advantage of strengths of both systems. We show that each of 

CRFs and bi-LSTM+CRF perform very well on ADE extraction. However, their 

combination shows the complementary nature of the two systems. These systems are 

accompanied by a dictionary-based normalizer that utilizes MetaMap to ground the ADE 

mentions to concepts in the Medical Dictionary for REgulatory Activities (MedDRA).

2 Background

2.1 Resources

Medical Dictionary for REgulatory Activities (MedDRA).—The Medical Dictionary 

for REgulatory Activities (MedDRA) is a terminology used to classify ADEs. It is used 

within a reporting analysis framework to quickly detect problems related to drug-based 

treatments. MedDRA terms are hierarchically organized. The System Organ Class (SOC) 

level includes the most general terms where the Low Level Terms (LLT) level includes more 

specific terminologies. Between SOC and LLT there are three intermediate levels: High 

Level Group Terms (HLGT), High Level Terms (HLT), and Preferred Terms (PT). In this 

work, we use MedDRA terms version 20.1.

Unified Medical Language System (UMLS).—The Unified Medical Language System 

(UMLS)6 is a data warehouse containing three knowledge sources: the Metathesaurus, the 

Semantic Network and the SPECIALIST Lexicon. The Metathesaurus, which contains 

approximately 2 million biomedical and clinical concepts identified using Concept Unique 

Identifiers (CUIs), is made of over 100 different terminologies that have been semi-

automatically integrated into a single source. MedDRA is one such source in the UMLS. 

The Semantic Network consists of a set of broad subject categories called semantic types in 

Sutphin et al. Page 2

J Biomed Inform. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which each concept in the Metathesaurus is assigned one or more semantic type. For 

example, the semantic type of the concept C0206250 [Autonomic nerve] is Body Part, 

Organ, or Organ Component. Currently, there exist 135 semantic types in the Semantic 

Network. In this work, we use the Metathesaurus from UMLS version 2018AA to map the 

ADEs to MedDRA PTs.

MetaMap.—MetaMap7 is a freely available concept mapping system that maps terms in 

biomedical text to CUIs in the UMLS. MetaMap also provides the semantic type 

information for each of the mappings. In this work, we use both CUIs and semantic types as 

features in our CRF-based ADE extraction system.

2.2 Related Work

A large body of work in text mining and biomedical NLP has been dedicated to extracting 

ADEs from electronic health records8,9, scientific publications10, social media11–13 and 

FDA drug labels14. Here, we focus on approaches that extract ADEs from FDA drug labels. 

These approaches primarily fall into two categories: dictionary-based, and supervised 

machine learning approaches.

Many of the dictionary based approaches use information from the Unified Medical 

Language System Metathesaurus (UMLS). For example, the Side Effect Resource 

(SIDER)15 and SciMiner16 systems detect mentions of ADEs FDA Drug Labels based on 

synonyms derived from the MedDRA concepts in the UMLS6. The Structured Product Label 

Information Coder and ExtractoR (SPLICER)17 system uses a series of regular expressions 

derived from a dictionary of ADEs extracted from the UMLS. Ly et al.14 evaluated three 

NLP systems (ETHER, I2E, MetaMap) for extracting ADEs from drug labels and linking 

the terms to MedDRA Preferred Terms (PTs).

The supervised machine learning approaches utilize either Conditional Random Fields 

(CRFs) or Neural Networks (Deep Learning) approaches. For example, Zhou, et al18 used a 

Convolutional Neural Network combined with Long Short Term Memory units with a CRF 

to identify side effects of 16 anti-Multiple Myeloma (MM) drugs from drug labels. The 

AutoMCExtractor19 system used a set of CRF classifiers, trained on token, linguistic, and 

semantic features identified by cTAKES with a dictionary-based post-processing corrected 

boundary-detection errors of the CRF step.

Our work conducts a direct evaluation of a CRF-based approach (CRF) which use lexical, 

syntactic and semantic features identified by MetaMap to represent possible mentions, and a 

deep learning-based approach (bi-LSTM+CRF) that uses word and character embeddings to 

represent possible mentions. To combine the strengths of both approaches, we also evaluate 

three ensemble methods showing the complementary nature of the two entity detection 

approaches.

3 Methods

In this work, we develop NLP methods for identifying mentions of ADEs from narratives of 

FDA drug labels and we map each mention to MedDRA terminology. We study three 
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supervised machine learning methods for ADE extraction from FDA drug labels: The first is 

a CRF-based approach which uses lexical, syntactic and semantic features to represent 

possible mentions. The second is a deep learning-based approach which uses both lexical 

and character embeddings to represent possible mentions. Given these two systems, we 

present a third one that is an ensemble of the first two and complement them with two 

strategies for mapping the extracted entities to MedDRA terms, i.e., term normalization. The 

first normalization approach is dictionary-based while the second utilizes deep learning with 

an auto encoder/decoder network to learn the MedDRA Preferred Terms (PTs) associated 

with a term.

3.1 FDA Drug Label Dataset

The data consists of 100 annotated FDA drug labels (https://sites.mitre.org/adeeval), which 

include 15,562 mentions of the office of surveillance and epidemiology (OSE) labeled ADEs 
under 4 Reasons; 7,715 mentions of non-OSE ADEs under 10 Reasons; and 3,281 mentions 

of Not ADE Candidates under 4 Reasons. Each OSE ADE and Non-OSE ADEs are mapped 

to MedDRA terms version 20.1. The breakdown of the entities and their reasons are shown 

in Table 1.

3.2 Evaluation Metrics

We evaluate our methods using 5-fold cross validation and report the precision, recall and F1 

score for each entity. Precision is the ratio between correctly predicted mentions over the 

total set of predicted mentions for a specific entity; recall is the ratio of predicted mentions 

over the actual number of mentions; and F1 is the harmonic mean between precision and 

recall. We also report the micro and macro averages over the entity types. Macro-average 

computes the metric independently for each class and takes the average treating all classes 

equally. Micro-average aggregates the contributions of all classes to compute the average 

metric. For multi-class classification, micro-averaging is preferable to understand the 

behaviour of a system if there is a class imbalance between the entity types.

3.3 ADE Extraction

We tackle ADE extraction using three methods. A CRF-based system, a bi-LSTM+CRF, and 

an ensemble of the two. The methods are trained over the Reasons associated with the ADE 

with the OSE and non-OSE labels extrapolated from the Reason annotations.

Conditional Random Field (CRF)-based ADE Extraction—For our CRF-based 

method, we adapted our python based entity recognition framework, medaCy (https://

github.com/NLPatVCU/medaCy). MedaCy decomposes entity recognition into three 

sequential components: pre-processing, feature representation, and training/prediction. Each 

of these components are tuned and optimized for the particular entities in need of extraction. 

We used the following components:

Preprocessing.: The first preprocessing step removes non-ASCII characters from the 

documents; and converts XML formatting to BRAT annotation20 format. For entities with 

discontinuous spans, we merge them into a single annotation. For example, the phrase 

‘Bacterial, fungal, viral or protozoal infections’ contains four entities: ‘bacterial infections, 
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fungal infections. viral infections and protozoal infections, three of which are discontinuous 

in their span, i.e., there are four words between ‘bacterial’ and ‘infection’. Custom 

tokenization rules are created to decompose the text into atomic pieces for classification. 

This predefined list of rules allows for the inclusion of abbreviations and multi-word phrases 

to be treated as a single token (for instance the characters N.Y. would be kept together).

Features Representation.: The following features are utilized using the word ‘Bacterial’ 

from the phrase above as an example:

• Morphological Features

– Shape – capitalisation, punctuation, digits (e.g Xxxxxxxxx)

– Prefix/Suffix – the first and last three characters of the word (e.g. bac for 

prefix; ial for suffix)

• Lexical Features

– Token (e.g. bacterial)

– Features of the surrounding tokens within a window size of 3 (e.g. 

Features for fungal, viral and or)

• Syntactic Features

– Part of speech (POS) of the token (e.g. adjective (JJ))

• Semantic Features

– UMLS CUIs identified by Metamap (e.g. C0521009)

– Semantic Types (e.g. Qualitative Concept (qlco))

• Domain Specific Features

– ADE Lexicon membership

Training.: For training/prediction we use a linear chain CRF implementation called 

CRFsuite21. CRFs are probabilistic graphical machine learning algorithms. They are 

sequence learners that take previous annotations into consideration when determining the 

label of the current token making them well suited for the entity recognition task. The 

classifier is trained over the Reason labels described in the Data Section, and the OSE ADE 

and non-OSE ADE labels extrapolated from the Reason predictions.

Deep Learning-based ADE Extraction—For our deep learning-based method we 

developed a bidirectional Long Short Term Memory units that utilizes a CRF (bi-LSTM

+CRF) for label sequence optimization. Our system consists of four components: 

preprocessing; feature representation, prediction/training; and postprocessing.

Preprocessing.: We process each drug label using SpaCy for sentence boundary detection 

and word tokenization. As in the CRF-based method, for entities with discontinuous spans, 

we merge them into a single annotation. We create a single entity from these annotations for 
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input to the system with the goal of first identifying the presence of discontinuous spans and 

then generating the separate entity annotations from system output at post-processing time.

Feature Representation.: Our feature representation consists of two layers: a character-

embedding layer, and a token-embedding layer. We apply bi-LSTM for both the character-

embedding and the token-embedding layers. We use character embeddings, token 

embeddings, and contextualized embeddings as features. For token embeddings, we use 

embeddings that are pre-trained on Wikipedia, PMC, and PubMed by Biomedical Natural 

Language Processing Lab22. We also utilize a context function which is pre-trained on the 

1B Word Benchmark using ELMo23. We process the training data through the context 

function to extract contextualized embeddings. We concatenate character, token and 

contextualized embeddings before inputting the resulting vector into the label-prediction 

layer.

Training/Prediction.: Our training/prediction consists of two layers: a label-prediction 

layer, and a label-sequence-optimization layer24. We tune hyperparameters using five-fold 

cross-validation on the training set. The resulting hyperparameters are: character-embedding 

dimension of 50; token-embedding dimension of 200; contextualized-embedding dimension 

of 1,024; label-prediction dimension of 150; dropout probability of 0.5. We iterate the 

training with maximum epochs of 100. When we do not get any better micro averaged F1 

score than the previous best result within the last 10 epochs, we stop iterating. The classifier 

is trained over the Reason labels described in the Data Section, and the OSE ADE and non-

OSE ADE labels extrapolated from the Reason predictions.

Ensemble Learner—Ensemble learning25 is a paradigm where multiple machine learning 

algorithms are trained to solve the same problem. Ensemble methods try to construct a set of 

hypotheses and combine them, in contrast to traditional approaches which attempt to learn 

one hypothesis from a training data set.

In this work, we explore three approaches: union, intersection, and meta-learner. The union 

and intersection are simply the union or intersection mentions annotated by the CRF and bi-

LSTM+CRF. The meta-learner approach combines the results of the CRF and bi-LSTM

+CRF using a Naïve Bayes meta-learner to learn the label probability outputs of each 

ensemble member for each entity. We used SciKit Learn’s26 Gaussian Naive Bayes 

implementation for this work.

3.4 Normalization

To map the extracted ADEs to MedDRA PTs, we processed the text through MetaMap7, 

which assigns Concept Unique Identifiers (CUIs) from the Unified Medical Language 

System (UMLS) to biomedical text. From the UMLS CUI, we identify the MedDRA PT 

associated with that CUI. If one exists, we assign the MedDRA PT to the mention.

4 Results and Discussion

We evaluate the CRF, bi-LSTM+CRF, and their ensemble systems on the extraction of 

ADEs on FDA drug labels. As discussed in the Data Section, the data set contains OSE 
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ADEs, non-OSE ADEs and Not ADE Candidates where each mention is labeled with the 

Reason for the label. We evaluate the systems on both the ADE labels and Reasons. We 

evaluate our methods using 5-fold cross validation over the training data and report the 

precision, recall and F1 scores.

4.1 Reason Results and Analysis

Table 2 shows the precision, recall and F1 scores of the CRF and bi-LSTM+CRF trained on 

the ADE reasons using 5-fold cross validation. The table also shows the number of mentions 

for each of the entities in the data set. The results show that no one method obtained a higher 

F1 score across all of the entities types, and overall the CRF obtained a higher macro-

average while the bi-LSTM+CRF obtained a higher micro-average. Table 3 shows the 

number of disagreements for both systems.

Figure 1 shows the F1 scores of the approaches sorted based on the number of instances. The 

results indicate that when there are few training examples the CRF approach generalizes 

better over the training data than the bi-LSTM+CRF approach. Figure 2 shows the average 

number of mis-labels across the different reasons for the CRF and bi-LSTM+CRF for each 

label type. The results indicate that both systems had difficulty identifying from drug use.

Analysis of the Reasons showed a high lexical variability of the entities. On average, there 

exists 2.05 possible Reasons for each lexical representation of an entity in the dataset. For 

example, the lexical phrase antibodies to infliximab was seen as an AE only as instruction 9 

times and from drug use 8 times; its reasons depends on the context in which the term was 

used.

In addition, there are a number of mentions that can be both a Reason and Not a mention. 

For example, vomiting was labeled as a mention of a Reason in 103 instances while the 

system found an additional 19 mentions that were not labeled as a Reason. This high lexical 

ambiguity increases the difficulty of identifying the ADE mentions within the text.

4.2 ADE Results and Analysis

Table 4 shows the Precision, Recall and F1 scores for the CRF, bi-LSTM+CRF, and 

ensemble approaches over the FDA ADE Labels. The results show that the bi-LSTM+CRF 

overall obtained higher precision, recall and F1 score except for the precision of the Not 
ADE Candidate label. Compared to individual methods, the union ensemble shows a large 

recall improvement while the intersection ensemble provides a large precision improvement. 

The metalearner results are significantly lower. We believe this is due to the fact that the 

number of training examples was significantly lower for the Non OSE ADE and Not ADE 
Candidate labels. The OSE ADE label contained 16,000 instances, while the Non OSE ADE 
label 8,000 instances and the Not ADE Candidate contained only 8,000.

Table 5 shows the confusion matrix of the ADE Labels for both the CRF and bi-LSTM

+CRF approaches. For both approaches, the largest confusion was between Non-OSE ADE 
and OSE Labled ADE. This makes sense because we would not expect lexical variability 

between an ADE that has been defined by the OSE and one that has been defined by non-

OSE.
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Merging these two labels increases the performance of both the CRF and bi-LSTM+CRF 

systems as shown in Table 6 increasing the F1 scores to 0.88 & 0.93 respectively. These 

results can be compared to Ly et al.14 results, showing that the methods proposed in this 

work largely improve the performance of previous work on a similar task.

4.3 Normalization Results and Analysis

In this section, we discuss our results assigning entities to MedDRA ids. Table 7 shows the 

precision, recall, F1, true positive, false positive and false negatives for identifying the 

MedDRA PT for the OSE ADE lables identified by our system. The results show that using 

MetaMap provides a precision of (0.704), and a recall of (0.502).

Analysis of the results showed three areas that the system was unable to obtain the correct 

MedDRA PT:

1. MetaMap did not map the instance the correct CUI. For example, Drug specific 
antibody was mapped to ‘C0443640:Specific antibody’ rather than C4524162 

which maps to the MedDRA ID 10080179.

2. A term may map to more than one CUI. For example, ‘Hypertension’ maps to 

more than one CUI C1963138 and C0020538 in which only C0020538 maps to 

10020772.

3. A CUI may map to more than one MedDRA PT. For example, 

‘C0151740:Intracranial hypertension’ maps to either the MedDRA ID 

‘10011570:CSF pressure increased’ or ‘10022773:Intracranial pressure increased 

‘.

5 Conclusions

In this paper, we evaluated the performance of a CRF and a bi-LSTM+CRF approach to the 

identification of ADEs and their Reason from FDA drug labels. The results show that both 

methods obtain a high identification performance, even though the bi-LSTM+CRF approach 

improves over the CRF method. In the task of Reason identification, CRF performs better on 

those entities that have a low number of instances, while the bi-LSTM+CRF improves on 

those entities with a higher number of instances. The ensemble methods show an 

improvement of precision or recall at the cost of a reduced F1 indicating the complementary 

nature of the two systems.

The reported results improve previously results reported by Ly et al.14 although a direct 

comparison can not be established. ADE reason identification could be improved for some 

of the categories, which might require additional annotations to be used for training the 

proposed machine learning methods. The developed solutions obtain a more than respectable 

performance on the proposed tasks and could be considered for the automatic identification 

of novel adverse drug events reported in FAERS or in other reporting database.
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6 Future Work

For ADE extraction, we showed the complementary aspect of the CRF and bi-LSTM+CRF 

systems exploring three ensemble methods. In the future, we plan to develop more complex 

algorithms that take into account the probability of the systems annotations. We plan to 

expand out our meta-learner ensemble approach to include additional metadata from the two 

systems. In addition, there were 982 mentions in the data set that contained discontinuous 

spans. For example, the phrase ‘Bacterial and fungal infections’ contains two entities: one 

discontinuous spanned entity (‘bacterial infections), and one continuous spanned entity 

(fungal infections). Currently, we merge them into a single annotation (e.g. ‘bacterial and 

fungal infections’, and ‘fungal infections’). In the future, we would like to explore 

incorporating parsing information to take these entity types into account.
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Figure 1: 
F1 scores sorted based on number of instances in the data set.
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Figure 2: 
The average number of mis-labels across the CRF and bi-LSTM+CRF for each entity type
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Table 1:

FDA Drug Label Data Set

Label Reason # Instances Description

OSE ADE

from drug use 14936 ADE associated with the use of the drug.

from drug component 1 ADE associated with an inactive ingredient.

class effect 587 Effect associated with the drug class.

medication error 7 Preventable event that may lead to inappropriate drug use.

Non-OSE ADE

manifestation or complication 760 Signs, Symptoms or changes in lab results related to the ADE.

ADE rate lteq placebo 119 ADE with incident rate equal or lower than placebo.

ADE animal 76 ADE from animal data.

ADE from drug interaction 140 ADE from drug-drug interaction.

general term 1952 Non specific text use to introduce ADEs.

ADE from off label 47 ADE associated with off-label use.

ADE only as instruction 2824 ADE mentioned in instructions.

ADE for another drug in class 17 ADE related ot another drug class.

OD or withdrawal 157 ADE associated with discontinuing medication.

negation 110 ADE whose presence is negated.

other 2 Another reason for disinterest.

Not ADE Candidate

indication 1230 Clinical reason for taking the drug.

contraindication 25 Clinical symptom for which the use of the drug would not be 
appropriate.

preexisting condition or risk factor 1365 Clinical symptom of pre-existing condition.

other 10 Another reasons the mention is not an ADE.
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Table 2:

Overall CRF & bi-LSTM+CRF Precision, Recall and F1 Results over the Reasons

Label Reason # instances
CRF bi-LSTM+CRF

Precision Recall F 1 Precision Recall F 1

OSE ADE

from drug use 14936 0.8247 0.8357 0.8302 0.8561 0.9189 0.8864

from drug component 1 1.000 0.1111 0.200 0.000 0.0000 0.0000

class effect 587 0.5366 0.3982 0.4572 0.686 0.5336 0.6003

medication error 7 0.8571 0.500 0.6316 0.000 0.0000 0.0000

Non-OSE ADE

manifestation or complication 760 0.5908 0.4326 0.4994 0.6830 0.6451 0.6635

ADE rate lteq placebo 119 0.3445 0.1419 0.2010 0.1667 0.0138 0.0256

ADE animal 76 0.8026 0.3096 0.4469 0.7487 0.6564 0.6995

ADE from drug interaction 140 0.4500 0.2032 0.2800 0.4294 0.2258 0.2960

general term 1952 0.9109 0.8411 0.8746 0.8896 0.8749 0.8822

ADE from off label 47 0.3830 0.2169 0.2769 0.2000 0.0964 0.1301

ADE only as instruction 2824 0.5857 0.5187 0.5501 0.6366 0.6538 0.6451

ADE for another drug in class 17 0.2941 0.0909 0.1389 0.0625 0.0182 0.0282

OD or withdrawal 157 0.5924 0.4604 0.5181 0.9238 0.4778 0.6299

negation 110 0.6364 0.3030 0.4106 0.5459 0.4979 0.5208

other2 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Not ADE Candidate

indication 1230 0.8472 0.7443 0.7924 0.7157 0.6699 0.6921

contraindication 25 0.3200 0.1311 0.1860 0.3889 0.1148 0.1772

preexisting condition or risk factor 1365 0.6821 0.5224 0.5917 0.6794 0.6876 0.6835

other3 10 0.7000 0.3684 0.4828 0.0000 0.0000 0.0000

AVERAGE
macro 0.5679 0.3565 0.4184 0.4306 0.3542 0.3780

micro 0.7741 0.7109 0.7411 0.7946 0.7983 0.7965
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Table 3:

Disagreements between CRF & bi-LSTM+CRF

CRF bi-LSTM+CRF # mentions

manifestation or complication from drug use 229

preexisting condition or risk factor from drug use 147

AE only as instruction from drug use 44

class effect from drug use 102

preexisting condition or risk factor None 425

from drug use manifestation or complication 151

None AE only as instruction 378

from drug use class effect 154

general term None 271

from drug use AE only as instruction 415
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Table 4:

Precision, Recall and F1 Lenient Results over the Labels

Method Label Precision Recall F 1

CRF

OSE ADE 0.8376 0.8361 0.8368

Non OSE ADE 0.7582 0.6102 0.6762

Not ADE Candidate 0.8224 0.6627 0.7340

bi-LSTM+CRF

OSE ADE 0.8738 0.9197 0.8962

Non OSE ADE 0.7996 0.7308 0.7637

Not ADE Candidate 0.8001 0.7648 0.7820

UNION ENSEMBLE

OSE ADE 0.8392 0.9386 0.8861

Non OSE ADE 0.7675 0.7611 0.7643

Not ADE Candidate 0.7802 0.8225 0.8008

INTERSECT ENSEMBLE

OSE ADE 0.8980 0.8384 0.8672

Non OSE ADE 0.8447 0.6170 0.7131

Not ADE Candidate 0.8526 0.6357 0.7283

META-LEARNER ENSEMBLE

OSE ADE 0.7104 0.8426 0.7708

Non OSE AE 0.4280 0.4677 0.4470

Not ADE Candidate 0.6767 0.5294 0.5940

J Biomed Inform. Author manuscript; available in PMC 2021 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sutphin et al. Page 17

Table 5:

Confusion Matrix over the Labels

CRF Results OSE ADE Non-OSE ADE Not ADE Candidate

OSE ADE 12992 1285 198

Non-OSE ADE 733 4693 179

Not ADE Candidate 74 111 2158

bi-LSTM+CRF Results OSE ADE Non-OSE ADE Not ADE Candidate

OSE ADE 14962 1296 151

Non-OSE ADE 581 5799 230

Not ADE Candidate 97 180 2564

J Biomed Inform. Author manuscript; available in PMC 2021 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sutphin et al. Page 18

Table 6:

ADE Results with Merged OSE ADE and Non-OSE ADE

Method Precision Recall F1 Score

CRF 0.9078 0.8480 0.8768

bi-LSTM+CRF 0.9287 0.9300 0.9293

UNION ENSEMBLE 0.8935 0.9560 0.9237

INTERSECT ENSEMBLE 0.9520 0.8196 0.8808

META-LEARNER ENSEMBLE 0.8835 0.9210 0.9019
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Table 7:

Normalization Results

Label Precision Recall F 1 TP FP FN

Normalization Results on Predicted Mentions

OSE ADE 0.704 0.502 0.586 8243 3462 6843

Non OSE ADE 0.523 0.231 0.321 1881 1710 5592

Combined 0.736 0.459 0.566 11267 4029 11050

Normalization Results on Predicted Mentions

OSE ADE 0.841 0.588 0.692 9653 1822 5100

Non OSE ADE 0.747 0.406 0.526 3296 1115 3794

Combined 0.815 0.528 0.641 12949 2937 8886
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