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ABSTRACT  

Transforming raw EHR data into machine learning model-ready inputs requires considerable 

effort. One widely used EHR database is Medical Information Mart for Intensive Care (MIMIC). 

Prior work on MIMIC-III cannot query the updated and improved MIMIC-IV version. Besides, the 

need to use multicenter datasets further highlights the challenge of EHR data extraction. 

Therefore, we developed an extraction pipeline that works on both MIMIC-IV and eICU 

Collaborative Research Database and allows for model cross validation using these 2 

databases. Under the default choices, the pipeline extracted 38766 and 126448 ICU records for 

MIMIC-IV and eICU, respectively. Using the extracted time-dependent variables, we compared 

the Area Under the Curve (AUC) performance with prior works on clinically relevant tasks such 

as in-hospital mortality prediction. METRE achieved comparable performance with AUC 0.723-

0.888 across all tasks. Additionally, when we evaluated the model directly on MIMIC-IV data 

using a model trained on eICU, we observed that the AUC change can be as small as +0.019 or 

-0.015. Our open-source pipeline transforms MIMIC-IV and eICU into structured data frames 

and allows researchers to perform model training and testing using data collected from different 

institutions, which is of critical importance for model deployment under clinical contexts.  

1. INTRODUCTION 

Electronic health record (EHR) data contains rich patient-specific information and holds great 

promise in developing clinical decision support systems, understanding patient trajectories and 

ultimately improving the quality of care. To date, in combination of machine learning (ML) 

methods, EHR data has been leveraged to build prediction systems for diseases such as sepsis 

[1–4], acute kidney failure [5,6], rheumatoid arthritis [7], etc., develop interpretable algorithms 

[8,9], or explore the state space to learn what treatments to avoid in data-constrained settings 

[10]. EHR data is usually contained within a relational database, and most machine learning 

algorithms cannot directly operate on the raw data. Transforming raw EHR data into ML model-

ready inputs requires substantial effort, which includes selecting what variables to be extracted, 

how to organize irregularly recorded time-dependent variables as well as how to handle missing 

and outlier data points. McDermott et al. [11] found that only 21% of the papers in the machine 

learning for health (MLH) field released their code publicly, and that researchers usually extract 

task-specific data, which impedes comparison across different studies. 

 

https://www.zotero.org/google-docs/?mQjrxm


 

Recently, there has also been an increasing concern on the potential sources of harm 

throughout the machine learning life cycle [12,13]. For instance, representation bias can occur 

when samples used during model development underrepresent some part of the population, 

and the model thus subsequently fails to generalize for a subset of the use population. In 

addition, machine learning models can learn spurious correlations between the data and the 

target output. For example, the model can potentially link a specific variable recording pattern in 

the EHR training data instead of relevant clinical physiology with the outcome [14], which could 

lead to failure when the algorithm is deployed to another clinical site. Therefore, in the model 

development phase, it is important for researchers to perform model training or validation using 

EHR data from different sources. As McDermott et al. point out [11], whereas ~80% of computer 

vision studies and ~58% of natural language processing studies used multiple datasets to 

establish their results, only ~23% of ML for health (MLH) papers did this. The need to use 

multicenter datasets further highlights the challenge of EHR data preprocessing, because EHR 

data is usually archived differently across institutions, which requires design of different query 

strategies.  

 

The exciting research in MLH is made feasible by the availability of large collections of EHR 

datasets. Medical Information Mart for Intensive Care (MIMIC) is a pioneer in ensuring safe, 

appropriate release of EHR data. MIMIC-III is a large, freely-available database comprising over 

40000 deidentified records of patients who stayed in the critical care unit at Boston’s Beth Israel 

Deaconess Medical Center between 2001 and 2012 [15]. MIMIC-Extract [16] is a popular open 

source pipeline for transforming the raw critical care MIMIC-III database into data structures that 

are directly usable in common time-series prediction pipelines. It incorporates detailed unit 

conversion, outlier detection and missingness thresholding and a semantically similar feature 

aggregation pipeline to facilitate the reproducibility of research results that use MIMIC-III.  

Carrying on with the success of MIMIC-III, MIMIC-IV was introduced in 2020 with a few major 

changes to further facilitate usability. MIMIC-IV states the source database of each table 

(Chartevents, Labevents etc.) while MIMIC-III organizes the data as a whole. MIMIC-IV 

also contains more contemporary data recorded using the MetaVision system (instead of the 

CareVue system) from 2008 - 2019, which makes prior query code built on CareVue redundant; 

MIMIC-IV’s new structure and its accompanying level of detail require new query strategies. 

COP-E-CAT [17] is a preprocessing framework developed for MIMIC-IV that allows users to 

specify the time window to aggregate the raw features. Despite that utility and impact of both 

MIMIC-Extract and COP-E-CAT, they are constrained to operating on MIMIC-III or MIMIC-IV 

data, and thus do not provide developers with an independent dataset to improve model 



 

generalization and reduce bias. FIDDLE [18] is a data extraction pipeline for both MIMIC-III and 

eICU. eICU Collaborative Research Database [19] is a multicenter database comprising 

deidentified health data associated with over 200000 admissions to ICUs across the United 

States between 2014-2015. FIDDLE incorporates important advances, such as circumventing 

the process of selecting variables and making use of the individual EHR variable distributions. 

However, for a given model developed using FIDDLE-MIMIC-III, it’s still challenging to perform 

direct model evaluation using FIDDLE-eICU. In contrast to previous works, METRE advances 

the field with 2 primary contributions: 

 

1. METRE works with the most recent MIMIC-IV database. We extract a diverse set of time-

dependent variables: 92 labs and vitals, 16 intervention variables as well as 35 time-invariant 

variables. Our intervention table expands upon those included in MIMIC-Extract (ventilation, 

vasopressors, fluid bolus therapies) and further includes continuous renal replacement therapy 

(CRRT) and 3 types of transfusion procedures as well as antibiotics administration, which could 

be relevant in a variety of clinical tasks. Our default MIMIC-IV cohort is 38766 patient stays who 

were admitted to the ICU. We also incorporate flexible user-specified inputs into the pipeline. 

Users can specify the age range, data missingness threshold, ICU stay length, and specific 

condition keywords to get their unique cohort. 

 

2. We also developed an eICU database extraction pipeline with each extracted feature mapped 

onto those extracted from MIMIC-IV. The eICU pipeline was developed using the same outlier 

removal and missing data imputation strategy as MIMIC-IV. To demonstrate the usability of our 

pipeline, we performed the following tasks using MIMIC-IV and eICU data separately: 1) hospital 

mortality prediction, 2) acute respiratory failure (ARF) prediction using 4h or 12h ICU data, 3) 

shock prediction using 4h or 12h data. Afterwards, for models developed using MIMIC-IV, we 

performed model testing directly on eICU (or vice versa) without any transfer learning.  

2. METHODS 

2.1. Pipeline overview 

Figure 1 summarizes the extraction steps for both MIMIC-IV and eICU. The extraction pipeline 

starts with defining the cohort, where users can specify age range and ICU length of stay (LOS) 

range on the records to be extracted. Besides, we also provide a few arguments to extract 

condition-specific cohorts. For instance, such arguments include sepsis_3, under which the 

pipeline will only extract patients that meet sepsis-3 criteria [20] during their ICU stay.  Such 

https://www.zotero.org/google-docs/?ux8TJL


 

arguments include sepsis_3, ARF, shock, COPD, and CHF. The definition for each 

condition is in SI Section 8. Based on the identification info of the cohort (subject_id, 

hadm_id, stay_id in MIMIC-IV and patientunitstayid in eICU), the pipeline proceeds 

to extract 3 tables, namely Static, Vital and Intervention. 

 

Figure 1. METRE schematic. (Dashed box is specific for eICU. Output dataframe shape is from MIMIC-IV.) 

 

The Static table contains information such as patient age, gender, ethnicity, and comorbidities. 

Notably, we also extract the 3-year time window for each patient admission in the MIMIC-IV 

database, since the evolution of care practices over time and the resultant concept drift can 

significantly change clinical data [21], which can limit model deployability. The release of the 

approximate admission window is a new feature of MIMIC-IV (versus MIMIC-III). For eICU, all 

the patients were discharged between 2014 and 2015.  

 

The Vital table contains information such as blood gas and vital sign measurements. These 

measurements can be sparse and may contain erroneous values. Therefore, this branch has 

hourly aggregation, missing data handling and outlier removal before obtaining the final output. 

In order to facilitate the flexibility of the pipeline, users can also disable the default outlier 

removal or data imputation and apply a custom removal process on the raw data.  

 

The Intervention table contains features regarding procedures performed, such as mechanical 

ventilation and vasoactive medications (norepinephrine, phenylephrine, epinephrine etc.). The 

intervention features are treated as binary variables, with a series of 1s indicating the start time 

and end time of the procedure during the stay (Figure 2B), which follows the practice in MIMIC-

Extract [16]. A complete list of variables is in SI Table S4-S6. 

 

2.2. Variable query  

By default, our pipeline extracts all demographic variables (SI Table S4) from 

mimic_icu.icustays, mimic_core.admissions and mimic_core.patients tables for 

Database

MIMIC-IV/eICU

Cohort 
selection 
(age, ICU 

length 
of stay etc.) 

Retrieve static 
features: 

gender, ethnicity, 
comorbidities etc.

Retrieve dynamic 
features: 

blood gas, vital 
sign etc. 

Retrieve 
procedures 

such as mechanical 
ventilation 

Numerical: 
Z score  

categorical:
one-hot 

encoding

Create time 
window 

Aggregate 
data by hour

Outlier 
removal and 
imputation 

Semantic and 
feature order 
matching for 

eICU

Static Table

38766 x 35

Vital Table

2697900 x 184

Intervention Table

2697900 x 16

Static

Time
dependent 
(Vital and Intervention) 

*Output table row size is 

shown for MIMIC-IV



 

MIMIC-IV. For eICU, these demographic variables derive from eicu_crd.patient.  We also 

extract 17 comorbidities for each ICU stay from mimic_hosp.diagnoses_icd and  

eicu_crd.diagnosis, respectively. One critical difference between the 2 databases is that 

MIMIC-IV uses both the International Classification of Diseases 9th Revision (ICD_9) and 

ICD_10 version codes while eICU only uses ICD_9 code. Even when querying using the same 

ICD_9 standard, MIMIC-IV stores the code a little differently. For instance, congestive heart 

failure could be represented by ICD codes 39891, 40201 etc. in MIMIC-IV, while in eICU, it’s 

recorded as 398.91, 402.01 etc. We paid extra caution in designing the query code to miss as 

few comorbidity-related records as possible. 

 

The Vital table variables contain time-varying measurements on blood gas, vital sign, urine 

chemistry etc.  For MIMIC-IV, these variables were queried from mimic_hosp.labevents, 

mimic_icu.chartevents and mimic_icu.outputevents. For eICU, the raw results 

came from eicu_crd.lab, eicu_crd.nursecharting, eicu_crd.intakeoutput, 

eicu_crd.microlab, eicu_crd.vitalperiodic, eicu_crd.respiratorycharting. 

We also made use of existing derived tables from both repositories [22,23] to develop our SQL 

queries. There are in total 15 variables that were not found in the eICU database and we placed 

all NAN values in order to have the same dataframe shape for model cross validation. A list of 

these variables is in SI Table S7. In order to facilitate infectious disease research utilizing 

METRE, we extracted variables related to the antibiotics administration and microculture for 

both databases. Culture sites from MIMIC-IV have 57 unique values while the eICU database 

recorded 20 unique culture sites. These culture sites lack simple one-to-one correspondence, 

so we grouped the results into 14 categories based on the semantics. The details on creating 

concept-mapped microculture-related output variables are in SI Section 4.  

 

Different from the Vital table where we focus on the numerical values for most variables, the 

Intervention table queries the start time and the end time of every intervention procedure. 

Besides ventilation, vasoactive agent, colloid bolus and crystalloid bolus, which are included in 

MIMIC-Extract [16], we further queried CRRT and 3 different types of transfusion as well as 

antibiotics administration. Another distinct difference between MIMIC-IV and eICU databases is 

that in MIMIC-IV, each measurement/treatment is associated with a unique itemids, while in 

eICU, it’s usually directly represented by a unique string. The query strategy designed to obtain 

intervention-related records from both databases is in SI section 4.   

 



 

2.3. Post processing  

We performed post-processing on the Vital table and the Intervention table. For the Vital table, 

after getting the raw entries of each feature, we aggregated the feature by hour (Figure 2A) 

since most of the variables were not frequently recorded. For example, in MIMIC-IV, on 

average, heart rate was recorded every 1.07 hours and troponin-t was only recorded only every 

131.46 hours. Users could choose their own time window ranging from 1h to 24h. After this 

aggregation, certain time points will have missing values. Before we implemented any 

imputation algorithm, we added a binary indicator column for each numerical variable (1 

indicating the value is recorded and 0 indicating the value is imputed), since the recorded values 

could have higher credibility compared with the imputed values. Also noted by Ghassemi et al. 

[14], learning models without an appropriate model of missingness leads to brittle models when 

facing changes in measurement practices. Users have the option to discard the indicator 

column variables for a light-weight end-result. We then checked for outliers in the numerical 

variables. We made use of the list from in the source code repository of Harutyunyan et al. [24], 

which was based on clinical experts’ knowledge of valid clinical measure ranges. For any value 

below the outlier_low or above the outlier_high, we emptied that cell and set the 

corresponding indicator cell to 0. Importantly, the same outlier removal criteria were applied on 

both MIMIC-IV and eICU to prevent introducing bias at this stage. Variable filling information 

before and after the outlier removal is in SI Table S1-S3. All the ranges used in the outlier 

removal are in SI Table S9. We also compared the mean and std in each variable between 

MIMIC-IV and eICU and demonstrated variables with the largest and smallest mean value 

difference (SI Figure S1, S2).  

 

For the Intervention table, based on the start and end time of each variable, we added 1 or 0 

indicating whether the treatment was performed in each hour (Figure 2B). There was no special 

missing value imputation in this table and 0 indicates that treatment was not performed in that 

hour. The default pipeline also has a variable reordering step making sure eICU dataframes 

have the same ordering as MIMIC-IV dataframes, which facilitates direct cross-validation 

between these 2 databases. 

 

Before we implemented the default data imputation, we checked the ratio of null values for each 

ICU stay and for each variable. Users can set an optional missingness threshold above which 

means a stay or variable is not well-documented and will be removed.  

 



 

 
Figure 2. Post processing done on time-series variables with one-time entry and variables spanning hours. Notably, 
we added a binary indicator column for each numerical variable in A) to explicitly model the data missingness. A) the 
Vital table. The hypothetic patient was admitted to the ICU at 8:00 and 780 bpm is treated as an outlier for heat rate 

measurement. B) the Intervention table. The hypothetic patient was admitted to the ICU at 10:00 12/01/2081. 

 

2.4. Baseline tasks 

In order to demonstrate the utility of METRE, we extracted the eICU and MIMIC-IV data using 

the default choices and performed a number of clinically relevant prediction tasks using different 

model architectures.  

2.4.1. Tasks: We incorporated 5 prediction tasks as defined by Tang et al. [18], which are:   

1) In-hospital mortality prediction. In this task, 48h of extracted data is used for each 

stay. ICU stays with LOS < 48h are excluded. The prediction target is binary and the ground 



 

truth is from hospital_expire_flag in mimic_core.admissions for MIMIC-IV and for 

eICU, eicu_crd.patients record unitdischargestatus (‘Alive’ or ‘Expired’) explicitly. 

2-3) Acute respiratory failure (ARF), using either 4h (task 2) or 12h (task 3) of data. ARF 

is identified by the need for respiratory support with positive-pressure mechanical ventilation. 

For both MIMIC-IV and eICU, ventilation and positive end-expiratory pressure have been 

queried as variables so labels can be directly generated for each record.  

4-5) Shock, using either 4h (task 4) or 12h (task 5) of data. Shock is identified by receipt 

of vasopressor including norepinephrine, epinephrine, dopamine, vasopressin or phenylephrine. 

They have also been stored in the extracted Intervention table. For ARF and shock, the onset 

time is defined as the earliest time when the criteria is met.  

 

Incorporating a gap between the end of the observation window (48h, 4h or 12h) and the onset 

of the positive target (time of death, ARF onset, shock onset) prevents data leakage and more 

closely resembles the real use case, where the care team takes possible measures after the 

model gives an alert. We incorporate gap hour into METRE, where positive cases are those 

whose onset time is observed during the ICU stay but out of observation window and the gap 

hour window. The negative cases are defined as no onset during the entire stay. Therefore, 

each task has a distinct study cohort. We used 6h as the gap hour but users can set their 

preferrable gap hours (including no gap). We also performed the same series of predictions 

without gap hour and the results are in SI Table S12-S14. 

 

2.4.2. Models: We compared 4 different modeling approaches.  

1) Logistic regression (LR) models. For LR models, we used the sklearn linear model 

library and applied both L1 and L2 penalties [25]. Baysian optimization [26] was used for tuning 

the inverse of regularization strength C and the ElasticNet mixing parameter l1_ratio in order to 

maximize the average area under the receiver operating characteristic curve (AUC).   

2) Random forest (RF) models. RF models were built using sklearn ensemble library 

[27]. 6 hyperparameters including the number of trees in the forest, the maximum depth of the 

tree, the minimum number of samples required to split an internal node, the minimum number of 

samples required to be at a leaf node, the number of features to consider when looking for the 

best split, the number of samples to draw from the train set to train each base estimator were 

optimized using Bayesian optimization, with the same goal of maximizing AUC. For both LR and 

RF models, Bayesian optimization was implemented for 10 iterations with 5 steps of random 

exploration with expected improvement as the acquisition function. Besides, for both LR and RF 



 

models, since it requires 1D input, we flattened the time-series data before feeding into the 

model.  

3) 1-dimensional convolutional neural networks (CNN) [28]. For CNN models, a random 

search on the convolutional kernel size, layer number, filter number, learning rate and batch 

size with a budget of 5 was implemented to maximize the AUC.   

4) Long short-term memory networks (LSTM) [29]. We also used the same number of 

random search budget for the number of features in the LSTM hidden state, the number of 

recurrent layers, the feature dropout rate, learning rate and batch size.  

The train-test split is 80:20 and the train set is used in a 10-fold cross validation. The test 

set AUC and area under the precision-recall curve (AUPRC) performance was reported. 

Empirical 95% confidence intervals were also reported using 1000 bootstrapped samples of the 

test set and under 1000 bootstraps. Code to run these models is available online and more 

detailed parameter choices on the modeling are in the SI Section 9.  

3. RESULTS 

We first compared METRE with other MIMIC extraction pipelines (Table 1). METRE is the only 

pipeline that extracts the newest MIMIC database MIMIC-IV and eICU in a consistent way, 

includes a diverse set of EHR variables, and at the same time allows for both generic and 

condition-specific cohort selection. Notably, FIDDLE makes use of the underlying data 

distribution and performs post-processing similar to one-hot encoding, which results in the 

creation of large numbers of synthetic time-series variables. We also acknowledge that using 

MIMIC-III data has the benefit of abundant references and consequent in-depth understanding 

of the database.  

 
Table 1. Comparison of METRE with prior works  

  METRE MIMIC-Extract 

[16] 

FIDDLE [18] Gupta et al. 

[30] 

Cop-e-cat 

[17] 

Time-series 

variable number   
108   104 

 A few hundred to a 

few thousand 

depending on the 

task 

 NA  43 

If used MIMIC, 

MIMIC-III or IV? 
 IV  III III IV  IV 

Included 

medication and 
Y Y Y Y Y 



 

procedure 

variables? 

Generic cohort  Y Y Y Y Y 

Condition 

-specific cohort? 
Y N Y Y N 

Extracted eICU 

for cross 

validation? 

 Y  N 

 N, extracted eICU, 

but not consistent 

with MIMIC-IV 

 N  N 

Flexible time 

Window? 
Y N Y Y Y 

 

Table 2 is the demographic and ICU stay summary of the extracted MIMIC-IV and eICU cohorts 

using the default settings (generic cohort, age>18, data missingness threshold 0.9, LOS> 24h 

and LOS < 240h). Users can obtain their custom cohorts by defining the keyword, age 

constraint, LOS length constraint and by choosing whether to remove poorly populated stays or 

not.  The age, gender, ethnicity distributions between these 2 cohorts are very similar.  

 

Table 2. Demographic and ICU stay summary of the default MIMIC-IV and eICU cohort in METRE 

  MIMIC-IV (N = 38766) eICU (N = 126448) 

Gender Female  

Male 

Other/Unknown 

16825 (43.4%) 

21941 (56.6%) 

0  

58028 (45.9%) 

68339 (54.0%) 

81 (0.1%) 

Age   < 30  

31- 50  

50 – 70  

> 70  

 

1753 (4.5%) 

5264 (13.6%) 

15748 (40.6%) 

16001 (41.3%) 

mean: 65.1, std: 16.8 

6035 (4.8%) 

18782 (14.9%) 

52590 (41.6%) 

49041 (38.8%) 

mean: 63.9, std:16.6 

Ethnicity  

 

American Indian/Alaska Native 

Asian  

Hispanic 

Black/African American 

Other/Unknown 

White 

63 (0.2%) 

1137 (2.9%) 

1319 (3.4%) 

3384 (8.7%) 

6592 (17.0%) 

26271 (67.8%) 

844 (0.7%) 

2087 (1.7%) 

4651 (3.7%) 

14013 (11.1%) 

7142 (5.6%) 

97711 (77.3%) 

Admission 

Year 

(Discharge 

Year in eICU) 

2008 – 2010  

2011 – 2013  

2014 - 2016  

2017 - 2019 

12028 (31.0%) 

9393 (24.2%) 

9284 (23.9%) 

8061 (20.8%) 

2014: 60002 (47.4%) 

2015: 66446 (52.6%) 



 

  MIMIC-IV (N = 38766) eICU (N = 126448) 

Hospital 

Mortality   

No 

Yes 

Unknown 

35214 (90.8%) 

3552 (9.2%) 

0 

114912 (90.1%) 

10438 (8.3%) 

1098 (0.9%) 

ICU  

Mortality 

No 

Yes  

Unknown  

36518 (94.2%) 

2248 (5.8%) 

0 

120518 (95.3%) 

5923 (4.7%) 

7  

ICU Stay 

Duration 

1 - 3 Days  

3 - 7 Days 

7 - 10 Days 

 

26010 (67.1%) 

10515 (27.1%) 

2241 (5.8%) 

mean: 2.9, std: 1.0 

85750 (67.8%) 

34007 (26.9%) 

6691 (5.3%) 

mean: 2.8, std: 1.9 

 

 

Using the default cohorts shown in Table 2, we first demonstrate the utility of METRE on the five 

tasks mentioned previously (and demonstrated in FIDDLE [18]) using 4 different training 

architectures (LR, RF, 1D CNN and LSTM). The complete results are in Table 3. We used AUC 

and AUPRC of the test set as evaluation metrics. For MIMIC data, models trained with data 

extracted using METRE achieved 5/10 best performance in the tasks performed, demonstrating 

the utility of the pipeline. One benefit of METRE is the built-in ability to extract from the eICU 

database in parallel; we used the same criteria to obtain ARF and shock labels for eICU cohorts 

and then compared different model performance with those listed in FIDDLE. Models trained 

using data from the METRE-eICU also have comparable performance with those developed in 

FIDDLE, as expected (SI Table S10).  

 

Next, we evaluated the AUC and AUPRC from the unseen dataset for models trained on the 

other dataset. For the hospital mortality prediction model trained on MIMIC-IV, when we directly 

evaluated its performance on the whole eICU data (not only eICU test set, so the cohort size 

here is 60468) without any fine tuning, the best AUC is 0.824, which was achieved by the LSTM 

model. This only presents a 0.044 drop from the original MIMIC-IV LSTM in-hospital mortality 

model AUC of 0.868. Similarly, when we reversed the role of these 2 databases, the best AUC 

is 0.833, which is only 0.013 lower compared to the original eICU test set performance 0.846. 

Figure 3 compares the MIMIC-IV/eICU cross validation AUC on all 8 hospital mortality 

predictions, which clearly demonstrates the utility that arises from facile multidatabase 

extraction. Error! Reference source not found. has a complete comparison between the 

external dataset validation performance across models and across 5 different prediction targets. 

Among all 5 tasks, the ARF prediction task presented an AUC drop as high as 0.322 when the 

model was trained using eICU and evaluated using MIMIC-IV. We hypothesize that the 



 

generation of the ARF label may be dependent on local clinical care practice (e.g., whether the 

patient was on ventilation or not) and the completeness of the entries into the database. We 

therefore compared the ratio of people receiving all the 16 intervention procedures in SI Table 

S15 and observed the differences between MIMIC-IV and eICU. Model generalization 

performance has been known to be a challenge in model deployment, especially in clinical 

contexts, where the incoming data is often generated under different care practices. Therefore, 

we believe the ability of our pipeline to perform model testing using data collected from different 

institutions prior to deployment is of critical importance.  

 

 
Figure 3. Cross validation performances on in-hospital mortality prediction. A) LR, B) RF, C) CNN, D) LSTM models 
were trained using tables derived from MIMIC-IV and tested using both MIMIC-IV test set and the whole eICU set. E) 
LR, F) RF, G) CNN, H) LSTM models were trained using tables derived from eICU and tested using both eICU test 

set and the whole MIMIC-IV set. AUC curves with 95% confidence interval are shown in each panel.

A B C D

E F G H



 

 

Table 3. AUC and AUPRC comparison of trained models on the 5 different tasks. Data is from MIMIC. 

 Hospital Mortality 48h ARF 4h ARF 12h Shock 4h  Shock 12h 

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC 

MIMIC 
Extract 
(MIMIC-

III) 
 

LR 

 

RF 

 

CNN 

 

LSTM 

0.859 

(0.830-0.887) 

0.852 

(0.821-0.882) 

0.851 

(0.820-0.879) 

0.837 

(0.803-0.867) 

(n = 1264) 

0.445 

(0.358-0.540) 

0.448 

(0.359-0.537) 

0.439 

(0.353-0.529) 

0.441 

(0.358-0.523) 

0.777 

(0.752-0.803) 

0.821 

(0.799-0.843) 

0.788 

(0.763-0.814) 

0.796 

(0.770-0.822) 

(n = 2358) 

0.604 

(0.561-0.648) 

0.660 

(0.617-0.698) 

0.633 

(0.591-0.672) 

0.634 

(0.590-0.675) 

0.723 

(0.683-0.759) 

0.747 

(0.709-0.782) 

0.722 

(0.684-0.758) 

0.700 

(0.661-0.736) 

(n = 2093) 

0.250 

(0.200-0.313) 

0.289 

(0.235-0.356) 

0.258 

(0.207-0.320) 

0.229 

(0.184-0.286) 

0.796 

(0.771-0.821) 

0.824 

(0.801-0.845) 

0.798 

(0.773-0.824) 

0.801 

(0.778-0.825) 

(n = 2867) 

0.505 

(0.454-0.557) 

0.541 

(0.488-0.588) 

0.520 

(0.471-0.572) 

0.513 

(0.463-0.562) 

0.748 

(0.712-0.784) 

0.778 

(0.742-0.812) 

0.741 

(0.704-0.778) 

0.753 

(0.717-0.791) 

(n = 2612) 

0.242 

(0.193-0.310) 

0.307 

(0.248-0.369) 

0.247 

(0.198-0.317) 

0.248 

(0.199-0.313) 

FIDDLE 
(MIMIC-

III) 
 

 

LR 

 

RF 

 

CNN 

 

LSTM 

0.856 

(0.821-0.888) 

0.814 

(0.780-0.847) 

0.886 

(0.854-0.916) 

0.868 

(0.835-0.897) 

(n = 1264) 

0.444 

(0.357-0.545) 

0.357 

(0.279-0.448) 

0.531 

(0.434-0.629) 

0.510 

(0.411-0.597) 

0.817 

(0.792-0.839) 

0.817 

(0.795-0.839) 

0.827 

(0.803-0.848) 

0.827 

(0.801-0.846) 

(n = 2358) 

0.657 

(0.614-0.696) 

0.652 

(0.608-0.690) 

0.666 

(0.626-0.705) 

0.664 

(0.623-0.703) 

0.757 

(0.720-0.789) 

0.760 

(0.726-0.793) 

0.768 

(0.733-0.800) 

0.771 

(0.737-0.802) 

(n = 2093) 

0.291 

(0.236-0.354) 

0.317 

(0.255-0.382) 

0.294 

(0.238-0.361) 

0.326 

(0.267-0.397) 

 

0.825 

(0.803-0.846) 

0.809 

(0.786-0.833) 

0.831 

(0.811-0.851) 

0.824 

(0.803–0.845) 

(n = 2867) 

0.548 

(0.501-0.595) 

0.516 

(0.467-0.566) 

0.541 

(0.493-0.589) 

0.541 

(0.497-0.587) 

0.792 

(0.758-0.824) 

0.773 

(0.740-0.806) 

0.791 

(0.758-0.823) 

0.792 

(0.759-0.823) 

(n = 2612) 

0.274 

(0.227-0.338) 

0.288 

(0.231-0.355) 

0.295 

(0.239-0.361) 

0.314 

(0.251-0.386) 

METRE 

(MIMIC-

IV) 

 

 

 

LR 

 

RF 

 

CNN 

 

LSTM 

0.868 

(0.835-0.901) 

0.867 

(0.836-0.898) 

0.876 

(0.846-0.906) 

0.869 

(0.837-0.900) 

(n=3786) 

0.535 

(0.444-0.625) 

0.503 

(0.408-0.597) 

0.550 

(0.458-0.642) 

0.505 

(0.411-0.599) 

0.730 

(0.696-0.765) 

0.779 

(0.746-0.811) 

0.756 

(0.720-0.792) 

0.768 

(0.734-0.802) 

(n=1973) 

0.539 

(0.477-0.601) 

0.656 

(0.606-0.707) 

0.624 

(0.568-0.680) 

0.639 

(0.587-0.690) 

 

0.723 

(0.680-0.767) 

0.756 

(0.713-0.799) 

0.748 

(0.707-0.790) 

0.741 

(0.700-0.782) 

(n=1740) 

0.411 

(0.339-0.484) 

0.523 

(0.452-0.595) 

0.497 

(0.424-0.569) 

0.477 

(0.405-0.550) 

0.763 

(0.700-0.825) 

0.880 

(0.835-0.926) 

0.798 

(0.740-0.856) 

0.838 

(0.786-0.890) 

(n=5451) 

0.227 

(0.135-0.319) 

0.505 

(0.385-0.625) 

0.302 

(0.190-0.414) 

0.405 

(0.285-0.525) 

0.769 

(0.696-0.841) 

0.888 

(0.832-0.944) 

0.822 

(0.757-0.887) 

0.797 

(0.723-0.871) 

(n=5321) 

0.186 

(0.081-0.291) 

0.471 

(0.090-0.402) 

0.279 

(0.149-0.410) 

0.256 

(0.128-0.384) 

 



 

Table 4. Cross validation performance (DIFF: AUC/AUPRC difference compared to the original test set) 

 
Hospital Mortality 48h ARF 4h ARF 12h Shock 4h Shock 12h 

AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR 

eICU 
validation 
(models 

trained on 
MIMIC-

IV) 

LR 

 

DIFF 

0.802 

(0.754-0.850) 

-0.066 

0.460 

(0.363-0.557) 

-0.075 

0.714 

(0.627-0.802) 

-0.016 

0.140 

(0.063-0.217) 

-0.399 

0.726 

(0.621-0.831) 

0.003 

0.126 

(0.044-0.208) 

-0.285 

0.652 

(0.565-0.738) 

-0.111 

0.111 

(0.047-0.175) 

-0.116 

0.657 

(0.549-0.765) 

-0.112 

0.090 

(0.020-0.161) 

-0.096 

RF 

 

DIFF 

0.817 

(0.778-0.856) 

-0.050 

0.384 

(0.293-0.475) 

-0.119 

0.804 

(0.747-0.862) 

0.025 

0.154 

(0.079-0.230) 

-0.502 

0.791 

(0.727-0.854) 

0.035 

0.109 

(0.041-0.177) 

-0.414 

0.782 

(0.708-0.856) 

-0.098 

0.186 

(0.092-0.280) 

-0.319 

0.776 

(0.686-0.865) 

-0.112 

0.140 

(0.050-0.231) 

-0.331 

CNN 

 

DIFF 

0.822 

(0.779-0.865) 

-0.054 

0.463 

(0.365-0.560) 

-0.087 

0.821 

(0.748-0.893) 

0.065 

0.236 

(0.130-0.342) 

-0.388 

0.802 

(0.713-0.891) 

0.054 

0.185 

(0.075-0.295) 

-0.312 

0.706 

(0.622-0.789) 

-0.092 

0.131 

(0.055-0.207) 

-0.171 

0.683 

(0.573-0.793) 

-0.139 

0.093 

(0.025-0.160) 

-0.186 

LSTM 

 

DIFF 

0.824 

(0.783-0.864) 

-0.045 

(n = 60468) 

0.453 

(0.360-0.546) 

-0.052 

0.894 

(0.837-0.951) 

0.126 

(n = 97067) 

0.383 

(0.242-0.525) 

-0.256 

0.828 

(0.739-0.918) 

0.087 

(n = 95927) 

0.260 

(0.113-0.408) 

-0.217 

0.722 

(0.641-0.804) 

-0.116 

(n = 110406) 

0.153 

(0.065-0.242) 

-0.252 

0.706 

(0.605-0.806) 

-0.091 

(n = 108953) 

0.107 

(0.028-0.186) 

-0.149 

MIMIC-IV 
validation 
(models 
trained 

on eICU) 

LR 

 

DIFF 

0.796 

(0.752-0.841) 

-0.060 

0.448 

(0.355-0.540) 

-0.056 

0.664 

(0.624-0.704) 

-0.207 

0.470 

(0.408-0.533) 

0.190 

0.666 

(0.620-0.712) 

-0.201 

0.360 

(0.288-0.433) 

0.129 

0.688 

(0.621-0.754) 

-0.052 

0.184 

(0.112-0.256) 

0.034 

0.700 

(0.621-0.779) 

-0.044 

0.130 

(0.068-0.192) 

0.004 

RF 

 

DIFF 

0.813 

(0.772-0.854) 

-0.044 

0.428 

(0.339-0.517) 

-0.086 

0.667 

(0.627-0.707) 

-0.322 

0.525 

(0.469-0.581) 

-0.272 

0.678 

(0.632-0.724) 

-0.309 

0.428 

(0.361-0.496) 

-0.287 

0.841 

(0.796-0.887) 

0.019 

0.344 

(0.236-0.451) 

0.070 

0.846 

(0.791-0.900) 

0.028 

0.304 

(0.178-0.431) 

0.058 

CNN 

 

DIFF 

0.833 

(0.794-0.872) 

-0.015 

0.510 

(0.418-0.601) 

0.005 

0.691 

(0.650-0.732) 

-0.269 

0.549 

(0.492-0.606) 

0.005 

0.665 

(0.617-0.713) 

-0.292 

0.435 

(0.366-0.504) 

-0.033 

0.738 

(0.675-0.801) 

-0.052 

0.229 

(0.143-0.315) 

0.035 

0.755 

(0.684-0.825) 

-0.036 

0.195 

(0.098-0.292) 

0.030 

LSTM 

 

DIFF 

0.830 

(0.790-0.869) 

-0.015 

(n = 18815) 

0.498 

(0.405-0.591) 

0.005 

0.704 

(0.664-0.743) 

-0.277 

(n = 9713) 

0.573 

(0.517-0.629) 

-0.150 

0.682 

(0.637-0.726) 

-0.278 

(n = 8594) 

0.431 

(0.363-0.498) 

-0.126 

0.749 

(0.690-0.808) 

-0.040 

(n = 27232) 

0.245 

(0.155-0.336) 

0.036 

0.751 

(0.678-0.825) 

-0.040 

(n = 26546) 

0.204 

(0.102-0.306) 

0.052 



 

4. DISCUSSION 

METRE bridges the gap between MIMIC-IV and eICU by creating harmonized outputs that allow 

for facile cross-validation across the two datasets, which greatly benefits 1) Users who want to 

evaluate their model on a dataset that hasn’t been seen during the development process. 2) 

Users who want to model larger cohorts; the combined cohort size of MIMIC-IV and eICU in 

METRE is 165254. 

 

METRE was developed to allow for substantial user flexibility. 1) Users can specify their own 

cohort choices on age, LOS, record missingness threshold at the beginning of the pipeline. 2) 

Users can also choose to stop at a few exit points defined at the pipeline. The exit points allow 

users to get outputs before implementing the default imputation method, or before normalizing 

the output, or before performing the train-validation-test split. In this way, users can merge their 

preferred design choices into the pipeline. 3) We only provided a limited set of arguments for 

condition-specific cohorts. To accommodate this, users can first locate the stayid (MIMIC-IV) 

or the patientunitstayid (eICU) for their specific cohort and use our pipeline under 

customid argument to do the rest of the variable query and cleaning work.  

 

There are some interesting METRE variables that we didn’t explore in this work. For instance, in 

our MIMIC-IV data, we extracted patient discharge year as a static feature. It has been studied 

by Nestor et al [21] that date-agnostic models could overestimate prediction quality and affect 

future deployment potential. We hope that METRE could spark research work exploring this 

feature and developing models that generalizes better over changing health care practices.  

 

Although METRE’s key value lies in the flexibility in extracting the data, to demonstrate the 

effectiveness of the pipeline, we performed 5 clinically relevant prediction tasks with hospital 

mortality, ARF, shock as the target and developed LR, RF, CNN and LSTM models for each 

task. With AUC and AUPRC as the metrics, all the models have comparable performance with 

models developed using MIMIC-Extract and FIDDLE, as expected. However, our pipeline has 

the additional advantage of enabling facile cross validation between MIMIC-IV and eICU 

datasets. It is also worth noting that we are not attempting to develop a one-size-fits-all solution 

that generalizes across all databases; this is an enduring challenge in the EHR field. METRE 

aims at expediting the data preprocessing stage for researchers who are interested in using 



 

both MIMIC-IV and eICU data. We welcome community contributions to METRE to keep 

developing additional functionality.  

5. CONCLUSION 

We developed an open-source cohort selection and pre-processing pipeline METRE to extract 

multi-variate EHR data. We focused on 2 widely-used EHR databases: MIMIC-IV and eICU. 

METRE produces a wide variety of variables including time-series variables such as labs, vital 

signs, treatments, and interventions as well as static variables including demographics and 

comorbidities.  Our open-source pipeline transforms MIMIC-IV and eICU into structured data 

frames and allows researchers to perform model testing using data collected from different 

institutions, which is of critical importance for model deployment under clinical context.  

 

6. DATA AVAILABILITY  

The code used to extract the data and perform training is available here: 

https://github.mit.edu/voldman-lab/METRE_MIMIC_eICU  
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