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Abstract

We show that the minimal discrepancy of a point set in the d-dimensional unit
cube with respect to Orlicz norms can exhibit both polynomial and weak tractabil-
ity. In particular, we show that the ψα-norms of exponential Orlicz spaces are
polynomially tractable.
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1 Introduction and main results

The discrepancy of an N -element point set P = {x1,x2, . . . ,xN} in the unit cube [0, 1]d

measures the deviation of the empirical distribution of P from the uniform measure. This
concept has important applications in numerical analysis, where so-called Koksma-Hlawka
inequalities establish a deep connection between norms of the discrepancy function and
worst case errors of quasi-Monte Carlo integration rules determined by the point set P.
For a comprehensive introduction and exposition on this subject we refer the reader to
[8, 13, 16] and the references cited therein.

To define the concept of discrepancy, we first introduce the local discrepancy function
∆P : [0, 1]d → R defined as

∆P(t) =
#{j ∈ {1, 2, . . . , N} : xj ∈ [0, t)}

N
− Vol([0, t]),
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where [0, t) = [0, t1) × [0, t2) × . . . × [0, td) for t = (t1, t2, . . . , td) ∈ [0, 1]d and Vol(·)
stands for the d-dimensional Lebesgue measure. We now apply a norm ‖ · ‖• to the local
discrepancy function to obtain the discrepancy ‖∆P‖• of the point set P with respect to
the norm ‖ · ‖•. Of particular interest are the norms on the usual Lebesgue spaces Lp
(1 ≤ p ≤ ∞) of p-integrable functions on the unit cube [0, 1]d. Those lead to the central
notions of Lp-discrepancy for 1 ≤ p <∞, and the L∞-discrepancy, which is usually called
the star-discrepancy, when p = ∞.

The N th minimal discrepancy with respect to the norm ‖·‖• in dimension d is the best
possible discrepancy over all point sets of size N in the d-dimensional unit cube [0, 1]d,
i.e.,

disc•(N, d) = inf
P⊆[0,1]d

|P|=N

‖∆P‖•.

We compare this value with the initial discrepancy given by the discrepancy of the empty
point set ‖∆∅‖•. Since the initial discrepancy may depend on the dimension, we use it
to normalize the N th minimal discrepancy when we study the dependence of disc•(N, d)
on the dimension d. We therefore define the inverse of the N th minimal discrepancy in
dimension d as the number N•(ε, d) which is the smallest number N such that a point set
with N points exists that reduces the initial discrepancy at least by a factor of ε ∈ (0, 1),

N•(ε, d) = min
{

N ∈ N : disc•(N, d) ≤ ε‖∆∅‖•
}

.

In this paper we are interested in how N•(ε, d) depends simultaneously on ε and the
dimension d. In general, the dependence of the inverse of the N th minimal discrepancy
can take different forms. For instance, if the dependence on the dimension d or on ε−1 is
exponential, then we call the discrepancy intractable. If the inverse of the N th minimal
discrepancy grows exponentially fast in d, then the discrepancy is said to suffer from the
curse of dimensionality. On the other hand, if N•(ε, d) increases at most polynomially in d
and ε−1, as d increases and ε tends to zero, then the discrepancy is said to be polynomially
tractable. This leads us to the following definition.

Definition 1. The discrepancy with respect to the norm ‖ · ‖• is polynomially tractable if
there are numbers C ∈ (0,∞), τ ∈ (0,∞), and σ ∈ (0,∞) such that

N•(ε, d) ≤ C dτε−σ, for all ε ∈ (0, 1) and all d ∈ N. (1)

The infimum over all exponents τ ∈ (0,∞) such that a bound of the form (1) holds is
called the d-exponent of polynomial tractability.

To cover cases between polynomial tractability and intractability, we now introduce
the concept of weak tractability, where N•(ε, d) is not exponential in ε−1 and d. This
encodes the absence of intractability.

Definition 2. The discrepancy with respect to the norm ‖ · ‖• is weakly tractable, if

lim
d+ε−1→∞

logN•(ε, d)

d+ ε−1
= 0.

(Throughout this paper log means the natural logarithm.)
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The subject of tractability of multivariate problems is a very popular and active area
of research and we refer the reader to the books [19, 20] by Novak and Woźniakowski for
an introduction into tractability studies of discrepancy and an exhaustive exposition.

A famous result by Heinrich, Novak, Wasilkowski, and Woźniakowski [11] based on
the theory of empirical processes and Talagrand’s majorizing measure theorem shows that
the star-discrepancy is polynomially tractable. In fact, they show that τ in Definition 1
can be set to one and hence in this case the inverse of the star-discrepancy NL∞

(ε, d)
depends at most linearly on the dimension d. It was shown in [11] and [12] that τ = 1 is
the minimal possible τ in Definition 1 for the star-discrepancy. Determining the optimal
exponent σ for ε−1 is an open problem. On the other hand, the L2-discrepancy is known
to be intractable, as shown by Woźniakowski [21] (see also [20]). The behavior of the
inverse of the Lp-discrepancy in between, where p /∈ {2,∞}, seems to be unknown.

Note that due to the normalization with the initial discrepancy, we cannot infer a con-
tinuous change in the behavior of NLp

(ε, d) as p goes from 1 to ∞. A natural assumption
seems to be that the Lp-discrepancy is intractable for any p ∈ [1,∞). If correct, this
would mean that there is a sharp change from intractability to polynomial tractability
as one goes from p ∈ [1,∞) to p = ∞. A natural question which hence arises is what
happens between those two cases p ∈ [1,∞) and p = ∞.

To study this question we shall work in the setting of (specific) Orlicz spaces. Let us
recall that a function M : [0,∞) → [0,∞) is said to be an Orlicz function if M(0) = 0,
M is convex, and M(t) > 0 for t > 0. If limx→0M(x)/x = limx→∞ x/M(x) = 0, then
M is called an N -function. The previous limit assumptions simply guarantee that the
convex-dual is again an N -function. Now if D ⊆ R

d is a compact set, we define the Orlicz
space LM to be the space of (equivalence classes of) Lebesgue measurable functions f on
D for which

‖f‖M := inf

{

K > 0 :

∫

D

M

( |f(x)|
K

)

dx ≤ 1

}

<∞.

The latter functional is a norm on LM known as Luxemburg norm, named after W. A. J. Lux-
emburg [18], which turns LM into a Banach space. One commonly just speaks of Orlicz
functions, Orlicz norms, and Orlicz spaces. An introduction to the theory of Orlicz spaces
can be found in [15].

For our purpose, we introduce for α ∈ [1,∞) the exponential Orlicz norms ‖ · ‖ψα
,

which for a measurable function f defined on [0, 1]d are given by

‖f‖ψα
= inf

{

K > 0 :

∫

[0,1]d
ψα

( |f(x)|
K

)

dx ≤ 1

}

,

where ψα(x) = exp(xα)−1. The assumption α ≥ 1 guarantees the convexity of ψα. These
norms play an important role in the study of the concentration of mass in high-dimensional
convex bodies [3, 6, 17] and have recently found applications in the tractability study of
multivariate numerical integration [14]. They have appeared earlier in discrepancy theory
and the related multivariate integration problems in fixed dimension [4, 5, 7]. As we shall
see later, the discrepancy with respect to ψα-norms turns out to be polynomially tractable
as well.

In our context it is interesting to also study variations of these norms exhibiting
different types of behavior of N•(ε, d) as a function of the dimension d. In fact, we may
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write ψα as the series

ψα(x) =
xα

1!
+
x2α

2!
+
x3α

3!
+ · · ·

and consider the more general case where ψα is replaced by a function

ψα,ϕ(x) =
xα

(ϕ(α))α
+

x2α

(ϕ(2α))2α
+

x3α

(ϕ(3α))3α
+ · · · (2)

for a non-decreasing function ϕ : [0,∞) → (0,∞) with limx→∞ ϕ(x) = ∞. Note that the
growth condition on ϕ guarantees, according to the ratio test, the absolute convergence
of the series (2) for all x ∈ [0,∞). Choosing ϕ(pα) = (p!)1/(pα) takes us back to the
ψα-norm, which is therefore a special case of the more general setting.

Below we will characterize functions ϕ for which the discrepancy with respect to
‖ · ‖ψα,ϕ

, given by

‖f‖ψα,ϕ
= inf

{

K > 0 :

∫

[0,1]d
ψα,ϕ

( |f(x)|
K

)

dx ≤ 1

}

,

is polynomially tractable and weakly tractable.
The aim of this paper is to show the following result.

Theorem 1. Let α ∈ [1,∞). Then the following hold:

1. The discrepancy with respect to the ψα-norm ‖ · ‖ψα
is polynomially tractable.

2. For any non-decreasing ϕ : [0,∞) → (0,∞) with limx→∞ ϕ(x) = ∞ for which there
exists an r ≥ 0 and a constant C ∈ (0,∞) such that for all p ≥ 1

ϕ(p) ≤ C pr, (3)

the discrepancy with respect to ‖ · ‖ψα,ϕ
is polynomially tractable. The d-exponent of

polynomial tractability is at most 3 + 2r.

3. For any non-decreasing ϕ : [0,∞) → (0,∞) with limx→∞ ϕ(x) = ∞ which satisfies

lim
p→∞

logϕ(p)

p
= 0, (4)

the discrepancy with respect to ‖ · ‖ψα,ϕ
is weakly tractable.

Remark 1. Note that by choosing ψα,ϕ(p) = pα we obtain the classical Lα-norm. In this
case ϕ(α) = 1 and ϕ(x) = ∞ for all x > α. This choice of ϕ does not satisfy any of the
conditions in Theorem 1.

An example of a function ϕ that satisfies condition (4) for weak tractability is ϕ(p) =
exp(pτ ) with some τ ∈ (0, 1). This function does not satisfy condition (3).

We can in fact provide a more accurate estimate for the exponential Orlicz norms and
the d-exponent of polynomial tractability.
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Theorem 2. For any α ∈ [1,∞), we have

Nψα
(ε, d) ≤

⌈

Cα d
max{1,2/α} (log(d+ 1))2/αε−2

⌉

,

where

Cα = 2601 · α2/α ·
( √

2π

e11/12

)2/α

.

In particular, the d-exponent of polynomial tractability is at most max{1, 2/α}.

This upper bound on Nψα
(ε, d) shows that for α → ∞ the inverse of the star-

discrepancy depends linearly on the dimension, thereby matching the result of Heinrich,
Novak, Wasilkowski, and Woźniakowski [11].

In the following Section 2 we present the proofs of our main results, where we start
by establishing an equivalence between the norms ‖ · ‖ψα,ϕ

and an expression involving a
supremum of classical Lp-norms. Subsection 2.1 is then devoted to the proof of Theorem 1.
The proof of Theorem 2 will be presented in Subsection 2.2.

2 The proofs

For the proofs of Theorems 1 and 2 we define another norm which we show to be equivalent
to the Orlicz norm ‖ · ‖ψα,ϕ

, namely

‖f‖ϕ := sup
p≥1

‖f‖Lp

ϕ(p)
(5)

with ϕ : [0,∞) → (0,∞). In the special case of exponential Orlicz norms ‖ · ‖ψα
such

an equivalence is a classical result in asymptotic geometric analysis and may be found,
without explicit constants, in the monographs [3, Lemma 3.5.5] and [6, Lemma 2.4.2].
In the context of this paper it is important that these constants do not depend on the
dimension d.

Lemma 1. Let d ∈ N and α ∈ [1,∞). For any measurable function f : [0, 1]d → R, we
have the estimates

inf
p≥1

ϕ(p)

max{ϕ(α), ϕ(p)} ‖f‖ϕ ≤ ‖f‖ψα,ϕ
≤ 21/α‖f‖ϕ. (6)

In particular, for any α ∈ [1,∞), we have

(

e11/12√
2π

)1/α

‖f‖α ≤ ‖f‖ψα
≤ (2 eα)1/α ‖f‖α, (7)

where ‖f‖α := supp≥1 p
−1/α‖f‖Lp

.

Proof. Using the series expansion of ψα,ϕ, we obtain

∫

[0,1]d
ψα,ϕ

( |f(x)|
K

)

dx =

∞
∑

p=1

( ‖f‖Lαp

Kϕ(αp)

)αp

.
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By choosing

K = 21/α sup
p≥α

‖f‖Lp

ϕ(p)
,

we obtain
∫

[0,1]d
ψα,ϕ

( |f(x)|
K

)

dx ≤
∞
∑

p=1

2−p = 1.

Therefore, we have

‖f‖ψα,ϕ
≤ K = 21/α sup

p≥α

‖f‖Lp

ϕ(p)
.

This implies the upper bound in (6) for all α ≥ 1.
For the lower bound, we argue as follows. For any K ∈ (0,∞) such that K ≥ ‖f‖ψα,ϕ

,
we have

1 ≥
∫

[0,1]d
ψα,ϕ

( |f(x)|
K

)

dx =

∞
∑

p=1

( ‖f‖Lαp

Kϕ(αp)

)αp

≥
(

sup
p≥1

‖f‖Lαp

Kϕ(αp)

)αp

.

This implies that

K ≥ sup
p≥α

‖f‖Lp

ϕ(p)

and since this holds for any such K, we obtain

‖f‖ψα,ϕ
≥ sup

p≥α

‖f‖Lp

ϕ(p)
.

If α ∈ [1,∞), and q ∈ [1, α], then

sup
p≥α

‖f‖Lp

ϕ(p)
≥ ‖f‖Lα

ϕ(α)
≥ ‖f‖Lq

ϕ(q)
inf

q∈[1,α]

ϕ(q)

ϕ(α)
.

Hence,

sup
p≥α

‖f‖Lp

ϕ(p)
≥ min

{

1, inf
q∈[1,α]

ϕ(q)

ϕ(α)

}

sup
p≥1

‖f‖Lp

ϕ(p)
.

In any case, for all α ∈ [1,∞), we have that

sup
p≥α

‖f‖Lp

ϕ(p)
≥ min

{

1, inf
q≥1

ϕ(q)

ϕ(α)

}

‖f‖ϕ = inf
q≥1

ϕ(q)

max{ϕ(α), ϕ(q)} ‖f‖ϕ,

which implies the result since infq≥1
ϕ(q)

max{ϕ(α),ϕ(q)}
≤ 1.

The bound (7) for the ψα-norms can be shown using similar arguments together with
Stirling’s formula

√

2πp(p/e)p ≤ p! ≤
√

2πp(p/e)pe1/(12p). (8)

We use the Taylor series expansion of the exponential function and obtain
∫

[0,1]d
ψα

( |f(x)|
K

)

dx =

∫

[0,1]d

∞
∑

ℓ=1

1

ℓ!

( |f(x)|
K

)αℓ

dx

=
∞
∑

ℓ=1

1

ℓ!

(‖f‖Lαℓ

K

)αℓ

. (9)
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Using Stirling’s formula (8) we get

∫

[0,1]d
ψα

( |f(x)|
K

)

dx ≤
∞
∑

ℓ=1

eℓ

ℓℓ

(‖f‖Lαℓ

K

)αℓ

=
∞
∑

ℓ=1

(‖f‖Lαℓ
(eα)1/α

K(ℓα)1/α

)αℓ

.

If we choose

K = (2eα)1/α sup
ℓ≥1

‖f‖Lαℓ

(ℓα)1/α
,

then we obtain
∫

[0,1]d
ψα

( |f(x)|
K

)

dx ≤
∞
∑

ℓ=1

1

2ℓ
= 1.

Hence

‖f‖ψα
≤ K = (2eα)1/α sup

ℓ≥1

‖f‖Lαℓ

(αℓ)1/α
= (2eα)1/α sup

p≥α

‖f‖Lp

p1/α
≤ (2eα)1/α ‖f‖α.

On the other hand, from (9) and the upper bound in Stirling’s formula (8) we obtain
∫

[0,1]d
ψα

( |f(x)|
K

)

dx ≥
∞
∑

ℓ=1

1√
2πℓ e1/(12ℓ)

(e

ℓ

)ℓ
(‖f‖Lαℓ

K

)αℓ

≥ sup
ℓ≥1

(eα)ℓ√
2πℓ e1/(12ℓ)

1

Kαℓ

( ‖f‖Lαℓ

(αℓ)1/α

)αℓ

.

Now, in order to have
∫

[0,1]d
ψα

(

|f(x)|
K

)

dx ≤ 1 we find that K has to satisfy

Kαℓ ≥ (eα)ℓ√
2πℓ e1/(12ℓ)

( ‖f‖Lαℓ

(αℓ)1/α

)αℓ

for all ℓ ≥ 1. Hence

K ≥ (eα)1/α

(
√
2πℓ e1/(12ℓ))1/(αℓ)

‖f‖Lαℓ

(αℓ)1/α
≥
(

eα√
2π e1/12

)1/α ‖f‖Lαℓ

(αℓ)1/α

for all ℓ ≥ 1. Hence,

K ≥
(

eα√
2π e1/12

)1/α

sup
ℓ≥1

‖f‖Lαℓ

(αℓ)1/α
=

(

eα√
2π e1/12

)1/α

sup
p≥α

‖f‖Lp

p1/α
.

For any q ∈ [1, α] we have

sup
p≥α

‖f‖Lp

p1/α
≥ ‖f‖Lα

α1/α
≥ ‖f‖Lq

q1/α
q1/α

α1/α
≥ 1

α1/α

‖f‖Lq

q1/α
.

Hence

sup
p≥α

‖f‖Lp

p1/α
≥ 1

α1/α
sup
p≥1

‖f‖Lp

p1/α
.

This implies

‖f‖ψα
≥
(

e11/12√
2π

)1/α

‖f‖α

as desired. This closes the proof.

We are now prepared to present the proofs of our main results.
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2.1 The proof of Theorem 1

An important consequence of Lemma 1 is that the constants do not depend on the di-
mension, and hence the Orlicz norm discrepancy satisfies the same tractability properties
as the discrepancy with respect to the norm ‖ · ‖ϕ. Therefore in the following proof we
will only use the latter norm.

It is well known and easily checked (see, e.g., [20, p. 54]) that for every p ∈ [1,∞), the
initial Lp-discrepancy in dimension d satisfies

‖∆∅‖Lp
=

1

(p+ 1)d/p
.

If p = ∞, then the initial discrepancy is 1 for every dimension d ∈ N. This implies that

‖∆∅‖ϕ = sup
p≥1

1

ϕ(p)

1

(p+ 1)d/p
≥ 1

(d+ 1)ϕ(d)
,

where we used the choice p = d to obtain the last inequality.
From [11] we know that

discL∞
(N, d) ≤ CPT

√

d

N
, (10)

for some absolute constant CPT ∈ (0,∞). Aistleitner [1] showed that one can choose
CPT = 10, but according to [10] the constant CPT may be reduced to CPT = 2.5287.

Hence, we have

discϕ(N, d) ≤ discL∞
(N, d) · sup

p≥1

1

ϕ(p)
≤ CPT sup

p≥1

1

ϕ(p)

√

d

N
,

where discϕ(N, d) stands for the discrepancy with respect to the norm ‖ · ‖ϕ introduced
in (5). This implies that

Nϕ(ε, d) ≤min

{

N ∈ N : CPT sup
p≥1

1

ϕ(p)

√

d

N
≤ ε

(d+ 1)ϕ(d)

}

≤
⌈

C2
PT

d(d+ 1)2ϕ2(d)

ε2
sup
p≥1

1

ϕ2(p)

⌉

, (11)

where for x ∈ R, ⌈x⌉ := min{n ∈ Z : n ≥ x}. This concludes the proof of the second
statement in Theorem 1. As mentioned above, if we choose ϕ(αp) = (p!)1/(αp), then we
obtain the ψα-norm. Using Stirling’s formula (8) together with the previous result, we
can deduce the first part of Theorem 1.

In order to prove the third part of Theorem 1, we apply the logarithm to Nϕ(ε, d).
From (11) we obtain that

logNϕ(ε, d) ≤ C ′ + 2 log ε−1 + 3 log(d+ 1) + 2 logϕ(d)

for some C ′ ∈ (0,∞) only depending on ϕ. Hence,

lim sup
d+ε−1→∞

logNϕ(ε, d)

d+ ε−1
≤ 2 lim sup

d+ε−1→∞

logϕ(d)

d+ ε−1
= 0.

This implies weak tractability of the discrepancy with respect to ‖ · ‖ψα,ϕ
.
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2.2 The proof of Theorem 2

First we show the corresponding result forNα(ε, d) which is based on the norm ‖·‖α. Recall
that for a measurable function f : [0, 1]d → R, we defined ‖f‖α = supp≥1 p

−1/α‖f‖Lp
. Let

us start with a lower bound for the initial discrepancy. We have

‖∆∅‖α = sup
p≥1

1

p1/α
1

(p+ 1)d/p

≥ 1

(d log(d+ 1))1/α
1

(1 + d log(d+ 1))1/ log(d+1)

≥ 1

4(d log(d+ 1))1/α
, (12)

where we have chosen p = d log(d+ 1). The final estimate follows from the fact that

d 7→ 1

(1 + d log(d+ 1))1/ log(d+1)

attains its minimum in d = 20 with minimal value 0.257944 . . ..
Now let d ∈ N. Then from Gnewuch [9, Theorem 3] we obtain that

E ‖∆P‖Ld
≤ 25/43−3/4N−1/2

and from Aistleitner and Hofer [2, Corollary 1] that for any q ∈ (0, 1)

P

[

‖∆P‖L∞
≤ 5.7

√

4.9 + log((1− q)−1)d1/2N−1/2
]

≥ q,

where the expectation and probability are with respect to the point set P consisting
of independent and uniformly distributed points. Now Markov’s inequality implies that
there exists an N -element point set P in [0, 1)d such that

‖∆P‖Ld
≤ aN−1/2 and ‖∆P‖L∞

≤ a d1/2N−1/2

provided that

1 >
25/4

33/4a
+ exp

(

4.9−
( a

5.7

)2
)

.

For this point set P, we obtain

‖∆P‖α = sup
p≥1

p−1/α‖∆P‖Lp

= max

{

sup
p≤d

p−1/α‖∆P‖Lp
, sup
p≥d

p−1/α‖∆P‖Lp

}

≤ aN−1/2 max

{

sup
p≤d

p−1/α, sup
p≥d

p−1/αd1/2
}

= aN−1/2 max
{

1, d1/2−1/α
}

. (13)

Combining (12) and (13), we obtain the upper bound

Nα(ε, d) ≤ min

{

N ∈ N :
a

N1/2
max

{

1, d1/2−1/α
}

≤ ε
1

4(d log(d+ 1))1/α

}

=
⌈

16 · a2 d2/α max
{

1, d1−2/α
} (

log(d+ 1)
)2/α

ε−2
⌉

=
⌈

16 · a2 dmax{1,2/α}
(

log(d+ 1)
)2/α

ε−2
⌉

9



for all α ∈ [1,∞). Note that we may choose a = 12.75 leading to 16a2 = 2601.
Using the second part of Lemma 1, we obtain

Nψα
(ε, d) ≤ Nα(ε

′, d)

with

ε′ = ε

(

e11/12√
2π

)1/α

α−1/α .

From this we finally obtain the upper bound for Nψα
(ε, d).
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