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Abstract

We propose multivariate nonstationary
Gaussian processes for jointly modeling
multiple clinical variables, where the key
parameters, length-scales, standard devi-
ations and the correlations between the
observed output, are all time dependent.
We perform posterior inference via Hamilto-
nian Monte Carlo (HMC). We also provide
methods for obtaining computationally effi-
cient gradient-based maximum a posteriori
(MAP) estimates. We validate our model on
synthetic data as well as on electronic health
records (EHR) data from Kaiser Permanente
(KP). We show that the proposed model
provides better predictive performance over
a stationary model as well as uncovers in-
teresting latent correlation processes across
vitals which are potentially predictive of
patient risk.

1 Introduction

The large-scale collection of electronic health records
(EHRs) offers the promise of accelerating clinical
research for understanding disease progression and
improving predictive modeling of patient clinical
outcomes | ) |-
Typically, EHR data consists of rich patient infor-
mation, including but not limited to, demographic
information, vital signs, laboratory results, diagno-
sis codes, prescriptions and treatments. However,
it is extremely challenging to develop models for
EHR data. Contributing to these challenges are data
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quality, data heterogeneity, complex dependencies
across multiple time series, irregular sampling rates,
systematically missing data, and statistical nonsta-
tionarity | , ,
]
Despite these challenges, the promise of leverag-
ing EHR data to improve patient outcomes has
resulted in an explosive growth of research in the
past decade. While the existing literature addresses
many of the challenges in modeling EHR data,
such as irregular sampling rates | ,
, ], missing
data | ] and the modeling of com-
plex dependencies across multiple streams of clinical
data | , l,
violations ~ of  stationarity in  EHR  data
[ | has received less attention. In
this paper, we propose a novel statistical framework
based on multivariate Gaussian processes (GPs) to
model both nonstationarity and heteroscedasticity
in EHR data. We explore both model predictive
performance as well as inferred nonstationary cor-
relation patterns across different clinical variables.
Inference for the proposed model is performed in
a fully Bayesian manner, providing full uncertainty
quantification on predictions and all model parame-
ters, such as time-varying correlations across clinical
variables.

While biomedical processes can be both multivari-
ate and nonstationary, models which handle both fea-
tures have not been explored in the context of EHR
data, to the best of our knowledge. Sepsis is a prime
example of a disease in which correlated multivari-
ate output and nonstationarity may be critical for
early identification. Sepsis has been shown to exhibit
highly nonstationary variations in the vitals of patients
[ ] while the cross-correlation of these
vitals has been shown to be predictive of early onset
[ ]. While both multivariate and
nonstationary models have been proposed for EHR
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data, to the best of our knowledge ours is the first
model for EHR data which is both nonstationary and
multivariate.

We demonstrate our proposed framework by model-
ing a large EHR dataset composed of emergency de-
partment (ED) hospitalization episodes from Kaiser
Permanente (KP). The patients were suspected to
have an infection and, in a subset of cases, met
the clinical criteria for sepsis | ,

]. Sepsis is a life-threatening or-
gan dysfunction arising from a dysregulated host re-
sponse to infection, affecting at least 30 million pa-
tients worldwide and resulting in 5 million deaths each

year [ , .

We apply our proposed approach to jointly model
systolic pressure, diastolic pressure, heart rate, res-
piratory rate, pulse pressure and oxygen saturation
levels. We demonstrate improved model prediction
performance and uncertainty quantification over the
state-of-art. Since changes in cross-correlations across
vital signs is often an indicator of onset of sep-
sis | ], we also explore the in-
ferred cross-correlations across the vitals and their
relationship with the hourly LAPS2 scores (LAPS2
is a KP specific measure of acute disease burden
and is an indicator of the risk state of a patient)

[ J.
2 Related Work

Gaussian  processes have a long history in
both spatio-temporal statistical modeling
[ ] and in machine learning
[ ]. With the increas-
ing use of EHR data to improve patient health
outcomes, there has been an increased application
of Gaussian processes to modeling EHR data. Our
use of Gaussian processes is motivated by their
flexibility in handling nonstationary and correlated
multivariate data, which have been extensively
applied to spatio-temporal statistical modeling
[ ]. In this section we briefly
overview the recent literature on the use of Gaussian
processes in EHR modeling and point out the main
contributions of this paper.

EHR data consists of multiple correlated measure-
ments taken over time. As such, multi-output or
multi-task Gaussian processes (MTGPs) have been
proposed as appropriate models for EHR data. A
MTGP framework for modeling the correlation across
multiple physiological time series was first proposed in
[ ]. In [ | the
inferred hyper-parameters from a MTGP model were
used as compact latent representations used to pre-

dict severity of illness in ICU patients. Online patient
state prediction | ] and online patient
risk assessment | ] were both proposed
via a MTGP framework based on large-scale EHR
data sets. Personalized treatment effects were pre-
dicted via MTGPs in | ]
Online MTGPs were combined with RNN classifiers
for early sepsis prediction in hospital patients in
[ , ].  While
each of the above approaches are able to learn a corre-
lation structure both within and between clinical time
series, all models are both stationary and homoscedas-
tic.

Because hospitalized patients can go through
drastic physiological changes in short periods
of time, nonstationary models are needed for
EHR data | , ,
].  One effect of the biological
nonstationarity is highly irregular sampling rates
for EHR data. This is due to attending healthcare
providers adjusting the sampling rates in response to
observable changes in patient state. Nonstationary
Gaussian processes have been proposed as means of
correcting for these highly irregular sampling rates
via time warping in | ]. While this model
does directly model nonstationarity in the clinical
time series, it does not directly model heteroscedastic
nor correlated multivariate data.

Other than directly modeling EHR data, Gaus-
sian processes have been utilized in a variety of
ways with EHR data. They have been used
to smooth and regularize data for blackbox op-
timizers | , ,
, ], as priors for
latent hazard functions in modulated point processes
|, and as components of hierarchical gen-

erative models | ]

The flexibility and expressiveness of Gaussian pro-
cesses clearly offer a powerful framework for model-
ing complex EHR data. And while Gaussian process
models have been proposed to handle either nonsta-
tionarity or correlated multivariate EHR data, to the
best of our knowledge there has been no attempt to
model both nonstationarity and correlated multivari-
ate EHR data. Furthermore no heteroscedastic Gaus-
sian process models have been proposed for EHR data
previously. In the following section we present a novel
multivariate, nonstationary, heteroscedastic Gaussian
process model capable of handling complex EHR data.
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3 Multivariate Nonstationary
Gaussian Processes

Inpatient clinical time series data is composed of mea-
surements of multiple correlated patient vital signs.
Furthermore, the statistical properties of the data
may not be constant across time due to physiological
changes from acute disease onset. For these reasons we
propose a multivariate nonstationary Gaussian process
(MNGP) to model EHR data. Importantly, it is the
first such multivariate Gaussian process to model both
nonstationarity in the length-scale parameter, signal
variance and the covariance matrix between dimen-
sions of the output.

We briefly review some basic properties of both multi-
variate Gaussian processes in the following section. In
section 3.2 we present our Generalized Nonstationary
Multivariate Gaussian Process model in detail.

3.1 Background

A Multivariate Gaussian process (MGP) defines
a distribution over multivariate functions f(t) =
(fi®),... far@)T.  For any collection of inputs

t1,...,tn, the function values f, = f(t,) follow a
multivariate normal distribution
fE vee([f1,-- -, fN]T) NN(O,Kf)

where vec is the vectorization operator. The covari-
ance matrix K/ is generated from a covariance func-
tion K/ such that for any two inputs ¢,#' € {t,...,tx}
and any two dimensions m,m’ € {1,..., M}, the co-
variance between the values f(t)[m] and f(¢')[m/]
is given by K/(t,t',m,m/). A MGP is said to
be separable when a decomposition exists such that
K7 (t,t',m,m') = B(m,m')K(t,t') for some functions
B of the dimension indices only and K of the input
dimensions only. In matrix notation this is equiva-
lent to K = B ® K, where the covariance matrix
B ¢ RMXM gymmarizes the relations across output
dimensions, the covariance matrix K summarizes the
relations across input, and ® denotes the Kronecker
product. A typical separable model would be to model
the covariance matrix B directly, say by its Cholesky
decomposition, B = LL”, while K is parameterized
by a kernel function. A commonly used stationary ker-
nel is the square exponential or radial basis function
(RBF) kernel

N 2 (t—t)
krpr(t,t') = o exp <_2dg . (1)
where the signal variance ¢ corresponds to the range
scale of function and the length-scale d encodes how
fast the function values can change with respect to the
distance |t — t/|.

A continuous-time stochastic process is said to be
wide-sense stationary if both its mean and autocovari-
ance functions do not vary with time. For a zero-mean
Gaussian process this property reduces to having a sta-
tionary covariance function, namely a positive definite
kernel k(x, x’) which is only a function of  —a’. Thus
for our purposes a nonstationary zero-mean Gaussian
process has a covariance function which is not station-
ary.

3.2 A Generalized Nonstationary
Multivariate Gaussian Process

We now present our Generalized Nonstationary Mul-
tivariate Gaussian Process (GNMGP) in detail. The
hierarchical representation of the model is as follows:

y(t) = L(t)g(t) + €(t),
e(t) ~ N(0,02,.1),

err

gd(t d*172a' aMa
Lij(t) ~ GP(ur,Kr)  i>3j
Jz'rr ~ IG(G, b) (2)

We utilize a Gibbs kernel for the independent GPs
where nonstationarity is achieved by placing a GP
prior on the log length-scale process.

20()0'(t)
02+ P (
log(£(t)) ~ GP (g, K;(t,t'))

Finally p; and K;(t,t") are treated as hyperparameters
of the model and can be chosen appropriately for the
application.

N _ (t—t)?
R = T )

Because L(t) is a lower triangular matrix and the com-
ponents of g(t) are iid, the covariance function of the
resulting multivariate GP f(t) = L(¢)g(t) is given by

K (t,t',m,m') = [L(t)cov(g(), g(t')) LT (') mm’
= K(t,t)[LOLT ()] mm- 3)

The proposed GNMGP model can be understood as
generalizations of existing GP models. For example,
[ ] proposed a nonstationary model
by considering a spatially varying covaraince relation
but did not emphasize the input-dependent length-
scale, which is crucial in real applications. When using
a matrix-variate inverse Wishart spatial process for the
covariance matrix B(t) = LT (t)L(t) and a stationary
kernel, such as the RBF kernel, for the temporal kernel
K, our model reduces to the spatially varying linear
model.

In general the above model will be nonseparable,
meaning the covariance function cannot be decom-
posed into components that are functions of either
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time or dimension, but not both. A a special case
of the above model that is separable can be derived
as follows. Suppose L(t) = o(t)L for some posi-
tive function o(t) and constant lower-triangular ma-
trix L. Letting B = LL" we see from (3), that the
GNMGP kernel function reduces to K7 (t,t',m,m’) =
o(t)o(t')K(t,t")[B]m,m , which is separable. To finish
the specification of this model we assume log(c(t)) ~
GP(ﬂg,Kg(t,t/)) and Lij ~ N(,LLL,EL) for ¢ > ] As
before s, K5(t,t'), ur, X1, are hyperparameters of the
model to be chosen accordingly to the application.

We note that [ ] proposed a fully
nonstationary univariate kernel by extending the stan-
dard Gibbs kernel to include input-dependent signal
variance and input-dependent signal noise. When
considering input dependent length-scale and signal-
variance, our proposed separable kernel can be seen as
a multivariate extension of the nonstationary model
proposed in | ].

Finally, we note that using different kernel functions is
possible. For example, | ]
proposed a class of nonstationary kernels for univari-
ate output with a Matérn kernels. Extensions of our
model to the Matérn kernel is straightforward, provid-
ing a multivariate output alternative to the model in

[ J

4 Inference

We propose two inference approaches, maximum a
posteriori (MAP) and Hamiltonian Monte Carlo in-
ference. This section discusses the case of com-
plete data, which means at each location or time
stamp ¢, all observations y; are available. Infer-
ence for incomplete data, where not all y; are avail-
able at each t, follows from standard Gaussian pro-
cess methods for marginalizing over missing data
[ ]. Note that for ease
of exposition we introduce the following notation:
0(t) = log(£(t)) and &(t) = log(o(t)).

4.1 Maximum A Posteriori (MAP)

This section considers maximum a posteriori inference
for both models. In the separable model setting, model
parameters o2,,., L, £,6 are of interest. The marginal
posteriors of these parameters are

memLeﬂ%>—/Mﬁﬁng@omw@w
x N (g0, K/ + 02, 1) [ [N (L]0, )N (6|16, K5)
i>j

N (Elpg, K)IG(0?,,]a,0) (4)

The most expensive computation comes from

N(y|lo, K/ + ¢2%,.I). Since this setting is separa-
ble K/ = B ® K, methods exploiting Kronecker
structure [ | are discussed.
Directly computing the likelihood costs O(M 3N3’)
due to the computation of (B ® K + 02,.1)~! and
logdet(B ® K + 02,.1).

err

err
Efficient computation approaches for the two terms are
proposed through eigen-decomposition B = Ug DU}
and K = UKDKU};. Then we rewrite the two terms:

(B@ K +02,1)"' = (UpDpUE @ Ux DUL +02,.1)7
(UDUT + UGTT‘I) !
- U(D + UGTT )UT

where U = Up ® Uk is a unitary matrix and D =
Dp ® Dk is a diagonal matrix. And

logdet(B ® K + ae,,r
= log det(D + o2

I) =logdet(U(D + o2, 1)UT)
I).

err
Then applying Algorithm 14 in [ 1,
the total computation cost is reduced to
O(max(MN, M3, N3)) = O(max(M3, N3).

In the general nonseparable setting, model parame-
ters 02, L, € are of interest. Here L;;(t) is a three
dimensional tensor. The marginal posteriors of these
parameters are

(emLfﬂ%)—/MﬁﬁmLy%GMQ@#

x N(gl0, K/ +0?,,1) HN(Lij|NL>KL)

>3

N €z, K)IG(02,,|a.b) (5)

( €TT

4.2 Hamiltonian Monte Carlo

This section describes fully Bayesian infer-
ence via Hamiltonian Monte Carlo (HMC)
[ ]. We implement HMC using auto-
matic differentiation in pytorch | ]
Implementing HMC on the marginal posterior (4), we
obtain posterior samples for agﬁf«), L(S),Z(S), ). The
posterior samples of the correlation matrix C*), and
the standard deviation &(*)(t) at time ¢ are derived
as follows:

C) — D-1/2(5) B(s) p~1/2(5)

where B®) = L LT and D)

7)) = o (1)V/diag BO)
= exp(6) (1) V/diag BO

= diag(B®)). And
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Implementing HMC on the marginal posterior (5), we
obtain posterior samples for agﬁi), L), £). The pos-
terior samples of the correlation matrix C*)(¢) and
the standard deviation &@*)(t) at time ¢ are derived as
follows:

c®) (t) = D71/2(S)(t)B(S)(t)Dfl/Z(S)(t)

where B®)(t) = LE()LTE)(t) and DO (1) =
diag(B®)(t)). And

E(S)(t) = y/diagB®) ().

4.3 Model Prediction

For both separable and nonseparable models, given a
new time stamp t* with corresponding latent vector
f*, the joint distribution of (y, f*) is

’!7 Kf—’_a—grr‘[ kf
Bl (Vi

where K/ = K/(tt), K* = K/(t*,t*) and
E'T = cov(f*,f + € = cov(f*, f). Since
cov(vec[fi, ..., fnl, F*) = ALY (t*)T, where

k(t*, tn)L' (tn)
it follows that

k= cov(f, i)
= cov(P(vec[fi,..., fx]), F7)
= P(cov(vec(f), f*)),

where P is a permutation operator such that
P(vec([f1,..., Fn])) = vec([fi1,..., fn]T). Therefore,
the predictive distribution is a multivariate Normal
distribution:

Fly ~N(p", %) (6)
7'y and ¥* = K* —

where p* = k/T(K/ + 02,
ET(KS + 02, 1)1k,

err

5 Experiments

We validate our proposed models on synthetic data
and Kaiser Permanente’s Electronic Health Records
(EHR) data | ]. We implemented all
models/inference algorithms in Python using the open
source Pytorch library.

5.1 Synthetic Data

We uniformly generate 200 timestamps on a unit in-
terval (0,1). Next we generate a bi-variate Gaussian
timeseries, in which the shared log length-scale pro-
cess [(t) is generated using a smooth Gaussian process
prior GP(0,RBF(c = 4,d = 0.4)) and the individ-
ual standard deviation process is generated using a log
Gaussian process prior logGP(0,RBF(c = 1,d = 0.1))
and correlation process r(t) between two covariates is
generated via a deterministic function r(t) = cos(nt).
Based on these three processes and assuming error
variance 02, = le — 6, we generate observed data us-
ing our proposed nonseparable kernel (3). We perform
maximum a posteriori (MAP) inference using weak
priors where, {(t) ~ GP(0,RBF(c = 5,d = 0.1)),
L;j(t) ~ GP(0,RBF(c = 5,/ = 0.1)) and 02, ~
IG(a = 1,b = 1). For MAP estimation, we initial-
ize g(t) by the empirical semivariogram and L;j(t) by
the sample covariance matrix, using data in the win-
dow [t —w,t 4 w], where w is the window size. We set
the learning rate to 0.01. Simulation results show that
the MAP estimates strongly depend on initialization,
as well as on the window size w due to the noncon-
vexity of the objective function. The true latent pro-
cesses and the inferred MAP processes and are shown
in Figure 1. Because latent GPs involve unobserved
functions generating the observed data, inference of
the latent processes is especially difficult when data is
limited. Nevertheless, Figure 1 shows that we are able
to recover the correct trends for the latent processes
reasonably well.

5.2 Kaiser Permanente Electronic Health
Records Data

We demonstrate our proposed framework by mod-
eling the time-varying vital signs such as, systolic
blood pressure (BPSYS), diastolic blood pressure (BP-
DIA), pulse pressure (PP), heart rate (HRTRT) and
oxygen saturation (O2SAT) of patients admitted to
the emergency department (ED) with confirmed or
suspected infection. The Kaiser Permanente (KP)
dataset is an anonymized EHR dataset where a pa-
tient’s hospital stay is identified by an episode ID

[ , ].

For our analysis we removed all measured vitals that
had missing values to obtain a complete dataset (how-
ever as discussed in Section 4, missing data may be
handled via marginalization). To better demonstrate
the utility of our model we selected episodes that ex-
hibited a high-degree of nonstationarity based on a
unit root test | ]. Episodes that
had p-values greater than 0.1 were considered to have
failed the stationarity test and were thus kept. Finally,
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Figure 1: (la): Generated data for dimension 1, (1d): Generated data for dimension 2, (1c): log length-scale
processes, (1b) standard deviation process for dimension 1, (1le): standard deviation process for dimension 2,

(1f): correlation process across dimensions 1 and 2.

for demonstration purposes we restricted analysis to
episodes that had between 100 and 200 observations.
Of these episodes we randomly selected a cohort of 205
episodes. For the KP dataset, we use priors identical
to those used for inference on the synthetic dataset,
except for L, where L;;(t) ~ GP(0,RBF(c = 5,d =
0.2)).

5.2.1 Prediction results

Prediction of future clinical observations for a patient
is of significant interest for improved medical decision
making, improved diagnosis, and clinical intervention.
For model validation, we obtain the posterior distri-
bution of our model parameters, based on all but the
last five observations for a patient. We next predict
the last five observations. In Table 1, we provide the
mean and standard deviation of root mean square error
(RMSE) as well as the log predictive density (LPD) for
205 episodes for stationary Gaussian processes model
and non-stationary Gaussian processes model (separa-
ble and non-separable kernels). For visualization pur-
poses, in Figure 2, we show the predictive performance
for a single patient.

The simulation results clearly demonstrate that both
the non-separable as well as the separable non-
stationary Gaussian processes provide better predic-
tive performance as well as uncertainty quantification
over the stationary Gaussian process. However, as seen
in Figure 2, some episodes require a non-stationary

model, and the non-separable non-stationary GP sub-
stantially outperforms the other models.

5.2.2 Inference of latent processes

Recent literature on sepsis | ,

] suggests that increased non-
stationarity and/or increased correlation of vitals are
often an early indicator of sepsis. In this section, we
look at the inferred correlation processes across the
vitals and plot them against the hourly LAPS2 scores.
LAPS2 is a Kaiser Permanente-developed metric for
acute disease burden that provides a measure of the
acute severity of illness of a patient by evaluating a
set of 15 common laboratory values, 5 vital signs, and
neurologic status | ]. Due to space
constraints, we show results for three episodes. In
Figure 3 the inferred time-varying correlation across
heart rate (HRTRT) and oxygen saturation levels
(O2SAT) seems to be in close agreement with the
hourly LAPS2 score for episodes A and B. This might
indicate that increased correlation across heart rate
(HRTRT) and oxygen saturation levels (O2SAT) may
potentially be an early indicator of increased risk for a
patient. It is also interesting and intuitively pleasing
to note that the uncertainty (as observed from the
posterior samples) associated with the inferred corre-
lation functions increases, for periods when a patient
is monitored less frequently. In Figure 4 we also show
the inferred correlation matrices across all vitals at
three time-points during the inpatient stay for episode
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Stationary GP

Non-stationary GP (separable)

Non-stationary GP (non-separable)

RMSE

13.858 (6.375)

13.176 (6.159) 13.010 (6.193)

LPD

-3.916 (0.899)

-3.906 (0.989) -3.863 (0.953)

Table 1: Predictive root mean square error (RMSE) and log predictive density (LPD) are summarized for
stationary multivariate Gaussian processes (SMGP), nonstationary multivariate Gaussian processes (NMGP)
and generalized nonstationary multivariate Gaussian processes (GNMGP) based on MAP inference. Mean and

standard deviation (in brackets) for RMSE based on 205 episodes are provided.
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Figure 2: Prediction results for BPDIA, BPSYS and HTRT for (a,b,c) stationary model (RMSE: 20.056, LPD:
-4.210 ), (d,e,f) separable non-stationary model (RMSE: 15.514, LPD: -3.957), and (g,h,i) non-separable non-
stationary model (RMSE: 10.669, LPD: -3.804 )

C. The correlation matrices show significant changes

6 Conclusion

in correlation patterns across the patient’s hospital

stay, which is in direct contrast to an assumption
almost invariably present in mathematical models for
EHR in the existing literature, i.e., a stationary cor-
relation matrix. We have performed similar analysis
on the entire cohort of patients selected for this study.
However, detailed analysis of such results are beyond

the scope of this paper.

We have developed a novel nonstationary Gaussian
process framework for modeling multiple correlated
clinical variables. To the best of our knowledge, this
is the first multivariate statistical model for EHR data
which is both nonstationary and heteroscedastic. Both
MAP and HMC inference procedures were developed
for the proposed model. The model was then validated
on both synthetic data and real EHR data from Kaiser
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Figure 4: (a) Observed vitals for episode C and heat map of correlation matrix across all vitals at time (b) 20.8h,
(c) 40.1h and (d) 71.8h.
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Permanente. We demonstrated both improved predic-
tion performance over stationary models as well as in-
ferred latent time-varying correlation processes which
are potentially indicative of patient risk. Future work
includes a more detailed and systematic study of the
inferred correlation processes and their relationship to
a patient’s risk profile.
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