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ORTHOGONAL PROJECTORS ONTO SPACES OF PERIODIC

SPLINES

MARKUS PASSENBRUNNER

Abstract. The main result of this paper is a proof that for any integrable

function f on the torus, any sequence of its orthogonal projections (P̃nf) onto

periodic spline spaces with arbitrary knots ∆̃n and arbitrary polynomial de-
gree converges to f almost everywhere with respect to the Lebesgue measure,

provided the mesh diameter |∆̃n| tends to zero. We also give a proof of the fact

that the operators P̃n are bounded on L∞ independently of the knots ∆̃n.

1. Introduction

1.1. Splines on an interval. In this article we prove some results about the
periodic spline orthoprojector. In order to achieve this, we rely on existing results
for the non-periodic spline orthoprojector on a compact interval, so we first de-
scribe some of those results for the latter operator. Let k ∈ N and ∆ = (ti)

r+k
i=ℓ a

knot sequence satisfying

ti ≤ ti+1, ti < ti+k,

tℓ = · · · = tℓ+k−1, tr+1 = · · · = tr+k.

Associated to this knot sequence, we define (Ni)
r
i=ℓ as the sequence of L∞-

normalized B-spline functions of order k on ∆ that have the properties

suppNi = [ti, ti+k], Ni ≥ 0,
r∑

i=ℓ

Ni ≡ 1.

We write |∆| = maxℓ≤j≤r(tj+1−tj) for the maximal mesh width of the partition ∆.
Then, define the space Sk(∆) as the set of polynomial splines of order k (or at
most degree k−1) with knots ∆, which is the linear span of the B-spline functions
(Ni)

r
i=ℓ. Moreover, let P∆ be the orthogonal projection operator onto the space

Sk(∆) with respect to the ordinary (real) inner product 〈f, g〉 =
∫ tr+1

tℓ
f(x)g(x) dx,

i.e.,

〈P∆f, s〉 = 〈f, s〉 for all s ∈ Sk(∆).

The operator P∆ is also given by the formula

(1.1) P∆f =
r∑

i=ℓ

〈f,Ni〉N∗
i ,
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where (N∗
i )

r
i=ℓ denotes the dual basis to (Ni) defined by the relations 〈N∗

i , Nj〉 = 0
when j 6= i and 〈N∗

i , Ni〉 = 1 for all i = ℓ, . . . , r. A famous theorem by A. Shadrin
states that the L∞ norm of this projection operator is bounded independently of
the knot sequence ∆:

Theorem 1.1 ([8]). There exists a constant ck depending only on the spline order

k such that for all knot sequences ∆ = (ti)
r+k
i=ℓ as above,

‖P∆ : L∞[tℓ, tr+1] → L∞[tℓ, tr+1]‖ ≤ ck.

We are also interested in the following equivalent formulation of this theorem,
which is proved in [1]: for a knot sequence ∆, let (aij) be the matrix (〈N∗

i , N
∗
j 〉),

which is the inverse of the banded matrix (〈Ni, Nj〉). Then, the assertion of The-
orem 1.1 is equivalent to the existence of two constants K0 > 0 and γ0 ∈ (0, 1)
only depending on the spline order k such that

(1.2) |aij| ≤
K0γ

|i−j|
0

max{κi, κj}
, ℓ ≤ i, j ≤ r,

where κi denotes the length of suppNi. The proof of this equivalence uses Demko’s
theorem [4] on the geometric decay of inverses of band matrices and de Boor’s
stability (see [2] or [5, Chapter 5, Theorem 4.2]) which states that for 0 < p ≤
∞, the Lp norm of a B-spline series is equivalent to a weighted ℓp norm of its
coefficients, i.e. there exists a constant Dk only depending on the spline order k
such that:

Dkk
−1/p

(∑

j

|cj |pκj

)1/p

≤
∥∥∥
∑

j

cjNj

∥∥∥
Lp

≤
(∑

j

|cj|pκj

)1/p

.

In fact, for aij , we actually have the following improvement of (1.2) (see [6]):
There exist two constants K > 0 and γ ∈ (0, 1) that depend only on the spline
order k such that

(1.3) |aij | ≤
Kγ|i−j|

hij
, ℓ ≤ i, j ≤ r,

where hij denotes the length of the convex hull of suppNi∪suppNj . This inequal-
ity can be used to obtain almost everywhere convergence for spline projections of
L1 functions:

Theorem 1.2 ([6]). For all f ∈ L1[tℓ, tr+1] there exists a subset A ⊂ [tℓ, tr+1] of
full Lebesgue measure such that for all sequences (∆n) of partitions of [tℓ, tr+1]
such that |∆n| → 0, we have

lim
n→∞

P∆n
f(x) = f(x), x ∈ A.

Our aim in this article is to prove an analogue of Theorem 1.2 for orthopro-
jectors on periodic spline spaces. In this case, we do not have a periodic version
of (1.3) at our disposal, since the proof of this inequality does not carry over to
the periodic setting. However, by comparing orthogonal projections onto periodic
spline spaces to suitable non-periodic projections, we are able to obtain a periodic
version of Theorem 1.2.

In the course of the proof of the periodic version of Theorem 1.2, we also need
a periodic version of Theorem 1.1, which can be proved by first establishing the
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same assertion for infinite point sequences and then by viewing periodic functions
as defined on the whole real line [A. Shadrin, private communication]. The proof of
Theorem 1.1 for infinite point sequences is announced in [8] and carried out [3]. In
this article we give a different proof of the periodic version of Shadrin’s theorem by
employing a similar comparison of periodic and non-periodic projection operators
as in the proof of the periodic version of Theorem 1.2. This proof directly passes
from the interval case to the periodic result without recourse to infinite point
sequences.

1.2. Periodic splines. Let n ≥ k be a natural number and ∆̃ = (sj)
n−1
j=0 be a

sequence of distinct points on the torus T = R/Z identified canonically with [0, 1),
such that for all j we have

sj ≤ sj+1, sj < sj+k,

and we extend (sj)
n−1
j=0 periodically by

srn+j = r + sj

for r ∈ Z \ {0} and 0 ≤ j ≤ n− 1.
Now, the main result of this article reads as follows:

Theorem 1.3. For all functions f ∈ L1(T) there exists a set Ã of full Lebesgue

measure such that for all sequences of partitions (∆̃n) on T as above with |∆̃n| →
0, we have

lim
n→∞

P̃nf(x) = f(x), x ∈ Ã,

where P̃n denotes the orthogonal projection operator onto the periodic spline space

of order k with knots ∆̃n.

In order to prove this result, we also need a periodic version of Theorem 1.1:

Theorem 1.4. There exists a constant ck depending only on the spline order

k such that for all knot sequences ∆̃ = (sj)
n−1
j=0 on T, the associated orthogonal

projection operator P̃ satisfies the inequality

‖P̃ : L∞(T) → L∞(T)‖ ≤ ck.

The idea of the proofs of Theorems 1.3 and 1.4 is to estimate the difference
between the periodic projection operator P̃ and the non-periodic projection op-

erator P for certain non-periodic point sequences associated to ∆̃ = (si)
n−1
i=0 .

The article is organized as follows. In Section 2, we prove a simple lemma on the
growth behaviour of linear combinations of non-periodic B-spline functions which
is frequently needed later in the proofs of both Theorem 1.3 and Theorem 1.4.
Section 3 is devoted to the proof of Theorem 1.4, which is needed for the proof
of Theorem 1.3 in Section 4. Finally, in Section 5, we also apply our method of
proof to recover Shadrin’s theorem for infinite point sequences (see [3, 8]).
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2. A simple upper estimate for B-spline sums

Let A be a subset of [tℓ, tr+1]. Then, define the set of indices i(A) whose B-
spline supports intersect with A as

i(A) := {i : A ∩ suppNi 6= ∅}.
We also write i(x) for i({x}). If we have two subsets U, V of indices, we write
d(U, V ) for the distance between U and V induced by the metric d(i, j) = |i− j|.

We will use the notation A(t) . B(t) to indicate the existence of a constant C
that depends only on the spline order k such that for all t we have A(t) ≤ CB(t),
where t denotes all explicit or implicit dependencies that the expressions A and
B might have.

The fact that B-spline functions are localized, so a fortiori the set i(x) is
localized for any x ∈ [tℓ, tr+1], can be used to derive the following lemma:

Lemma 2.1. Let J be a subset of the index set {ℓ, ℓ + 1, . . . , r − 1, r}, f =∑
j∈J〈h,Nj〉N∗

j and p ∈ [1,∞]. Then, for all x ∈ [tℓ, tr+1], we have the estimate

|f(x)| . γd(i(x),J)‖h‖p max
m∈i(x),j∈J

κ
1/p′

j

hjm

≤ γd(i(x),J)‖h‖p max
m∈i(x),j∈J

(
max{κm, κj}

)−1/p

≤ γd(i(x),J)‖h‖p · |I(x)|−1/p, 1 ≤ p ≤ ∞,

where γ ∈ (0, 1) is the constant appearing in (1.3), I(x) is the interval I = [ti, ti+1)
containing the point x and the exponent p′ is such that 1/p+ 1/p′ = 1.

Proof. Since N∗
j =

∑
m ajmNm,

f(x) =
∑

j∈J

∑

m∈i(x)

ajm〈h,Nj〉Nm(x).

This implies

|f(x)| . max
m∈i(x)

(∑

j∈J

γ|j−m|

hjm
‖h‖p‖Nj‖p′

)
,

where we used inequality (1.3) for ajm, Hölder’s inequality with the conjugate
exponent p′ = p/(p− 1) to p and the fact that the B-spline functions Nm form a
partition of unity. Using again the uniform boundedness of Nj, we obtain

|f(x)| . max
m∈i(x)

(∑

j∈J

γ|j−m|

hjm
‖h‖pκ1/p′

j

)
.

Summing the geometric series now yields the first estimate. The second and the
third estimate are direct consequences of the first one. �

Remark 2.2. We note that we directly obtain the second estimate in the above
lemma if we use the weaker inequality (1.2) instead of (1.3).
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3. The periodic spline orthoprojector is uniformly bounded on L∞

In this section, we give a direct proof of Theorem 1.4 on the boundedness of
periodic spline projectors without recourse to infinite knot sequences. Here, we
will only use the geometric decay of the matrix (ajm) defined above for splines
on an interval.

A vital tool in the proofs of both Theorem 1.1 and Theorem 1.2 are B-spline
functions. We will also make extensive use of them and introduce their periodic
version, cf. [7]. Associated to the periodic point sequence (sj)

n−1
j=0 and its periodic

extension as in Section 1.2 we define the non-periodic point sequence

tj = sj, for j = −k + 1, . . . , n + k − 1

and denote the corresponding non-periodic B-spline functions by (Nj)
n−1
j=−k+1 with

suppNj = [tj , tj+k]. Then we define for x ∈ [0, 1)

Ñj(x) = Nj(x), j = 0, . . . , n− k,

if we canonically identify T with [0, 1). Moreover, for j = n− k + 1, . . . , n− 1,

Ñj(x) =

{
Nj−n(x), if x ∈ [0, sj],

Nj(x), if x ∈ (sj , 1).

We denote by P̃ the orthogonal projection operator onto the space of periodic
splines of order k with knots (sj)

n−1
j=0 , which is the linear span of the B-spline

functions (Ñj)
n−1
j=0 and similarly to the non-periodic case we define

i(A) = {0 ≤ j ≤ n− 1 : A ∩ supp Ñj 6= ∅}, A ⊂ T.

Lemma 3.1. Let fi be a function on T with supp fi ⊂ [si, si+1] for some index i
in the range 0 ≤ i ≤ n− 1. Then, for any x ∈ T,

|P̃ fi(x)| . γ d̃(i(x),i(supp fi))‖fi‖∞,

where d̃ is the distance function induced by the canonical metric in Z/nZ and

γ ∈ (0, 1) is the constant appearing in inequality (1.3).

Proof. We assume that the index i is chosen such that si < si+1, since if si = si+1,
the function fi is identically zero in L∞.

Given a function f on T, we associate a non-periodic function Tf defined on
[si, si+n+1] given by

Tf(t) = f(π(t)), t ∈ [si, si+n+1],

where π(t) is the quotient mapping from R to T. We observe that T is a linear oper-
ator, ‖T : L2(T) → L2([si, si+n+1])‖ =

√
2 and ‖T : L∞(T) → L∞([si, si+n+1])‖ =

1. Moreover, for x ∈ T, let r(x) be the representative of x in the interval [si, si+n).

We want to estimate P̃ fi(x). In order to do this, we first decompose

(3.1) P̃ fi(x) = T P̃fi(r(x)) = PTfi(r(x)) + (T P̃fi − PTfi)(r(x)),
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where P is the orthogonal projection operator onto the space of splines of order
k corresponding to the point sequence ∆ = (tj)

n+k
j=−k+1 associated to the non-

periodic grid points in the interval [si, si+n+1], i.e.,

tj = si+j, j = 0, . . . , n+ 1,

t−k+1 = · · · = t−1 = si, tn+2 = · · · = tn+k = si+n+1.

Also, let (Nj)
n
i=−k+1 be the L∞-normalized B-spline basis corresponding to this

point sequence.
We estimate the first term PTfi(r(x)) from the decomposition in (3.1) of

P̃ fi(x). Since P is a projection operator onto splines on an interval, we use rep-
resentation (1.1) to get

PTfi(r(x)) =

n∑

j=−k+1

〈Tfi, Nj〉N∗
j (r(x)),

and, since suppTfi ⊂ [si, si+1]∪ [si+n, si+n+1] = [t0, t1]∪ [tn, tn+1] by definition of
fi and T and suppNj ⊂ [tj , tj+k] for all j = −k + 1, . . . , n,

PTfi(r(x)) =
∑

j∈J1

〈Tfi, Nj〉N∗
j (r(x)),

with J1 = {−k + 1, . . . , 0} ∪ {n− k+ 1, . . . , n}. Employing now Lemma 2.1 with
p = ∞ to this sum, we obtain

(3.2) |PTfi(r(x))| . γd(i(r(x)),J1)‖Tfi‖∞ . γ d̃(i(x),i(supp fi))‖fi‖∞.

Now we turn to the second term on the right hand side of (3.1). Let g :=

(T P̃ − PT )fi. Observe that g ∈ Sk(∆) since the range of both T P̃ and P is
contained in Sk(∆). Moreover,

〈(T P̃ − T )fi, Nj〉 = 〈P̃ fi − fi, Ñj+i〉, j = 0, . . . , n− k + 1,

where we take the latter subindex j + i to be modulo n. This equation is true in

the given range of the parameter j, since in this case, the functions Nj and Ñj+i

coincide on their supports. The fact that P̃ is an orthogonal projection onto the

span of the functions (Ñj)
n−1
j=0 then implies

〈T P̃fi − Tfi, Nj〉 = 〈P̃ fi − fi, Ñj+i〉 = 0, j = 0, . . . , n− k + 1.

Combining this with the fact

〈PTfi − Tfi, Nj〉 = 0, j = −k + 1, . . . , n,

since P is an orthogonal projection onto a spline space as well, we obtain that

〈g,Nj〉 = 0, j = 0, . . . n− k + 1.

Therefore, we can expand g as a B-spline sum

g =
∑

j∈J2

〈g,Nj〉N∗
j ,
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with J2 = {−k+1, . . . ,−1}∪ {n− k+2, . . . , n}. Now, we employ Lemma 2.1 on
the function g with the parameter p = 2 to get for the point y = r(x)

|g(y)| . γd(i(y),J2)‖g‖2max
j∈J2

| suppNj |−1/2.

Since g = (T P̃ − PT )fi and the operator T P̃ − PT has norm ≤ 2
√
2 on L2, we

get

|g(y)| . γd(i(y),J2)‖fi‖2| supp fi|−1/2,

where we also used the fact that suppNj ⊃ [si, si+1] = [t0, t1] or suppNj ⊃
[si+n, si+n+1] = [tn, tn+1] for j ∈ J2. Since d(i(y), J2) ≥ d̃(i(x), i(supp fi)) and
‖fi‖2 ≤ ‖fi‖∞| supp fi|1/2, we finally get

|g(y)| . γ d̃(i(x),i(supp fi))‖fi‖∞.

Looking at (3.1) and combining the latter estimate with (3.2), the proof is com-
pleted. �

This lemma can be used directly to prove Theorem 1.4 on the uniform bound-
edness of periodic orthogonal spline projection operators on L∞:

Proof of Theorem 1.4. We just decompose the function f as f =
∑n−1

i=0 f ·1[si,si+1)

and apply Lemma 3.1 to each summand and the assertion ‖P̃ f‖∞ . ‖f‖∞ follows
after summation of a geometric series. �

Remark 3.2. (i) Since P̃ is a selfadjoint operator, Theorem 1.4 also implies that

P̃ is bounded as an operator from L1(T) to L1(T) by the same constant ck as in

the above theorem. Moreover, by interpolation, P̃ is also bounded by ck as an
operator from Lp(T) to Lp(T) for any p ∈ [1,∞].

(ii) In the proof of Lemma 3.1, we only use the second inequality of Lemma 2.1
which follows from inequality (1.2) on the inverse of the B-spline Grammatrix and
does not need its stronger form (1.3). Similarly to the equivalence of Shadrin’s
theorem and (1.2) in the non-periodic case, we can derive the equivalence of
Theorem 1.4 and the estimate

|ãij| ≤
Kγ d̃(i,j)

max(κ̃i, κ̃j)
, 0 ≤ i, j ≤ n− 1,

where (ãij) denotes the inverse of the Gram matrix (〈Ñi, Ñj〉), K > 0 and γ ∈
(0, 1) are constants only depending on the spline order k, κ̃i denotes the length

of the support of Ñi and d̃ is the canonical distance in Z/nZ. The proof of this
equivalence uses the same tools as the proof in the non-periodic case: a periodic
version of both Demko’s theorem and de Boor’s stability.

4. Almost everywhere convergence

In this section we prove Theorem 1.3 on the a.e. convergence of periodic spline
projections.
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Proof of Theorem 1.3. Without loss of generality, we assume that ∆̃n has n points.

Let ∆̃n = (s
(n)
j )n−1

j=0 and (Ñ
(n)
j )n−1

j=0 be the corresponding periodic B-spline func-

tions. Associated to it, define the non-periodic point sequence ∆n = (t
(n)
j )n+k−1

j=−m

with the boundary points 0 and 1 as

t
(n)
j = s

(n)
j , j = 0, . . . , n− 1,

t
(n)
−m = · · · = t

(n)
−1 = 0, t(n)n = · · · = t

(n)
n+k−1 = 1.

We choose the integer m such that the multiplicity of the point 0 in ∆n is k and

denote by (N
(n)
j )n−1

j=−m the non-periodic B-spline functions corresponding to this
point sequence and by Pn the orthogonal projection operator onto the span of

(N
(n)
j )n−1

j=−m.

We will show that P̃nf(x) → f(x) for all x in the set A from Theorem 1.2 of
full Lebesgue measure such that limPnTf(x) = Tf(x) for all x ∈ A, where T
is just the operator that canonically identifies a function defined on T with the
corresponding function defined on [0, 1) and we write x for a point in T as well
as for its representative in the interval [0, 1).

So, choose an arbitrary (non-zero) point x ∈ A and decompose P̃nf(x):

(4.1) P̃nf(x) = T P̃nf(x) = PnTf(x) +
(
T P̃nf(x)− PnTf(x)

)
.

For the first term of (4.1), PnTf(x), we have that limn→∞ PnTf(x) = Tf(x) =
f(x) since x ∈ A.

It remains to estimate the second term gn(x) = T P̃nf(x) − PnTf(x) =

T P̃nf(x) − Tf(x) + Tf(x) − PnTf(x) of (4.1). First, note that gn ∈ Sk(∆n).
Moreover,

〈T P̃nf − Tf,N
(n)
j 〉 = 〈P̃nf − f, Ñ

(n)
j 〉 = 0, j = 0, . . . , n− k − 1,

since P̃n is the projection operator onto the span of the B-spline functions (Ñ
(n)
j ),

and

〈Tf − PnTf,N
(n)
j 〉 = 0, j = −m, . . . , n− 1,

since Pn is the projection operator onto the span of the functions (N
(n)
j ). There-

fore, gn ∈ Sk(∆n) can be written as

gn =
∑

j∈Jn

〈gn, N (n)
j 〉N (n)∗

j ,

with Jn = {−m, . . . ,−1}∪{n− k, . . . , n− 1} and (N
(n)∗
j ) being the dual basis to

(N
(n)
j ). We now apply Lemma 2.1 with p = 1 to gn and get

|gn(x)| . γd(in(x),Jn)‖gn‖1 max
ℓ∈in(x),j∈Jn

1

h
(n)
ℓj

,

where h
(n)
ℓj denotes the length of the convex hull of suppN

(n)
ℓ ∪suppN (n)

j and in(x)

is the set of indices i such that x is in the support of N
(n)
i . Since for ℓ ∈ in(x), the
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point x is contained in suppN
(n)
ℓ and for j ∈ Jn either the point 0 or the point 1

is contained in suppN
(n)
j , we can further estimate

|gn(x)| . γd(in(x),Jn)‖gn‖1
1

min(x, 1− x)
.

Now, ‖gn‖1 = ‖(T P̃n − PnT )f‖1 . ‖f‖1, since the operator T has norm one

on L1 and P̃n and Pn are both bounded on L1 uniformly in n by Theorem 1.4

(cf. Remark 3.2) and Theorem 1.1, respectively. Since |∆̃n| tends to zero, and
a fortiori the same is true for |∆n|, we have that d(in(x), Jn) tends to infinity
as n → ∞. This implies limn→∞ gn(x) = 0, and therefore, by the choice of the

point x and decomposition (4.1), lim P̃nf(x) = f(x). Since x ∈ A was arbitrary
and A is a set of full Lebesgue measure, we obtain

lim
n→∞

P̃nf(y) = 0, for a.e. y ∈ T,

and the proof is completed. �

5. The case of infinite point sequences

In this last section, we use the methods introduced in the previous sections to
recover Shadrin’s theorem for infinite point sequences (see [8, 3]).

Let (si)i∈Z be a biinfinite point sequence in R satisfying

si ≤ si+1, si < si+k,

with the corresponding B-spline functions (Ñi)i∈Z satisfying supp Ñi = [si, si+k].

Furthermore, we denote by P̃ the orthogonal projection operator onto the closed

linear span of the functions (Ñi)i∈Z .

Lemma 5.1. Let f be a function on (inf si, sup si) with compact support. Then,

for any x ∈ (inf si, sup si),

|P̃ f(x)| . γd(i(x),i(supp f))‖f‖∞,

where γ ∈ (0, 1) is the constant appearing in inequality (1.3).

Proof. For notational simplicity, we assume in this proof that the sequence (si) is
strictly increasing. Let x ∈ (inf si, sup si) and let I(x) be the interval I = [si, si+1)
containing x. Since f has compact support and the sequence (si) is biinfinite, we
can choose the indices ℓ and r such that {x} ∪ supp f ⊂ [sℓ, sr+1) and with
J = {ℓ− k + 1, . . . , ℓ− 1} ∪ {r − k + 2, . . . , r}, the inequality

γd(i(x),J)| supp f |1/2|I(x)|−1/2 ≤ γd(i(x),i(supp f))

is true.
Next, define the point sequence ∆ = (ti)

r+k
i=ℓ−k+1 by

ti = si, i = ℓ, . . . , r + 1,

a = tℓ−k+1 = · · · = tℓ = sℓ, b = tr+k = · · · = tr+1 = sr+1,

and let the collection (Ni)
r
i=ℓ−k+1 be the corresponding B-spline functions and

P the associated orthogonal projector. Let T be the operator that restricts a
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function defined on (inf si, sup si) to the interval [a, b]. In order to estimate P̃ f(x),
we decompose

(5.1) P̃ f(x) = T P̃f(x) = PTf(x) +
(
T P̃f(x)− PTf(x)

)
.

Observe that PTf =
∑

n∈F 〈f,Nn〉N∗
n, where F = i(supp f) = {i : supp f ∩

suppNi 6= ∅}. Applying Lemma 2.1 with the exponent p = ∞, we obtain

|PTf(x)| . γd(i(x),F )‖f‖∞.

We now consider the second part of the decomposition (5.1), the function

g = (T P̃ − PT )f = (T P̃ − T + T − PT )f . We observe that g ∈ Sk(∆) and,
moreover,

〈T P̃f − Tf,Nj〉 = 〈P̃ f − f, Ñj〉 = 0, j = ℓ, . . . , r − k + 1,

by definition of the projection operator P̃ , and,

〈Tf − PTf,Nj〉 = 0, j = ℓ− k + 1, . . . , r,

by definition of the projection operator P . Therefore, we can write the function
g as

g =
∑

j∈J

〈g,Nj〉N∗
j

with J = {ℓ − k + 1, . . . , ℓ − 1} ∪ {r − k + 2, . . . , r} as defined above. Now, by
Lemma 2.1 with the exponent p = 2, we get

|g(x)| . γd(i(x),J)‖g‖2 · |I(x)|−1/2 . γd(i(x),J)‖f‖2 · |I(x)|−1/2

≤ γd(i(x),J)| supp f |1/2|I(x)|−1/2‖f‖∞.

Finally, due to the choice of ℓ and r,

γd(i(x),J)| supp f |1/2|I(x)|−1/2 ≤ γd(i(x),i(supp f)),

which proves the lemma. �

We can now use this lemma to define P̃ f for functions f ∈ L∞(inf si, sup si)
that are not necessarily in L2(inf si, sup si) if inf si = −∞ or sup si = +∞. If we
let fi := f1[si,si+1), then fi has compact support and the above lemma implies
that the series

P̃ f(x) :=
∑

i∈Z

P̃ fi(x), x ∈ (inf si, sup si),

is absolutely convergent and, moreover, there exists a constant C only depending
on the spline order k such that

‖P̃ f‖∞ ≤ C‖f‖∞.

This operator enjoys the characteristic property of an orthogonal projection:

〈P̃ f − f, Ñi〉 = 0, i ∈ Z.

Remark 5.2. One can combine the proofs of Lemma 5.1 and Lemma 3.1 to also
obtain the uniform boundedness of the spline orthoprojector on L∞ for one-sided
infinite point sequences.
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