
ar
X

iv
:1

91
2.

11
74

1v
2 

 [
m

at
h.

FA
] 

 2
2 

Ju
l 2

02
0

A Closer Look at Covering Number Bounds for

Gaussian Kernels

Ingo Steinwart and Simon Fischer

July 23, 2020

Institute for Stochastics and Applications

Faculty 8: Mathematics and Physics

University of Stuttgart

70569 Stuttgart Germany

{ingo.steinwart, simon.fischer}@mathematik.uni-stuttgart.de

Abstract

We establish some new bounds on the log-covering numbers of (anisotropic) Gaussian

reproducing kernel Hilbert spaces. Unlike previous results in this direction we focus on

small explicit constants and their dependency on crucial parameters such as the kernel

bandwidth and the size and dimension of the underlying space.
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1 Introduction

Gaussian kernels and their reproducing kernel Hilbert spaces (RKHSs) play a central role for

kernel-based learning algorithms such as support vector machines (SVMs), see e.g. [9, 2, 11],

and Gaussian processes for machine learning, see e.g. [8, 5]. For the analysis of such learning

algorithms one usually needs to bound both the approximation error, which quantitatively

describes how well the considered RKHS approximates certain classes of smooth functions,

and the estimation error, which bounds the uncertainty caused by the statistical nature of the

observations the algorithm learns from. Moreover, the estimation error is typically analyzed

with the help of bounds on certain entropy- or covering numbers of the involved RKHSs, and in

the case of Gaussian RKHSs these bounds crucially depend on quantities such as the considered

kernel width. The major focus of this work is to analyze this dependence. To be more precise,

recall that the (isotropic) Gaussian kernels are given by

kσ(x, x′) := exp
(−σ2‖x − x′‖2

ℓd
2

)

, x, x′ ∈ X, (1)
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where X is a subset of Rd, σ > 0 is the so-called kernel width, and ‖·‖ℓd
2

denotes the Euclidean

norm on R
d. Moreover, we write Hσ(X) for the corresponding RKHS, see [11, Chapter 4] for

details about Gaussian RKHSs as well as for a general introduction to RKHSs.

In order to underpin the importance of log-covering number bounds with explicit and well-

understood constants we will briefly sketch the analysis of SVMs using the least squares loss

and the Gaussian kernel in the following. To this end, let us recall that the covering numbers

of a bounded subset A ⊆ E of some Banach space E are defined by

N (A, ε) := min
{

n ∈ N : ∃x1, . . . , xn ∈ E : A ⊆
n
⋃

i=1

xi + εBE

}

, ε > 0,

where BE denotes the closed unit ball of E. Moreover, for a bounded linear operator T : E → F

between two Banach spaces E and F , the log-covering numbers are H(T, ε) := log(N (T BE , ε)).

Now, if X ⊆ R
d is bounded it is well-known that for all σ ≥ 1 and p ∈ (0, 1) we have a constant

KX,σ,p such that

H(Id : Hσ(X) → ℓ∞(X), ε
) ≤ KX,σ,p · ε−p , ε ∈ (0, 1], (2)

where Id : Hσ(X) → ℓ∞(X) denotes the canonical embedding of Hσ(X) into the space ℓ∞(X)

of bounded functions f : X → R equipped with the usual supremum norm ‖ · ‖∞, see e.g. [11,

Theorem 6.27 and Exercise 6.8]. However, the dependency of the constant KX,σ,p on X, σ,

and p is far from being well-understood.

Let us now briefly describe how this dependency influences the learning performance guar-

antees of SVMs using the least squares loss and a Gaussian kernel kσ. To this recall that for a

dataset D = ((x1, y1), . . . , (xn, yn)) ∈ (X × [−1, 1])n of length n and a regularization parameter

λ > 0, such an SVM produces a decision function fD,λ,σ : X → [−1, 1] that minimizes some

regularized empirical error quantity over Hσ(X), in order to recover the true but unknown

regression function f∗ : X → [−1, 1]. In this scenario [11, Theorem 7.23] in combination with

(2) gives, for every f0 ∈ Hσ(X), the following over all error bound

‖fD,λ,σ − f∗‖2
L2(ν) ≤ 9

(

λ‖f0‖2
Hσ(X) + ‖f0 − f∗‖2

L2(ν)

)

+ Cp · KX,σ,p

λp/2 n
+ ǫ̃(n, λ, τ, σ, p, f0) , (3)

which holds true with probability not less than 1 − 3e−τ . Here, Cp is a constant whose

dependency on p is explicitly given, and ǫ̃(n, λ, τ, σ, p, f0) is an additional error term, that for

common choices of f0, λ, p, τ , and σ is dominated by the term

ǫ(n, λ, σ, p) := Cp · KX,σ,p

λp/2 n
,

which in the following we call estimation error. Together with ǫ̃(n, λ, τ, σ, p, f0), the estimation

error bounds the error caused by statistical fluctuations. In contrast, the first error term in
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(3), which does not depend on the sample size n, refers to the approximation error.

It is well-known that the Gaussian RKHS Hσ(X) only contains C∞-functions and that

Hσ(X) is dense in Lp(ν) for all p ∈ [1, ∞) and all finite measures ν on X. Moreover, if X is

compact, then Hσ(X) is also dense in C(X). Again, we refer to [11, Chapter 4] for details.

Now recall that these denseness results guarantee, for example, that the minimal approximation

error

A(λ, σ, f∗) := inf
{

λ‖f0‖2
Hσ(X) + ‖f0 − f∗‖2

L2(ν) : f0 ∈ Hσ(X)
}

satisfies A(λ, σ, f∗) → 0 for λ → 0 and fixed σ > 0 and f∗ ∈ L2(ν). For n → ∞ and

λ → 0 with λp/2n → ∞ this shows that (3) vanishes, i.e. SVMs using the least squares loss

and a fixed Gaussian kernel can learn in a purely asymptotic sense, see e.g. [11, Chapters 5,

6, and 9] for details. However, a more detailed analysis that includes convergence rates for

the learning process, requires convergence rates for the approximation error and especially for

A(λ, σ, f∗) → 0. Unfortunately, it has been shown in [10] that for fixed σ > 0 any polynomial

rate even for the minimal approximation error A(λ, σ, f∗) → 0 is impossible if f 6∈ C∞, and

the latter is an unacceptable restriction from a learning theoretical point of view.

To address this issue and to be better aligned with empirical knowledge that strongly suggest

to vary the width σ with the data set, one usually investigates the learning behavior in cases

in which we have λ → 0 and σ → ∞ simultaneously. For example, [3] shows that for specific

combinations of rates for λ → 0 and σ → ∞ the approximation error converges to 0 with a

polynomial speed whenever f∗ is contained in some Besov space.

While this approach solves the issues regarding the approximation error, it simultaneously

makes the analysis of the estimation error ǫ(n, λ, σ, p) more complicated. To be more precise,

for fixed σ and p the dependence of KX,σ,p on these parameters have no influence on the

learning rate, however, if we consider σ → ∞ the behavior of KX,σ,p plays a crucial role for

the estimation error. Since it has been recently observed in [4] that the learning rates can be

further improved, if we additionally let p = pn → 0 sufficiently slowly, also the dependence of

KX,σ,p on p is of interest from a learning theoretical point of view. Moreover, the guarantees

on the learning performance obviously become better, if, in addition, KX,σ,p only depends

on small universal constants. Therefore, the goal of this work is to derive bounds on H(Id :

Hσ(X) → ℓ∞(X), ε) that do not only have a desirable behavior for ε → 0, but for which we

can also control the behavior of the corresponding constants in σ, X, d, and if applicable, in

p.

To this end, we first refine the analysis of [7] by carefully controlling the arising constants.

It turns out that the final constants have both small absolute values and a reasonable behavior

in the dimension d. Unfortunately, however, their behavior for σ → ∞ is far from being

optimal. For this reason, we present another result that relates the log-covering numbers of

Id : Hσ(X) → ℓ∞(X) to the log-covering numbers of Id : H1(Bd
2 ) → ℓ∞(Bd

2), where Bd
2 ⊆ R

d

denotes the closed Euclidean unit ball, and to the covering numbers of the underlying space
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X. As a consequence, we do not only obtain a much better behavior for σ → ∞, but also

log-covering number bounds for anisotropic Gaussian kernels, which are defined by

kσ(x, x′) := exp
(−‖Dσx − Dσx′‖2

ℓd
2

)

, x, x′ ∈ X, (4)

where Dσ(x1, . . . , xd) := (σ1x1, . . . , σdxd). Note that these kernels are an example of so-called

automatic relevance determination (ARD) kernels, which are particularly popular in the Gaus-

sian processes for machine learning context, see e.g. [8, Chapter 5].

The rest of this work is organized as follows: In the next section we present our main results,

discuss their consequences, and compare them to results previously obtained in the literature

such as [13, 14, 7]. All proofs can be found in Section 3.

2 Main Results

This section contains all main results of this work: In the first subsection we derive bounds on

the log-covering numbers of the embedding Id : Hσ(Bd
2 ) → ℓ∞(Bd

2) of the isotropic Gaussian

RKHS defined in (1). In the second subsection we then show how to generalize these bounds

to anisotropic Gaussian kernels (4) on general bounded sets X ⊆ R
d.

2.1 Isotropic Gaussian Kernels

Before we present the results of this subsection, let us introduce some notation: if two functions

f, g : (0, ∞) → (0, ∞) satisfy limt→∞ f(t)/g(t) = 1 we write f(t) ∼ g(t) for t → ∞. Moreover,

recall that, for k ∈ N and t > 0, the generalized binomial coefficient is defined by

(

t

k

)

:=
1

k!

k
∏

i=1

(t − k + i) .

Note that for t ∈ N this definition coincides with the classical definition of binomial coefficients.

In the following, generalized binomial coefficients mainly appear in the form

(

t + d

d

)

=
1

d!

d
∏

i=1

(t + i) (5)

where d ≥ 1 is an integer and t > 0. Then the functions t 7→ (t+d
d

)

and d 7→ (t+d
d

)

are increasing

and the functions t 7→ (t+d
d

) · t−d and d 7→ (t+d
d

) · d−t are decreasing with

(

t + d

d

)

∼ td

d!
for t → ∞ and

(

t + d

d

)

∼ dt

Γ(t + 1)
for d → ∞ ,

where Γ denotes the Gamma function. See Lemma 3.6 for the non-obvious assertions. With

these preparations our first result reads as follows.
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2.1 Theorem For all d ≥ 1, all σ > 0, and all 0 < ε ≤ 1 we have

H(Id : Hσ(Bd
2) → ℓ∞(Bd

2 ), ε
) ≤

(

2e(1 + σ2) + d

d

)

· e−d · logd+1(4/ε)

log logd(4/ε)
.

Note that Theorem 2.1 recovers the asymptotic behavior of ε 7→ H(Id : Hσ(Bd
2) → ℓ∞(Bd

2 ), ε)

found by Kühn in [7], which in turn improved the earlier results in [13, 14]. By presenting a

corresponding lower bound on the log-covering numbers, [7] further shows that this behavior

in ε is optimal. Unlike the upper bound in [7], however, Theorem 2.1 also provides an upper

bound for the behavior in σ and d that is expressed by the constant

Kd,σ :=

(

2e(1 + σ2) + d

d

)

· e−d .

To better understand the behavior of this constant in d, let us first consider the case σ = 1.

Since d 7→ (4e+d
d

) · d−4e is decreasing as mentioned above we then find

Cd :=
Kd,1

d4ee−d
≤
(

4e + 1

1

)

· 1−4e = 4e + 1 ≈ 11.8731

for all d ≥ 1. Moreover, some numerical calculations show that for d = 1 we have K1,1 =

4 + 1/e ≈ 4.3679, while for d ≥ 2 we have Cd ≤ C2 ≈ 0.0407 ≤ 0.05, and hence we obtain

Kd,1 ≤ 0.05 · d4ee−d , d ≥ 2. (6)

In this respect note that [13, Proposition 1] found a constant behaving like dd+1 for a logd+1(1/ε)-

type bound on the log-covering numbers. Unfortunately, this result is not directly comparable

to (6) since [13] considered the set X = [0, 1]d. Since [0, 1]d ⊆ 1/2 +
√

d/2 · Bd
2 combining (6)

with the later established (12) for r =
√

d/2 and σ = 1, however, we obtain a constant not

exceeding 0.05 · d4e(2e/3)−ddd/2 for X = [0, 1]d and d ≥ 2. In other words, our analysis does

improve the above mentioned results of [13] in both ε and d.

Furthermore, this inequality correctly describes the asymptotic behavior of Kd,1 for d → ∞,

since our considerations at the beginning of this section show

lim
d→∞

Cd = lim
d→∞

(

4e + d

d

)

· d−4e =
1

Γ(4e + 1)
≈ 3.4130 · 10−8 .

Finally, some additional numerical calculations give Kd,1 ≤ 30 for all d ≥ 1, and the maximal

value of Kd,1 is attained at d = 6.

Let us now consider the behavior of Kd,σ in σ for a fixed d ≥ 1. To this end, we first observe

that Kd,σ is increasing in σ, and hence we have Kd,σ > Kd,0 =
(2e+d

d

)

e−d > 0 for all σ > 0.

5



Moreover, the representation in (5) directly gives

2d

d!
(1 + σ2)d ≤ Kd,σ ≤ 4d

d!
(1 + σ2)d (7)

for all σ > 0 satisfying 2e(1 + σ2) ≥ d. Consequently the constant Kd,σ grows like σ2d for

σ → ∞, compared to the σ2d+2-behavior of the already discussed result in [13]. Below in

Section 2.2 we will see that we can find another constant for the estimate of Theorem 2.1 that

only grows like σd for σ → ∞.

Our next goal is to show that the size of the constant in Theorem 2.1 is significantly influenced

by the choice of the considered range of ε. More precisely, Theorem 2.1 considers the maximal

range 0 < ε ≤ 1, since we have ‖ Id : Hσ(Bd
2 ) → ℓ∞(Bd

2)‖ = 1, and thus we find

H(Id : Hσ(Bd
2) → ℓ∞(Bd

2 ), ε
)

= 0 , ε ≥ 1.

Our next theorem shows that by considering a smaller range for ε, we can substantially decrease

the constant appearing in the estimate. For its formulation, we recall that Lambert’s W -

function is the inverse of t 7→ tet. Note that on (−1/e, 0) the inverse is multi-valued and

throughout this work we use the upper branch W : [−1/e, ∞) → [−1, ∞), which is often

denoted by W0 in the literature. Finally, recall that W is increasing and W (t) ∼ log(t) for

t → ∞. Now our second result reads as follows.

2.2 Theorem For all d ≥ 1, all σ > 0, and 0 < ε0 ≤ 4 exp(−e1+σ−2

) we define y0 := log(4/ε0),

x0 := 2y0/W ( y0

eσ2 ), and

Kd,σ,ε0
:=

(

x0 + d

d

)

·
( log(y0)

y0

)d
.

Then for all 0 < ε ≤ ε0 we have

H(Id : Hσ(Bd
2) → ℓ∞(Bd

2 ), ε
) ≤ Kd,σ,ε0

· logd+1(4/ε)

log logd(4/ε)
.

To appreciate Theorem 2.2 we note that for ε0 → 0 we have y0 → ∞ and x0 → ∞. Since

W (t) ∼ log(t) and
(t+d

d

) ∼ td/d! for t → ∞ we then find

lim
ε0→0+

Kd,σ,ε0
= lim

ε0→0+

(

x0 + d

d

)

· x−d
0 ·

(2 log(y0)

W ( y0

eσ2 )

)d
=

2d

d!
.

This sharpens the result of [7, Remark 4] by a factor of approximately
√

2πd. Finally note

that for σ = 1 and ε0 := 4 exp(−e2) ≈ 0.0025 we have y0 = e2 and x0 = 2e2. Hence we find

Kd,1,ε0
≤ 16 · d2e2 · (2/e2)d .
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In this respect we like to mention that [13] established the constant 4d(6d + 2) for 0 < ε ≤
exp(−90d2 −11d−3), again however, for a logd+1(1/ε)-type bound on X = [0, 1]d. To compare

this result of [13] with our Theorem 2.2 we use [0, 1]d ⊆ 1/2 +
√

d/2 · Bd
2 in combination with

the later established Theorem 2.4 and (10) for r =
√

d/2 and σ = 1 as well as Lemma 3.7 for

C := 1/
√

360e to obtain a constant not exceeding

(2π)−1/2 · 16.84d · d−d/2−1/2

for the range 0 < ε ≤ ε0 := 4 exp
(−3d

√
10e log

(

3d
√

10/e
))

on X = [0, 1]d. This improves the

result from [13] in both, the ε range and the constant for all d ≥ 1.

For some applications, see e.g. [12, 4], it is sufficient and more convenient to work with a

weaker bound in ε such as the one in (2). For this reason, the following theorem establishes

an upper bound of the form (2) with an explicit constant.

2.3 Theorem For d ≥ 1 and σ > 0 we define

t0 :=
2(d + 1) · 4

p

d+1

ep · W (d+1
pσ2 )

exp
( 1

W (d+1
pσ2 )

)

.

Then for all d ≥ 1, σ > 0, p > 0, and all 0 < ε ≤ 1 we have

H(Id : Hσ(Bd
2) → ℓ∞(Bd

2 ), ε
) ≤

(

t0 + d

d

)

· d + 1

ep
· 4

p

d+1 · ε−p .

To better understand the constant appearing in Theorem 2.3, we denote it by

Kd,σ,p :=

(

t0 + d

d

)

· d + 1

ep
· 4

p

d+1 . (8)

For fixed σ, p > 0, Lemma 3.8 then shows that d 7→ Kd,σ,p grows more slowly than any

exponential function, i.e. for all a > 0 we have Kd,σ,pe−ad → 0 for d → ∞. To be more precise,

Lemma 3.8 provides constants cσ,p > 0 and Cσ,p > 0 independent of d such that

Kd,σ,p ≤ Cσ,p

√

d log(d) · exp
(

cσ,p · d · log log(d)

log(d)

)

, d ≥ 1.

Moreover, if we restrict our considerations to σ := 1 and also fix a d ≥ 1 and a 0 < p0 ≤ 1/e,

then Lemma 3.9 shows that

Kd,1,p ≤ 1/2 · Cd
0 ·

√
d · (1/p)d+1

logd(1/p)
, 0 < p ≤ p0,
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where the constant C0 is given by

C0 := ep0 · log(1/p0) + (2 + 1/e)21+p0 exp
( 1

W (2/p0)

)

. (9)

In particular, C0 only depends on p0, and for p0 := 1/e we find C0 ≈ 13.6481. In addition,

C0 converges to 4 + 2/e ≈ 4.7358 for p0 → 0. Finally, we note that the constant appearing in

Theorem 2.3 can again be substantially improved if we restrict our consideration to a smaller

range 0 < ε ≤ ε0.

2.2 Anisotropic Gaussian Kernels

The goal of this subsection is to analyze how the constants in the log-covering number bounds

depend on the kernel width σ and the size of the input space X. To this end, our next

theorem reduces the problem of bounding the log-covering numbers of Id : Hσ(X) → ℓ∞(X)

of anisotropic Gaussian RKHS to the estimation of the log-covering numbers of the embedding

Id : H1(Bd
2 ) → ℓ∞(Bd

2) of the isotropic Gaussian RKHS with width σ = 1.

2.4 Theorem For all bounded subsets X ⊆ R
d, all σ = (σ1, . . . , σd) ∈ (0, ∞)d, and all 0 < ε ≤ 1

we have

H(Id : Hσ(X) → ℓ∞(X), ε
) ≤ N (DσX, 1) · H(Id : H1(Bd

2) → ℓ∞(Bd
2), ε

)

,

where the covering numbers N (DσX, 1) of DσX ⊆ R
d are with respect to the Euclidean norm.

Before we proceed we like to remark that Theorem 2.4 actually holds for general bounded

and translation invariant kernels, see Section 3.3 for details.

Now, to illustrate the impact of Theorem 2.4 we note that X is assumed to be bounded,

and hence there are an x ∈ R
d and an r > 0 with X ⊆ x + rBd

2 . In the case of mini σi ≥ 1/r,

Lemma 3.13 then gives us

N (DσX, 1) ≤ N (DσBd
2 , 1/r) ≤ σ1 · . . . · σd · (3r)d . (10)

For the sake of completeness, we further mention that in the case of maxi σi ≤ 1/r we have

N (DσX, 1) = 1. Now, we can combine Theorem 2.4 with one of the theorems presented in

Section 2.1. For example, by combining Theorem 2.4 with Theorem 2.1 and (10) we obtain

H(Id : Hσ(rBd
2) → ℓ∞(rBd

2), ε
) ≤

(

4e + d

d

)

· (3r/e)d · σ1 · . . . · σd · logd+1(4/ε)

log logd(4/ε)
(11)

for all 0 < ε ≤ 1, all r > 0, and all σ = (σ1, . . . , σd) ∈ [1/r, ∞)d. Finally, we mention that in

the case of r ≥ 1 and an isotropic Gaussian kernel with width σ ≥ 1 the constant in (11), that
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is

K̃d,σ,r := Kd,1 · (3rσ)d =

(

4e + d

d

)

· (3/e)d · rd · σd , (12)

grows like σd for σ → ∞. In contrast, recall from (7) that the constant Kd,σ obtained in

Theorem 2.1 grows like σ2d. Consequently, (11) improves Theorem 2.1 in the dependency on

σ by a factor of 2 in the exponent. In this respect note that [12] obtained the same behavior

in σ but for a bound that does not include the double logarithmic factor log logd(4/ε) in (11).

Moreover, [11, Theorem 6.27] achieves the same behavior in σ for a polynomial bound of the

form (2). Of course, the latter two results can be recovered from (11), and in addition, the

results in [11, 12] do not take care of the explicit form of the constants.

3 Proofs

Before we present the proofs of our results, we briefly recall some basic facts about covering

numbers. To this end, let S, T : U → V and R : V → W be some bounded operators between

Banach spaces. Then the covering numbers satisfy

N (S + T, ε + ‖T ‖) ≤ N (S, ε) and N (RS, ε‖R‖) ≤ N (S, ε) (13)

for all ε > 0. Furthermore, if T has a finite rank, then the covering numbers satisfy the

following standard bound

N (T, ε) ≤
(

1 +
2‖T ‖

ε

)rank T

(14)

For the proofs of these properties and a comprehensive introduction to this topic we refer to

[1, Section 1.3], where we note that in [1] the proofs are for entropy numbers but they easily

transfer to covering numbers.

3.1 Isotropic Gaussian Kernels

Throughout this subsection the domain X := Bd
2 ⊆ R

d is fixed, and hence we simply write Iσ

for the embedding Id : Hσ(Bd
2 ) → ℓ∞(Bd

2). Before we prove the results of Subsection 2.1 we

present several auxiliary lemmas. Our first result in this direction, which essentially repeats

the key argument of [7, Theorem 3] on the input space X = Bd
2 instead of X = [0, 1]d, provides

a general estimate for the log-covering numbers of Iσ.

3.1 Lemma For all σ > 0, ε > 0, and all integers N ≥ 1 we have

H
(

Iσ, ε +

√

(2σ2)N

N !

)

≤
(

N − 1 + d

d

)

· log
(

1 + 2/ε
)

.

9



Proof. For fixed σ > 0, ε > 0, and N ≥ 1 we define

ε0 :=

√

(2σ2)N

N !
.

In order to repeat the argument of [7, Theorem 3], we begin by recalling some notation: For

every multi-index k = (k1, . . . , kd) ∈ N
d
0 we define the function ek : Bd

2 → R by

ek(x) :=

√

(2σ2)|k|

k!
xk exp

(−σ2‖x‖2
ℓd

2

)

where we use |k| := k1+. . .+kd, k! = k1!·. . .·kd!, and xk := xk1

1 ·. . .·xkd

d for x = (x1, . . . , xd) ∈ Bd
2 .

Since Bd
2 has a non-empty interior the family of functions (ek)k∈Nd

0
forms an orthonormal basis

(ONB) of Hσ(Bd
2) according to [11, Theorem 4.42]. Using this ONB we now consider, for

N ≥ 1, the orthogonal projections PN , QN : Hσ(Bd
2 ) → Hσ(Bd

2) onto span{ek : |k| < N} and

span{ek : |k| ≥ N}, respectively. From the first equation on page 494 of [7] we know

‖Iσ ◦ QN‖ ≤ sup
x∈Bd

2

√

√

√

√

(2σ2‖x‖2
ℓd

2

)N

N !
=

√

(2σ2)N

N !
= ε0 .

As a consequence of (13), (14), and ‖Iσ ◦ PN ‖ = 1 we get

H(Iσ, ε + ε0

)

= H
(

Iσ ◦ PN + Iσ ◦ QN , ε + ε0

)

≤ H(Iσ ◦ PN , ε
) ≤ rank(PN ) log

(

1 + 2/ε
)

.

Together with the formula

rank(PN ) =

(

N − 1 + d

d

)

,

which was derived in [7, Remark 4], we thus obtain the assertion.

Our next goal is to find suitable values of N ≥ 1 for the bound in Lemma 3.1. To this end,

recall that Lambert’s W -function is increasing and satisfies the relations W (x) > 0 for x > 0,

W (x)eW (x) = x for x ≥ −1/e, and W (yey) = y for y ≥ −1. In the following, we will often use

these relations without referencing them.

3.2 Lemma For all σ > 0, x > 0, y ≥ −σ2,

pσ(x) := 2
(2eσ2

x

)x/2
, and hσ(y) := 2eσ2 exp

(

W
( y

eσ2

))

the following statements are true:

i). The function pσ : (0, ∞) → (0, ∞) is decreasing on (2σ2, ∞) and limx→∞ pσ(x) = 0.

10



ii). The function hσ : [−σ2, ∞) → [2σ2, ∞) is increasing and we have

hσ(y) =
2y

W
( y

eσ2

) . (15)

iii). The function pσ : [2σ2, ∞) → (0, 2 exp(σ2)] is bijective with inverse p−1
σ given by

p−1
σ (ε) = hσ ◦ log(2/ε) .

Proof. i). Some tedious calculations show that the derivative of pσ is given by

p′
σ(x) =

pσ(x)

2
log
(2σ2

x

)

, x > 0.

From this identity the first assertion immediately follows. The second assertion is obvious.

ii). The monotonicity of hσ is a consequence of the monotonicity of W and the definition of

the function hσ. Moreover, (15) follows from the identity W (x) exp(W (x)) = x.

iii). By part i) we already know that pσ : [2σ2, ∞) → (0, 2 exp(σ2)] is bijective. To verify

the formula for p−1
σ , we fix some 0 < ε ≤ 2 exp(σ2) and write y := log(2/ε). This immediately

gives y ≥ −σ2 and by the definition of hσ we find

pσ ◦ hσ(y) = 2
( 2eσ2

hσ(y)

)hσ(y)/2
= 2 exp

(

−W
( y

eσ2

)

· hσ(y)

2

)

= 2e−y = ε ,

i.e. we have shown the assertion.

In the next lemma we choose a suitable parameter N ≥ 1 for the bound in Lemma 3.1 with

the help of the functions introduced in Lemma 3.2.

3.3 Lemma For all σ > 0 and all 0 < ε ≤ 1, we have

H(Iσ, ε
) ≤

(

(hσ ◦ log)(4/ε) + d

d

)

· log
(

4/ε
)

. (16)

Proof. For a fixed 0 < ε ≤ 1 we write y := log(4/ε) and x := hσ(y). Since y > 1 we have

x > 2σ2, and hence there is a unique integer N ≥ 1 with N − 1 < x ≤ N . Using Lemma 3.1

with 2ε/3 instead of ε, the monotonicity of t 7→ (t+d
d

)

, and 1 ≤ 1/ε we find

H
(

Iσ,
2ε

3
+

√

(2σ2)N

N !

)

≤
(

N − 1 + d

d

)

· log
(

1 + 3/ε
) ≤

(

x + d

d

)

· log
(

4/ε
)

.

Consequently, it remains to show that
√

(2σ2)N /N ! ≤ ε/3 holds true. To this end, we use

11



Stirling’s formula N ! ≥
√

2πN (N/e)N to get

√

(2σ2)N

N !
≤ 1

(2πN)1/4
·
(2eσ2

N

)N/2
≤ pσ(N)

2(2π)1/4
.

Moreover, the already observed x > 2σ2 together with parts i) and iii) of Lemma 3.2 yields

pσ(N) ≤ pσ(x) = pσ

(

hσ(y)
)

= pσ

(

hσ ◦ log(4/ε)
)

= ε/2 .

Combining both estimates and (2π)−1/4 ≤ 4/3 we get the assertion.

Note that by an easy adaption of the above proof we can replace the 4 in y = log(4/ε)

by γ = 7/2 if we choose 4ε/5 instead of 2ε/3 and use the bound (2π)−1/4 ≈ 0.6316 ≤ 7/10.

Moreover, some tedious calculations show that the argument still works for

γ :=
3(2π)1/4 + 1 +

√

9(2π)1/2 + 2(2π)1/4 + 1

2(2π)1/4
≈ 3.4485 .

Since these improvements have little impact we stick to γ = 4 for convenience. The following

lemma demonstrates the general technique we use to bound the right hand side of (16).

3.4 Lemma Let d ≥ 1, σ > 0, 0 < ε0 ≤ 1, and t0 > 0. If f : (0, ε0] → (0, ∞) is a function

with f(ε) ≥ t0 and

(hσ ◦ log)(4/ε) ≤ f(ε)

for all 0 < ε ≤ ε0, then we have

(

(hσ ◦ log)(4/ε) + d

d

)

≤
(

t0 + d

d

)

·
(f(ε)

t0

)d
.

Proof. In order to prove this statement we use the auxiliary function Gd(t) : (0, ∞) → (0, ∞)

defined by Gd(t) :=
(t+d

d

) · t−d = 1
d!

∏d
i=1

(

1 + i
t

)

. Since t 7→ (t+d
d

)

is increasing and Gd is

decreasing we get

(

(hσ ◦ log)(4/ε) + d

d

)

≤
(

f(ε) + d

d

)

= Gd(f(ε)) · fd(ε) ≤ Gd(t0) · fd(ε)

for all 0 < ε ≤ ε0, which gives the assertion.

As final preparation we need the following simple lemma.

3.5 Lemma For σ > 0 consider t∗ := σ−2 exp(σ−2) and qσ : (0, ∞) → R defined by

qσ(t) :=
1 + log(σ2) + log(t)

W (t)
.

12



Then qσ is increasing on (0, t∗] and decreasing on [t∗, ∞). Moreover, qσ has a unique global

maximum at t∗ with qσ(t∗) = 1 + σ2 and we have limt→∞ qσ(t) = 1.

Proof. A simple but tedious calculation shows

q′
σ(t) =

W (t) − log(tσ2)

t · W (t) · (1 + W (t))
.

Since the denominator is positive for all t > 0 we can focus on the numerator in order to

investigate the monotonicity properties of qσ. Consequently, qσ is decreasing, if and only if

W (t) < log(tσ2) and this is equivalent to

t = W (t)eW (t) < log(tσ2) · exp ◦ log(tσ2) = tσ2 log(tσ2) .

Rearranging this inequality for t shows that qσ is decreasing on [t∗, ∞). Analogously, we

get that qσ is increasing on (0, t∗] and that qσ has a unique global maximum at t∗. Since

W (t∗) = σ−2 and log(t∗) = − log(σ2) + σ−2 we find qσ(t∗) = 1 + σ2. Finally, for t ≥ 1 we write

s := tet and from

qσ(s) =
1 + log(σ2) + log(tet)

W (tet)
=

1 + log(σ2) + log(t) + t

t
,

the assertion limt→∞ qσ(t) = 1 easily follows.

Proof of Theorem 2.1. Let us define ε0 := 1 and y0 := log(4/ε0). For 0 < ε ≤ ε0 we further

write y := log(4/ε) ≥ y0 > 1. An application of Lemma 3.5 then yields

(hσ ◦ log)(4/ε) =
2y

W ( y
eσ2 )

=
2y

log(y)
· 1 + log(σ2) + log( y

eσ2 )

W ( y
eσ2 )

≤ 2 (1 + σ2) · y

log(y)
=: f(ε)

for all 0 < ε ≤ ε0. Now, the derivative of β : (1, ∞) → (0, ∞) defined by β(t) := t
log(t) is

β′(t) =
log(t) − 1

log2(t)
, (17)

and consequently it is easy to check that, for t∗ := e, the function β is decreasing on (1, t∗],

increasing on [t∗, ∞), and has a unique global minimum at t∗ with β(t∗) = e. As a result,

we get f(ε) ≥ 2e(1 + σ2) =: t0. Finally, combining Lemma 3.3 and Lemma 3.4 gives the

assertion.

Proof of Theorem 2.2. For a fixed 0 < ε0 ≤ 4 exp(−e1+σ−2

) we recall the definitions of y0 :=

log(4/ε0) and x0 := hσ(y0). Moreover, for 0 < ε ≤ ε0 we write y := log(4/ε) ≥ y0. Note

that the restriction on ε0 ensures y0 ≥ exp(1 + σ−2) and hence y0

eσ2 ≥ σ−2 exp(σ−2). As a

consequence, the function y 7→ log(y)/W ( y
eσ2 ) is decreasing on [y0, ∞) according to Lemma 3.5

13



and we get

(hσ ◦ log)(4/ε) =
2 log(y)

W ( y
eσ2 )

· y

log(y)
≤ 2 log(y0)

W ( y0

eσ2 )
· y

log(y)
=: f(ε) .

Now, from (17) we know that the function β(t) = t
log(t) is increasing on [e, ∞), and hence

f(ε) ≥ 2 log(y0)

W ( y0

eσ2 )
· y0

log(y0)
=

2y0

W ( y0

eσ2 )
= x0 =: t0

for all 0 < ε ≤ ε0. Finally, combining Lemma 3.3 and Lemma 3.4 gives the assertion.

Proof of Theorem 2.3. For 0 < ε ≤ 1 we again write y := log(4/ε) ≥ log(4). In order to give a

polynomial upper bound for H(Iσ, ε) we use Lemma 3.3 and estimate the two factors,
(hσ(y)+d

d

)

and log(4/ε), appearing in (16) separately by a polynomial bound. To bound the first factor

we fix a q1 > 0 and define the function

g1(t) := 2
te−q1t

W ( t
eσ2 )

, t > 0.

Using e−q1y = (4/ε)−q1 we then get

(hσ ◦ log)(4/ε) =
2y

W ( y
eσ2 )

(4

ε

)−q1 ·
(4

ε

)q1 ≤
(4

ε

)q1

sup
t>0

g1(t) =: f(ε)

and f(ε) ≥ 4q1 · supt>0 g1(t) =: t0. A simple but tedious calculation shows

g′
1(t) =

g1(t)

1 + W ( t
eσ2 )

(

σ−2 exp
(

−
(

1 + W
( t

eσ2

)))

− q1

(

1 + W
( t

eσ2

))

)

.

If we define

t∗ :=
1

q1

(

1 − 1

W ( 1
q1σ2 )

)

then another tedious calculation shows that g1 is increasing on (0, t∗], decreasing on [t∗, ∞),

and has a unique global maximum at t∗. In order to evaluate the maximum g1(t∗) we first give

another representation of t∗ using t/W (t) = exp(W (t)) for t = 1
q1σ2

t∗ =
(

W
( 1

q1σ2

)

− 1
)

· 1/q1

W ( 1
q1σ2 )

= σ2 ·
(

W
( 1

q1σ2

)

− 1
)

· exp ◦W
( 1

q1σ2

)

.

Using this representation together with W (xex) = x for x = W ( 1
q1σ2 ) − 1 gives us

t∗

W ( t∗

eσ2 )
=

t∗

W ( 1
q1σ2 ) − 1

=
1

q1 · W ( 1
q1σ2 )

.
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Using this identity we directly get

t0 = 4q1g1(t∗) = 2 · 4q1 · e−q1t∗

q1 · W ( 1
q1σ2 )

=
2 · 4q1

eq1 · W ( 1
q1σ2 )

exp
(

1/W
( 1

q1σ2

))

and Lemma 3.4 gives us

(

(hσ ◦ log)(4/ε) + d

d

)

≤
(

t0 + d

d

)

·
(f(ε)

t0

)d
=

(

t0 + d

d

)

· 4−q1d · (4/ε)q1d . (18)

Now, we estimate the second factor y = log(4/ε) by a polynomial bound of order q2 > 0. To

this end, we define the function g2(t) := te−q2t, for t > 0, and estimate

y = (4/ε)q2 · y · (4/ε)−q2 ≤ (4/ε)q2 · sup
t>0

g2(t) .

An easy calculation shows that the derivative of g2 is given by g′
2(t) = g2(t) · (1/t − q2) and

consequently g2 has a global maximum at t∗ := 1/q2 with g2(t∗) = 1
eq2

. Therefore, we get

y ≤ (4/ε)q2

eq2
. (19)

Finally, combining Lemma 3.3 with (18) and (19) yields

H(Iσ, ε) ≤
(

t0 + d

d

)

· 1

eq2 · 4q1d
· (4/ε)q1d+q2 ,

and for q1 = q2 = p
d+1 we get the assertion.

3.2 Auxiliary Results

In this section we collect additional results that are helpful to understand the quantities ap-

pearing in the bounds presented in Section 2.1.

3.6 Lemma For an integer d ≥ 1 and a real number t > 0 the (generalized) binomial coefficient

from (5) satisfies
(

t + d

d

)

=
Γ(t + d + 1)

Γ(t + 1)Γ(d + 1)
.

Moreover, for a fixed real number t > 0 the sequence

ad :=

(

t + d

d

)

· d−t , d ≥ 1,

is decreasing and converges to 1/Γ(t + 1).
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Proof. First note that Γ(d + 1) = d! and an d-times application of Γ(t + 1) = t · Γ(t) gives us

(

t + d

d

)

=
1

d!

d
∏

i=1

(t + i) =
Γ(t + 1)

∏d
i=1(t + i)

Γ(d + 1)Γ(t + 1)
=

Γ(d + t + 1)

Γ(d + 1)Γ(t + 1)
.

Using Γ(d+t+1)
Γ(d+1)dt → 1 for d → ∞, which is a well-known property of the Gamma function, we

get

ad =
1

Γ(t + 1)
· Γ(d + t + 1)

Γ(d + 1)dt
→ 1

Γ(t + 1)

for d → ∞ and it remains to show the monotonicity. Using Γ(t + 1) = t · Γ(t) twice we get

ad+1 =
Γ(d + t + 2)

Γ(d + 2)Γ(t + 1)
(d + 1)−t = ad ·

( d

d + 1

)t
· d + t + 1

d + 1
.

Consequently, (ad)d≥1 is decreasing if and only if d+t+1
d+1 <

(d+1
d

)t
is satisfied for all d ≥ 1 and

t > 0. In order to prove this we fix some d ≥ 1 and show that

fd(t) :=
(

1 +
1

d

)t
−
(

1 +
t

d + 1

)

> 0

is satisfied for all t > 0. To this end, we calculate the first and second derivative

f ′
d(t) =

(

1 +
1

d

)t
log
(

1 +
1

d

)

− 1

d + 1

f ′′
d (t) =

(

1 +
1

d

)t
log2

(

1 +
1

d

)

.

Using log(1 + x) ≥ x
1+x , which holds for all x > −1, for x = 1/d, we get

f ′
d(0) = log

(

1 +
1

d

)

− 1

d + 1
≥ 1/d

1 + 1/d
− 1

d + 1
= 0 .

Together with f ′′
d (t) > 0 we get f ′

d(t) > 0 for all t > 0. Finally, fd(0) = 0 and f ′
d(t) > 0 gives

fd(t) > 0 for all t > 0 and hence the assertion is proven.

3.7 Lemma For all C > 0, d ≥ 2Ce2, and ε0 := 4 exp
(− d

2C log
( d

2eC

))

the condition ε0 ≤
4 exp(−e1+σ−2

) for σ = 1 in Theorem 2.2 is satisfied and the quantity Kd,1,ε0
defined in Theo-

rem 2.2 satisfies

Kd,1,ε0
≤ (2π)−1/2 · (4e)d(1 + C)d · d−(d+1/2) .

Moreover, for 1
2e2 ≥ C ≥ 1√

360e
we have

exp
(−90d2 − 11d − 3

) ≤ ε0 .

Proof. Let us recall the definition of y0 := log(4/ε0) and x0 := 2y0

W (y0/e) = h1(y0) in Theorem 2.2

16



where h1 is defined in Lemma 3.2. Using the function p1 defined in Lemma 3.2 we can write

ε0 = 4
(2eC

d

)

d
2C

= 2 · p1(d/C) .

Since d/C ≥ 2e2 ≥ 2 part iii) of Lemma 3.2, which states p−1
1 = h1 ◦ log(2/·), is applicable

and hence

x0 = h1 ◦ log(4/ε0) = h1 ◦ log
( 2

p1(d/C)

)

= d/C .

Next, we prove the inequality ε0 ≤ u := 4 exp(−e2). To this end, note that we have h1 ◦
log(4/u) = h1(e2) = 2e exp(W (e)) = 2e2 since W (e) = 1. Our assumption d ≥ 2Ce2 implies

h1 ◦ log(4/ε0) = d/C ≥ 2e2 = h1 ◦ log(4/u)

and since h1 is increasing according to part ii) of Lemma 3.2 we get ε0 ≤ u = 4 exp(−e2). Now,

we prove the bound on Kd,1,ε0
. To this end, we rewrite Kd,1,ε0

using the representation of the

binomial coefficient from (5)

Kd,1,ε0
=

(

x0 + d

d

)

x−d
0 ·

(x0 log(y0)

y0

)d

=
1

d!

d
∏

i=1

(1 + i/x0) ·
(2 log(y0)

W (y0/e)

)d
.

If we bound the first factor by using i/x0 ≤ d/x0 = C and if we bound the second factor by

using log(y0) ≤ 2W (y0/e) from Lemma 3.5 then we get

Kd,1,ε0
≤ 4d(1 + C)d

d!
.

Together with Stirling’s formula d! ≥
√

2πd · (d/e)d this gives the desired bound. Finally, note

that log(t) ≤ t and C ≥ 1/
√

360e yields

ε0 ≥ exp
(

− d2

4eC2

)

≥ exp
(−90d2) ,

which proves the lower bound on ε0.

3.8 Lemma For σ, p > 0 there are constants cσ,p, Cσ,p > 0 such that Kd,σ,p defined in (8)

satisfies, for all d ≥ 1

Kd,σ,p ≤ Cσ,p ·
√

d log(d) · exp
(

cσ,p · d · log log(d)

log(d)

)

.

Proof. For this proof we use the usual notation an 4 bn for two sequences (an)n≥1, (bn)n≥1 iff

there is a constant c > 0 with an ≤ cbn for all n ≥ 1. Moreover, we write an ≍ bn iff both
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an 4 bn and an < bn hold. Using W (t) ∼ log(t) we get, for d → ∞,

t0 =
2(d + 1) · 4

p

d+1

ep · W (d+1
pσ2 )

exp
( 1

W (d+1
pσ2 )

)

≍ d

W (d+1
pσ2 )

≍ d

log(d+1
pσ2 )

≍ d

log(d)
.

Since t0 → ∞ for d → ∞, Lemma 3.6 and Stirling’s formula Γ(t + 1) ∼
√

2πt (t/e)t yield

(

t0 + d

d

)

=
Γ(t0 + d + 1)

Γ(t0 + 1)Γ(d + 1)
≍
( 1

t0
+

1

d

)1/2(

1 +
t0

d

)d(

1 +
d

t0

)t0

for d → ∞. Using the inequality 1 + t ≤ et, which holds for all t ∈ R, for t = t0/d we get

(

t0 + d

d

)

4

√

log(d)

d
· et0 · (1 + d/t0

)t0

for d → ∞. Consequently, we find a constant Cσ,p > 0 with

Kd,σ,p =

(

t0 + d

d

)

· d + 1

ep
· 4

p

d+1 ≤ Cσ,p ·
√

d log(d) · exp
(

t0 · log
(

e + e
d

t0

))

.

Since, for d → ∞, the exponent behaves like

t0 · log
(

e + e
d

t0

)

≍ d

log(d)
· log

(

e + e log(d)
)

≍ d · log log(d)

log(d)

there is a constant cσ,p > 0 independent of d with the desired property.

3.9 Lemma For 0 < p0 ≤ 1/e the quantities Kd,1,p and C0 defined in (8) and (9), respectively,

satisfy

Kd,1,p ≤ 1/2 · Cd
0 ·

√
d · (1/p)d+1

logd(1/p)
, 0 < p ≤ p0, d ≥ 1.

Proof. As a first step we bound t0. To this end, we write g(p0) := 21+p0 · exp
(

1/W (2/p0)
) · (2 +

1/e) and bound W by log with the help of Lemma 3.5, that is

log(1/p)

W (d+1
p )

=
1 + log( 1

(d+1)e ) + log(d+1
p )

W (d+1
p )

≤ 1 +
1

(d + 1)e
≤ d · 2 + 1/e

d + 1
.

Together with p ≤ p0 and d ≥ 1 we can bound t0 by

t0 =
2(d + 1) · 4

p

d+1

ep · W (d+1
p )

exp
( 1

W (d+1
p )

)

≤ g(p0)

e
· d · 1/p

log(1/p)
=: f(p) .

Since β(t) = t
log(t) is increasing on [e, ∞) according to (17) and 1/p ≥ 1/p0 ≥ e we get

f(p) ≥ f(p0) = g(p0)/e · d · z0, where z0 := 1/p0

log(1/p0) . Repeating the proof of Lemma 3.4
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together with d ≥ 1 and 1/p ≥ 1/p0 yields

Kd,1,p =

(

t0 + d

d

)

· d + 1

ep
· 4

p

d+1 ≤
(

f(p0) + d

d

)

·
( f(p)

f(p0)

)d
· d · 21+p0

e
· 1/p

=

(

f(p0) + d

d

)

· z−d
0 · d · 21+p0

e
· (1/p)d+1

logd(1/p)
.

Now, we bound the quantities depending on d. To this end, we use Lemma 3.6 together with

Stirling’s formula, f(p0) ≥ 4, d ≥ 1, and 1 + t ≤ et for t = d/f(p0)

(

f(p0) + d

d

)

· z−d
0 · d ≤ e1/60

√
2π

·
(1

d
+

1

f(p0)

)1/2(

1 +
f(p0)

d

)d(

1 +
d

f(p0)

)f(p0)
· z−d

0 · d

≤ e1/60

√
2π

·
(

1 +
e

g(p0) · z0

)1/2
·
(1 + g(p0)/e · z0

z0

)d
· ed · d1/2 .

Since C0 = e/z0 + g(p0) and the arising quantities that are independent of p and d satisfy

e1/60

√
2π

·
(

1 +
e

g(p0) · z0

)1/2
· 21+p0

e
≤ e1/60

√
2π

·
(

1 +
1

2(2 + 1/e)

)1/2
· 21+1/e

e
≈ 0.4239 ≤ 1/2

the assertion is proven.

3.3 Anisotropic Gaussian Kernels

In this section we first provide some general theory about covering numbers of RKHSs and

finally prove Theorem 2.4. To this end, we introduce some notation. For a fixed bounded kernel

k defined on a set X we often consider its restriction to different subsets Y ⊆ X. Consequently,

we highlight the considered domain by writing H(Y ) for the corresponding RKHS and by using

the abbreviation I[Y ] for the corresponding embedding Id : H(Y ) → ℓ∞(Y ). Recall that I[Y ]

is well-defined according to [11, Lemma 4.23].

3.10 Lemma Let T : Y → X be a mapping between two non-empty sets and k be a bounded

kernel on X with RKHS H(X). Then

kT (y, y′) := k(T (y), T (y′)) , y, y′ ∈ Y, (20)

defines a bounded kernel on Y with RKHS HT (Y ) =
{

f ◦T : f ∈ H(X)
}

and the corresponding

RKHS-norm satisfies

‖f ◦ T ‖HT (Y ) ≤ ‖f‖H(X)

for f ∈ H(X). Moreover, the covering numbers satisfy

N (Id : HT (Y ) → ℓ∞(Y ), ε
) ≤ N (Id : H(X) → ℓ∞(X), ε

)

, ε > 0. (21)
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If, in addition, T is bijective, then equality holds in (21).

Proof. Let Φ : X → H(X) be the canonical feature map of k, that is Φ(x) := k(x, ·) for x ∈ X.

Then it is easy to see that ΦT := Φ ◦ T is a feature map for kT . Consequently, kT is a kernel

on Y , and according to [11, Theorem 4.21] the RKHS of kT has the claimed form, the claimed

norm inequality is satisfied, and SH : H(X) → HT (Y ) defined by f 7→ f ◦ T is a metric

surjection, i.e. SHB̊H(X) = B̊HT (Y ). Now, it remains to prove the covering number bounds.

To this end, we define the mapping S∞ : ℓ∞(X) → ℓ∞(Y ) by f 7→ f ◦ T . Using the metric

surjectivity of SH and IT [Y ] ◦ SH = S∞ ◦ I[X] we get, for ε > 0,

N (IT [Y ], ε) = N (IT [Y ] ◦ SH , ε) = N (S∞ ◦ I[X], ε) .

Since ‖S∞f‖ℓ∞(Y ) = supy∈Y |f(T (y))| ≤ ‖f‖ℓ∞(X) is satisfied for all f ∈ ℓ∞(X) we have

‖S∞‖ ≤ 1 and together with (13) this yields the assertion. If T is bijective we can exchange

the role of X and Y and hence we get the claimed equality.

3.11 Lemma Let X = X1 ∪ X2 be the disjoint union of non-empty sets X1, X2 and k be a

bounded kernel on X with RKHS H(X). Then for all ε > 0 we have

N (Id : H(X) → ℓ∞(X), ε
) ≤ N (Id : H(X1) → ℓ∞(X1), ε

) · N (Id : H(X2) → ℓ∞(X2), ε
)

.

Proof. Let m := N (I[X1], ε) and n := N (I[X2], ε). Moreover, choose corresponding ε-nets

f1, . . . , fm ∈ ℓ∞(X1) and g1, . . . , gn ∈ ℓ∞(X2). Then for each i ∈ {1, . . . , m} and each j ∈
{1, . . . , n} we define

hi,j(x) :=







fi(x), x ∈ X1

gj(x), x ∈ X2 ,
for x ∈ X.

This defines at most m · n different elements of ℓ∞(X) and it remains to show that hi,j for

i = 1, . . . , m and j = 1, . . . , n defines an ε-net of BH(X). For h ∈ H(X) with ‖h‖H(X) ≤ 1 we

have h|Xℓ
∈ H(Xℓ) with ‖h|Xℓ

‖H(Xℓ) ≤ 1, for ℓ = 1, 2, see Lemma 3.10. Consequently, there is

an i ∈ {1, . . . , m} and a j ∈ {1, . . . , n} with ‖h|X1
− fi‖ℓ∞(X1) ≤ ε and ‖h|X2

− gj‖ℓ∞(X2) ≤ ε,

respectively. For this choice of i and j we have

‖h − hi,j‖ℓ∞(X) = max{‖h|X1
− fi‖ℓ∞(X1), ‖h|X2

− gj‖ℓ∞(X2)} ≤ ε

and hence the assertion is proven.

So far, we considered bounded kernels on general sets. In the following, we investigate

bounded kernels k : V × V → R on a vector space V . The kernel k is called translation

invariant along a ∈ V if

k(v + a, v′ + a) = k(v, v′)

20



is satisfied for all v, v′ ∈ V . In this case the transformation T (x) := x + a does not change the

kernel, i.e. k = kT . Since T is bijective as a mapping X → a + X, Lemma 3.10 yields

N (Id : H(X) → ℓ∞(X), ε
)

= N (Id : H(X + a) → ℓ∞(X + a), ε
)

, ε > 0. (22)

If k is translation invariant along all a ∈ U ⊆ V for some subspace U ⊆ V , then we call k

translation invariant along U .

3.12 Lemma Let (V, ‖ · ‖) be a Banach space with complemented subspaces V1, V2 ⊆ V , i.e.

V = V1 + V2 and V1 ∩ V2 = {0}. Moreover, let Xi ⊆ Vi be non-empty subsets, for i = 1, 2, and

k be a bounded kernel on V . If k is translation invariant along V1 and X1 is relatively compact,

then the log-covering numbers satisfy, for δ > 0 and ε > 0,

H(Id : H(X1 +X2) → ℓ∞(X1 +X2), ε
) ≤ N (X1, δ)·H(Id : H(δBV1

+X2) → ℓ∞(δBV1
+X2), ε

)

.

Proof. Let us fix some ε, δ > 0 and set n := N (X1, δ). For a minimal δ-net x1,1, . . . , x1,n ∈ V1

of X1 we choose a partition X1,1, . . . , X1,n of X1 with X1,i ⊆ x1,i + δBV1
for all i = 1, . . . , n.

Since we have chosen a minimal δ-net X1,i 6= ∅ is satisfied for i = 1, . . . , n. Because Xi ⊆ Vi,

for i = 1, 2, and V1, V2 are complemented subspaces the sets X1,i + X2, for i = 1, . . . , n, form a

partition of X1 + X2 with X1,i + X2 ⊆ x1,i + δBV1
+ X2. A multiple application of Lemma 3.11

and an application of Lemma 3.10 for T = Id yield

H(I[X], ε) ≤
n
∑

i=1

H(I[X1,i + X2

]

, ε
) ≤

n
∑

i=1

H(I[x1,i + (δBV1
) + X2

]

, ε
)

.

Since k is translation invariant along V1, Equation (22) yields the assertion.

Proof of Theorem 2.4. Let X ⊆ R
d be a bounded subset and σ = (σ1, . . . , σd) ∈ (0, ∞)d. With

the notation introduced in (20) the Gaussian kernel then writes as kσ = kDσ
. Since the diag-

onal operator Dσ : X → DσX is bijective, Lemma 3.10 yields H(Iσ[X], ε) = H(I1[DσX], ε).

Together with Lemma 3.12 for δ = 1, V1 = R
d (equipped with the Euclidean norm), V2 = {0},

and X1 = DσX, X2 = {0} we get the assertion.

Finally, we present a lemma bounding the covering numbers of convex sets X ⊆ R
d. This

result is well-known but we did not find exactly this one in the literature and hence we included

a proof for convenience.

3.13 Lemma Let X ⊆ R
d be a convex set and r0 > 0 such that there is an a ∈ R

d with

a + r0Bd
2 ⊆ X. Then we have

N (X, 2ε) ≤ λd(X)

λd(Bd
2 )

( 1

r0
+

1

ε

)d
, ε > 0, (23)
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where the covering numbers are with respect to the Euclidean norm and λd denotes the d-

dimensional Lebesgue measure.

Proof. For this proof we use packing numbers, which for ε > 0 are defined by

P(X, ε) := max
{

n ≥ 1 : ∃x1, . . . , xn ∈ X with ‖xi − xj‖ℓd
2

> 2ε ∀i 6= j
}

.

Recall that P(X, 2ε) ≤ N (X, 2ε) ≤ P(X, ε) holds for all ε > 0, see e.g. [6, Theorem IV].

Consequently, it is enough to bound P(X, ε) by the right hand side of (23). For ε > 0 we set

n := P(X, ε) and choose x1, . . . , xn ∈ X with ‖xi − xj‖ℓd
2

> 2ε for all i 6= j. Then the sets

xi + εBd
2 are disjoint subsets of X + εBd

2 and hence

nεdλd(Bd
2) = λd

(

n
⋃

i=1

(

xi + εBd
2

)

)

≤ λd(X + εBd
2) .

Since X is convex we have s1X +s2X = (s1 +s2)X for s1, s2 > 0. Together with r0Bd
2 ⊆ X −a

we get

X + εBd
2 = X +

ε

r0
· r0Bd

2 ⊆ X +
ε

r0
· (X − a) =

(

1 +
ε

r0

)

X − ε

r0
a .

Both bounds together yield nεdλd(Bd
2) ≤ λd(X)(1 + ε/r0)d, which gives the assertion.
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