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Abstract

We study the quantization problem for certain types of jump processes. The prob-
abilities for the number of jumps are assumed to be bounded by Poisson weights.
Otherwise, jump positions and increments can be rather generally distributed and
correlated. We show in particular that in many cases entropy coding error and quan-
tization error have distinct rates. Finally, we investigate the quantization problem
for the special case of Rd-valued compound Poisson processes.
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1 Introduction and results

1.1 Statement of the problem

In this article, we study the quantization- and entropy coding problem for certain types
of jump processes. Given a random variable X , the aim is to find a good approximation
X̂ to X that satisfies a particular complexity constraint.

Let s > 0, X be a random variable in a measurable space (E, E), ρ a distortion measure
on E (i.e. a measurable, symmetric function ρ : E ×E → R≥0 with ρ(x, y) = 0 iff x = y),
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and r ≥ 0. Then we define the quantization error as follows:

D(q)(r | X, ρ, s) := inf

{

(

Emin
a∈C

ρ(X, a)s
)1/s

: log#C ≤ r

}

.

The number D(q) represents the best-achievable average error when encoding the signal
X with r nats. The term ‘nats’ is used instead of ‘bits’, since we calculate the amount of
information using the natural logarithm. Further, we investigate the entropy coding error,
which can be understood as the average error when encoding the signal X using – on
average – r nats:

D(e)(r | X, ρ, s) := inf
{

(

Eρ(X, X̂)s
)1/s

: X̂ random var. with H(X̂) ≤ r
}

,

where H is the (discrete) entropy of a random variable:

H(X) :=







−∑x P (X = x) log P (X = x) X discrete,

∞ otherwise.

In slight misuse of notation we also write D(q)(r | X, ‖.‖ , s) if ρ(x, y) = ‖x− y‖ for a
norm distortion ‖.‖. Analogously, we deal with the entropy coding error. We recall that
D(e)(r | X, ρ, s) ≤ D(q)(r | X, ρ, s).

The problems described above arise naturally in coding theory, where for instance, the
complexity of a signal has to be reduced due to capacity restrictions of a channel or
simply (lossy) data compression is considered (see for instance [6] for a general account
on coding theory and [15] for a historic outline of the information constraints). Beyond
these information-theoretic applications, the quantization error is tightly related to certain
quadrature problems: the quantization error can be defined equivalently as the worst-case
error of a particular quadrature problem. Moreover, further quadrature problems are
linked to the quantization problem via estimates involving both quantities. Recent results
in that direction can be found in [7] (see also [19] for earlier results).

The analysis of the quantization- and entropy coding error started in the 40s of the 20th
century. At that time research was mainly focused on finite-dimensional signals; and the
numerous publications mainly appeared in the engineering literature. A mathematical
account of the results for finite-dimensional signals is provided by [13]. Since about 2000
researchers are attracted by the problem in the case where the original signal is infinite-
dimensional. A series of articles followed on (infinite-dimensional) random vectors X that
are Gaussian (see for instance [11], [16], [12]), diffusions ([17], [9], [10]), and Lévy processes
([18], [2]).

In this article, we provide asymptotic estimates for the quantization- and entropy coding
error for certain jump processes. The results are shown to be sharp in several cases.
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In contrast to the (infinite-dimensional) settings studied before, there is a qualitative
difference in the (best-achievable) approximation error induced by the two constraints.

1.2 Some notation and the model

Let us now introduce the jump processes that we investigate in this article.

We define the space D([0, 1[, E) to be the space of all functions f : [0, 1[→ E that are
piecewise constant and possess a finite number of jumps, where if f has a jump at t from
the value a ∈ E to b ∈ E, then f(t) = b. We endow D([0, 1[, E) with the σ-field induced
by the projections.

In the sequel, X = (X(t))t∈[0,1[ denotes a D([0, 1[, E)-valued random vector. We denote
by NX the random number of jumps of X , let 0 < Y1 < · · · < YNX

< 0 be the jump
positions of X , and set Y0 = 0 and YNX+1 = 1. Moreover, we denote by

Zi := ρ(X(Yi−1), X(Yi))

the moduli of the increments and, in the case where E is a linear space, we denote by

Z(i) := X(Yi)−X(Yi−1)

the increments.

As distortion measure on D([0, 1[, E) we consider

ρD(f, g) :=
∫ 1

0
ρ(f(t), g(t)) dt, f, g ∈ D([0, 1[, E), (1)

where ρ is a distortion measure on E. It is straightforward to extend the results of this
paper to the distortion measure ρp

D
(f, g) = (

∫ 1
0 ρ(f(t), g(t))p dt)1/p, with 1 ≤ p < ∞.

Our lower bounds require that the jump positions constitute a Poisson point process with
intensity λ. The upper bounds on the complexity are proven under weaker assumptions
on X . Here, we only assume that the total number of jumps can be estimated against the
probability weights of a Poisson random variable:

P (NX = k) ≤ λk

k!
e−λK, k ≥ 0, (2)

where λ > 0 and K ≥ 1 are some fixed parameters. In particular, one can choose K = 1,
if the jump positions are induced by a Poisson point process.

Sometimes we shall also impose the following condition:
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(*) The jump positions are independent of the jump destinations, which means that,
given the event {NX = k}, the vector (Y1, . . . , Yk) is independent of the vector
(X(Y0), . . . , X(Yk)).

Let us introduce some more notation. Firstly, we make use of the concept of metric entropy.
If ρ is a distortion measure on E we define its covering numbers by

N(E, ρ, ε) := min{n ∈ N : ∃x1, . . . , xn ∈ E ∀x ∈ E ∃i : ρ(x, xi) ≤ ε}.

A set {x1, . . . , xn} for which the defining property of N holds is called an ε-net of E. Note
that in general one has to assume that N(E, ρ, ε) is well-defined, i.e. that for all ε > 0
there is an ε-net of E. This is ensured if, for example, (E, ρ) is a precompact metric space.
We also introduce the inverse concept of D(q), which we call d(q), given by

d(q)(ε |X, ρ, s) := inf
{

n ≥ 1, n ∈ N : D(q)(log n | X, ρ, s) ≤ ε
}

.

In other words, d(q) is the number of points needed to quantize with error at most ε, i.e.
roughly it is the inverse function of D(q)(log(.)).

We shall also need the notation of strong and weak asymptotics. Namely, we write f . g,
if lim sup f/g ≤ 1. Analogously, f & g is defined. Furthermore, f ∼ g means lim f/g = 1.
We also use f ≈ g if 0 < lim inf f/g ≤ lim sup f/g < ∞. Finally, throughout the article
λd denotes the d-dimensional Lebesgue measure.

The paper is organized as follows. In the rest of this section we state the main results.
In Section 1.3, we state the upper bounds for both quantities under various additional
assumptions. In Section 1.4, the upper bounds are complemented by corresponding lower
bounds. In particular, we obtain that the upper and lower bounds are tight in many
cases. Finally, Section 1.5 is devoted to the particular setting where X is a compound
Poisson process. The proofs for the upper bounds can be found in Section 2. There,
explicit coding strategies are constructed. The lower bounds are proven in Sections 3 and
4 for quantization- and entropy coding, respectively. The proofs for the lower bounds of
the quantization error rely on a small ball argument, whereas the lower bounds for the
entropy coding error are derived using the Shannon lower bound for a related problem.

1.3 Upper bounds

Our first result concerns the case where the space E has finite covering numbers. In
the case where (E, ρ) is a metric space, this corresponds to the assumption that E is
precompact.
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Theorem 1 Assume that w := supx,y∈E ρ(x, y) < ∞ and that the upper box dimension

γ := lim sup
ε→0

logN(E, ρ, ε)

log 1/ε
(3)

is finite. Then

− logD(q)(r | X, ρD, s) &

√

2

s(1 + γ)
r log r. (4)

Theorem 2 Assume that N(E, ρ, ε) < ∞ for all ε > 0 and that w := supx,y∈E ρ(x, y) <
∞.

(a) For all r > r0 = r0(λ),

D(e)
(

K
(

λr + (λ+ 1) logN(E, ρ, e−r)
)

| X, ρD, s
)

≤ Cs(w + 1)K1/se−r, (5)

where the constant Cs depends on s only, and K and λ are the constants from (2).
(b) In particular, if the jump positions are distributed according to a Poisson point process

with rate λ, we obtain for r > r0 = r0(λ)

D(e)(λr + (λ+ 1) logN(E, ρ, e−r) | X, ρD, s) ≤ Cs(w + 1)e−r. (6)

(c) In the case of a discrete space E = {x1, . . . , xq} we even have the more precise
estimate

D(e)(K (λr + (λ+ 1) log q) | X, ρD, s) ≤ 4K1/swmin(1, λ)1/s e−r, (7)

for r > r0 = r0(λ).

Theorem 2 can be interpreted in the following way. In order to quantize with error e−r one
needs, on average, λr nats to encode the jump positions, λ logN(E, ρ, e−r) nats in order
to encode the increments, and another logN(E, ρ, e−r) nats in order to encode the initial
position X(0). In particular, the same result can be proved without the logN(E, ρ, e−r)
term if the initial value of the process is deterministic.

Let us compare Theorem 1 and Theorem 2 in the case where N(E, ρ, ε) ≤ qε−γ. We point
out that the asserted rate of the quantization error is different to the one of the entropy
coding error. As we will see below neither the quantization error bounds nor the entropy
coding error bounds can be improved significantly.

Finally note that N(E, ρ, ε) < ∞ for all ε > 0 does not necessarily imply that w :=
supx,y∈E ρ(x, y) < ∞ if ρ does not satisfy the triangle inequality.

For the remainder of this subsection, let us assume that (E, ‖.‖) is a normed linear space
with distortion measure ρ(x, y) = ‖x− y‖. We assume that the jump destinations of X
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(and thus the increments Z(i)) are independent of the jump positions (condition (*)).
Furthermore, assume that the increments, conditioned upon NX = k, are identically
distributed (not necessarily independent among each other) with the same law as the
E-valued random variable, say, Z(1). Furthermore we assume that X(0) is deterministic,
i.e. that for some x0 ∈ E X(0) = x0 a.s.

Theorem 3 Under the above assumtions the following statements are true.

(a) If

γ := lim sup
ε→0

log d(q)(ε |Z(1), ‖.‖ , s)
log 1/ε

∈ [0,∞[,

then (4) is valid for the newly defined γ.
(b) If d(q)(ε |Z(1), ‖.‖ , s) < ∞ for all ε > 0, then

D(e)
(

K
(

λr + λ log d(q)(e−r |Z(1), ‖.‖ , s)
)

| X, ρD, s
)

≤ C e−r.

holds with some constant C > 0 depending on the parameters s,K, λ, and E||Z(1)||s.

Theorem 3 relates the complexity of coding X to that of coding the increments. If the
assumptions of both Theorems 2 and 3 are satisfied, then the bounds of the latter theorem
provide a better estimate since in general d(q)(ε) ≤ N(ε) (see Lemma 20). However,
note that in contrast to Theorems 1 and 2, Theorem 3 requires that the increments are
identically distributed and independent of the jump positions. In case of Theorems 1 and 2,
this is not necessary since, by assumption, the space E is sufficiently well-structured (in
the sense of small metric entropy N).

Let us remark that the assumption in Theorem 3 that X(0) be deterministic is for sim-
plicity only. If instead X(0) is a random variable in E, one has to add d(q)(ε |X(0), ρ, s)
to the average number of nats needed to encode X conditioned upon X(0).

Finally we mention that one can also prove counterparts to assertions (b) and (c) of
Theorem 2 in the setting of Theorem 3.

1.4 Lower bounds

As an illustration consider the case of a discrete space E, namely let E = {x1, . . . , xq},
which was first studied in [20]. Then N(E, ρ, ε) ≤ q, and we thus obtain from Theorems 1
and 2:

− logD(q)(r | X, ρD, s) &

√

2

s
r log r and − logD(e)(Kr | X, ρD, s) &

r

λ
. (8)
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Now we ask for lower bounds. Clearly, one cannot expect a non-trivial lower bound when
only assuming (2). Thus, let us assume in this subsection that the jump positions con-
stitute a Poisson point process and that condition (*) holds. In this case, we show in
Theorem 4 that the order of D(q) in (8) is in fact the true order on this scale. Below, in
Theorem 7, we show that the order of D(e) is the correct one, too.

We consider a more general situation than a finite, discrete space. We only have to assume
that there is sufficient uncertainty in the model in order to ensure that every jump indeed
has to be encoded.

Concretely, assume that condition (*) holds and that the jump positions form a Poisson
point process. Furthermore, we assume that, given the event that k jumps occur ({NX =
k}), the moduli of the increments Z1, . . . , Zk are such that there are ε0 > 0 and δ0 > 0
(independent of k) such that for all i = 1, . . . , k, P (Zi > ε0 |NX = k) ≥ δ0. Additionally,
we now impose that (E, ρ) is a metric space.

Theorem 4 Under the above assumptions,

− logD(q)(r | X, ρD, s) .

√

2

s
r log r.

In particular, for a discrete metric space E = {x1, . . . , xq},

− logD(q)(r | X, ρD, s) ∼
√

2

s
r log r.

Note that in view of (7) the rates for quantization error and entropy coding error must
be different in case of a discrete metric space E = {x1, . . . , xq}. Moreover, the order of
convergence of the quantization error depends strongly on the moment s. In particular,
one has for two distinct moments 0 < s < s′ that

lim
r→∞

D(q)(r | X, ρD, s)

D(q)(r | X, ρD, s′)
= 0.

This contrasts earlier results on quantization where the same order of convergence is
obtained for all moments s > 0.

Let us consider a simple example.

Example 5 Let X be an alternating Poisson process, i.e.

X(t) =
N(t)
∑

i=1

(−1)i−1, (9)
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where (N(t))t∈[0,1] is a Poisson (counting) process with rate λ (cf. Section 1.5) with the
natural metric |.| on E = {0, 1}. Then Theorem 4 yields

− logD(q)(r | X, ρD, s) ∼
√

2

s
r log r.

Remark 6 Recall that the assertions of the upper bounds, do not require that (E, ρ) is
a metric space. The statement is valid for any distortion measure ρ. However, the lower
bound from Theorem 4 fails for general distortion measures. This can be seen from the
following simple example. Let E = {0, 1} ∪ {2−n, n ≥ 1} and ρ(0, 1) = 1, ρ(0, 2−n) =
ρ(1, 2−n) = 2−n, ρ(2−n, 2−m) = 1 for n 6= m and n,m ≥ 1. Note that this is not a metric
space.

Consider the alternating Poisson process, i.e. the model from (9). Then X satisfies the
assumptions of Theorem 4, in particular those for the moduli of the increments (since
Zi = 1), but D(q)(r | X, ρD, s) = 0, for all r ≥ 0.

Next, we will prove a lower bound for the entropy coding error.

Theorem 7 Let X be a jump process satisfying condition (*). We assume that he jump
positions (Yi) form a Poisson point process with rate λ. Moreover, we suppose that ρ
defines a metric on E and that a.s. the moduli of the jumps are bounded from below by
ε0 > 0. Then for all s ≥ 1 and all sufficiently large r

D(e)(r | X, ρD, s) ≥ ε0Cmin(1, λ) e−r/λ,

where C > 0 is an absolute constant.

Remark 8 The lower bound in Theorem 7 is actually shown to hold for the distortion
rate function D(r | X, ρ, s) defined in Section 4.

We obtain the following corollary as a special case.

Corollary 9 Let X satisfy the conditions of Theorem 7. Assume additionally that X(0)
is deterministic and consider the case of a discrete metric space E = {x1, . . . , xq} with
w := maxx,y∈E ρ(x, y). Then for s ≥ 1

C1ε0min(1, λ)e−r/λ ≤ D(e)(r | X, ρD, s) ≤ C2 q w min(1, λ)1/s e−r/λ,

for large enough r and absolute constants C1, C2 > 0.

The corollary follows immediately from part (c) of Theorem 2 and the remark after it and
Theorem 7. This result shows that the bounds for the entropy coding error in Theorems 2
and 3 are tight.
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Example 10 Consider again the alternating Poisson process from (9) with the natural
metric |.|. Then Corollary 9 yields, for all s ≥ 1,

C1min(1, λ)e−r/λ ≤ D(e)(r | X, ρD, s) ≤ C2min(1, λ)1/s e−r/λ,

for large enough r and absolute constants C1, C2 > 0.

Example 11 Let us illustrate the influence of a random initial position on our estimates.
For this purpose, consider an alternating Poisson process with random initial position, i.e.

X(t) = X(0) +
N(t)
∑

i=1

(−1)i−1+X(0),

where X(0) equals 0 and 1 with probability 1/2, respectively, cf. [20]. Our Theorem 2, part
(c), and Theorem 7 yield

C1min(1, λ)e−r/λ ≤ D(e)(r | X, ρD, s) ≤ C2min(1, λ)1/s21/λ e−r/λ,

for all s ≥ 1 and all large enough r and absolute constants C1, C2 > 0.

1.5 Application to compound Poisson processes in R
d

As an application of our results, let us determine the coding complexity of Rd-valued
compound Poisson processes. Recall that a Lévy process with finite Lévy measure is a
compound Poisson process with the following structure, cf. e.g. [3].

Let (N(t))t≥0 be a Poisson (counting) process with intensity λ > 0, i.e. let N(t) :=
max{n ≥ 0 :

∑n
i=1 ej ≤ λt}, where (ej) are i.i.d. standard exponential random variables.

Consider

X(t) =
N(t)
∑

i=1

Z(i), t ∈ [0, 1[, (10)

where the Z(i), i = 1, 2, . . ., are i.i.d. and distributed according to any probability dis-
tribution in R

d with P

(

Z(1) = 0
)

= 0. Note that this notation is consistent with the
one employed above for the increments. Note furthermore that for compound Poisson
processes condition (*) is satisfied.

We consider the distortion measure

‖X‖1 :=
∫ 1

0
‖X(t)‖∞ dt,

which of course coincides with ρD for ρ = ‖.‖∞, where as usual ‖x‖∞ := maxi=1,...,d |xi|.
However, one can replace ‖.‖∞ by any norm on R

d, which would change only the constants.
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Theorem 3 yields the following corollary.

Corollary 12 Let X be a compound Poisson process as defined in (10) and s > 0.

(a) Assume that

γ := lim sup
ε→0

log d(q)(ε |Z(1), ‖.‖∞ , s)

log 1/ε
(11)

is finite. Then

− logD(q)(r | X, ρD, s) &

√

2

s(1 + γ)
r log r.

(b) Let d(q)(ε |Z(1), ρ, s) < ∞ for all ε > 0. Then, for r ≥ r0 and a constant C =
C(s, λ,E||Z(1)||s∞), we have

D(e)(λr + (λ+ 1)d(q)(e−r |Z(1), ρ, s) | X, ρD, s) ≤ Ce−r.

Alternatively, one can study the consequences of Theorems 1 and 2 if one has additional
information on the range of X .

As for lower bounds we can apply Theorem 4, which gives the following.

Corollary 13 Let X be a compound Poisson process as defined in (10) and s > 0. Then

− logD(q)(r | X, ρD, s) .

√

2

s
r log r.

If additionally (11) holds with γ = 0, then

− logD(q)(r | X, ρD, s) ∼
√

2

s
r log r.

We obtain a similar result in the case that the distribution of the increments has an
absolutely continuous component.

Theorem 14 Let X be a compound Poisson process as defined in (10) and s > 0. Assume
that the distribution of Z(1) has an absolutely continuous component. Then

− logD(q)(r | X, ρD, s) .

√

2

s(1 + d)
r log r.

If additionally (11) holds with γ = d then

− logD(q)(r | X, ρD, s) ∼
√

2

s(1 + d)
r log r.

10



Theorems 4 and 14 show that the upper bound for the quantization rate in Theorems 1
and 3 (and thus Corollary 12) cannot be improved in general (for all γ ∈ N).

Let us finally list a corollary of Theorem 7.

Corollary 15 Let X be a compound Poisson process as defined in (10). Assume that
∥

∥

∥Z(1)
∥

∥

∥

∞
> ε0 a.s. Then, for all s ≥ 1,

D(e)(r | X, ρD, s) ≥ ε0Cmin(1, λ) e−r/λ,

for r > r0 and C > 0 an absolute constant.

The most instructive examples of the application of the results of this subsection are given
now.

Example 16 Consider a Poisson (counting) process with intensity λ, i.e. let Z(1) = 1.
Then

− logD(q)(r | X, ρD, s) ∼
√

2

s
r log r

and

C1min(1, λ)e−r/λ ≤ D(e)(r | X, ρD, s) ≤ C2e
−r/λ,

for s ≥ 1, r > r0, where C1 > 0 is an absolute constant, and C2 > 0 depends on s and λ.

Example 17 Let Z(1) be uniformly distributed in [0, 1]d. Then

− logD(q)(r | X, ρD, s) ∼
√

2

s(1 + d)
r log r

and

D(e)(r | X, ρD, s) ≤ C2e
−r/((1+d)λ),

for s ≥ 1, r > r0, where C2 > 0 depends on s and λ. We conjecture that the order on the
right-hand side is the correct one.

Example 18 Let Z(1) be uniformly distributed in C, where C is the Cantor set in [0, 1].
Set γ := log 2/ log 3. Then

√

1

s
r log r & − logD(q)(r | X, ρD, s) &

√

2

s(1 + γ)
r log r

and

D(e)(r | X, ρD, s) ≤ C2e
−r/((1+γ)λ),

for s ≥ 1,s r > r0, where C2 > 0 depends on s and λ. We conjecture that the orders on
the right-hand side, respectively, are the correct ones.
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The theorems and examples presented in this subsection complement results from [2],
where general real-valued Lévy processes are studied. The main result for compound
Poisson processes in that paper states that, for any compound Poisson process with
E logmax(|Z(1)|, 1) < ∞ and all s ≥ 1,

logD(e)(r | X, ρD, s) ≈ −r.

No result on the quantization error for compound Poisson processes is obtained in [2].

Our findings also improve the results in [18], where an upper bound for the quantization
error of real-valued compound Poisson processes is obtained. In particular, it is shown
that for the Poisson (counting) process and all s ≥ 1,

− logD(q)(r | X, ρD, s) &

√

1

s
r log r.

The correct rate on this scale is given in Example 16.

2 Upper bounds

In this section, we provide the proofs of the upper bounds for the quantization error and
the entropy coding error stated in Theorems 1, 2, and 3, respectively. In the proofs, the
following four technical lemmas are needed.

First we prove a result on the asymptotic behaviour of a certain sum occurring in the
calculations.

Lemma 19 Let c > 0. Then

log

(

∞
∑

k=0

ck

k!
e−ce−r/(k+1)

)

∼ −
√

2r log r, as r → ∞.

Proof: Let V be a random variable that is Poisson distributed with mean c. Then the
term in question equals

logEe−r/(V +1).

By the so-called de Bruijn Tauberian theorem (cf. [4], Theorem 4.12.9), considering the
Laplace transform is equivalent to considering the lower tail of (V + 1)−1. Thus, consider

log P
(

1

V + 1
< ε

)

= log P
(

V >
1

ε
− 1

)

= log
∑

{k> 1

ε
−1}

ck

k!
e−c ∼ −1

ε
log

1

ε
,
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where we used Stirling’s Formula in the last step. Using the above-mentioned Tauberian
theorem returns the asserted order of the Laplace transform, including the constant. �

Secondly, we prove a quantization result for random variables in a space E with known
metric entropy. This is needed in order to encode the increments of the process X .

Lemma 20 Let X be any random variable on a space E. Then, for all s > 0 and all
ε > 0,

D(q)(logN(E, ρ, ε) | X, ρ, s) ≤ ε.

In other words, d(q)(ε | X, ρ, s) ≤ N(E, ρ, ε).

Proof: For given ε > 0 let C be an ε-net of (E, ρ). By the definition of the covering
numbers, C can be chosen to contain only N(E, ρ, ε) elements. Thus

D(q)(logN(E, ρ, ε) | X, d, s) ≤
(

Emin
a∈C

ρ(X, a)s
)1/s

≤ ε.

�

Remark 21 By using product quantization, it is clear that for a random variable X in
Ek := E × . . .× E with ρk(x, y) := maxi=1,...,k ρ(xi, yi) we have

D(q)(k logN(E, ρ, ε) | X, ρk, s) ≤ ε.

Essentially the same technique is applied in the proof of the next lemma. The result is
comparable, but slightly more precise. This version is used to encode the jump positions.

Lemma 22 Let Y be any random variable in [0, 1]k. Then, for all s > 0, r ≥ 0,

D(q)(r | Y, ‖.‖∞ , s) ≤ e−r/k.

If Y is such that Y1 ≤ . . . ≤ Yk almost surely then we can restrict ourselves to codebooks
C with Ŷ1 ≤ . . . ≤ Ŷk for all Ŷ ∈ C.

Note that this may be a fairly weak estimate in concrete cases; however, it holds for
all k ≥ 1 and all r ≥ 0. If more is known about the distribution of Y , much better
(asymptotic) estimates are available, cf. [13], e.g. Theorem 6.2.

Proof: Let us first consider the case er = n = ((m+1)/2)k with m ≥ 1. Then we can use
a simple product quantizer. Namely, we set

C := {(y1/m, . . . , yk/m) ∈ [0, 1]k : yi ∈ {1, 3, 5, . . .}, i = 1, . . . , k}.
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Then #C ≤ ((m+ 1)/2)k and thus

D(q)(log((m+ 1)/2)k | Y, ‖.‖∞ , s) ≤
(

Emin
a∈C

‖Y − a‖s∞
)1/s

≤ m−1.

For any r > 0 with er ≥ 2k, there exists an m ≥ 1 such that (m+1
2

)k ≤ er < (m+2
2

)k. Then

D(q)(r | Y, ‖.‖∞ , s) ≤ D(q)(log((m+ 1)/2)k | Y, ‖.‖∞ , s)

≤ m−1 ≤ (2er/k − 2)−1 ≤ e−r/k,

where we used er ≥ 2k in the last step.

Finally, for 1 ≤ er ≤ 2k,

D(q)(r | Y, ‖.‖∞ , s) ≤ (E ‖Y − (1/2, . . . , 1/2)‖s∞)
1/s ≤ 1/2 ≤ e−r/k.

�

The last lemma can be strengthened if it is known that the random vector Y = (Y1, . . . , Yk)
satisfies Y1 ≤ . . . ≤ Yk.

Lemma 23 There are absolute constants c∗, κ > 0 such that, for any random variable Y
in [0, 1]k such that almost surely Y1 ≤ . . . ≤ Yk, we have, for all s > 0,

D(q)(r | Y, ‖.‖∞ , s) ≤ κ

k
e−r/k, for all r ≥ c∗k. (12)

Proof: Let m ≥ k and consider

C :=
{(

y1
m
, . . . ,

yk
m

)

: 1 ≤ y1 ≤ y2 ≤ . . . ≤ yk ≤ m, yi ∈ {1, . . . , m}
}

.

Clearly,

#C =

(

m+ k − 1

k

)

.

Note that for any y ∈ [0, 1]k with y1 ≤ . . . ≤ yk we have mina∈C ‖y − a‖∞ ≤ 1/m. Thus,

D(q)(log(#C) | Y, ‖.‖∞ , s) ≤ 1

m
,

for any random variable Y that satisfies the assumption of the lemma.

Note that, by Stirling’s Formula, for some absolute constants C1, C2, c
∗ > 0,

(

k + 1 + k − 1

k

)

=
(2k)!

(k!)2
≤ C1

22kk2ke−2k
√
2π2k

k2ke−2k2πk
≤ C22

2k ≤ ec
∗k. (13)
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Let r ≥ c∗k. Then there is an m ≥ k such that
(

m+ k − 1

k

)

< er ≤
(

m+ 1 + k − 1

k

)

, (14)

because, as seen in (13),

min
m≥k

(

m+ k − 1

k

)

=

(

k + k − 1

k

)

<

(

k + 1 + k − 1

k

)

≤ ec
∗k ≤ er.

Thus,

D(q)(r | Y, ‖.‖∞ , s) ≤ D(q)

(

log

(

m+ k − 1

k

) ∣

∣

∣

∣

∣

Y, ‖.‖∞ , s

)

≤ 1

m
. (15)

By (14) and Stirling’s Formula, for some absolute constants C3, C4 > 0,

er ≤
(

m+ 1 + k − 1

k

)

=
(m+ k)!

m!k!

≤ C3

(m+ k)m(m+ k)ke−m−k
√

2π(m+ k)

mme−m
√
2πmkke−k

√
2πk

≤ C4

(

1 +
k

m

)m
(2m)k

kk

√

m+ k

mk
. (16)

Observe that
(

1 + k
m

)m ≤ ek and that m+k
mk

= 1
k
+ 1

m
≤ 2, for all m and k. Therefore, the

term in (16) can be estimated by

C5(2e)
k m

k

kk
≤ κk m

k

kk
,

where κ is an absolute constant. This implies ker/k ≤ κm or 1/m ≤ κe−r/k/k. We deduce
from (15) that for any r ≥ c∗k (12) holds, as asserted. �

Now we can proceed with the proof of our first main result.

Proof of Theorem 1: Let Xk be a random variable that has the distribution of X
conditioned upon the event that NX = k, i.e. X that has k jumps. Let Y be the vector
in [0, 1]k with the jump positions of Xk (in increasing order) and Z be the Ek+1-vector
containing values of the process Xk between the jumps (in the order corresponding to
when they occur), i.e. the initial value and the k jump destinations. Note that we can
reconstruct Xk completely from the vectors Y and Z. Thus, it is sufficient to find good
codebooks for Z and Y .

Let δ > 0. By assumption, there is an ε0 = ε0(δ) ∈]0, 1[ such that for all 0 < ε ≤ ε0,

logN(E, ρ, ε) ≤ (γ + δ) log 1/ε. (17)
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Let r ≥ log 1/ε0. For 0 ≤ k ≤ k0 := k0(δ, r) := rmin(1, (log 1/ε0(δ))
−1) − 1, let C′′

k be a
codebook for Z in (Ek+1, ρk+1) with

(

E min
Ẑ∈C′′

k

ρk+1(Z, Ẑ)s
)1/s

≤ 2e−r/(k+1). (18)

By Remark 21, C′′
k can be chosen such that

log#C′′
k ≤ (k + 1) logN(E, ρ, e−r/(k+1)) ≤ (k + 1)(γ + δ) log

(

er/(k+1)
)

= (γ + δ)r, (19)

where we used (17) and the choice of k0.

For 1 ≤ k ≤ k0, let C′
k be a codebook for Y in (Rk, ‖.‖∞) with

(

E min
Ŷ ∈C′

k

∥

∥

∥Y − Ŷ
∥

∥

∥

s

∞

)1/s

≤ 2
(

er−k
)−1/k

. (20)

By Lemma 22, C′
k can be chosen such that log#C′

k ≤ r − k.

Define C0 := C′′
0 . For k 6= 0, let Ck be the Cartesian product of the codebooks C′

k and C′′
k .

Then log#Ck ≤ r − k + (γ + δ)r for all 0 ≤ k ≤ k0.

Let us define the following notation: for any Ŷ ∈ C′
k, we set

F :=
k
⋃

i=1

[

Ŷi, Yi

[

∪
[

Yi, Ŷi

[

⊆ [0, 1[. (21)

Note that on [0, 1[\F , X can be reconstructed up to the error given in (18). Furthermore,

note that the Lebesgue measure of F is less than k
∥

∥

∥Y − Ŷ
∥

∥

∥

∞
.

With the help of this information, we can estimate the error of approximating by Ck when
k 6= 0:

Emin
a∈Ck

ρD(Xk, a)
s =Emin

a∈Ck

(∫ 1

0
ρ(Xk(t), a(t)) dt

)s

≤CsEmin
a∈Ck

(

(∫

F
. . . dt

)s

+

(

∫

[0,1[\F
. . . dt

)s)

≤CsE min
Ŷ ∈C′

k

min
Ẑ∈C′′

k

((

wk
∥

∥

∥Y − Ŷ
∥

∥

∥

∞

)s
+
(

ρk+1(Z, Ẑ)
)s)

(22)

=Cs

(

(kw)sE min
Ŷ ∈C′

k

∥

∥

∥Y − Ŷ
∥

∥

∥

s

∞
+ E min

Ẑ∈C′′

k

ρk+1(Z, Ẑ)s
)

≤Cs

(

(2kw)s
(

er−k
)−s/k

+ 2se−sr/(k+1)
)

≤Dkse−rs/(k+1), (23)
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having used (20) and (18) in the last but one step, where D := Cs2
s((ew)s + 1).

We define the codebook C :=
⋃

0≤k≤k0 Ck. Then

#C ≤
∑

0≤k≤k0

er−k+(γ+δ)r ≤ er+(γ+δ)r
∞
∑

k=0

e−k ≤ er+(γ+δ)r+1.

Thus,

D(q)((1 + γ + δ)r + 1 | X, ρD, s)
s ≤ Emin

a∈C
ρD(X, a)s

≤
∑

0≤k≤k0

P (NX = k)Emin
a∈Ck

ρD(Xk, a)
s +

∑

k>k0

P (NX = k)Emin
a∈C0

ρD(Xk, a)
s. (24)

Using (2), (23), and the trivial fact that ρD(Xk, a) ≤ w, the last expression is seen to be
less than

Ke−λ



2se−sr +
∑

1≤k≤k0

λk

k!
Dkse−rs/(k+1) +

∑

k>k0

λk

k!
ws





=Ke−λ



2se−sr +D
∑

1≤k≤k0

λk

k!
kse−rs/(k+1) + ws

∑

k>k0

λk

k!
e−rs/(k+1)ers/(k+1)





≤Ke−λ



2se−sr +D
∑

1≤k≤k0

λk

k!
ekse−rs/(k+1) +

(

w

ε0

)s
∑

k>k0

λk

k!
e−rs/(k+1)





≤Ke−λ2se−sr + CK,s,w,λ,ε0(δ)

∞
∑

k=0

(esλ)k

k!
e−esλe−rs/(k+1). (25)

Recall from Lemma 19 that the exponential order of the sum, when r → ∞, is

−
√

2rs log(rs) ∼ −
√

2rs log r

and that the constant in front of it does not depend on r. The first term in (25) also has
no influence. Thus, for any δ > 0,

lim sup
r→∞

logD(q)((1 + γ + δ)r + 1 | X, ρD, s)√
r log r

≤ −
√

2

s
.

Therefore

lim sup
r→∞

logD(q)(r | X, ρD, s)√
r log r

≤ −
√

2

s(1 + γ + δ)
,

which holds for any δ > 0. Letting δ tend to 0 gives the assertion. �

Proof of Theorem 2: First we treat part (a). Again we condition upon the event that
k jumps occur. Let Xk be a random variable that has the distribution of X conditioned
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upon the event that NX = k, i.e. that X has k jumps. Let, as above, Y be the vector in
[0, 1]k with the jump positions of Xk and Z be the Ek+1-vector containing the values of
the process Xk between the jumps. Recall that one can reconstruct Xk from Y and Z, so
it suffices to find good codebooks for Y and Z.

Let c∗, κ > 0 be the absolute constants from Lemma 23. Let r ≥ λc∗. Fix k ≥ 1. Let C′
k

be a codebook for Y in (Rk, ‖.‖∞) with

(

E min
Ŷ ∈C′

k

∥

∥

∥Y − Ŷ
∥

∥

∥

s

∞

)1/s

≤ 2κ

k

(

erk/λ
)−1/k

=
2κ

k
e−r/λ.

By Lemma 23 and the fact that Y1 ≤ . . . ≤ Yk, C′
k can be chosen such that log#C′

k ≤ kr/λ.

Furthermore, for k ≥ 0, let C′′
k be a codebook for Z in (Ek+1, ρk+1) with

(

E min
Ẑ∈C′′

k

ρk+1(Z, Ẑ)s
)1/s

≤ 2e−r/λ. (26)

By Remark 21, C′′
k can be chosen such that

log#C′′
k ≤ (k + 1) logN(E, ρ, e−r/λ). (27)

Let Ck be the Cartesian product of the codebooks C′
k and C′′

k . Then log#Ck ≤ kr/λ+(k+
1) logN(E, ρ, e−r/λ).

Let F be defined as in (21). In case k jumps occur (k 6= 0) we approximate X by a
function from Ck, which gives an error of at most

Emin
a∈Ck

ρD(Xk, a)
s =Emin

a∈Ck

(∫ 1

0
ρ(Xk(t), a(t)) dt

)s

≤CsEmin
a∈Ck

(

(∫

F
. . . dt

)s

+

(

∫

[0,1[\F
. . . dt

)s)

≤CsE min
Ŷ ∈C′

k

min
Ẑ∈C′′

k

((

wk
∥

∥

∥Y − Ŷ
∥

∥

∥

∞

)s
+
(

ρk+1(Z, Ẑ)
)s)

(28)

=Cs

(

(kw)sE min
Ŷ ∈C′

k

∥

∥

∥Y − Ŷ
∥

∥

∥

s

∞
+ E min

Ẑ∈C′′

k

ρk+1(Z, Ẑ)s
)

≤Cs2
s
(

(wκ)se−rs/λ + e−sr/λ
)

≤Cs2
s((wκ)s + 1)e−rs/λ. (29)

For k = 0, set C0 := C′′
0 . Then the error is less than 2e−rs/λ, by (26).
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On the other hand, this procedure has an expected nat length of at most

Ke−λ
∞
∑

k=0

λk

k!
log (#Ck) = K

∞
∑

k=0

λk

k!
e−λ

(

kr/λ+ (k + 1) logN(E, ρ, e−r/λ)
)

= K
(

r + (λ+ 1) logN(E, ρ, e−r/λ)
)

.

Therefore, similarly to (24),

D(e)(K
(

r + (λ+ 1) logN(E, ρ, e−r/λ)
)

| X, ρD, s)
s

≤ Ke−λ

(

2e−rs/λ +
∞
∑

k=1

λk

k!
Cs2

s((wκ)s + 1)e−rs/λ

)

= K

(

2e−rs/λe−λ + Cs2
s((wκ)s + 1)e−rs/λ

∞
∑

k=1

λk

k!
e−λ

)

≤ KC ′
s(w

s + 1)e−rs/λ. (30)

where C ′
s only depends on s. This yields the assertion (a).

To see (b) one only has to recall that in case the jump positions are distributed as a
Poisson point process we can choose K = 1 in (2).

Let us finally show (c). In the case of a discrete space E = {x1, . . . , xq} with w =
maxx,y∈E ρ(x, y), we can choose log#C′′

k = (k+1) log q. Thus, on [0, 1[\F , no error arises.
This allows to replace the right-hand side in (29) by (2wκ)se−rs/λ. Therefore, the upper
bound in (30) becomes K(2wκ)s(1 − e−λ)e−rs/λ, where κ > 0 is the absolute constant
from Lemma 23. This finishes the proof of (c). �

Note that no assumption is necessary on the correlation of the jump positions and incre-
ments.

Let us now indicate the changes that are necessary to prove Theorem 3.

Proof of Theorem 3: The proof carries over almost literally from Theorems 1 and 2,
respectively. The only differences concern the assumption on d(q) instead of the metric
entropy N , the fixed initial position, and the possibly unbounded jumps.

In this case, we encode the increments instead of the jump destinations. Let Y be as
above, but Z denote the Ek vector with the increments, i.e. Z := (Z(1), . . . , Z(k)) with
Z(i) := X(Yi)−X(Yi−). Note that we can reconstruct X from Y and Z, since we asssumed
X(0) to be deterministic.

The first change is to replace (19) by

log#C′′
k ≤ k log d(q)(e−r/k | Z(1), ρ, s) ≤ k(γ + δ) log er/k = (γ + δ)r

in the proof for the quantization error. For the entropy coding error one has to replace
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(27) by

log#C′′
k ≤ k log d(q)(e−r/λ | Z(1), ρ, s).

The second issue concerns a certain refinement in order to deal with the possibly un-
bounded jumps. Here, we need that we deal with a normed space. We will show that, on
average, the high jumps do not have any influence on the rate. In fact, the only modifi-
cation affects (22), where we estimate by

CsE min
Ŷ ∈C′

k

min
Ẑ∈C′′

k

[(

max
1≤n,m≤k

∥

∥

∥

∥

∥

n
∑

i=1

Z(i) −
m
∑

i=1

Ẑ(i)

∥

∥

∥

∥

∥

k
∥

∥

∥Y − Ŷ
∥

∥

∥

∞

)s

+
(

kρk(Z, Ẑ)
)s
]

,

which is required due to the fact that we cannot estimate by a finite diameter w (modi-
fication in the first term) and the errors may add up over all the jumps, since we encode
the increments and not the absolute positions (modification in the second term).

The first term can be estimated by

CsE min
Ŷ ∈C′

k

min
Ẑ∈C′′

k

(

k
∑

i=1

∥

∥

∥Z(i) − Ẑ(i)
∥

∥

∥+
k
∑

i=1

∥

∥

∥Z(i)
∥

∥

∥

)s

ks
∥

∥

∥Y − Ŷ
∥

∥

∥

s

∞

≤ C2
s

(

ks
E min

Ẑ∈C′′

k

ρk
(

Z, Ẑ
)s

+ ks+1
E

∥

∥

∥Z(1)
∥

∥

∥

s
)

ks
E min

Ŷ ∈C′

k

∥

∥

∥Y − Ŷ
∥

∥

∥

s

∞

≤ C2
s (2

s + E

∥

∥

∥Z(1)
∥

∥

∥

s
)k2s+1

E min
Ŷ ∈C′

k

∥

∥

∥Y − Ŷ
∥

∥

∥

s

∞
,

where the last step comes from (18).

This leads to an additional factor Cks+1 in (23) which has no influence on the order.
Note furthermore that this argument needs that the jump positions and the increments
are independent (in order to separate the expectations) and that the increments are
identically distributed (as Z(1)). It is not needed that the increments are independent
among each other.

Analogously, for the proof of the entropy coding error, (28) is modified, which leads to an
additional factor of Cks+1 in (29), which leaves the resulting order unchanged, but which
does change the constant. �

3 Lower bound for the quantization error

In this section, we prove the lower bounds for the quantization error. Essentially we employ
a small ball argument, i.e. we construct an event of not too small probability that still
leaves sufficient uncertainty for the error to be large.
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First we prove Theorem 4.

Proof of Theorem 4: Let us fix k > 0 and δ > 0 (to be chosen later) and define intervals

Ij :=
[

j−1
k

+ 1
4k
, j
k
− 1

4k

]

, j = 1, . . . , k. Note that λ1(Ij) = 1/(2k). Let A be the event that
X has exactly k jumps at Y1, . . . , Yk, such that Yj ∈ Ij, for all j = 1, . . . , k, and that the
moduli of the increments are all greater than ε0. Since the Yi and Zi are independent (by
condition (*)) and the Yi are distributed according to a Poisson point process, we have

P (A) =
k
∏

j=1

P (exactly one jump in Ij , Zj > ε0) · P (no jump in [(j − 1)/k, j/k] \ Ij)

≥
k
∏

j=1

(

λ

2k
e−λ/(2k)δ0 · e−λ/(2k)

)

=

(

δ0λ

2k

)k

e−λ.

Step 1: Let XA be a random variable with the distribution of X conditioned upon the
event A. Then

D(q)(r | XA, ρD, s)
s = inf

log(#C)≤r
EXA

min
f∈C

ρD(XA, f)
s

≥ inf
log(#C)≤r

δsP (∀f ∈ C : ρD(XA, f) ≥ δ)

= inf
log(#C)≤r

δs (1− P (∃f ∈ C : ρD(XA, f) < δ))

≥ inf
log(#C)≤r

δs
(

1− (#C) sup
f

P (ρD(XA, f) < δ)

)

≥ δs
(

1− er sup
f

P (ρD(XA, f) < δ)

)

, (31)

where the supremum is taken over all functions f in D([0, 1[, E). For such f , we have

P (ρD(XA, f) < δ) = P

(∫ 1

0
ρ(XA(t), f(t)) dt < δ

)

≤ P





k
⋂

j=1

{

∫

Ij
ρ(XA(t), f(t)) dt < δ

}



 = EP





k
⋂

j=1

{

∫

Ij
ρ(XA(t), f(t)) dt < δ

}

∣

∣

∣

∣

∣

∣

Z



 , (32)

where Z = (XA(0), XA(Y1), . . . , XA(Yk)) is the vector with the jump destinations. By
condition (*), we have that, conditioned upon Z, the events

({

∫

Ij
ρ(XA(t), f(t)) dt < δ

})k

j=1

are independent, since each of them only depends on the jump position in the respective
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interval. This together with (32) shows

sup
f

P (ρD(XA, f) < δ) ≤ sup
f

E

k
∏

j=1

P

(

∫

Ij
ρ(XA(t), f(t)) dt < δ

∣

∣

∣

∣

∣

Z

)

. (33)

Step 2: Now we estimate each term in the product separately. Fix j ∈ {1, . . . , k}. Define
lj :=

j−1
k

+ 1
4k
, i.e. the left end point of the interval Ij. Furthermore, we define

Bj := {t ∈ Ij : ρ(XA(lj), f(t)) < ε0/2} and Cj := {t ∈ Ij : XA(t) = XA(lj)} .

Then we show that
∫

Ij
ρ(XA(t), f(t)) dt < δ ⇒ λ1(Bj∆Cj) <

2δ

ε0
, (34)

where Bj∆Cj := (Bc
j ∩Cj)∪ (Bj ∩Cc

j ). Indeed, assume that we had λ1(Bj∆Cj) ≥ 2δ/ε0.
Then
∫

Ij
ρ(XA(t), f(t)) dt

≥
∫

Bc
j
∩Cj

ρ(XA(t), f(t)) dt+
∫

Bj∩Cc
j

ρ(XA(t), f(t)) dt ≥
ε0
2
λ1(Bj∆Cj) ≥ δ,

where we used the triangle inequality in the last but one step. This shows (34); and we
thus have

P

(

∫

Ij
ρ(XA(t), f(t)) dt < δ

∣

∣

∣

∣

∣

Z

)

≤ P

(

|λ1(Bj)− λ1(Cj)| <
2δ

ε0

∣

∣

∣

∣

∣

Z

)

.

Note that, conditioned upon Z, λ1(Bj) is a deterministic value (depending on XA(lj) and
f), whereas λ1(Cj) is a random variable that is uniformly distributed in [0, 1/(2k)], since
the point in Ij where the jump of XA occurs is uniformly distributed in Ij . Therefore,

P

(

|λ1(Bj)− λ1(Cj)| <
2δ

ε0

∣

∣

∣

∣

∣

Z

)

≤ 8δk

ε0
.

Step 3: This shows, continuing (33), that supf P (ρD(XA, f) < δ) ≤ (8kδ/ε0)
k. Substitut-

ing this estimate back into (31), we obtain

D(q)(r | XA, ρD, s)
s ≥ δs

(

1− er(8δk/ε0)
k
)

.

Therefore,

D(q)(r | X, ρD, s)
s ≥ P (A) ·D(q)(r | XA, ρD, s)

s ≥
(

δ0λ

2k

)k

e−λδs



1− er
(

8kδ

ε0

)k


 .
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Now we can optimize k ≥ 1 and δ > 0 to obtain the largest possible lower bound. We set

δ :=
ε0
8k

(

1

2
e−r

)1/k

.

Then the last estimate becomes

D(q)(r | X, ρD, s) ≥
(

δ0λ

2k

)k/s

e−λ/sδ 2−1/s.

We set

k := ⌊
√

2sr/ log r⌋ ∼
√

2sr/ log r.

Taking logarithms of the last estimate shows that

− logD(q)(r | X, ρD, s) .
k

s
log k + r/k ∼

√

2

s
r log r,

as asserted. �

The proof of Theorem 14 contains the same idea as the one of Theorem 4 and carries over
almost literally. Therefore, we only indicate the necessary changes.

Proof of Theorem 14: By assumption, Z(1) has an absolutely continuous component.
Let S ⊆ R

d be a measurable set with λd(S) > 0 on which Z(1) has a positive bounded
density w.r.t. the Lebesgue measure and such that 0 /∈ S. Define ε0 := dist(S, 0)/2 > 0.

This time, A is defined as follows: let A be the event that X has exactly k jumps at
Y1, . . . , Yk, such that Yj ∈ Ij , for all j = 1, . . . , k, and that the corresponding increments
(i.e. Z(j) = X(Yj) − X(Yj−)) are of a height in S. Due to the Poissonian nature of the
point process and since increments and positions are independent, we have

P (A) =
k
∏

j=1

P (exactly one jump in Ij) · P (X(Yj)−X(Yj−) ∈ S) ·

·P (no jump in [(j − 1)/k, j/k] \ Ij)

=
k
∏

j=1

(

λ

2k
e−λ/(2k) · qS · e−λ/(2k)

)

=

(

λqS
2k

)k

e−λ,

where qS := P

(

Z(1) ∈ S
)

> 0. Regarding (31), the proof is analogous to that of Theorem 4.

We set Z = (XA(Y1), . . . , XA(Yk)) for the vector with the jump destinations. In (32)
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and (33) we estimate a bit more carefully and obtain:

P (ρD(XA, f) < δ)

≤ E

k
∏

j=1

P

(

∫

Ij
ρ(XA(t), f(t)) dt < δ,

∫ j/k

(4j−1)/(4k)
ρ(XA(t), f(t)) dt < δ

∣

∣

∣

∣

∣

Z

)

.

As in the proof of Theorem 4, the sets Bj and Cj are introduced and (34) is established.
Let r′j := j/k and rj := r′j − 1/(4k). Because of (34) and since XA(t) = XA(r

′
j) = XA(rj)

on [rj , r
′
j], the last expression is less than

E

k
∏

j=1

P

(

λd(Bj∆Cj) < δ,
∫ r′

j

rj
ρ(XA(rj), f(t)) dt < δ

∣

∣

∣

∣

∣

Z

)

.

Note that, conditioned upon Z, the events λd(Bj∆Cj) < δ and
∫ r′

j
rj ρ(XA(rj), f(t)) dt < δ

are independent, since the second event only depends on Z, i.e. it is deterministic. Thus
the last expression equals

E

k
∏

j=1

P (λd(B∆C) < δ|Z) P
(

∫ r′
j

rj
ρ(XA(rj), f(t)) dt < δ

∣

∣

∣

∣

∣

Z

)

.

The first term can be estimated as in the proof of Theorem 4 by 8δk/ε0, which allows to
estimate the last expression by

(

8δk

ε0

)k

E

k
∏

j=1

P

(

∫ r′
j

rj
ρ(XA(rj), f(t)) dt < δ

∣

∣

∣

∣

∣

Z

)

.

In order to treat the second term, note that it equals

P

(

∫ r′
j

rj
ρ(XA(rj), f(t)) dt < δ, j = 1, . . . , k

)

= EP

(

∫ r′
j

rj
ρ(XA(rj), f(t)) dt < δ, j = 1, . . . , k

∣

∣

∣

∣

∣

Z(1), . . . , Z(k−1)

)

. (35)

Note that the last condition (for j = k) is the only non-deterministic condition in the
probability. It depends on Z(k), which is an R

d-valued random variable distributed as Z(1).
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By the definition of the event A, Z(k) attains values in S. Thus,

P

(

∫ r′
k

rk
ρ(XA(rk), f(t)) dt < δ

∣

∣

∣

∣

∣

Z(1), . . . , Z(k−1)

)

= P





∫ r′
k

rk

∥

∥

∥

∥

∥

∥

k
∑

j=1

Z(j) − f(t)

∥

∥

∥

∥

∥

∥

∞

dt < δ

∣

∣

∣

∣

∣

∣

Z(1), . . . , Z(k−1)





≤ P





∥

∥

∥

∥

∥

∥

Z(k)

4k
+
∫ r′

k

rk

k−1
∑

j=1

Z(j) − f(t) dt

∥

∥

∥

∥

∥

∥

∞

< δ

∣

∣

∣

∣

∣

∣

Z(1), . . . , Z(k−1)



 ,

where the integral is to be understood componentwise. Note that
∫ r′

k
rk

∑k−1
j=1 Z

(j) − f(t) dt

is a deterministic value in R
d, conditioned upon (Z(1), . . . , Z(k−1)). Thus, the last term is

bounded from above by ε′0(8kδ)
d, where ε′0 is the supremum of the density of Z(k) d

= Z(1)

in S. In the same way, successively the other terms can be reduced; and the expression in
(35) can be estimated by ε′k0 (8kδ)

dk. Therefore,

sup
f

P (ρD(XA, f) < δ) ≤ (kδε′′0)
k(1+d),

where ε′′0 = 8min(1/ε0, ε
′
0). Continuing as in Step 3 of the proof of Theorem 4 shows

D(q)(r | X, ρD, s)
s ≥ P (A) ·D(q)(r | XA, ρD, s)

s ≥
(

λqS
2k

)k

e−λδs
(

1− er (kδε′′0)
k(1+d)

)

.

This time we set

δ :=
1

ε′′0k

(

1

2
e−r

)1/(k(1+d))

.

Then again

D(q)(r | X, ρD, s) ≥
(

λqS
2k

)k/s

e−λ/sδ 2−1/s,

where this time we set

k :=

⌊
√

2s

1 + d

r

log r

⌋

∼
√

2s

1 + d

r

log r
.

This eventually leads to

− logD(q)(r | X, ρD, s) .
k

s
log k + r/(k(1 + d)) ∼

√

2

s(1 + d)
r log r,

as asserted. �
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4 Lower bound for the entropy coding error

In this section we prove a corresponding lower bound for the entropy coding error (in fact,
for the distortion rate function) for a jump process where the underlying point process is
Poissonian. We use the notation from [14], in particular, for the distortion rate function

D(r | X, ρD, s) := inf
{

(

EρD(X, X̂)s
)1/s

: I(X ; X̂) ≤ r
}

,

and the notion of mutual information:

I(X ; X̂) =







∫

log
dP

X,X̂

dPX⊗P
X̂

dPX,X̂ if PX,X̂ ≪ PX ⊗ PX̂

∞ otherwise.

We recall that D(r | X, ρ, s) ≤ D(e)(r | X, ρ, s) ≤ D(q)(r | X, ρ, s) for any random variable,
all moments and any distortion measure. Therefore, a lower bound for D immediately
translates into a lower bound for D(e).

Let us state the assumptions of the main result of this section. We shall require that X is
a jump process (on the index set [0, 1[) whose jumps form a Poisson process of intensity
λ > 0. Furthermore, we assume that ρ defines a metric on E and that the moduli of the
jumps of X are a.s. bounded from below by a constant ε0 > 0.

As before, we denote by (Yi) the jump times of the process X and by NX the random
number of jumps of X ; we set Y0 = 0. Moreover, we assume that conditioned upon
NX = k the random vector (Ai) := (X(Yi))

k
i=0 and the jump times (Yi) are independent

(condition (*)). In the rest of this section, we prove the following stronger version of
Theorem 7.

Theorem 24 Under the above assumptions one has

D(r | X, ρD, 1) ≥ ε0Cmin(1, λ) e−r/λ,

where C > 0 is an absolute constant.

Let us shortly describe the idea of the proof. We relate the coding complexity of the jump
process to that of the random jump times. Controlling the complexity of the jump times
by using Shannon’s lower bound then leads to a lower bound in terms of a variational
problem. The proof is based on several lemmas and a particular random partition of [0, 1[.

We denote by Dm the dyadic subintervals of [0, 1[ of the m-th level, that is

Dm = {[(j − 1)2−m, j2−m) : j = 1, . . . , 2m}

We construct for any collection t1, . . . , tk of distinct points in [0, 1[ a finite binary tree as
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follows. Let µ =
∑k

i=1 δtk with δz denoting the Dirac mass in z. The root of the tree will
be associated with the interval [0, 1[ and it will be marked by the number µ([0, 1[) = k.
If k ∈ {0, 1}, then the construction ends and the root is also a leaf of the tree. If k ≥ 2,
the root of the tree is attached two children namely the two dyadic intervals of D1 that
are contained in [0, 1[: [0, 1/2[ and [1/2, 1[. Again we mark each of the nodes with their
corresponding masses. Each node that has mass 0 or 1 becomes a leaf of the tree, and for
each node with mass greater than 1 we attach the two dyadic intervals of the next level
that are contained in the interval and we continue in analogy to above.

By the construction, each leaf contains either one or no point. We shall denote by
πk(t1, . . . , tk) := (I1, . . . , Ik) the k-intervals associated to the leaves with positive mass. In
order to make the definition unique we arrange the intervals in their natural order.

Lemma 25 Let k ≥ 1 and (I1, . . . , Ik) ∈ im(πk). Conditioned upon the event {NX =

k, πk(Y1, . . . , Yk) = (I1, . . . , Ik)} we have that (Y1, . . . , Yk)
d
= (U1, . . . , Uk), where Ui are

independent random variables that are uniformly distributed on Ii, respectively.

Proof: First note that for any collection of distinct points t1, . . . , tk ∈ [0, 1[ such that
∑k

j=1 1lIi(tj) = 1 for all i = 1, . . . , k one retrieves πk(t1, . . . , tk) = (I1, . . . , Ik). On the other

hand, any collection of points which yields
∑k

j=1 1lIi(tj) 6= 1 for one i, induces a different
tree and πk(t1, . . . , tk) 6= (I1, . . . , Ik).

Therefore, the following two events coincide

{NX = k, πk(Y1, . . . , Yk) = (I1, . . . , Ik)} =
{

NX = k,
k
∑

j=1

1lIi(Yj) = 1 for i = 1, . . . , k
}

.

Recall that the times (Yi) form a Poisson process on [0, 1[ so that conditioned on {NX =

k, π(Y1, . . . , Yk) = (I1, . . . , Ik)} one has (Y1, . . . , Yk)
d
= (U1, . . . , Uk), where Ui are indepen-

dent random variables uniformly distributed on Ii. �

Lemma 26 Fix k ≥ 1, (I1, . . . , Ik) ∈ im(πk) and distinct points a0, . . . , ak ∈ E with
|ai − ai−1| ≥ ε0 for i = 1, . . . , k. Moreover, let µ denote the distribution of a process
in D([0, 1[, E) that has jump positions at k uniformly distributed times in the intervals
I1, . . . , Ik and that attains the values a0, . . . , ak in the given order. Then

D(r | µ, ρD, 1) ≥ ε0
k

2e

( k
∏

i=1

|Ii|
)1/k

e−r/k.

Proof: With slight abuse of notation we shall denote by X = (X(t))t∈[0,1[ a µ-distributed
process and we let Y1, . . . , Yk denote the ordered k jump positions of X . Due to Lemma
25 the times Y1, . . . , Yk are independent and each Yi is uniformly distributed on Ii.
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Now let X̂ = (X̂(t))t∈[0,1[ denote a D([0, 1[, E)-valued reconstruction with I(X ; X̂) ≤ r.

We define X i
t = ai−1 for t < Yi and X i

t = ai for t ≥ Yi. Also we set X̂ i
t = X̂(t) for t ∈ Ii

and X̂ i
t = X i

t otherwise. Then clearly

ρD(X, X̂) ≥
k
∑

i=1

ρD(X
i, X̂ i).

Next, we will provide a lower bound for the right hand side in the latter inequality.

For each fixed i = 1, . . . , k we define νi to be the probability kernel of the regular con-
ditional probability P(Yi ∈ ·|X̂ = ·). Next we choose Ŷi = Ŷi(X̂) to be the first time
t ∈ [0, 1[ for which the probability νi(X̂, [0, t]) is greater or equal to the threshold 1/2.

We observe that for t ∈ [0, 1[

E[ρ(X i
t , X̂

i
t)|X̂ ] ≥ P

(

X i
t = ai−1|X̂

)

∧ P

(

X i
t = ai|X̂

) [

ρ(ai−1, X̂
i
t) + ρ(ai, X̂

i
t)
]

≥ P

(

X i
t = ai−1|X̂

)

∧ P

(

X i
t = ai|X̂

)

ρ(ai−1, ai)

= ε0 P

(

Yi < t|X̂
)

∧ P

(

Yi ≥ t|X̂
)

.

Consequently, the approximation error satisfies

E[ρD(X
i, X̂ i)|X̂ ] ≥ ε0

∫ 1

0
P

(

Yi < t|X̂
)

∧ P

(

Yi ≥ t|X̂
)

dt

= ε0

[

∫ Ŷi

0
E[1l{Yi<t}|X̂] dt +

∫ 1

Ŷi

E[1l{Yi≥t}|X̂ ] dt

]

= ε0 E
(

|Yi − Ŷi| |X̂
)

and one gets

E[ρD(X, X̂)] ≥ ε0
k
∑

i=1

E|Yi − Ŷi|. (36)

We shall now use the Shannon lower bound to derive a lower bound for the right hand
side of the latter equation. For ease of notation we write shortly Y = (Y1, . . . , Yk) and
Ŷ = (Ŷ1, . . . , Ŷk). We need the notation for the continuous entropy and its conditional
counterpart: for Rk-valued random vectors Z and Ẑ we denote

h(Z) := −
∫

log
dPZ

dλk
dPZ and h(Z|Ẑ) := −

∫

log
dPZ|Ẑ

dλk
dPZ,Ẑ ,

provided the Radon-Nikodym derivatives exist and the integrals are well-defined.
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Since Ŷ is σ(X̂)-measurable we have I(Y ; Ŷ ) ≤ I(X ; X̂) ≤ r; so that by the Shannon
lower bound

r ≥ I(Y ; Ŷ ) = h(Y )− h(Y |Ŷ )

= h(Y )− h(Y − Ŷ |Ŷ ) ≥ h(Y )− h(Y − Ŷ ).

In particular, Y − Ŷ is absolutely continuous and its differential entropy is well-defined.
Next, we set d := E||Y − Ŷ ||ℓk

1

and estimate the term h(Y − Ŷ ) from above by

φ(d) = sup
Z, PZ ≪ λk

E‖Z‖
ℓk
1

≤d

h(Z).

Using Lemma 6.4 from [1] (which is based on ideas from [8]) one can easily show that

sup
Z, PZ ≪ λk,

∑k

i=1
E|Zi|≤d

h(Z) =
k
∑

i=1

log

(

2de

k

)

.

Consequently, r ≥ h(Y )− k log(2ed/k) or, equivalently,

d ≥ k

2e
eh(Y )/k e−r/k.

Moreover, the entropy of Y satisfies

h(Y ) =
k
∑

i=1

h(Yi) =
k
∑

i=1

log
1

|Ii|
.

and we conclude that

d ≥ k

2e
(

k
∏

i=1

|Ii|)1/k e−r/k,

which together with (36) shows the assertion. �

A crucial quantity in the latter lower bound for the distortion rate function is the length
of the intervals Ii. Later we will use the following estimate:

Lemma 27 Let t1, . . . , tk ∈ [0, 1[ denote k distinct points ordered by their size and let
(I1, . . . , Ik) = πk(t1, . . . , tk). With t0 = −∞ and tk+1 = ∞ we get for each i = 1, . . . , k
that

|Ii| ≥
1

2
(ti − ti−1) ∧ (ti+1 − ti).

Proof: By definition Ii is the largest dyadic interval that only contains the point ti and
the assertion follows since all half-open intervals of length (ti − ti−1) ∧ (ti+1 − ti) that
contain ti do not contain any of the other points. �
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Lemma 28 There exists a universal constant α1 ∈ R and a function α2 : N → R such
that for any k ≥ 1 and i ∈ {1, . . . , k}

E[log[(Yi − Yi−1) ∧ (Yi+1 − Yi)]|NX = k] = α1 − α2(k).

Proof: Let Ỹ1, . . . , Ỹk denote the order statistics of k independent [0, 1[-uniformly dis-
tributed random variables, and let (Ȳi) denote the random jump positions of a Poisson
process of intensity 1 on [0,∞[. First let i ∈ {1, . . . , k − 1}

E[log(Yi − Yi−1) ∧ (Yi+1 − Yi)|NX = k] = E log
(

(Ỹi − Ỹi−1) ∧ (Ỹi+1 − Ỹi)
)

= E log
( Ȳi − Ȳi−1

Ȳk+1
∧ Ȳi+1 − Ȳi

Ȳk+1

)

= E log
(

(Ȳ1 − Ȳ0) ∧ (Ȳ2 − Ȳ1)
)

− E[log Ȳk+1].

For the second equality see e.g. [5], Proposition 13.15.

Setting α1 := E log((Ȳ1 − Ȳ0) ∧ (Ȳ2 − Ȳ1)) and α2(k) := E[log Ȳk+1] finishes the proof in
this case. The statement follows analogously for i = k. �

Furthermore, we will need asymptotic estimates for

A := NX

(NX
∏

i=1

(Yi − Yi−1) ∧ (Yi+1 − Yi)
)1/NX

and

Rβ := NX log+ β(
NX
∏

i=1

(Yi − Yi−1) ∧ (Yi+1 − Yi))
1/NX = log+

NX
∏

i=1

β(Yi − Yi−1) ∧ (Yi+1 − Yi),

where β > 0.

Lemma 29 One has
ERβ ≥ λ log β + c

for the constant c = c(λ) = λα1 − E[NXα2(NX)] ∈ R, where α1 and α2 are as in the
previous lemma. Moreover,

lim
β→∞

β E

(

NX

β
∧ A

)

= λ.

Proof: Applying Lemma 28 we get

ERβ = E[E
[

Rβ|NX ]] ≥ E

NX
∑

i=1

[

log β + E

[

log(Yi − Yi−1) ∧ (Yi+1 − Yi)|NX

]

]

= ENX

[

log β + α1 − α2(NX)
]

= λ log β + c.
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The second statement is an immediate consequence of the monotone convergence theorem:
since A > 0 a.s. one has

β E

[

NX

β
∧ A

]

= E[NX ∧ βA] → ENX = λ.

�

We are now in the position to prove Theorem 24.

Proof of Theorem 24: Let X̂ be D([0, 1[, E)-valued reconstruction with I(X ; X̂) ≤ r
for some fixed r ≥ 0. Furthermore, we denote by

G(k, (I1, . . . , Ik), (a0, . . . , ak))

= I(X ; X̂|NX = k, πk(Y ) = (I1, . . . , Ik), (A0, . . . , Ak) = (a0, . . . , ak))

the conditional mutual information of X and X̂ given NX , πNX
(Y ), and (A0, . . . , ANX

).
We consider the non-negative random variable R = G(NX , πNX

(Y ), (A0, . . . , Ak)).

Since (NX , πNX
(X), (A0, . . . , Ak)) is σ(X)-measurable one has

r ≥ I(X ; X̂) ≥ I(X ; X̂|NX , πNX
(Y ), (A0, . . . , Ak)) = ER.

Moreover, Lemma 26 together with Lemma 27 implies that

EρD(X, X̂) ≥ ε0
4e

E

[

NX

(NX
∏

i=1

(Yi − Yi−1) ∧ (Yi+1 − Yi)
)1/NX

e−R/NX

]

.

In order to get a lower bound for the coding error we next analyze the minimization
problem

E





NX





NX
∏

i=1

(Yi − Yi−1) ∧ (Yi+1 − Yi)





1/NX

e−R̄/NX





 = min!

where the infimum is taken over all non-negative random variables R̄ satisfying ER̄ ≤ r.

We let again A = NX(
∏NX

i=1(Yi − Yi−1) ∧ (Yi+1 − Yi))
1/NX . Using Lagrange multipliers one

gets that for every β > 0

Rβ = NX log+
βA

NX

= NX log+ β
(NX
∏

i=1

(Yi − Yi−1) ∧ (Yi+1 − Yi))
1/NX

)

,

is a minimizer when r = rβ := ERβ = E[NX log+
βA
NX

]. Moreover, elementary computations
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give that the corresponding minimal value in the minimization problem is

dβ := E

[

A exp

(

− log+
βA

NX

)]

= E

(

NX

β
∧A

)

.

For given r ≥ 0 we now choose β = β(r) = exp((r − c)/λ) where c is as in Lemma 29.
Then r = λ log β + c ≤ ERβ and due to the variational formula above one has

D(r | X, ρD, 1) ≥
ε0
4e

E

(

NX

β(r)
∧A

)

.

Thus letting r tend to infinity we get

D(r | X, ρD, 1) &
ε0
4e

λ

β(r)
=

ε0
4e

λ exp(−(r − c)/λ).

Thus, one has for all sufficiently large r that

D(r | X, ρD, 1) ≥
1

8e
λe−c/λε0e

−r/λ = Cλε0e
−r/λ,

where

Cλ =
λ

8e
ec/λ and c = λα1 − E[NX α2(NX)].

Moreover, α1 and α2 can be expressed in terms of i.i.d. standard exponential random
variables (ei) as α1 = E log(e1∧ e2) and α2(n) = E log

∑n+1
i=1 ei, cf. the proof of Lemma 28.

After some calculations (using Mathematica) one obtains

α1 =
∫ ∞

0
(log x)2e−2x dx = −γ − log 2, α2(n) =

Γ′(n+ 1)

Γ(n+ 1)
,

where γ = 0.57721 . . . is the Euler–Mascheroni constant and Γ is the Gamma function.
Some more calculations show that

c/λ = −γ − log 2− log λ−
∫ ∞

λ
x−1e−x dx− 1− e−λ

λ
.

Closer analysis of this term shows that

lim
λ→∞

Cλ =
1

8e
e−γ, lim

λ→0
Cλ/λ =

1

8e2
,

which altogether shows that Cλ can be estimated from below by Dmin(1, λ) with some
absolute constant D > 0. �
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