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Abstract
Brief Hospital Course (BHC) summaries are
succinct summaries of an entire hospital en-
counter, embedded within discharge sum-
maries, written by senior clinicians responsi-
ble for the overall care of a patient. Meth-
ods to automatically produce summaries from
inpatient documentation would be invaluable
in reducing clinician manual burden of sum-
marising documents under high time-pressure
to admit and discharge patients. Automati-
cally producing these summaries from the in-
patient course, is a complex, multi-document
summarisation task, as source notes are writ-
ten from various perspectives (e.g. nursing,
doctor, radiology), during the course of the
hospitalisation. We demonstrate a range of
methods for BHC summarisation demonstrat-
ing the performance of deep learning summari-
sation models across extractive and abstractive
summarisation scenarios. We also test a novel
ensemble extractive and abstractive summari-
sation model that incorporates a medical con-
cept ontology (SNOMED) as a clinical guid-
ance signal and shows superior performance in
2 real-world clinical data sets.

1 Introduction

A patient’s clinical journey is documented in rich
free-text narratives stored in time-ordered linked
documents in Electronic Health Records (EHRs).
Narratives include commentary from multiple care
teams, specialisms and perspectives with varying
scope, detail, structure and time-span covered. Con-
tent broadly presents the patient experience, symp-
toms, findings and diagnosis alongside resulting
procedures and interventions. Clinical and social
histories and future prognoses are often referenced
to provide further context and any potentially fol-
low up actions to occur in some defined time period.
Single notes also often mention or refer to previ-
ous notes. An encounter such as a simple routine
outpatient procedure could generate only a few sen-
tences, whereas a complex admission may result

Figure 1: An example patient admission timeline where
a patient is admitted with an admission summary note,
nursing progress notes, radiology reports and a dis-
charge summary note. Each is written by potentially
different authors (colour coding), as the admission pro-
gresses. Each note potentially informs the BHC section
within the discharge summary.

in hundreds of distinct documents. When a pa-
tient is discharged from an inpatient encounter, the
discharging clinician summarises the entirety of
the visit often within a section of the Discharge
Summary note known as the Brief Hospital Course
(BHC) section. For short, i.e. day case admissions
BHC sections are likely to be short and potentially
not clearly defined. For longer, multi-day, complex
admissions where a patient is being discharged to
a primary, community or even tertiary care service
this section is more likely to be present as its vital
for continuity of care(Silver et al., 2022). How-
ever, with most free-text clinical narrative, there
can be large variability with how this data is pre-
sented(Sorita et al., 2021). Overall, it is gener-
ally accepted that an effective discharge summary
should document the clinical events of an admis-
sion(Ming et al., 2019).

Manually generating this summary is la-
borious, time-consuming and potentially error
prone(O’Donnell et al., 2009). Fig. 1 shows a
fictitious, multi-day inpatient encounter. This sin-
gle admission produces 6 distinct documents from
a range of perspectives (Nursing, Doctors, Radi-
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ology) in the first 18 hours. The first 2 Nursing -
Progress Notes are by the same author, the differing
radiology scans (X-ray vs. MRI) have different au-
thors and the discharge summary is the same author
that wrote the initial admission. Discharge occurs
∼2 days after admission with more notes taken
than those shown. Each document can inform the
BHC section. However, not all notes are treated
equally, notes are categorised into care provider
categories, and further by admission, progress, dis-
charge amongst other types. Due to the volume of
text and the time-constraints for doctors to produce
these summaries, it is improbable that a clinician
author reads the entirety of the record and certainly
not thoroughly.

In computational linguistics, this problem can
be framed as a challenging multi-document sum-
marisation task, with the model required to adapt to
varying numbers of documents (simple vs complex
cases), large time variances between notes, differ-
ences between note types, varying source document
authors aims and focus areas.

A recent detailed analysis of BHC sections
(Adams et al., 2021), found BHC summaries to:
1) be information dense, 2) switch quickly between
extractive and abstractive summarisation styles, be-
ginning with top-level extractive summaries of an
admission followed by problem orientated abstrac-
tive summary of the admission, 3) be only a silver-
standard and can lack important information.

To the authors’ knowledge, this is the first work
to offer a range of summarisation models for BHC
summarisation trained and tested on multiple real-
world sources of clinical text. The contributions of
this work are:

• A baseline evaluation of existing pre-trained
Transformer models for abstractive summarisa-
tion fine-tuned on the BHC summarisation task.

• An evaluation of extractive top-k sentence extrac-
tive summarisation models. Using unsupervised
and supervised methods to analyse the extractive-
ness of the opening BHC sentences.

• An adapted abstractive summarisation model
(BART)(Lewis et al., 2020) to include a clini-
cal ontology aware guidance signal of relevant
terms to produce problem-list orientated abstrac-
tive summaries.

• An evaluation of an ensemble model for extrac-
tive and abstractive summarisation combining
the extractive and abstractive models.

2 Background

2.1 Automatic Summarisation

Automatic summarisation of text aims to provide
a concise, fluent representation of the source mate-
rial, retaining ‘important’ information whilst ignor-
ing redundant or irrelevant information. Formally,
with single document summarisation, a set of doc-
uments T = {t1, t2, . . . tn} we aim to find some
function f(T ) = T ′ where T ′ = {t′1, t′2, . . . t′n}
the set of texts that maximise some parameters of
an effective summary. These parameters can in-
clude: maximum length that could vary according
to use case, correctness if the generated summaries
are factually inline with source texts, completeness,
if the generated summary captures all important
information from source texts, and fluency, a often
subjective measure of the writing quality of the
generated summary(Laban et al., 2020). In multi-
document summarisation we have multiple texts for
each sample T = {t11···i , t21···j , . . . tn1···k}. With
BHC summarisation each ti has one or more docu-
ments.

2.2 Extractive & Abstractive Summarisation

Research interest in automatic summarisation has
a long history with empirical data-driven methods
divisible into two main groups(Orăsan, 2019).

1. Extractive summarisation is the selection and
combination of important words, phrases, or
sentences i.e. some syntactic unit, of source
texts to form the summary text. Consider
some document text t of syntactic units S =
{s1, s2, · · · s3}, f(t) = t′ where t′ = S′ and
S′ ⊂ S.

Some extractive summarisation methods
can be considered Information Extraction
(IE)(White et al., 2001) methods that iden-
tify important information and simply use sj
where the information is found, or possibly
surrounding syntactic units sj−1 and sj+1. In-
formation is extracted until desired summary
length is reached or there is no more informa-
tion to extract. Further extractive approaches
search / rank a document’s S according to
some importance metric and select the top-
n many sentences for the desired summary
length(Zhong et al., 2019).

2. Abstractive summarisation methods do not
enforce generated summaries to be directly



drawn from source texts. Instead, abstractive
methods allow f to generate any syntactic
unit, i.e. S′ 6⊂ Si. This means a ‘generation’
step is used once a latent importance model
of source texts T is found. Models are often
equipped with a suitable vocabulary V and
are tasked with generating fluent, informative
summary text, whist being guided by the la-
tent importance model.

Prior work has combined extractive and abstrac-
tive approaches, allowing f to balance abstractive
and extractive summarisation, most notably the
pointer-generator model(See et al., 2017).

Recently, large pre-trained Transformer(Vaswani
et al., 2017) models have been shown to perform
well across a range of tasks such as machine transla-
tion, question answering and abstractive summari-
sation(Raffel et al., 2020). The Transformer archi-
tecture supports learning of deep latent representa-
tions of input data by layering encoder and decoder
blocks, the model learns deep contextual represen-
tations of input, and how to decode these represen-
tations for a range of sequence-to-sequence tasks.

2.3 Clinical Text Summarisation

Clinical narratives are estimated to comprise 80%
of EHR data(Murdoch and Detsky, 2013). How-
ever, the development and application of text sum-
marisation methods is progressing slowly(Mishra
et al., 2014) when compared with areas such as
disease prediction(Wynants et al., 2020), mortality
prediction(Johnson et al., 2017), and clinical infor-
mation extraction(Kreimeyer et al., 2017). Con-
tributing factors include: 1) the difficulty in col-
lecting reference summaries(Adams et al., 2021),
Gold standard reference summary collection is dif-
ficult as the language is complex and highly spe-
cialised, 2) produced summaries present a high
stakes AI scenario that has potential to cause nega-
tive downstream effects(Sambasivan et al., 2021)
if the model makes errors, 3) assessing summarisa-
tion model performance using automated metrics
such as ROUGE(Lin, 2004) is difficult, as high
scoring models can still perform poorly when as-
sessed by human evaluators(Sai et al., 2020).

Prior work has initially focused on extractive
approaches(Moen et al., 2016). Approaches fo-
cused on modelling semantic similarity, and meth-
ods to optimally pick representative sentences, i.e.
si units, from latent topics discovered during model
fitting. Recent work, has focused on single docu-

ment summarisation of radiology reports(Zhang
et al., 2018; Kondadadi et al., 2021; Dai et al.,
2021). Radiology reports generally consist of three
sections, the background of patient, the findings -
the visible phenomena within the scan and finally
the impression - an often abstractive summary of
the background and findings used during the clini-
cal followup. The impression sections are treated as
the target reference summaries for model develop-
ment. Radiology report summarisation is similar to
a single document open-domain task, where mod-
elling sentence salience and sentence compression
are the primary aims.

2.4 Consistency of Discharge Summary
Content

There is currently no standard for discharge sum-
mary format or content although a majority of
surveyed clinicians agree there should be a stan-
dard(Sorita et al., 2021). There is ongoing work to
improve the consistency of education and training
in effective discharge summary writing(Ming et al.,
2019; Stopford et al., 2015) and in some fields
such as surgical pathology, synoptic reporting is
an agreed upon standard form for reporting clini-
cal events(Renshaw et al., 2018). Unfortunately,
there is no cross specialty, consistent method of
writing a BHC, or even a consistent section header
to define the BHC section of a discharge summary.
We presume this is due to the variability in clinical
encounters that are documented, where it would be
very difficult to define rigid structure to cover all
eventualities without being overly onerous.

2.5 BHC Section Analysis

Prior work(Adams et al., 2021) has shown BHC
sections are: 1) dense with clinical terms, 2) can
vary widely in complexity and quality, 3) quickly
switch between extractive and abstractive styles.
These make the BHC summarisation task a difficult
task. In this work we attempt to find an effective
method that can be consistently used across these
varied datasets and that takes advantage of the den-
sity of clinical terms. It is outside the scope of
this work to address the issue of the variability in
discharge summary and BHC sections themselves.

3 Datasets & Methods

3.1 Datasets

We extensively pre-process and clean the admis-
sion’s discharge summaries to extract only the BHC



section. We discard the rest of the discharge sum-
mary so as to not bias the source texts.

Our datasets are:

• MIMIC-III: (Johnson et al., 2016) A large, US
based ICU dataset collected between 2001-
2012 containing 47,591 unique patient admis-
sions. We extract BHC sections from dis-
charge summaries with regular expressions
and clean all other notes of headers / footers
resulting in 1,441,109 unique documents.

• KCH: clinical records for inpatients diagnosed
with cerebral infarction (ICD10 code:I63.*)
from the King’s College Hospital (KCH)
NHS Foundation Trust, London, UK, EHR.
We extract data via the Trust deployed
CogStack(Jackson et al., 2018) system, an
Elasticsearch based ingestion and harmoniza-
tion pipeline for EHR data. We extract BHC
sections with regular expressions and clean
source notes of common headers / footers re-
sulting in 34,179 unique documents.

Table 1 shows that the average case includes
many documents, over a multi-day stay. The
MIMIC-III dataset of USA based ICU admissions,
are skewed towards complex multi-day stays gen-
erating many small EHR notes. The KCH dataset
are UK-derived clinical records containing only pa-
tients diagnosed with cerebral infarction requiring
inpatient rehabilitation for associated disability and
therefore covers substantially longer time periods.

Concatenating entire patient episode free-text
narratives can create very long sequences of text.
For encounters that are over 1000 sentences we
pick the top and bottom 500 sentences, based on
the intuition that patient notes often begin with
an important admission note describing the patient
history, initial diagnosis and finish with the most re-
cent summary of the patient state. Our source-code
for cleaning and preparing the data, and the follow-
ing model code is made available to the research
community1.

3.2 Assessing Model Performance

We assess performance of our models using
ROUGE(Lin, 2004). The ROUGE authors de-
scribe ROUGE-recall to measure the generated
summaries ‘coverage’ of the reference summary or
how much of the reference summary is included

1https://github.com/tomolopolis/BHC-Summarisation

Dataset # Adm
Adm

Length # Docs
Src
Seq

BHC
Seq

M-III 47,591 7 26 206 731
KCH 1,586 49 21 441 274

Table 1: Descriptive statistics for our MIMIC-III (M-
III) and KCH clinical text data. From left to right, the
number of admissions, the average admission length in
days, the average number of notes per admission, the
average sequence length of a document excl. the dis-
charge summary, and the average sequence length of
the BHC section within the the discharge summary.

with the generated summary. ROUGE-precision
measures relevancy, or how much of the gener-
ated summary is relevant to reference summary.
An ideal summary will balance both coverage and
relevancy, which can be expressed as the ROUGE-
F1 score. A higher ROUGE score correlates with
higher human levels of satisfaction with a generated
summary but there are still notable issues with the
score interpretation(Schluter, 2017) . For context,
in open-domain summarisation tasks ROUGE of-
ten still used and reported. Current state-of-the-art
performance is 37-41 points (Lewis et al., 2020).

3.3 Extractive Baseline BHC Approaches

Our initial experiments test a recent finding that
BHC sections are often extractive summaries ini-
tially before moving to more abstractive summaries
as the BHC section progressesAdams et al. (2021).
We compare a range of unsupervised and super-
vised extractive summarisation models to predict
the initial sentences of the BHC sections.

All methods first concatenate each document
text in chronological order, split into sentences
via Spacy2, then embed sentences by averaging
GloVe(Pennington et al., 2014) or directly using S-
BERT(Reimers and Gurevych, 2019) embeddings,
finally feeding these to a ranking model, an unsu-
pervised TextRank(Mihalcea and Tarau, 2004) or
supervised Bi-LSTM(Hochreiter and Schmidhuber,
1997) model. We train multiple models to select top
1 to 15 ranked sentences. Our final baseline model,
the Oracle model, uses the reference summary to
rank source sentences via Gestalt Pattern matching
(Black, 2004) computing the ratio of matching ‘to-
kens’ (i.e. white-space separated words), for each
reference summary sentence and source sentence
pair. The top k ranked source sentences are used

2https://spacy.io/



in the oracle. The Oracle model provides an esti-
mate of the performance ceiling of sentence based
extractive summarisation for both datasets.

3.4 Pre-Trained Transformer Based Models

We consider end-to-end abstractive summarisa-
tion models as further baselines. Large pre-
trained Transformer(Vaswani et al., 2017) models
have been successful across a variety of tasks in-
cluding textual summarisation. Models such as
BERT(Devlin et al., 2019), T5(Raffel et al., 2020)
and BART(Lewis et al., 2020) have demonstrated
state-of-the-art performance across classification,
summarisation, translation, language comprehen-
sion and question answering with for the most part
a single model architecture. Transformer models
for sequence-to-sequence (seq2seq) tasks such as
machine translation and summarisation consist of
layers of Transformer blocks configured either as
encoders or decoders. Models such as T5 and
BART are end-to-end trained for a range of tasks,
whereas BERT in its original configuration con-
sisted of encoder only Transformer blocks. Further
work has showed BERT models can be repurposed
in encoder-decoder configurations for summarisa-
tion(Rothe et al., 2020).

Once trained on large, open-domain datasets
these models can be re-used on further specialised
domains, transferring base knowledge to a narrower
domain and problem(Rogers et al., 2020). Transfer
learning has recently been shown to be effective for
biomedical use cases(Peng et al., 2019). However,
to our knowledge BHC summarisation has not been
considered to date, and our baseline experiments
initially establish if large pre-trained models can be
fine-tuned to produce high quality BHC sections
from source notes directly.

All abstractive models have been pre-trained on
large corpora of open-domain text prior to fine-
tuning with clinical text. We use existing pre-
trained model parameter and configurations from
the publicly available huggingface model hub3.
Then, Fine-tuning is performed using 3 Nvidia
Titan X GPUs (M-III experiments) and 8 Nvidia
DGX V100 GPUs (KCH experiments). We use
different compute for each dataset due to the dif-
ference in availability of access, the Nvidia DGX
machine is shared, and restricted infrastructure co-
located on the KCH site whereas the other hard-
ware is openly accessible on the university network.

3https://huggingface.co/models

We split datasets 80/10/10 for training, validation
and test. We fine-tune for 20 epochs assessing
validation set performance after each epoch. Ini-
tial experiments determined learning rate schedule
and optimiser parameters and a suitable number of
epochs for convergence. We report our results in
Section 4 on the test set only.

As discussed in Section 3.1 clinical notes and
BHC sections are highly variable in length and
complexity. One limitation of recent models are
the limited source and target text sequence lengths
that can be produced due to the self-attention mech-
anism requiring all input representations to attend
to all others. For example, BERT scales quadrat-
ically limiting the max input sequence length to
512. BHC summarisation is difficult as both in-
put source notes are (far) greater than this maxi-
mum, as shown in Table 1. Recent models such
as the Reformer(Kitaev et al., 2020), and Long-
Former(Beltagy et al., 2020) use various optimisa-
tions for the attention calculations to enable longer
sequences to be encoded / decoded.

Abstractive summarisation models use source
text saliency to focus the summary on only the im-
portant parts of the source text. Models must also
learn how to faithfully produce source texts along-
side ensuring the correct content. Prior work has
shown models can be prone to hallucinations, pro-
ducing text that is not representative of the source
text(Zhao et al., 2020). This is problematic for high
risk settings such as healthcare but to our knowl-
edge this problem has only been studied for radiol-
ogy report summarisation(Zhang et al., 2020b).

3.5 Clinical Concept Guided Summarisation

Guiding summarisation models using a variety of
guidance stimulus forcing the model to focus on
specific inputs has recently been shown to be ben-
eficial for open-domain summarisation(Dou et al.,
2021).

We guide our abstractive summariser to focus
on summarising the clinical problems and associ-
ated interventions of each admission, as is often
the method used by clinicians when writing the
BHC section(Adams et al., 2021). We perform
named entity recognition (NER) and entity link-
ing to extract and link SNOMED-CT(Stearns et al.,
2001) terms, a standardised clinical terminology
via a pre-trained MedCAT(Kraljevic et al., 2021)
model that has been unsupervised trained on both
MIMIC-III and KCH datasets for SNOMED-CT



problems i.e. clinical findings, disease, disorders,
and interventions i.e. procedures and drugs. Spe-
cific top level SNOMED-CT terms provided in
Appendix Tables 6 and 7. We use MetaCAT mod-
els configured within MedCAT to contextualise
extracted terms. Therefore, all extracted terms are
patient-relevant (i.e. not familial history mentions),
positive (i.e. not negated), and are classified as a
diagnosis (i.e. not mentions of department name
or clinical specialisms e.g. “patient attended the
stroke clinic” would not annotate stroke as a diag-
nosis).

Appendix Table 8 provides full descriptive statis-
tics of extracted terms across source and BHC
notes. An interesting measure ‘term density’ the av-
erage number of all word tokens per each extracted
concept. This follows analysis in prior work that
showed differences in the density of clinically rele-
vant information between note types(Adams et al.,
2021). For example, if a sentence were to contain
20 words describing a patient diagnosis, of which
our MedCAT model extracts 5 clinical terms, this
would provide a term density of 4, as there are 4
word tokens for each clinical term. If of the 5 clini-
cal terms there are only 2 unique clinical terms this
provides a unique term density of 10. We observe
that for MIMIC-III and KCH datasets the Notes
and BHC sections have similar SNOMED-CT term
density (56 vs 52) and word token densities (26 vs
29), but when considering unique terms the BHC
sections have almost double the density of unique
clinical terms (63 Notes vs 118 BHC) for M-III
whereas for the KCH notes it is circa equivalent
(at 32 Notes vs 35 BHC), indicating in the M-III
dataset BHC sections quickly change from one
clinical topic to another when compared to source
notes. Redundancy within these datasets have been
described in prior work(Searle et al., 2021).

We use the huggingface4 BART(Lewis et al.,
2020) architecture pretrained on open-domain texts
and additionally pretrained on a summarisation cor-
pus PubMed(Gupta et al., 2021). We choose this ar-
chitecture as it is specifically tuned for natural lan-
guage generation (NLG) including summarisation.
We follow the architecture modifications outlined
in recent work(Dou et al., 2021). This includes
using dual Transformer based encoders, one for
the raw text input and another for the MedCAT ex-
tracted guidance input. Importantly, the guidance
input is aligned to the text input by padding guid-

4https://huggingface.co/

Figure 2: The Encoder-Decoder Architecture using
Clinical relevant guidance signal during the encoding,
decoding process.

ance input, so the dual encoders receive the text and
and MedCAT extracted concept term at the same
sequence step. The model fails to converge without
this alignment. These pre-trained parameters are
shared for the first 3 encoder Transformer blocks
reducing number of model parameters. The rest
of the encoder Transformer blocks only see either
the original text input or the associated guidance
signal. The decoder Transformer blocks is imple-
mented to use an extra cross-attention layer that
uses the encoded guidance aware signal to the regu-
lar cross-attention layer from the text input encoder
representation. Figure 2 shows our clinical con-
cept guided abstractive summarisation architecture
that uses MedCAT-extracted concept sequences to
guide the text summariser. We use teacher-forcing
for the MedCAT-extracted concept encoder input,
and the decoder output embedding signal. Code is
made available for the adapted BART model and
the input preparation5.

We configure the guidance signals to include
only problem (disease, disorder, finding), and prob-
lem & intervention (drug, procedure) extracted con-
cepts. This aims to explore the effect of varying the
guidance signal across datasets. The original work
indicates the guidance signal choice can affect the
resulting summary performance(Dou et al., 2021).

5https://github.com/tomolopolis/BHC-
Summarisation/blob/master/guidance_models/



3.6 Extractive and Abstractive Ensemble
Model

Our final experiments ensemble the above clini-
cally guided abstractive model with our extractive
top-level summary models, therefore utilising both
the extractive and abstractive models simultane-
ously. We predict the initial n lines of the BHC
section using the extractive model then use the ab-
stractive model with the guidance signal to predict
the following sentences. Importantly, the ensemble
predictions are fed into the abstractive model - to
replicate the scenario of the summarisation model
having already produced these sentences.

4 Results

Our results can be interpreted as the balance of
generated summary relevancy, i.e. including only
content found in the reference summary, and cov-
erage, i.e. content available in the reference sum-
mary is in the generated summary. Prior work has
shown a positive correlation between the higher
the ROUGE scores the high performing summary
when manually judged by a human(Lin, 2004).

4.1 Extractive Models

Our extractive models rank all sentences within
the source text to find the top-k salient sentences
that comprise the summary. Table 2 show our re-
sults across varying initial BHC section sentence
limits for the various model embedding and rank-
ing model configurations. Prior work found BHC
sections are initially extractive then quickly move
to abstractive problem focused narratives(Adams
et al., 2021). The Oracle model that has access
to the target BHC section to rank candidate sen-
tences against, shows the performance ceiling on
both datasets is between 5 and 10 of the initial
BHC sentences. This is more clearly shown in the
KCH dataset with only a very small improvement
between 5 and 15 sentences.

Our best performing ranker models use the se-
mantic contextual sentence embeddings from S-
BERT and the LSTM ranker across the majority of
the sentence limits for both datasets. It is notewor-
thy that the improvements of using sentence spe-
cific embeddings S-BERT vs average word vectors
are minor in comparison to performance improve-
ments from the unsupervised TextRank ranker to
the supervised LSTM model. This suggests that
relying on relative importance of words and sen-
tences within the documents is an ineffective model,

and domain knowledge is needed to build BHCs.

4.2 Abstractive Models
Table 3 shows our pre-trained Transformer based
models fine-tuned on our datasets. We observe that
the performance of these deep pre-trained models is
not comparable with open-domain summarisation,
even when these models are further pre-trained
on biomedical corpora such as PubMed or even
MIMIC-III itself. Prior work reports ROUGE-L
F1 scores between 37-41 points for BART, BERT,
T5 with the open domain summarisation datasets,
namely the CNN/Daily Mail(Nallapati et al., 2016)
and XSum(Narayan et al., 2018) datasets, whereas
our results show a range between 7-32 points. The
ROUGE-2 performance gap is even larger with
open-domain summarisation for these models vary-
ing between 19-22 and our results showing a range
1-11 points on our clinical datasets. The BART
model pre-trained on PubMed is our best perform-
ing model by a substantial margin for both MIMIC-
III and KCH BHC summarisation.

4.3 Clinically Guided Abstractive
Summarisation

Table 4 shows our guidance aware abstractive sum-
marisation results. We use 2 different guidance sig-
nals extracted by our pretrained MedCAT model.
The first signal Prb includes only the problem ex-
tracted concepts. The second Prb + Inv includes
MedCAT extracted problems and interventions.

The M-III BART shows a small drop in per-
formance, 1 and 3 points with both guidance sig-
nals, whereas the KCH model improves by 6 and
4 points for ROUGE-LSum and ROUGE-2 respec-
tively. For BART(PubMed) we observe improved
ROUGE-LSum performance with both guidance
signal types Prb and Prb + Inv. We observe a small
gain with ROUGE-2 in MIMIC-III but more no-
ticeable in KCH( 4 points). BART(PubMed) exper-
iments show both guidance signals are comparable,
with Prb offering a marginal improvements when
compared to the Prb + Inv signal, despite there
being less guidance offered.

4.4 Ensemble Extractive / Abstractive
Summarisation

Table 5 shows ablation results for our baseline and
ensemble models. Abs is the abstractive only model
BART with PubMed pre-training. Ext + Abs is the
extractive and abstractive model - S-BERT into Bi-
LSTM sentence ranker and BART with PubMed



MIMIC-III KCH
TextRank Bi-LSTM TextRank Bi-LSTM

Sentence Limit WV SB WV SB Oracle WV SB WV SB Oracle

1 0.0 0.0 18.3 21.8 30.2 4.09 3.6 4.3 14.7 23.3
2 5.6 5.0 17.2 18.8 31.1 5.56 5.2 8.3 10.1 29.1
3 7.6 5.1 16.6 17.5 31.8 6.63 6.4 10.8 9.9 31.7
5 18.8 11.3 22.1 23.5 32.8 7.61 7.5 16.1 12.4 34.2
10 17.9 17.7 27.5 28.7 34.3 9.12 9.2 13.4 20.59 35.6
15 24.1 28.3 30.1 31.1 35.3 13.0 12.9 15.8 16.0 35.3

Table 2: ROUGE-LSum F1 scores for the extractive summarisation via sentence ranking for varying sentence
limits. WV is the Word vector embedding method, and SB the sent-BERT embedding method used as input to our
modelling approaches TextRank or Bi-LSTM. Bold indicates the best score across each sentence limit experiment.
The Oracle model results are the performance ceiling for each configuration.

Model M-III KCH

T5-base 7.3 / 1.3 11.0 / 6.3
T5-small 14.4 / 5.6 10.8 / 4.1
BERT-2-BERT 22.4 / 4.6 7.4 / 2.1
BERT-2-BERT (PubMed) 23.8 / 4.2 6.2 / 1.6
BERT-2-BERT (M-III) - 8.6 / 2.2
BART 26.9 / 11.1 17.1 / 8.0
BART (PubMed) 32.7 / 11.1 22.1 / 8.6

Table 3: ROUGE-LSum and ROUGE-2 F1 scores for
pre-trained transformer models fine-tuned on the en-
tirety of the BHC Summarisation task.

Model M-III KCH

BART 26.9 / 11.1 17.1 / 8.0
BART + Prb 26.0 / 9.1 23.4 / 12.0
BART + (Prb & Inv) 26.2 / 8.5 23.4 / 12.2
BART(PubMed) 32.7 / 11.1 22.1 / 8.6
BART(PubMed) + Prb 34.7 / 10.6 26.6 / 13.7
BART(PubMed)

+ (Prb & Inv) 33.6 / 11.5 24.0 / 12.8

Table 4: ROUGE-LSum / ROUGE-2 F1 scores
for our clinically guided abstractive summarisation
models. BART is pre-trained on the open-domain
XSUM(Narayan et al., 2018) datasets, and BART
(PubMed) is pre-trained on PubMed(Gupta et al.,
2021). Bold indicates the best performance for the met-
ric and dataset

Model M-III KCH

Abs 32.7 / 11.1 22.1 / 8.6
Ext + Abs 34.9 / 10.6 23.6 / 7.5
Ext + Abs + Prb 34.9 / 10.6 22.4 / 6.7

Table 5: ROUGE-LSum and ROUGE-2 F1 score re-
sults for our baseline abstractive and ensemble sum-
mariser configurations. Bold indicates the best perfor-
mance for the respective metric / dataset pair.

fine-tuning. Ext + Abs + Prb is our final model that
is extractive and abstractive with Problem extracted
clinical term guidance.

We only observe small improved performance
through either ensembling with or without guid-
ance. Only the KCH ROUGE-2 score is worse
with the ensemble model.

4.5 Summarisation Extracted Concept
Analysis

Alongside ROUGE scores, we analyse the clinical
terms output by our summarisation models. As our
guidance signal should push the model to generate
more clinically relevant information. We run our
pre-trained NER+L model (MedCAT), the same
model used to produce the guidance signals, over
the generated summaries from the models in Table
5 comparing the proportion of terms in the gener-
ated vs reference summary.

Appendix Table 9 provides full results. There
are small improvement with both datasets using
the guidance model, with summaries having 0-4%
more clinical terms in the guidance models com-
pared to the baseline abstractive models, indicating
the guidance signal is assisting the model produce



more clinically relevant terms. The guidance assists
the generation of problems more so than interven-
tions unsurprisingly as this guidance only includes
problem extracted terms. Overall, there is still a
majority of concepts (>50%) that are missed en-
tirely by all generated summaries, suggesting there
is plenty of room for improvement.

4.6 Qualitative Analysis

We manually review 40 random summaries from
the set of model configurations presented in Ta-
ble 5 with two clinicians. We compare the gener-
ated BHC, the reference summary and the original
source notes for only the MIMIC-III dataset due
to the sensitivity of the KCH data. Examples of
these comparisons can be found in Appendix C.
We use a Likert scale 1-5, to measure: 1) coher-
ence - the overall quality of all sentences of the
BHC, 2) fluency - the quality of each individual
sentence, 3) consistency - the correct facts are in
the BHC compared to source notes, 4) relevance -
the BHC only contains the relevant facts from the
source notes and is not overly verbose. These mea-
sures have been used and defined in prior work for
large scale qualitative assessment of summarisation
texts(Fabbri et al., 2021). Our reviewers - review
BHCs blind as to not bias the ratings towards ei-
ther the reference or generated summaries. We
record an average Cohen’s Kappa of 0.65 across
the 4 metrics. We take the mid point score if there
are disagreements. From all ratings there are no
disagreements larger than 2 points.

Now we discuss the % of samples with scores ≥
2.5 for each metric. For coherence we observe that
all our models achieve 70% (28/40) vs 75% (30/40)
for the reference summary. For fluency our models
achieve 60% (24/40) vs 70%(28/40) for reference
summaries. For consistency we see a small differ-
ence in favour of our guidance model 58% (23/40)
vs abstractive baseline 55% (27/40). Reference
summary consistency was at 90% (36/40). Finally,
relevance showed another small improvement with
the guidance models 73%(29/40) vs 70%(28/40)
with the reference summary at 80%(32/40).

We find that the majority of the same summaries
are rated ≥ 2.5 over the 4 metrics. Indicating
the variability in difficulty the models encountered
with the task. Overall, from this small scale manual
analysis it is positive to see that the models, includ-
ing the baseline abstractive model, performing well
across all metrics. However, there is still much

room for improvements, with between 30% - 40%
of produced summaries without acceptable outputs.
This poor performing text resulted in common ab-
stractive summarisation issues such as repeated
phrases or words within and across sentences, and
most worryingly are the occurrences of inconsis-
tencies between source and generated summary
facts. For example, ‘No documented hypoxia at
this hospital’ is correctly within the reference but is
generated in the BHC summaries: ‘Hypoxia: The
patient was initially hypoxic on admission to the
ICU.’. This inconsistent fact is between multiple
consistent facts in the generated summaries. A
high performing summary must be near perfect in
its consistency to be usable in a real scenario.

A promising result here is that these bad per-
forming summaries were often easy to pick out,
and could potentially be systematically excluded if
the model were to be included within a real produc-
tion system. For example the system could decline
to ‘auto-complete’ a summary given a set of admis-
sion notes, if the produced summary excessively
repeated a phrase or sentence.

We notice that our ensembling strategy to first
sample extractive sentences then from the abstrac-
tive model do not read as coherently as the abstrac-
tive only models. This indicates that summaries
move between extractive and abstractive genera-
tion at the sub-sentence level, and require a more
sophisticated model to balance extractive selection
of representative words or phrases alongside ab-
stractive generation, e.g. the Pointer Generator
model(See et al., 2017).

5 Discussion and Future Work

We first discuss our initial baseline methods - our
extractive models and our pre-trained fine-tuned ab-
stractive models. We then discuss our guidance sig-
nal enhanced model and final ensemble approach.
We then discuss a range of issues of our approaches
and the problem more broadly. This includes com-
mon problems with abstractive models, reference
summary quality and the difficulties around real-
world clinical text, summarisation metrics and pos-
sible future directions for real-world usage of such
systems.

Our sentence ranking extractive summarisation
experiments suggest the amount of ‘extractiveness’
for a BHC section depends largely on the dataset.
Prior work showed that BHC sections often rely on
extractive summarisation initially, i.e. direct copy



and paste from source notes into the BHC for the
first few sentences, but then quickly switch to ab-
stractive summarisation in later sentences(Adams
et al., 2021). Our work supports the finding that
both extractive and abstractive techniques are used.
The M-III dataset shows the opening sentences of
the BHCs are more consistently ‘extractive’ than
KCH, as seen by the differences in Oracle model
performance as the sentence limit increases. Our
best performing model uses a pre-trained contex-
tual sentence embedding model (S-BERT) along-
side a Bi-LSTM. Future work could consider fur-
ther ranking models i.e. a Transformer model
to rank sentences, or an appropriate embedding
boundary to build sub-sentence, or phrase level em-
beddings extractive summaries from these. More-
over, we would expect to see different results in
sub-sentence level extractions over the whole sen-
tence extractions that we report.

Our fine-tuning of pre-trained abstractive sum-
marisation systems suggest BART, the only model
specifically trained for NLG tasks such as sum-
marisation, offers the best performance across
datasets and metrics for BHC summarisation. Mod-
els such as T5, a general seq-to-seq Transformer
model and the BERT-2-BERT models perform sub-
stantially worse than BART. For BART we find
that further pre-training on a relevant corpus i.e.
PubMed(Gupta et al., 2021) compared to only open-
domain pre-training, offers improvements inline
with prior research(Rogers et al., 2020).

We find that guidance signals for BHC abstrac-
tive summarisation offers improvements compared
to our best model without guidance. We ob-
serve best performance once an existing pre-trained
model has already been fine-tuned with biomedical
data. We observe that guidance signal improve-
ments are dataset dependent. All experiments use
the equivalent hyperparameters, e.g. learning rate,
learning rate scheduler, epoch number etc. as the
baseline abstractive models. It is likely that further
performance gains are possible with further hyper-
parameter tuning. The guidance models share the
parameters for the initial 3 encoder layers. Fur-
ther work could explore the effect of increasing or
decreasing the number of shared parameters.

5.1 Guidance Signal

The guidance signal uses a pre-trained Med-
CAT(Kraljevic et al., 2021) model. This model has
not been validated across the entirety of clinical

terms that could be extracted. It has been config-
ured to favour precision over recall, and so likely
misses clinical terms that otherwise should be iden-
tified and included within the guidance signal. Fur-
ther work could fine-tune and improve the model
performance to improve the guidance signal offered
to the summarisation model using the MedCAT an-
notation tool and workflow(Searle et al., 2019).

This guidance signal used in our experiments is
produced using the MedCAT(Kraljevic et al., 2021)
NER+L approach that is trained unsupervised on
the same MIMIC-III and KCH text data. This ap-
proach could be replaced with a rules-based, ML or
otherwise approach to extract clinical terms. The
effectiveness of the clinical term extraction and sub-
sequent usage as a guidance signal will impact the
effectiveness of the adapted model. If the NER+L
sufficiently under performs and relevant terms are
missed, it is very likely the guidance assisted model
will perform the same or worse than the standard
abstractive model as the decoder stack needs to
learn to ignore cross-attention from the encoder.

Moreover, it must be highlighted that our
NER+L model has seen the MIMIC-III / KCH
data during unsupervised training although it has
has not received supervised training on any of this
data. MedCAT models are based upon a concept
dictionary lookup, alongside a concept vector dis-
ambiguation algorithm that adapts concept vectors
according to the context in which they are found.
We have configured the model to highly favour
high confidence predictions (i.e. high precision)
predictions so it is likely that the majority of pre-
dictions are simply dictionary matches. However,
the impact of pre-training this guidance model has
on our results is unclear and should be considered
alongside our results. The guidance signal could be
biased and higher performing than signal output by
a model that has not seen the input summarisation
data. Overall, As reported in prior work(Dou et al.,
2021), further work on guidance signal generation
is needed.

For successful model fine-tuning the guidance
signal must be aligned with the raw text input. We
align the signal by padding the signal with the white
space token, but further experiments could investi-
gate aligning the signal with syntactic hints such
as punctuation, i.e. full stops, commas, new lines,
colons etc. Further work could also experiment
with replacing identified guidance terms directly
with clinical concept embeddings. During our ex-



periments we attempted to replace the raw text with
the standardised terminology name but this lead to
model failures and only keeping the original source
text allowed for model convergence.

5.2 Ensemble Models
We use a very simple ensembling strategy, sam-
pling the extractive model and feeding into the
abstractive summariser. Prior work suggests that
BHC sections are initially extractive then become
abstractive(Adams et al., 2021). We find this to be
partly true - we reach an Oracle performance limit
for both datasets between 10 and 15 sentences -
but it is probably at the sub-sentence / phrase level
rather than full sentences where summaries are ex-
tractive. Further work could explore a PG(See et al.,
2017) network architecture, with a mechanism to
favour extractiveness initially then abstractive gen-
eration afterwards.

5.3 Problems with Abstractive
Summarisation Models

Repetition is a known problem with Abstractive
summarisation models(Nair et al., 2021). Prior
work have studied numerous methods to reduce
repetition and therefore improve summarisation
quality. These include a specific training regime
that improves the models ability to sample previ-
ously unselected n-grams(Welleck et al., 2020), and
a coverage model that adjusts the loss to include
words and phrases that sufficiently cover the source
text(See et al., 2017). Repetition is highly unlikely
to occur in human generated summaries. Utilising
the above techniques would likely improve perfor-
mance, as observed in open-domain settings(Nair
et al., 2021), although we argue this would still
not guide the model to ‘focus’ on the problem-list
during summary generation as our method allows.

Factual correctness is an important problem in
summarisation and especially important applying
these models to clinical scenarios, a high stakes
use case that lead to large downstream impacts
for model errors. An incorrect statement within a
generated BHC summary could miss a diagnosis,
follow-up or report a result incorrectly. Our own
manual analysis identified various examples espe-
cially within long BHCs, of occurrences of incon-
sistent facts, detecting these and ensuring the model
is consistent with the source text is arguably the
most important metric in BHC generation. A real
deployment of a BHC summarisation system would
likely require a ‘human-in-the-loop’ to monitor,

similar to most medical AI(Jotterand and Bosco,
2020). The human user would correct, further edit
and sign-off on any produced summaries. Even if
a system were only able to provide a basic BHC
summary, this would still beneficially reduce the
administrative burden of completing the BHC sec-
tion from scratch.

5.4 Reference Summary Quality
The reference summary BHC sections in both
datasets were collected as part of routine care. They
have not been reviewed and validated so represent
a silver-standard BHCs. Real-world clinical data
often does not undergo secondary validation, and
even MIMIC-III a heavily studied clinical dataset
has data quality concerns(Searle et al., 2020; Af-
shar et al., 2021). It is likely that there are mistakes
and omissions in this dataset but given the com-
plexity of clinical text, developing a gold-standard
double annotated corpora would be prohibitively
expensive. If for example we used two clinicians
and each took on average 30 minutes per admission,
one to generate a new summary of each admission,
and another to compare both the existing reference
and newly written summary this would still take
circa. 7.4 years of manual work for both clinicians,
of 8 hour work days, 5 days a week and 40 weeks a
year. This is clearly not going to be possible, across
multiple datasets.

However, we argue in line with prior analysis
that BHC writing is context and author specific so
it is likely another domain expert clinician with
different training, geography etc. would result in
a different summary(Adams et al., 2021). Future
work could seek to better understand the variabil-
ity between BHC sections, or even validate BHC
sections creating a gold-standard.

5.5 Summarisation Metrics
The ROUGE score shows our guidance assisted and
ensemble models offer some but limited improve-
ment. However, in context current top performing
ROUGE-LSum scores in open-domain summari-
sation are at 37-41 points(Lewis et al., 2020) and
improvements needed for achieving a few points
above the current state-of-the-art is difficult. Anal-
ysis using MedCAT extracted concepts and from
manual review indicates the addition of guidance
helps to produce longer more ‘clinically complete’
summaries despite the similarity in ROUGE score.

ROUGE has been criticised in the litera-
ture as summarisation quality can score highly



whilst perform poorly during manual evalua-
tion(Schluter, 2017). Alternative metrics such as
BERTScore(Zhang et al., 2020a) or the recently
introduced question answering metrics(Eyal et al.,
2019; Wang et al., 2020) rely on manually gener-
ating questions for reference/generated summary
pairs or a pre-trained answer conditional question
generation model. Assessing our experimental sce-
narios with these metrics is left to future work, but
would likely assist in higher quality, more factu-
ally correct summaries. Factual accuracy is critical
in BHC generation, as this section is both a legal
record and likely to be used by followup care upon
discharge.

5.6 Downstream Summary Use

Automatic generation of BHC sections from source
notes is still a long way off. Embedding an auto-
matic summarisation model in high stakes scenar-
ios such as healthcare would involve engineering
a solution well beyond a research project. Aside
from initial validation, ML operations tasks such
as detecting model drift or bias would be essential.

In any real-use scenario - a generated summary
would likely only be used with explicit clinician
supervision and ultimate responsibility for the pro-
duced summary, ensuring factual correctness and
coherence. (Pivovarov and Elhadad, 2015) pro-
vides a further categorization of generated sum-
maries and how the output is integrated into a work-
flow. They explain that indicative summaries high-
light significant or important parts of source texts,
whereas informative summaries are intended to re-
place the original text and used in place of it.

6 Conclusions

Our work has demonstrated a range of possible
models using both extractive, abstractive summari-
sation approaches, pre-trained and fine-tuned to
specific data and a pre-trained guidance signal gen-
eration model (MedCAT) to push the summarisa-
tion models to focus on clinically relevant terms.
We train a state-of-the-art abstractive model guided
by clinically relevant problem terms outperforming
all baselines across 2 real-world clinical dataset.

Overall, we have shown BHC automated sum-
marisation to be a challenging task supporting prior
work(Adams et al., 2021) suggesting that BHCs are
both extractive and abstractive. We hope this work
motivates further work in this area that could one
day improve the overall healthcare experience for

patient and clinician alike through the minimisation
of screen time. A well documented contributing
factor for clinician burn-out(McPeek-Hinz et al.,
2021; O’Donnell et al., 2009).
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A MedCAT Extracted Terms

We configure MedCAT(Kraljevic et al., 2021) to
extract ‘problem’ and intervention terms. Table 6
and 7 are provided.

Table 8 shows descriptive statistics of the ex-
tracted terms of both datasets MIMIC-III and KCH.

B Extractive Baseline Architectures

Fig. 3, shows our baseline extractive model archi-
tectures.

C Extractive Summarisation Plots
Precision, Recall, F1 Plots Appendix

Extractive Summarisation Methods for Top-N-Line
BHC Summarisation

D Measures of Clinically Relevant
Information Across Summarisation
Models

Table 9 shows the proportion of concepts that we
successfully generate in the predicted summaries
vs the reference summaries.
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Type ID SCTID Root Term Description # Concepts Available

T-11 64572001 Disorder 77,284
T-18 404684003 Clinical Finding 44,201
T-29 49755003 Morphologic Abnormality 4,897
T-35 410607006 Organism 34,778
T-38 260787004 Physical Object 198,890

Table 6: The set of ‘Problem’ semantic tags from SNOMED-CT configured within MedCAT, and extracted from
source texts and BHC summaries

Type ID SCTID Root Term Description # Concepts Available

T-9 373873005 Clinical Drug 6,247
T-26 373873005 Medicinal Product 7,715
T-27 373873005 Medicinal Product Form 6,203
T-39 71388002 Procedure 6,4291
T-40 373873005 Product 17,3894
T-55 105590001 Substance 27,626

Table 7: The set of ‘Intervention’ semantic tags from SNOMED-CT configured within MedCAT. All SNOMED-CT
terms with these semantic terms are extracted from source texts and BHC summaries and treated as ‘Intervention’
terms.

Figure 4: Extractive score max

Figure 5: GloVe Embeddings: TextRank



Figure 6: S-BERT embeddings: TextRank

Figure 7: S-BERT embeddings: Bi-LSTM

Dataset
M-III KCH

Notes

# Terms 156 110
Term Density 55 26
# Uniq Terms 56 43
Uniq Term Density 118 32

BHC

# Terms 19 10
Term Density 52 29
# Uniq Terms 15 8
Uniq Term Density 63 35

Table 8: Extracted and linked average: term counts,
unique term counts, and their respective densities with
regards to the number tokens per clinical term.

Dataset Model % Prob % Inv % Total

M-III

Abs 31 32 34
Ext + Abs 33 33 34
Ext + Abs + Prb 35 35 34

KCH

Abs 40 30 38
Ext + Abs 41 34 41
Ext + Abs + Prb 43 34 42

Table 9: MedCAT Extracted Term comparisons vs ref-
erence summary. Average % of problem only, interven-
tion only and both problem & intervention terms in the
generated vs the reference summary. Bold indicates
model with highest proportion of clinical terms gener-
ated compared with reference summary.


