Tractability properties of the discrepancy in Orlicz norms

Josef Dick*, Aicke Hinrichs ${ }^{\dagger}$ Friedrich Pillichshammer ${ }^{\ddagger}$, , and Joscha Prochno ${ }^{〔}$

February 10, 2020

Dedicated to Gerhard Larcher on the occasion of his $60^{\text {th }}$ birthday 1 .

Abstract

We show that the minimal discrepancy of a point set in the d-dimensional unit cube with respect to Orlicz norms can exhibit both polynomial and weak tractability. In particular, we show that the ψ_{α}-norms of exponential Orlicz spaces are polynomially tractable.

Keywords: Discrepancy, Orlicz norm, tractability, quasi-Monte Carlo MSC 2010: 11K38, 65C05, 65 Y 20

1 Introduction and main results

The discrepancy of an N-element point set $\mathcal{P}=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right\}$ in the unit cube $[0,1]^{d}$ measures the deviation of the empirical distribution of \mathcal{P} from the uniform measure. This concept has important applications in numerical analysis, where so-called Koksma-Hlawka inequalities establish a deep connection between norms of the discrepancy function and worst case errors of quasi-Monte Carlo integration rules determined by the point set \mathcal{P}. For a comprehensive introduction and exposition on this subject we refer the reader to [8, 13, 16] and the references cited therein.

To define the concept of discrepancy, we first introduce the local discrepancy function $\Delta_{\mathcal{P}}:[0,1]^{d} \rightarrow \mathbb{R}$ defined as

$$
\Delta_{\mathcal{P}}(\boldsymbol{t})=\frac{\#\left\{j \in\{1,2, \ldots, N\}: \boldsymbol{x}_{j} \in[\mathbf{0}, \boldsymbol{t})\right\}}{N}-\operatorname{Vol}([\mathbf{0}, \boldsymbol{t}]),
$$

[^0]where $[\mathbf{0}, \boldsymbol{t})=\left[0, t_{1}\right) \times\left[0, t_{2}\right) \times \ldots \times\left[0, t_{d}\right)$ for $\boldsymbol{t}=\left(t_{1}, t_{2}, \ldots, t_{d}\right) \in[0,1]^{d}$ and $\operatorname{Vol}(\cdot)$ stands for the d-dimensional Lebesgue measure. We now apply a norm $\|\cdot\|_{\bullet}$ to the local discrepancy function to obtain the discrepancy $\left\|\Delta_{\mathcal{P}}\right\|_{\text {• of }}$ the point set \mathcal{P} with respect to the norm $\|\cdot\|_{\text {。 }}$. Of particular interest are the norms on the usual Lebesgue spaces L_{p} $(1 \leq p \leq \infty)$ of p-integrable functions on the unit cube $[0,1]^{d}$. Those lead to the central notions of L_{p}-discrepancy for $1 \leq p<\infty$, and the L_{∞}-discrepancy, which is usually called the star-discrepancy, when $p=\infty$.

The $N^{\text {th }}$ minimal discrepancy with respect to the norm $\|\cdot\|_{\bullet}$ in dimension d is the best possible discrepancy over all point sets of size N in the d-dimensional unit cube $[0,1]^{d}$, i.e.,

$$
\operatorname{disc}_{\bullet}(N, d)=\inf _{\substack{\mathcal{P} \subseteq[0,1)^{\prime} d \\|\mathcal{P}|=N}}\left\|\Delta_{\mathcal{P}}\right\|_{\bullet} .
$$

We compare this value with the initial discrepancy given by the discrepancy of the empty point set $\left\|\Delta_{\emptyset}\right\|_{\text {• }}$. Since the initial discrepancy may depend on the dimension, we use it to normalize the $N^{\text {th }}$ minimal discrepancy when we study the dependence of disc. (N, d) on the dimension d. We therefore define the inverse of the $N^{\text {th }}$ minimal discrepancy in dimension d as the number $N_{\bullet}(\varepsilon, d)$ which is the smallest number N such that a point set with N points exists that reduces the initial discrepancy at least by a factor of $\varepsilon \in(0,1)$,

$$
N_{\bullet}(\varepsilon, d)=\min \left\{N \in \mathbb{N}: \operatorname{disc} \bullet(N, d) \leq \varepsilon\left\|\Delta_{\emptyset}\right\|_{\bullet}\right\}
$$

In this paper we are interested in how $N_{\bullet}(\varepsilon, d)$ depends simultaneously on ε and the dimension d. In general, the dependence of the inverse of the $N^{\text {th }}$ minimal discrepancy can take different forms. For instance, if the dependence on the dimension d or on ε^{-1} is exponential, then we call the discrepancy intractable. If the inverse of the $N^{\text {th }}$ minimal discrepancy grows exponentially fast in d, then the discrepancy is said to suffer from the curse of dimensionality. On the other hand, if $N_{\bullet}(\varepsilon, d)$ increases at most polynomially in d and ε^{-1}, as d increases and ε tends to zero, then the discrepancy is said to be polynomially tractable. This leads us to the following definition.

Definition 1. The discrepancy with respect to the norm $\|\cdot\|$ • is polynomially tractable if there are numbers $C \in(0, \infty), \tau \in(0, \infty)$, and $\sigma \in(0, \infty)$ such that

$$
\begin{equation*}
N_{\bullet}(\varepsilon, d) \leq C d^{\tau} \varepsilon^{-\sigma}, \quad \text { for all } \varepsilon \in(0,1) \text { and all } d \in \mathbb{N} \text {. } \tag{1}
\end{equation*}
$$

The infimum over all exponents $\tau \in(0, \infty)$ such that a bound of the form (11) holds is called the d-exponent of polynomial tractability.

To cover cases between polynomial tractability and intractability, we now introduce the concept of weak tractability, where $N_{\bullet}(\varepsilon, d)$ is not exponential in ε^{-1} and d. This encodes the absence of intractability.

Definition 2. The discrepancy with respect to the norm $\|\cdot\|$. is weakly tractable, if

$$
\lim _{d+\varepsilon^{-1} \rightarrow \infty} \frac{\log N_{\bullet}(\varepsilon, d)}{d+\varepsilon^{-1}}=0 .
$$

(Throughout this paper \log means the natural logarithm.)

The subject of tractability of multivariate problems is a very popular and active area of research and we refer the reader to the books [19, 20] by Novak and Woźniakowski for an introduction into tractability studies of discrepancy and an exhaustive exposition.

A famous result by Heinrich, Novak, Wasilkowski, and Woźniakowski [11] based on the theory of empirical processes and Talagrand's majorizing measure theorem shows that the star-discrepancy is polynomially tractable. In fact, they show that τ in Definition 11 can be set to one and hence in this case the inverse of the star-discrepancy $N_{L_{\infty}}(\varepsilon, d)$ depends at most linearly on the dimension d. It was shown in [11] and [12] that $\tau=1$ is the minimal possible τ in Definition 1 for the star-discrepancy. Determining the optimal exponent σ for ε^{-1} is an open problem. On the other hand, the L_{2}-discrepancy is known to be intractable, as shown by Woźniakowski [21] (see also [20]). The behavior of the inverse of the L_{p}-discrepancy in between, where $p \notin\{2, \infty\}$, seems to be unknown.

Note that due to the normalization with the initial discrepancy, we cannot infer a continuous change in the behavior of $N_{L_{p}}(\varepsilon, d)$ as p goes from 1 to ∞. A natural assumption seems to be that the L_{p}-discrepancy is intractable for any $p \in[1, \infty)$. If correct, this would mean that there is a sharp change from intractability to polynomial tractability as one goes from $p \in[1, \infty)$ to $p=\infty$. A natural question which hence arises is what happens between those two cases $p \in[1, \infty)$ and $p=\infty$.

To study this question we shall work in the setting of (specific) Orlicz spaces. Let us recall that a function $M:[0, \infty) \rightarrow[0, \infty)$ is said to be an Orlicz function if $M(0)=0$, M is convex, and $M(t)>0$ for $t>0$. If $\lim _{x \rightarrow 0} M(x) / x=\lim _{x \rightarrow \infty} x / M(x)=0$, then M is called an N-function. The previous limit assumptions simply guarantee that the convex-dual is again an N-function. Now if $D \subseteq \mathbb{R}^{d}$ is a compact set, we define the Orlicz space L_{M} to be the space of (equivalence classes of) Lebesgue measurable functions f on D for which

$$
\|f\|_{M}:=\inf \left\{K>0: \int_{D} M\left(\frac{|f(\boldsymbol{x})|}{K}\right) \mathrm{d} \boldsymbol{x} \leq 1\right\}<\infty
$$

The latter functional is a norm on L_{M} known as Luxemburg norm, named after W. A. J. Luxemburg [18], which turns L_{M} into a Banach space. One commonly just speaks of Orlicz functions, Orlicz norms, and Orlicz spaces. An introduction to the theory of Orlicz spaces can be found in [15].

For our purpose, we introduce for $\alpha \in[1, \infty)$ the exponential Orlicz norms $\|\cdot\|_{\psi_{\alpha}}$, which for a measurable function f defined on $[0,1]^{d}$ are given by

$$
\|f\|_{\psi_{\alpha}}=\inf \left\{K>0: \int_{[0,1]^{d}} \psi_{\alpha}\left(\frac{|f(\boldsymbol{x})|}{K}\right) \mathrm{d} \boldsymbol{x} \leq 1\right\}
$$

where $\psi_{\alpha}(x)=\exp \left(x^{\alpha}\right)-1$. The assumption $\alpha \geq 1$ guarantees the convexity of ψ_{α}. These norms play an important role in the study of the concentration of mass in high-dimensional convex bodies [3, 6, 17] and have recently found applications in the tractability study of multivariate numerical integration [14]. They have appeared earlier in discrepancy theory and the related multivariate integration problems in fixed dimension [4, 5, 7]. As we shall see later, the discrepancy with respect to ψ_{α}-norms turns out to be polynomially tractable as well.

In our context it is interesting to also study variations of these norms exhibiting different types of behavior of $N_{\bullet}(\varepsilon, d)$ as a function of the dimension d. In fact, we may
write ψ_{α} as the series

$$
\psi_{\alpha}(x)=\frac{x^{\alpha}}{1!}+\frac{x^{2 \alpha}}{2!}+\frac{x^{3 \alpha}}{3!}+\cdots
$$

and consider the more general case where ψ_{α} is replaced by a function

$$
\begin{equation*}
\psi_{\alpha, \varphi}(x)=\frac{x^{\alpha}}{(\varphi(\alpha))^{\alpha}}+\frac{x^{2 \alpha}}{(\varphi(2 \alpha))^{2 \alpha}}+\frac{x^{3 \alpha}}{(\varphi(3 \alpha))^{3 \alpha}}+\cdots \tag{2}
\end{equation*}
$$

for a non-decreasing function $\varphi:[0, \infty) \rightarrow(0, \infty)$ with $\lim _{x \rightarrow \infty} \varphi(x)=\infty$. Note that the growth condition on φ guarantees, according to the ratio test, the absolute convergence of the series (2) for all $x \in[0, \infty)$. Choosing $\varphi(p \alpha)=(p!)^{1 /(p \alpha)}$ takes us back to the ψ_{α}-norm, which is therefore a special case of the more general setting.

Below we will characterize functions φ for which the discrepancy with respect to $\|\cdot\|_{\psi_{\alpha, \varphi}}$, given by

$$
\|f\|_{\psi_{\alpha, \varphi}}=\inf \left\{K>0: \int_{[0,1]^{d}} \psi_{\alpha, \varphi}\left(\frac{|f(\boldsymbol{x})|}{K}\right) \mathrm{d} \boldsymbol{x} \leq 1\right\}
$$

is polynomially tractable and weakly tractable.
The aim of this paper is to show the following result.
Theorem 1. Let $\alpha \in[1, \infty)$. Then the following hold:

1. The discrepancy with respect to the ψ_{α}-norm $\|\cdot\|_{\psi_{\alpha}}$ is polynomially tractable.
2. For any non-decreasing $\varphi:[0, \infty) \rightarrow(0, \infty)$ with $\lim _{x \rightarrow \infty} \varphi(x)=\infty$ for which there exists an $r \geq 0$ and a constant $C \in(0, \infty)$ such that for all $p \geq 1$

$$
\begin{equation*}
\varphi(p) \leq C p^{r} \tag{3}
\end{equation*}
$$

the discrepancy with respect to $\|\cdot\|_{\psi_{\alpha, \varphi}}$ is polynomially tractable. The d-exponent of polynomial tractability is at most $3+2 r$.
3. For any non-decreasing $\varphi:[0, \infty) \rightarrow(0, \infty)$ with $\lim _{x \rightarrow \infty} \varphi(x)=\infty$ which satisfies

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \frac{\log \varphi(p)}{p}=0 \tag{4}
\end{equation*}
$$

the discrepancy with respect to $\|\cdot\|_{\psi_{\alpha, \varphi}}$ is weakly tractable.
Remark 1. Note that by choosing $\psi_{\alpha, \varphi}(p)=p^{\alpha}$ we obtain the classical L_{α}-norm. In this case $\varphi(\alpha)=1$ and $\varphi(x)=\infty$ for all $x>\alpha$. This choice of φ does not satisfy any of the conditions in Theorem (1)

An example of a function φ that satisfies condition (4) for weak tractability is $\varphi(p)=$ $\exp \left(p^{\tau}\right)$ with some $\tau \in(0,1)$. This function does not satisfy condition (3).

We can in fact provide a more accurate estimate for the exponential Orlicz norms and the d-exponent of polynomial tractability.

Theorem 2. For any $\alpha \in[1, \infty)$, we have

$$
N_{\psi_{\alpha}}(\varepsilon, d) \leq\left\lceil C_{\alpha} d^{\max \{1,2 / \alpha\}}(\log (d+1))^{2 / \alpha} \varepsilon^{-2}\right\rceil,
$$

where

$$
C_{\alpha}=2601 \cdot \alpha^{2 / \alpha} \cdot\left(\frac{\sqrt{2 \pi}}{\mathrm{e}^{11 / 12}}\right)^{2 / \alpha}
$$

In particular, the d-exponent of polynomial tractability is at most $\max \{1,2 / \alpha\}$.
This upper bound on $N_{\psi_{\alpha}}(\varepsilon, d)$ shows that for $\alpha \rightarrow \infty$ the inverse of the stardiscrepancy depends linearly on the dimension, thereby matching the result of Heinrich, Novak, Wasilkowski, and Woźniakowski [11].

In the following Section 2 we present the proofs of our main results, where we start by establishing an equivalence between the norms $\|\cdot\|_{\psi_{\alpha, \varphi}}$ and an expression involving a supremum of classical L_{p}-norms. Subsection 2.1] is then devoted to the proof of Theorem 1 . The proof of Theorem 2 will be presented in Subsection 2.2,

2 The proofs

For the proofs of Theorems 1 and 2 we define another norm which we show to be equivalent to the Orlicz norm $\|\cdot\|_{\psi_{\alpha, \varphi}}$, namely

$$
\begin{equation*}
\|f\|_{\varphi}:=\sup _{p \geq 1} \frac{\|f\|_{L_{p}}}{\varphi(p)} \tag{5}
\end{equation*}
$$

with $\varphi:[0, \infty) \rightarrow(0, \infty)$. In the special case of exponential Orlicz norms $\|\cdot\|_{\psi_{\alpha}}$ such an equivalence is a classical result in asymptotic geometric analysis and may be found, without explicit constants, in the monographs [3, Lemma 3.5.5] and [6, Lemma 2.4.2]. In the context of this paper it is important that these constants do not depend on the dimension d.

Lemma 1. Let $d \in \mathbb{N}$ and $\alpha \in[1, \infty)$. For any measurable function $f:[0,1]^{d} \rightarrow \mathbb{R}$, we have the estimates

$$
\begin{equation*}
\inf _{p \geq 1} \frac{\varphi(p)}{\max \{\varphi(\alpha), \varphi(p)\}}\|f\|_{\varphi} \leq\|f\|_{\psi_{\alpha, \varphi}} \leq 2^{1 / \alpha}\|f\|_{\varphi} \tag{6}
\end{equation*}
$$

In particular, for any $\alpha \in[1, \infty)$, we have

$$
\begin{equation*}
\left(\frac{\mathrm{e}^{11 / 12}}{\sqrt{2 \pi}}\right)^{1 / \alpha}\|f\|_{\alpha} \leq\|f\|_{\psi_{\alpha}} \leq(2 \mathrm{e} \alpha)^{1 / \alpha}\|f\|_{\alpha} \tag{7}
\end{equation*}
$$

where $\|f\|_{\alpha}:=\sup _{p \geq 1} p^{-1 / \alpha}\|f\|_{L_{p}}$.
Proof. Using the series expansion of $\psi_{\alpha, \varphi}$, we obtain

$$
\int_{[0,1]^{d}} \psi_{\alpha, \varphi}\left(\frac{|f(\boldsymbol{x})|}{K}\right) \mathrm{d} \boldsymbol{x}=\sum_{p=1}^{\infty}\left(\frac{\|f\|_{L_{\alpha p}}}{K \varphi(\alpha p)}\right)^{\alpha p}
$$

By choosing

$$
K=2^{1 / \alpha} \sup _{p \geq \alpha} \frac{\|f\|_{L_{p}}}{\varphi(p)}
$$

we obtain

$$
\int_{[0,1]^{d}} \psi_{\alpha, \varphi}\left(\frac{|f(\boldsymbol{x})|}{K}\right) \mathrm{d} \boldsymbol{x} \leq \sum_{p=1}^{\infty} 2^{-p}=1 .
$$

Therefore, we have

$$
\|f\|_{\psi_{\alpha, \varphi}} \leq K=2^{1 / \alpha} \sup _{p \geq \alpha} \frac{\|f\|_{L_{p}}}{\varphi(p)}
$$

This implies the upper bound in (6) for all $\alpha \geq 1$.
For the lower bound, we argue as follows. For any $K \in(0, \infty)$ such that $K \geq\|f\|_{\psi_{\alpha, \varphi}}$, we have

$$
1 \geq \int_{[0,1]^{d}} \psi_{\alpha, \varphi}\left(\frac{|f(\boldsymbol{x})|}{K}\right) \mathrm{d} \boldsymbol{x}=\sum_{p=1}^{\infty}\left(\frac{\|f\|_{L_{\alpha p}}}{K \varphi(\alpha p)}\right)^{\alpha p} \geq\left(\sup _{p \geq 1} \frac{\|f\|_{L_{\alpha p}}}{K \varphi(\alpha p)}\right)^{\alpha p} .
$$

This implies that

$$
K \geq \sup _{p \geq \alpha} \frac{\|f\|_{L_{p}}}{\varphi(p)}
$$

and since this holds for any such K, we obtain

$$
\|f\|_{\psi_{\alpha, \varphi}} \geq \sup _{p \geq \alpha} \frac{\|f\|_{L_{p}}}{\varphi(p)}
$$

If $\alpha \in[1, \infty)$, and $q \in[1, \alpha]$, then

$$
\sup _{p \geq \alpha} \frac{\|f\|_{L_{p}}}{\varphi(p)} \geq \frac{\|f\|_{L_{\alpha}}}{\varphi(\alpha)} \geq \frac{\|f\|_{L_{q}}}{\varphi(q)} \inf _{q \in[1, \alpha]} \frac{\varphi(q)}{\varphi(\alpha)}
$$

Hence,

$$
\sup _{p \geq \alpha} \frac{\|f\|_{L_{p}}}{\varphi(p)} \geq \min \left\{1, \inf _{q \in[1, \alpha]} \frac{\varphi(q)}{\varphi(\alpha)}\right\} \sup _{p \geq 1} \frac{\|f\|_{L_{p}}}{\varphi(p)}
$$

In any case, for all $\alpha \in[1, \infty)$, we have that

$$
\sup _{p \geq \alpha} \frac{\|f\|_{L_{p}}}{\varphi(p)} \geq \min \left\{1, \inf _{q \geq 1} \frac{\varphi(q)}{\varphi(\alpha)}\right\}\|f\|_{\varphi}=\inf _{q \geq 1} \frac{\varphi(q)}{\max \{\varphi(\alpha), \varphi(q)\}}\|f\|_{\varphi}
$$

which implies the result since $\inf _{q \geq 1} \frac{\varphi(q)}{\max \{\varphi(\alpha), \varphi(q)\}} \leq 1$.
The bound (7) for the ψ_{α}-norms can be shown using similar arguments together with Stirling's formula

$$
\begin{equation*}
\sqrt{2 \pi p}(p / \mathrm{e})^{p} \leq p!\leq \sqrt{2 \pi p}(p / \mathrm{e})^{p} \mathrm{e}^{1 /(12 p)} \tag{8}
\end{equation*}
$$

We use the Taylor series expansion of the exponential function and obtain

$$
\begin{align*}
\int_{[0,1]^{d}} \psi_{\alpha}\left(\frac{|f(\boldsymbol{x})|}{K}\right) \mathrm{d} \boldsymbol{x} & =\int_{[0,1]^{d}} \sum_{\ell=1}^{\infty} \frac{1}{\ell!}\left(\frac{|f(\boldsymbol{x})|}{K}\right)^{\alpha \ell} \mathrm{d} \boldsymbol{x} \\
& =\sum_{\ell=1}^{\infty} \frac{1}{\ell!}\left(\frac{\|f\|_{L_{\alpha \ell}}}{K}\right)^{\alpha \ell} \tag{9}
\end{align*}
$$

Using Stirling's formula (8) we get

$$
\int_{[0,1]^{d}} \psi_{\alpha}\left(\frac{|f(\boldsymbol{x})|}{K}\right) \mathrm{d} \boldsymbol{x} \leq \sum_{\ell=1}^{\infty} \frac{\mathrm{e}^{\ell}}{\ell^{\ell}}\left(\frac{\|f\|_{L_{\alpha \ell}}}{K}\right)^{\alpha \ell}=\sum_{\ell=1}^{\infty}\left(\frac{\|f\|_{L_{\alpha \ell}}(\mathrm{e} \alpha)^{1 / \alpha}}{K(\ell \alpha)^{1 / \alpha}}\right)^{\alpha \ell} .
$$

If we choose

$$
K=(2 \mathrm{e} \alpha)^{1 / \alpha} \sup _{\ell \geq 1} \frac{\|f\|_{L_{\alpha \ell}}}{(\ell \alpha)^{1 / \alpha}}
$$

then we obtain

$$
\int_{[0,1]^{d}} \psi_{\alpha}\left(\frac{|f(\boldsymbol{x})|}{K}\right) \mathrm{d} \boldsymbol{x} \leq \sum_{\ell=1}^{\infty} \frac{1}{2^{\ell}}=1
$$

Hence

$$
\|f\|_{\psi_{\alpha}} \leq K=(2 \mathrm{e} \alpha)^{1 / \alpha} \sup _{\ell \geq 1} \frac{\|f\|_{L_{\alpha} \ell}}{(\alpha \ell)^{1 / \alpha}}=(2 \mathrm{e} \alpha)^{1 / \alpha} \sup _{p \geq \alpha} \frac{\|f\|_{L_{p}}}{p^{1 / \alpha}} \leq(2 \mathrm{e} \alpha)^{1 / \alpha}\|f\|_{\alpha}
$$

On the other hand, from (9) and the upper bound in Stirling's formula (8) we obtain

$$
\begin{aligned}
\int_{[0,1]^{d}} \psi_{\alpha}\left(\frac{|f(\boldsymbol{x})|}{K}\right) \mathrm{d} \boldsymbol{x} & \geq \sum_{\ell=1}^{\infty} \frac{1}{\sqrt{2 \pi \ell} \mathrm{e}^{1 /(12 \ell)}}\left(\frac{\mathrm{e}}{\ell}\right)^{\ell}\left(\frac{\|f\|_{L_{\alpha \ell}}}{K}\right)^{\alpha \ell} \\
& \geq \sup _{\ell \geq 1} \frac{(\mathrm{e} \alpha)^{\ell}}{\sqrt{2 \pi \ell} \mathrm{e}^{1 /(12 \ell)}} \frac{1}{K^{\alpha \ell}}\left(\frac{\|f\|_{L_{\alpha \ell}}}{(\alpha \ell)^{1 / \alpha}}\right)^{\alpha \ell}
\end{aligned}
$$

Now, in order to have $\int_{[0,1]^{d}} \psi_{\alpha}\left(\frac{|f(\boldsymbol{x})|}{K}\right) \mathrm{d} \boldsymbol{x} \leq 1$ we find that K has to satisfy

$$
K^{\alpha \ell} \geq \frac{(\mathrm{e} \alpha)^{\ell}}{\sqrt{2 \pi \ell} \mathrm{e}^{1 /(12 \ell)}}\left(\frac{\|f\|_{L_{\alpha}}}{(\alpha \ell)^{1 / \alpha}}\right)^{\alpha \ell}
$$

for all $\ell \geq 1$. Hence

$$
K \geq \frac{(\mathrm{e} \alpha)^{1 / \alpha}}{\left(\sqrt{2 \pi \ell} \mathrm{e}^{1 /(12 \ell)}\right)^{1 /(\alpha \ell)}} \frac{\|f\|_{L_{\alpha \ell}}}{(\alpha \ell)^{1 / \alpha}} \geq\left(\frac{\mathrm{e} \alpha}{\sqrt{2 \pi} \mathrm{e}^{1 / 12}}\right)^{1 / \alpha} \frac{\|f\|_{L_{\alpha \ell}}}{(\alpha \ell)^{1 / \alpha}}
$$

for all $\ell \geq 1$. Hence,

$$
K \geq\left(\frac{\mathrm{e} \alpha}{\sqrt{2 \pi} \mathrm{e}^{1 / 12}}\right)^{1 / \alpha} \sup _{\ell \geq 1} \frac{\|f\|_{L_{\alpha} \ell}}{(\alpha \ell)^{1 / \alpha}}=\left(\frac{\mathrm{e} \alpha}{\sqrt{2 \pi} \mathrm{e}^{1 / 12}}\right)^{1 / \alpha} \sup _{p \geq \alpha} \frac{\|f\|_{L_{p}}}{p^{1 / \alpha}}
$$

For any $q \in[1, \alpha]$ we have

$$
\sup _{p \geq \alpha} \frac{\|f\|_{L_{p}}}{p^{1 / \alpha}} \geq \frac{\|f\|_{L_{\alpha}}}{\alpha^{1 / \alpha}} \geq \frac{\|f\|_{L_{q}}}{q^{1 / \alpha}} \frac{q^{1 / \alpha}}{\alpha^{1 / \alpha}} \geq \frac{1}{\alpha^{1 / \alpha}} \frac{\|f\|_{L_{q}}}{q^{1 / \alpha}} .
$$

Hence

$$
\sup _{p \geq \alpha} \frac{\|f\|_{L_{p}}}{p^{1 / \alpha}} \geq \frac{1}{\alpha^{1 / \alpha}} \sup _{p \geq 1} \frac{\|f\|_{L_{p}}}{p^{1 / \alpha}}
$$

This implies

$$
\|f\|_{\psi_{\alpha}} \geq\left(\frac{\mathrm{e}^{11 / 12}}{\sqrt{2 \pi}}\right)^{1 / \alpha}\|f\|_{\alpha}
$$

as desired. This closes the proof.
We are now prepared to present the proofs of our main results.

2.1 The proof of Theorem 1

An important consequence of Lemma 1 is that the constants do not depend on the dimension, and hence the Orlicz norm discrepancy satisfies the same tractability properties as the discrepancy with respect to the norm $\|\cdot\|_{\varphi}$. Therefore in the following proof we will only use the latter norm.

It is well known and easily checked (see, e.g., [20, p. 54]) that for every $p \in[1, \infty)$, the initial L_{p}-discrepancy in dimension d satisfies

$$
\left\|\Delta_{\emptyset}\right\|_{L_{p}}=\frac{1}{(p+1)^{d / p}}
$$

If $p=\infty$, then the initial discrepancy is 1 for every dimension $d \in \mathbb{N}$. This implies that

$$
\left\|\Delta_{\emptyset}\right\|_{\varphi}=\sup _{p \geq 1} \frac{1}{\varphi(p)} \frac{1}{(p+1)^{d / p}} \geq \frac{1}{(d+1) \varphi(d)}
$$

where we used the choice $p=d$ to obtain the last inequality.
From [11] we know that

$$
\begin{equation*}
\operatorname{disc}_{L_{\infty}}(N, d) \leq C_{\mathrm{PT}} \sqrt{\frac{d}{N}} \tag{10}
\end{equation*}
$$

for some absolute constant $C_{\mathrm{PT}} \in(0, \infty)$. Aistleitner [1] showed that one can choose $C_{\mathrm{PT}}=10$, but according to [10] the constant C_{PT} may be reduced to $C_{\mathrm{PT}}=2.5287$.

Hence, we have

$$
\operatorname{disc}_{\varphi}(N, d) \leq \operatorname{disc}_{L_{\infty}}(N, d) \cdot \sup _{p \geq 1} \frac{1}{\varphi(p)} \leq C_{\mathrm{PT}} \sup _{p \geq 1} \frac{1}{\varphi(p)} \sqrt{\frac{d}{N}}
$$

where $\operatorname{disc}_{\varphi}(N, d)$ stands for the discrepancy with respect to the norm $\|\cdot\|_{\varphi}$ introduced in (5). This implies that

$$
\begin{align*}
N_{\varphi}(\varepsilon, d) & \leq \min \left\{N \in \mathbb{N}: C_{\mathrm{PT}} \sup _{p \geq 1} \frac{1}{\varphi(p)} \sqrt{\frac{d}{N}} \leq \frac{\varepsilon}{(d+1) \varphi(d)}\right\} \\
& \leq\left\lceil C_{\mathrm{PT}}^{2} \frac{d(d+1)^{2} \varphi^{2}(d)}{\varepsilon^{2}} \sup _{p \geq 1} \frac{1}{\varphi^{2}(p)}\right] \tag{11}
\end{align*}
$$

where for $x \in \mathbb{R},\lceil x\rceil:=\min \{n \in \mathbb{Z}: n \geq x\}$. This concludes the proof of the second statement in Theorem 1. As mentioned above, if we choose $\varphi(\alpha p)=(p!)^{1 /(\alpha p)}$, then we obtain the ψ_{α}-norm. Using Stirling's formula (8) together with the previous result, we can deduce the first part of Theorem (1)

In order to prove the third part of Theorem [1, we apply the logarithm to $N_{\varphi}(\varepsilon, d)$. From (11) we obtain that

$$
\log N_{\varphi}(\varepsilon, d) \leq C^{\prime}+2 \log \varepsilon^{-1}+3 \log (d+1)+2 \log \varphi(d)
$$

for some $C^{\prime} \in(0, \infty)$ only depending on φ. Hence,

$$
\limsup _{d+\varepsilon^{-1} \rightarrow \infty} \frac{\log N_{\varphi}(\varepsilon, d)}{d+\varepsilon^{-1}} \leq 2 \limsup _{d+\varepsilon^{-1} \rightarrow \infty} \frac{\log \varphi(d)}{d+\varepsilon^{-1}}=0 .
$$

This implies weak tractability of the discrepancy with respect to $\|\cdot\|_{\psi_{\alpha, \varphi}}$.

2.2 The proof of Theorem 2

First we show the corresponding result for $N_{\alpha}(\varepsilon, d)$ which is based on the norm $\|\cdot\|_{\alpha}$. Recall that for a measurable function $f:[0,1]^{d} \rightarrow \mathbb{R}$, we defined $\|f\|_{\alpha}=\sup _{p \geq 1} p^{-1 / \alpha}\|f\|_{L_{p}}$. Let us start with a lower bound for the initial discrepancy. We have

$$
\begin{align*}
\left\|\Delta_{\emptyset}\right\|_{\alpha} & =\sup _{p \geq 1} \frac{1}{p^{1 / \alpha}} \frac{1}{(p+1)^{d / p}} \\
& \geq \frac{1}{(d \log (d+1))^{1 / \alpha}} \frac{1}{(1+d \log (d+1))^{1 / \log (d+1)}} \\
& \geq \frac{1}{4(d \log (d+1))^{1 / \alpha}} \tag{12}
\end{align*}
$$

where we have chosen $p=d \log (d+1)$. The final estimate follows from the fact that

$$
d \mapsto \frac{1}{(1+d \log (d+1))^{1 / \log (d+1)}}
$$

attains its minimum in $d=20$ with minimal value $0.257944 \ldots$..
Now let $d \in \mathbb{N}$. Then from Gnewuch [9, Theorem 3] we obtain that

$$
\mathbb{E}\left\|\Delta_{\mathcal{P}}\right\|_{L_{d}} \leq 2^{5 / 4} 3^{-3 / 4} N^{-1 / 2}
$$

and from Aistleitner and Hofer [2, Corollary 1] that for any $q \in(0,1)$

$$
\mathbb{P}\left[\left\|\Delta_{\mathcal{P}}\right\|_{L_{\infty}} \leq 5.7 \sqrt{4.9+\log \left((1-q)^{-1}\right)} d^{1 / 2} N^{-1 / 2}\right] \geq q
$$

where the expectation and probability are with respect to the point set \mathcal{P} consisting of independent and uniformly distributed points. Now Markov's inequality implies that there exists an N-element point set \mathcal{P} in $[0,1)^{d}$ such that

$$
\left\|\Delta_{\mathcal{P}}\right\|_{L_{d}} \leq a N^{-1 / 2} \quad \text { and } \quad\left\|\Delta_{\mathcal{P}}\right\|_{L_{\infty}} \leq a d^{1 / 2} N^{-1 / 2}
$$

provided that

$$
1>\frac{2^{5 / 4}}{3^{3 / 4} a}+\exp \left(4.9-\left(\frac{a}{5.7}\right)^{2}\right) .
$$

For this point set \mathcal{P}, we obtain

$$
\begin{align*}
\left\|\Delta_{\mathcal{P}}\right\|_{\alpha} & =\sup _{p \geq 1} p^{-1 / \alpha}\left\|\Delta_{\mathcal{P}}\right\|_{L_{p}} \\
& =\max \left\{\sup _{p \leq d} p^{-1 / \alpha}\left\|\Delta_{\mathcal{P}}\right\|_{L_{p}}, \sup _{p \geq d} p^{-1 / \alpha}\left\|\Delta_{\mathcal{P}}\right\|_{L_{p}}\right\} \\
& \leq a N^{-1 / 2} \max \left\{\sup _{p \leq d} p^{-1 / \alpha}, \sup _{p \geq d} p^{-1 / \alpha} d^{1 / 2}\right\} \\
& =a N^{-1 / 2} \max \left\{1, d^{1 / 2-1 / \alpha}\right\} . \tag{13}
\end{align*}
$$

Combining (12) and (13), we obtain the upper bound

$$
\begin{aligned}
N_{\alpha}(\varepsilon, d) & \leq \min \left\{N \in \mathbb{N}: \frac{a}{N^{1 / 2}} \max \left\{1, d^{1 / 2-1 / \alpha}\right\} \leq \varepsilon \frac{1}{4(d \log (d+1))^{1 / \alpha}}\right\} \\
& =\left\lceil 16 \cdot a^{2} d^{2 / \alpha} \max \left\{1, d^{1-2 / \alpha}\right\}(\log (d+1))^{2 / \alpha} \varepsilon^{-2}\right\rceil \\
& =\left\lceil 16 \cdot a^{2} d^{\max \{1,2 / \alpha\}}(\log (d+1))^{2 / \alpha} \varepsilon^{-2}\right\rceil
\end{aligned}
$$

for all $\alpha \in[1, \infty)$. Note that we may choose $a=12.75$ leading to $16 a^{2}=2601$.
Using the second part of Lemma 1, we obtain

$$
N_{\psi_{\alpha}}(\varepsilon, d) \leq N_{\alpha}\left(\varepsilon^{\prime}, d\right)
$$

with

$$
\varepsilon^{\prime}=\varepsilon\left(\frac{\mathrm{e}^{11 / 12}}{\sqrt{2 \pi}}\right)^{1 / \alpha} \alpha^{-1 / \alpha}
$$

From this we finally obtain the upper bound for $N_{\psi_{\alpha}}(\varepsilon, d)$.

References

[1] Ch. Aistleitner. Covering numbers, dyadic chaining and discrepancy. J. Complexity, 27(6):531-540, 2011.
[2] Ch. Aistleitner and M. Hofer. Probabilistic discrepancy bound for Monte Carlo point sets. Math. Comp., 83(287):1373-1381, 2014.
[3] S. Artstein-Avidan, A. Giannopoulos, and V. D. Milman. Asymptotic geometric analysis. Part I, volume 202 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2015.
[4] D. Bilyk, M. T. Lacey, I. Parissis, and A. Vagharshakyan. Exponential squared integrability of the discrepancy function in two dimensions. Mathematika, 55(1-2):127, 2009.
[5] D. Bilyk and L. Markhasin. BMO and exponential Orlicz space estimates of the discrepancy function in arbitrary dimension. J. Anal. Math., 135(1):249-269, 2018.
[6] S. Brazitikos, A. Giannopoulos, P. Valettas, and B.-H. Vritsiou. Geometry of isotropic convex bodies, volume 196 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2014.
[7] J. Dick, A. Hinrichs, L. Markhasin, and F. Pillichshammer. Discrepancy of second order digital sequences in function spaces with dominating mixed smoothness. Mathematika, 63(3):863-894, 2017.
[8] J. Dick and F. Pillichshammer. Digital nets and sequences. Discrepancy theory and quasi-Monte Carlo integration. Cambridge University Press, Cambridge, 2010.
[9] M. Gnewuch. Bounds for the average L^{p}-extreme and the L^{∞}-extreme discrepancy. Electron. J. Combin., 12:Research Paper 54, 11, 2005.
[10] M. Gnewuch and N. Hebbinghaus. private communications, 2018.
[11] S. Heinrich, E. Novak, G. W. Wasilkowski, and H. Woźniakowski. The inverse of the star-discrepancy depends linearly on the dimension. Acta Arith., 96(3):279-302, 2001.
[12] A. Hinrichs. Covering numbers, Vapnik-Červonenkis classes and bounds for the stardiscrepancy. J. Complexity, 20(4):477-483, 2004.
[13] A. Hinrichs. Discrepancy, integration and tractability. In Monte Carlo and quasiMonte Carlo methods 2012, volume 65 of Springer Proc. Math. Stat., pages 129-172. Springer, Heidelberg, 2013.
[14] A. Hinrichs, J. Prochno, and M. Ullrich. The curse of dimensionality for numerical integration on general domains. J. Complexity, 50:25-42, 2019.
[15] M. A. Krasnosel'skiĭ and Ja. B. Rutickiĭ. Convex functions and Orlicz spaces. Translated from the first Russian edition by Leo F. Boron. P. Noordhoff Ltd., Groningen, 1961.
[16] L. Kuipers and H. Niederreiter. Uniform distribution of sequences. Wiley-Interscience [John Wiley \& Sons], New York-London-Sydney, 1974. Pure and Applied Mathematics.
[17] J. Lindenstrauss and L. Tzafriri. Classical Banach spaces. I, volume 92 of Sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, BerlinNew York, 1977.
[18] W. A. J. Luxemburg. Banach function spaces. Thesis, Technische Hogeschool te Delft, 1955.
[19] E. Novak and H. Woźniakowski. Tractability of multivariate problems. Vol. 1: Linear information, volume 6 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich, 2008.
[20] E. Novak and H. Woźniakowski. Tractability of multivariate problems. Volume II: Standard information for functionals, volume 12 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich, 2010.
[21] H. Woźniakowski. Efficiency of quasi-Monte Carlo algorithms for high dimensional integrals. In Monte Carlo and quasi-Monte Carlo methods 1998 (Claremont, CA), pages 114-136. Springer, Berlin, 2000.

Author's Addresses:

Josef Dick, School of Mathematics and Statistics, The University of New South Wales, Sydney, NSW 2052, Australia. Email: josef.dick@unsw.edu.au

Aicke Hinrichs, Institut für Analysis, Universität Linz, Altenbergerstraße 69, A-4040 Linz, Austria. Email: aicke.hinrichs@jku.at

Friedrich Pillichshammer, Institut für Analysis, Universität Linz, Altenbergerstraße 69, A-4040 Linz, Austria. Email: friedrich.pillichshammer@jku.at

Joscha Prochno, Institut für Mathematik und Wissenschaftliches Rechnen, Karl-FranzensUniversität Graz, Heinrichstraße 36, A-8010 Graz, Austria. Email: joscha.prochno@unigraz.at

[^0]: *Josef Dick is partly supported by the Australian Research Council Discovery Project DP190101197.
 ${ }^{\dagger}$ A. Hinrichs is supported by the Austrian Science Fund (FWF): Project F5513-N26, which is a part of the Special Research Program "Quasi-Monte Carlo Methods: Theory and Applications".
 ${ }_{\ddagger}^{\ddagger}$ F. Pillichshammer is supported by the Austrian Science Fund (FWF): Project F5509-N26, which is a part of the Special Research Program "Quasi-Monte Carlo Methods: Theory and Applications".
 ${ }^{\S}$ Corresponding author
 『J. Prochno is supported by the Austrian Science Fund (FWF): Project P32405 "Asymptotic Geometric Analysis and Applications" and a visiting professorship from the University of Bochum and its Research School PLUS.
 ${ }^{1}$ Heinrich et al. mention in their seminal paper [11, p. 280] that the question about the dependence on d for the star-discrepancy was first raised by Gerhard Larcher in 1998.

