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Estimates of the asymptotic Nikolskii constants

for spherical polynomials

Feng Dai, Dmitry Gorbachev, and Sergey Tikhonov

Abstract. Let Πd
n denote the space of spherical polynomials of degree at most n on

the unit sphere S
d ⊂ R

d+1 that is equipped with the surface Lebesgue measure dσ
normalized by

∫
Sd

dσ(x) = 1. This paper establishes a close connection between the
asymptotic Nikolskii constant,

L∗(d) := lim
n→∞

1

dimΠd
n

sup
f∈Πd

n

‖f‖L∞(Sd)

‖f‖L1(Sd)

,

and the following extremal problem:

Iα := inf
ak

∥∥∥jα+1(t)−
∞∑

k=1

akjα
(
qα+1,kt/qα+1,1

)∥∥∥
L∞(R+)

with the infimum being taken over all sequences {ak}∞k=1 ⊂ R such that the infinite series
converges absolutely a.e. on R+. Here jα denotes the Bessel function of the first kind
normalized so that jα(0) = 1, and {qα+1,k}∞k=1 denotes the strict increasing sequence of
all positive zeros of jα+1. We prove that for α ≥ −0.272,

Iα =

∫ qα+1,1

0
jα+1(t)t

2α+1 dt∫ qα+1,1

0
t2α+1 dt

= 1F2

(
α+ 1;α+ 2, α+ 2;−q2α+1,1

4

)
.

As a result, we deduce that the constant L∗(d) goes to zero exponentially fast as d → ∞:

0.5d ≤ L∗(d) ≤ (0.857 · · · )d (1+εd) with εd = O(d−2/3).

1. Introduction

Let Sd = {x ∈ Rd+1 : |x| = 1} denote the unit sphere of Rd+1, and dσ the surface
Lebesgue measure on Sd normalized by

∫
Sd
dσ(x) = 1, where | · | denotes the Euclidean
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norm of Rd+1. Denote by ωd := 2π
d+1
2

Γ(d+1
2

)
the surface area of Sd. Given 0 < p ≤ ∞,

let Lp(Sd) denote the Lebesgue Lp-space defined with respect to the measure dσ on S
d,

and ‖ · ‖p = ‖ · ‖Lp(Sd) the quasi-norm of Lp(Sd). We denote by R
(α,β)
k , α, β ∈ R, the

usual Jacobi polynomial of degree n normalized by R
(α,β)
k (1) = 1, and by Cµ

k , µ > 0, the
Gegenbauer polynomial of degree k.

A spherical polynomial of degree at most n on Sd is the restriction to Sd of an algebraic
polynomial in d + 1 variables of total degree at most n. Let Πd

n denote the space of all
spherical polynomials of degree at most n on Sd. As is well known (see, e.g., [13, Chap. 1]),

dimΠd
n =

2n+ d

n+ d

(
n+ d

n

)
=

2nd

Γ(d+ 1)
(1 +O(n−1)), n→ ∞. (1.1)

The classical Nikolskii inequality for spherical polynomials ([27]) asserts that there
exists a positive constant Cd depending only on the dimension d such that for any 0 <
p < q ≤ ∞,

‖f‖Lq(Sd) ≤ Cd

(
dimΠd

n

) 1
p
− 1

q ‖f‖Lp(Sd), ∀ f ∈ Πd
n.

In this paper, we are mainly interested in the best Nikolskii constant defined as follows:

N (Sd;n)p,q := sup
{
‖f‖Lq(Sd) : f ∈ Πd

n and ‖f‖Lp(Sd) = 1
}
, (1.2)

where 0 < p < q ≤ ∞ and n ∈ N.
Exact values of the constants N (Sd;n)p,q are known only in the case of p = 2 and

q = ∞, where one has (see [14])

N (Sd;n)2,∞ =
√

dim Πd
n. (1.3)

For the general case, the following estimates are known ([27, 14]):

0 < cd <
N (Sd;n)p,q

(dimΠd
n)

1
p
− 1

q

≤ Cd <∞, 0 < p < q ≤ ∞, (1.4)

where Cd = 1 in the case of 0 < p ≤ 2. However, it is a long-standing open problem
to find the exact values of the Nikolskii constants N (Sd;n)p,q for (p, q) 6= (2,∞) and
0 < p < q ≤ ∞. In fact, this problem is open even in the case of d = 1 ([4, 22]).

For d = 1, Levin and Lubinsky [29, 30] established very close connections between the

asymptotic behaviour of the quantity N (S1;n)p,q

(2n+1)
1
p−

1
q
as n→ ∞ and the best Nikolskii constant

for entire functions of exponential type on R. Their results were recently extended to
the higher-dimensional case by the current authors [14]. To state these results more
precisely, we recall that an entire function f of d-complex variables is said to be of spherical
exponential type at most σ > 0 if for every ε > 0 there exists a constant Aε > 0 such that
|f(z)| ≤ Aεe

(σ+ε)|z| for all z = (z1, · · · , zd) ∈ C
d. Given 0 < p ≤ ∞, we denote by Ed

p the
class of all entire functions f in d-variables of spherical exponential type at most 1 whose
restrictions to Rd belong to the space Lp(Rd) ([36, Ch. 3]). For 0 < p < q ≤ ∞, define

N (Rd)p,q := sup
{
‖f‖Lq(Rd) : f ∈ Ed

p and ‖f‖Lp(Rd) = 1
}
.
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Throughout this paper, we will consider the Nikolskii constants for real-valued functions
(i.e., those functions in Ed

p whose restrictions to Rd are real-valued). This will not cause

any problem as for every f ∈ Ed
p , g(z) := 1

2
(f(z) + f(z̄)) is a function in Ed

p whose

restriction to Rd is real-valued (see also [17, Theorem 1.1]).
The following result was proved first by Levin and Lubinsky [29, 30] for d = 1 and

later by the current authors [14] for d ≥ 2. 1

Theorem A ([29, 30, 14]). For 0 < p <∞, we have

lim
n→∞

N (Sd;n)p,∞

(dimΠd
n)

1
p

=
((2π)d

Vd

) 1
pN (Rd)p,∞ =: L∗

p,∞(d), (1.5)

where Vd := πd/2

Γ(d
2
+1)

denotes the volume of the unit ball in Rd. Furthermore, if 0 < p <

q ≤ ∞, then

lim inf
n→∞

N (Sd;n)p,q

(dimΠd
n)

1
p
− 1

q

≥
((2π)d

Vd

) 1
p
− 1

qN (Rd)p,q =: L∗
p,q(d).

Note that (1.5) implies that

N (Sd;n)p,∞ = L∗
p,∞(d)

(
dimΠd

n

) 1
p
(
1 + o(1)

)
, 0 < p <∞, as n→ ∞. (1.6)

Furthermore, by (1.3), (1.1) and (1.6), we obtain

N (Rd)2,∞ =

√
Vd

(2π)d/2
=

( 1

2dΓ(d
2
+ 1)πd/2

)1/2

.

In this paper, we continue the research of [14]. We shall establish more explicit duality
formulas for the constants N (Sd;n)p,∞ and N (Rd)p,∞ with 1 ≤ p < ∞. For example, in
Section 4, we prove

N (Sd;n)1,∞ = (dimΠd
n) inf

ak

∥∥∥R(d
2
, d−2

2
)

n −
∞∑

k=n+1

akC
d−1
2

k

∥∥∥
L∞[−1,1]

(1.7)

with the infimum being taken over all sequences {ak}∞k=n+1 ⊂ R such that the series
∑∞

k=n+1 akC
d−1
2

k (t) converges to an essentially bounded function in L2-norm with respect

to the measure (1 − t2)
d−2
2 dt on [−1, 1]. One of our main goals is to apply these duality

formulas to estimate the constant L∗
p,∞(d) in the asymptotic expansion (1.6) for p = 1.

For simplicity, we write

L∗(d) := L∗
1,∞(d).

Note that by (1.3) and (1.4), if 0 < p ≤ 2, then for any d,

L∗
p,∞(d) ≤ 1 (1.8)

with equality for p = 2.

1Note that the definition of the constantN (Sd, n)p,q here is slightly different from that of the constant
C(n, d, p, q) in [14] due to the normalization of the surface Lebesgue measure dσ. Indeed, we have

N (Sd;n)p,q = ω
1
p
−

1
q

d C(n, d, p, q).
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The estimates for the Nikolskii constant L∗(d) are important in many applications.
Let us mention only a few of them here. First of all, the constant L∗(d) appears very
naturally in problems on best L1-approximation (see, e.g., [8, 18, 19, 31]). It can be
used to obtain certain tight bounds in the Remez-type problem about the concentration of
L1-norm of entire functions of the spherical exponential type ([8, 33], see also [43]). Some
details can be found in Section 7. The next example is widely known. The constant L∗(d)
can be used to obtain some lower tight-bounds for spherical designs (see [28]). Moreover,
the Nikolskii constants play an important role in approximation of smooth, multivari-
ate functions defined on irregular domains by polynomial frame approximation method
[7]. More detailed historical comments on the constant L∗(d) and related background
information will be given in Section 2.

While it remains to be very challenging to find the exact values of the constants L∗(d),
in [14] we solved this problem for non-negative functions in the class Ed

1 :

Theorem 1.1 ([14]). For d ∈ N, we have

L+(d) :=
(2π)d

Vd
sup

f∈Ed
1 \{0},

f
∣

∣

Rd
≥0

‖f‖L∞(Rd)

‖f‖L1(Rd)

= 2−d.

One of the main results in this paper asserts that the estimate (1.8) can be significantly
improved for p = 1, and the constant L∗(d) goes to zero exponentially fast as d→ ∞:

Theorem 1.2. For d ∈ N, we have

2−d ≤ L∗(d) ≤ 1F2

(d
2
;
d

2
+ 1,

d

2
+ 1;−β

2
d

4

)
=

∫ βd

0
jd/2(t)t

d−1 dt
∫ βd

0
td−1 dt

,

where 1F2 denotes the usual hypergeometric function, jd/2 is the normalized Bessel func-
tion, and βd = qd/2,1 is the smallest positive zero of the Bessel function Jd/2 of the first
kind.

Corollary 1.1. For d ≥ 2, we have

2−d ≤ L∗(d) ≤ (
√

2/e)d (1+εd),

where
√

2/e = 0.857 · · · , and εd = O(d−2/3) as d→ ∞.

Using Theorem 1.2, we may obtain the numerical upper estimates of L∗(d) for d =
1, 2, . . . , 10, listed in the following table:

d 1 2 3 4 5 6 7 8 9 10
upper bounds 0.589 0.382 0.261 0.184 0.133 0.098 0.073 0.055 0.042 0.032

Note that for d = 1, we recover the upper bound of L∗(1) previously obtained in
[25, 2], while for d = 2, our method with more delicate calculations leads to the following
estimate:

N (S2;n)1,∞ = L∗(2)n2(1 + o(1)) with L∗(2) ∈ (0.2820, 0.3822),

which improves the corresponding known estimate in [1, 24].
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Let us give a few comments on the proof of Theorem 1.2. Clearly, the lower estimate
in Theorem 1.2 follows directly from Theorem 1.1. However, the proof of the upper
estimate in Theorem 1.2 is much more involved. It relies on a duality argument (see, for
instance, (1.7)). The crucial ingredient in the proof is to solve an extremal problem on
L∞-approximation by the Bessel functions of the first kind on R+ = [0,∞), which seems
to be of independent interest.

To be more precise, we need to introduce several notations. For α ∈ C, let Jα denote
the Bessel function of the first kind, and jα the normalized Bessel function given by

jα(z) := 2αΓ(α + 1)
Jα(z)

zα
, z ∈ C.

Let {qα,k}∞k=1 denote the strictly increasing sequence of all positive zeros of jα(z). For
α > −1

2
, we denote by Xα the set of all functions F ∈ L∞[0,∞) that can be represented

as an infinite sum of the form

F (t) :=

∞∑

k=1

akjα
(
rα+1,kt

)
, t ≥ 0, ak ∈ R, rα+1,k =

qα+1,k

qα+1,1
, k ∈ N.

Here we assume that the series converges absolutely to F almost everywhere on R+. In
the proof of the upper estimate in Theorem 1.2 , we are required to solve the following
extremal problem for α = d

2
− 1:

Iα := inf
F∈Xα

‖jα+1 − F‖L∞(R+). (1.9)

In this paper, we find the exact value of Iα for α ≥ −0.272, from which the upper estimate
in Theorem 1.2 will follow:

Theorem 1.3. Let α ≥ −0.272 and let Iα be defined in (1.9). Then

Iα = 1F2

(
α + 1;α+ 2, α+ 2;−q

2
α+1,1

4

)
=

∫ qα+1,1

0
jα+1(t)t

2α+1 dt∫ qα+1,1

0
t2α+1 dt

. (1.10)

The identity (1.10) extends the following result (see [2, 22]):

inf
ak∈R

∥∥∥sin t
t

−
∞∑

k=1

ak cos kt
∥∥∥
L∞(R+)

=
1

π

∫ π

0

sin x

x
dx. (1.11)

We point out that the proof of this last formula in [22] relies on the fact that the cor-
responding extremal function is a periodic function, which does not seem to work in our
situation. Our proof of (1.10) in this paper is different from that in [22].

This paper is organized as follows. Section 2 contains some background information
and historical comments on sharp Nikolskii constants. Some preliminary materials on
spherical harmonics and Bessel functions are given in Section 3. In Section 4, we de-
duce more explicit duality formulas for the Nikolskii constants, and connect our problem
with several other extremal problems in approximation theory. We also study the exis-
tence, uniqueness and characterizations of the corresponding extremal functions for these
extremal problems in Section 4. After that, in Section 5, we prove the main theorem,
Theorem 1.3, from which the upper estimates in Theorem 1.2 will follow. The proof of
Corollary 1.1 is given in Section 6. Finally, in Section 7, we show how our results on the
Nikolskii constants can be used to deduce certain interesting Remez-type results.
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2. Historical background

In this section, we give some background information and historical comments on the
Nikolskii constants. Nikolskii inequalities have been playing crucial roles in approximation
theory and harmonic analysis, particularly in the embedding theory of function spaces (see
[36, 16]).

In the case of d = 1, the problem of finding the exact values of the constants
N (S1;n)1,∞ has a very long history, starting with the work of Jackson [26] in 1933.
A closed form of the constant N (S1;n)1,∞, which is not very useful in applications, was
found by Geronimus [18]. Stechkin (see [41, 42]) proved that there is a constant c
such that N (S1;n)1,∞ = cn + o(n) as n → ∞, while Taikov [41]) further proved that
N (S1;n)1,∞ = cn + O(1) with c ∈ (0.539, 0.584). In [22, 23] it was established that
c = L∗(1) and for any n and 0 < p <∞

(2n)1/pL∗
p,∞(1) ≤ N (S1;n)p,∞ ≤ (2n+ 2⌈p−1⌉)1/pL∗

p,∞(1)

(see also [29, 17]). In the limiting case of p = 0, Arestov [3] found the exact values of
the Nikolskii constants for the trigonometric polynomials on the unit circle S1. Finally,
in the case of d ≥ 2 and 0 < p < q = ∞, Arestov and Deikalova [4] proved that the
supremum in (1.2) can be achieved by zonal polynomials, and as a result, the Nikolskii
constant N (S2;n)1,∞ for spherical polynomials coincides with the Nikolskii constant for
algebraic polynomials in L1([−1, 1]) [1, 24].

As was mentioned in the introduction, of crucial importance in the proofs of the main
results in this paper are the duality formulas for the Nikolskii constants, which will be
given in the next section. In the case of S1 this approach was introduced by Taikov [41],
who established the classical Bernstein result on the best approximation of cosnx by
functions

∑∞
k=n+1 ak cos kx ∈ L∞[0, 2π). L. Hörmander and B. Bernhardsson [25] proved

that

L∗(1) = inf
v

∥∥∥sin x
x

− v(x)
∥∥∥
L∞(R)

, v̂ = 0 in (−1, 1), (2.1)

and described general properties of the extremal function G ∈ E1
1 satisfying L∗(1) =

‖G‖L∞(R)

‖G‖L1(R)
. Furthermore, they also computed the following very precise numerical value:

L∗(1) ≈ 0.54092882 (cf. with [22, 23]).
In the particular case when v has the form

∑∞
k=1 ak cos kt the problem (2.1) was

considered by Andreev, Konyagin, and Popov [2] (see (1.11)), who studied a constant
that is equivalent to L∗(1) via the Fourier transform, that is (see also [22])

L∗(1) = sup
F 6=0

|F (0)|
‖F‖L1(R)

, F̂ = 0 in [−1, 1]c. (2.2)

Some interesting applications of the Nikolskii constants in number theory can be found
in the paper by Carneiro, Milinovich, and Soundararajan [10], who considered a family
of problems related to the Nikolskii constant (2.2) and applied the resulting estimates to
study the problem on the distribution of prime numbers. The paper [10] also considers

a version of the Nikolskii problem when F̂ ≤ 0 outside [−1, 1]. This problem for F ≥ 0
corresponds to the extremal Cohn-Elkies problem (also called the Delsarte problem) that
is connected with the problem of sphere packing (see, e.g., [20, 12, 11, 44]).



7

We also refer to [9, 36, 35, 8, 4, 17, 5] for more background information on classical
Nikolskii constants.

3. Preliminaries

In this section, we present some preliminary materials on spherical harmonics and
Bessel functions, most of which can be found in [13], [6, Chap. 7], [37], and [45].

First, a spherical harmonic of degree n on Sd is the restriction to Sd of a homogeneous
harmonic polynomial in d+ 1 variables of total degree n. We denote by Hd

n the space of
all spherical harmonics of degree n on Sd. As is well known, the spaces Hd

n, n = 0, 1, · · · ,
are mutually orthogonal with respect to the inner product of L2(Sd), and for each non-
negative integer n, the function k+λ

λ
Cλ

k (x · y), x, y ∈ S
d is the reproducing kernel of the

space Hd
n, where λ = d−1

2
and Cλ

n denotes the usual Gegenbauer polynomial of degree n,
as defined in [39]. Thus,

f(x) =
k + λ

λ

∫

Sd

f(y)Cλ
k (x · y) dσ(y), x ∈ S

d, f ∈ Hd
k.

As a result, the reproducing kernel of the space Πd
n of spherical polynomials of degree at

most n on Sd is given by

Gn(x · y) :=
n∑

k=0

k + λ

λ
Cλ

k (x · y) = (dimΠd
n)R

(d
2
, d−2

2
)

n (x · y), (3.1)

where R
(α,β)
n denotes the normalized Jacobi polynomial of degree n:

R(α,β)
n (t) =

P
(α,β)
n (t)

P
(α,β)
n (1)

.

Second, an entire function f of d-complex variables is of spherical exponential type
at most σ if for every ε > 0 there exists a constant Aε > 0 such that |f(z)| ≤ Aεe

(σ+ε)|z|

for all z = (z1, · · · , zd) ∈ Cd (see [36, Chap. 3]). Given 0 < p ≤ ∞, denote by Ed
p the

class of all entire functions of spherical exponential type at most in d-variables whose
restrictions to Rd belong to the space Lp(Rd). If 0 < p < q ≤ ∞, then Ed

p ⊂ Ed
q and

there exists a constant C = Cd,p,q such that ‖f‖q ≤ C‖f‖p for all f ∈ Ed
p . Moreover,

every function f ∈ Ed
p is bounded on Rd and satisfies |f(z)| ≤ ‖f‖L∞(Rd)e

σ|Im(z)|, ∀ z ∈ Cd.

According to the Palay-Wiener theorem, each function f ∈ Ed
p can be identified with a

function in Lp(Rd) whose distributional Fourier transform is supported in the unit ball
Bd := {x ∈ Rd : |x| ≤ 1}. Here we recall that the Fourier transform of f ∈ L1(Rd) is
defined by

Fdf(ξ) ≡ f̂(ξ) =

∫

Rd

f(x)e−ix · ξ dx, ξ ∈ R
d,

while the inverse Fourier transform is given by

F−1
d f(x) =

1

(2π)d

∫

Rd

f(ξ)eix · ξ dξ, f ∈ L1(Rd), x ∈ R
d.
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Finally, we present some well-known properties of the Bessel functions, most of which
can be found in [6, Chap. 7], and [45]. The Bessel function Jα of the first kind is the
solution to the differential equation

x2y′′ + xy′ + (x2 − α2)y = 0 (3.2)

such that the limit limx→0 x
−αJα(x) exists and is finite. Denote by jα the normalized

Bessel function given by

jα(z) := 2αΓ(α + 1)
Jα(z)

zα
, z ∈ C.

As is well known, jα(z) is an even entire function of exponential type 1 satisfying that
jα(0) = 1 and

(x2α+2jα+1(x))
′ = (2α + 2)x2α+1jα(x), j′α(x) = −xjα+1(x)

2α + 2
. (3.3)

Moreover,

|jα(x)| ≤ C(1 + |x|)−α− 1
2 , x ∈ R. (3.4)

Note that (3.3) also implies (see [6, 7.2.8 (56)])

− zjα+2(z)

2(α+ 2)
= j ′

α+1(z) =
2(α + 1)

z
(jα(z)− jα+1(z)) . (3.5)

If α = d
2
−1, then the function jα(| · |) is the Fourier transform of the normalized surface

Lebesgue measure on the sphere Sd−1, while if α = d
2
, then the function Vd

(2π)d
jα(| · |) is the

Fourier transform of the characteristic function χBd of the unit ball Bd. That is,

j d
2
−1(|ξ|) =

∫

Sd−1

e−ix · ξ dσ(x) = σ̂d−1(ξ), ξ ∈ R
d,

and
Vd

(2π)d
Fd

(
j d

2
(| · |)

)
(ξ) = χBd(ξ), ξ ∈ R

d, (3.6)

where the Fourier transform Fd is understood in a distributional sense or in the space of
L2(Rd).

The zeros of jα(z) are all simple and real. Let {qα,k}∞k=1 denote the sequence of all
positive zeros of jα(z) arranged so that 0 < qα,1 < qα,2 < . . . . For convenience, we also
set qα,0 = 0. Then qα,k ∼ πk as k → ∞, and for α > 0, the smallest positive zero of jα(z)
satisfies √

α(α+ 2) < qα,1 <
√
α + 1 (

√
α + 2 + 1). (3.7)

Moreover,

jα(z) =
∞∏

k=1

(
1− z2

q2α,k

)
, z ∈ C. (3.8)

The positive zeros of jα(z) and jα+1(z) are interplaced:

0 < qα,1 < qα+1,1 < qα,2 < qα+1,2 < . . . . (3.9)

The following result on the zeros of the Bessel functions will be used repeatedly in
later sections:
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Lemma 3.1. For α > −1/2 and k = 1, 2, · · · , we have

max
z≥qα+1,k

|jα(z)| = |jα(qα+1,k)| = (−1)kjα(qα+1,k) > 0. (3.10)

Proof. For the sake of completeness, we include a short proof of this lemma here.
Since

(
jα(z)

2
)′
= 2jα(z)j

′
α(z) = −zjα+1(z)jα(z)

α + 1
,

the function (jα(z))
2 achieves its local maxima on (0,∞) at the positive zeros of jα+1(z),

on which we also have (jα(z))
2 = (jα(z))

2 +(j ′
α(z))

2. However, it is easily seen from (3.2)
that (

(jα(z))
2 + (j ′

α(z))
2
)′

= −2(2α + 1)

z
(j ′

α(z))
2,

which implies that the function (jα(z))
2 + (j ′

α(z))
2 is strictly decreasing on (0,∞) if

α > −1/2. Thus, the sequence
{(
jα(qα+1,k)

)2}∞

k=1
=

{(
jα(qα+1,k)

)2

+
{(
j′α(qα+1,k)

)2}∞

k=1

is strictly increasing. It then follows that

max
z≥qα+1,k

|jα(z)| = |jα(qα+1,k)|.

Finally, the second equality in (3.10) is a direct consequence of (3.9). �

For α > −1
2
, the Fourier–Bessel expansion of a function f ∈ L1([0, 1], t2α+1 dt) with

respect to the orthogonal basis {jα(qα+1,kx)}∞k=0 is given by

f(t) =
∞∑

k=0

h−1
k ck(f)jα(qkt), t ∈ [0, 1], (3.11)

where

h0 =

∫ 1

0

t2α+1 dt =
1

2α + 2
, hk =

∫ 1

0

j2α(qkt)t
2α+1 dt =

j2α(qk)

2
, k = 1, 2, · · · ,

ck(f) =

∫ 1

0

f(t)jα(qkt)t
2α+1 dt, k = 0, 1, · · · .

If f ∈ C1([0, 1]), then the series (3.11) converges absolutely outside of a neighbourhood
of the origin.

For later applications, we also record here the following two useful formulas on Bessel
functions ( see [32, Sect. 6.2.10]):

∫ 1

0

jα(at)jα(bt)t
2α+1 dt =

a2jα+1(a)jα(b)− b2jα(a)jα+1(b)

2(α + 1)(a2 − b2)
, a > b > 0, (3.12)

∫ z

0

t2α+1jα+1(t) dt =
z2α+2

2α+ 2
1F2

(
α + 1;α+ 2, α + 2;−z

2

4

)
, z > 0. (3.13)
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4. Duality formulas and characterizations of certain extremal functions

The main goals in this section are to prove some duality formulas for the Nikolskii
constants N (Sd;n)p,∞ and N (Rd)p,∞, and to characterize the corresponding extremal
functions in the dual spaces. These results will play an important role in the proofs of our
main theorems in the next section. For simplicity, we shall write N (Sd;n)p = N (Sd;n)p,∞
and N (Rd)p = N (Rd)p,∞.

We start with some necessary notations. Let wd(t) = cd(1 − t2)d/2−1, where cd > 0

is a normalization constant such that
∫ 1

−1
wd(t) dt = 1. For 1 ≤ p ≤ ∞, we denote by

Lp([−1, 1];wd) ≡ Lp(wd) the usual Lebesgue L
p-space defined with respect to the measure

wd(t) dt on [−1, 1], and ‖ · ‖Lp(wd) the Lebesgue Lp-norm of the space Lp(wd). Denote by
Pn the space of all univariate algebraic polynomials of degree at most n. Define

P⊥
n =

{
F ∈ L1(wd) :

∫ 1

−1

F (t)tjwd(t) dt = 0, j = 0, 1, · · · , n
}
,

and P⊥
n,p = P⊥

n ∩ Lp(wd) for 1 ≤ p ≤ ∞. Finally, given a normed linear space (X, ‖ · ‖),
the distance of a vector x ∈ X from a set E ⊂ X is defined by

dist(x, E)X := inf
y∈E

‖x− y‖.

As is well known, if E is a linear subspace of X , then one has (see, for instance, [15, p. 61,
Theorem 1.3]),

dist(x, E)X = max
ℓ∈E⊥

‖ℓ‖X∗≤1

|〈ℓ, x〉|, (4.1)

where

E⊥ :=
{
ℓ ∈ X∗, 〈ℓ, y〉 = 0, ∀ y ∈ E

}

and X∗ denotes the dual of X .
Next, recall that jα(z) = Γ(α+1)(t/2)−αJα(t) denotes the normalized Bessel function

of the first kind. Let K(|x|) := Vd

(2π)d
jd/2(|x|). For convenience, we will use a slight abuse

of the notation that f(x) = f(|x|) for a radial function on Rd. By (3.6), FdK(ξ) = K̂(ξ) =
χBd(ξ) for every ξ ∈ R

d, and by (3.4), K(| · |) ∈ Lq(Rd) for q > 2d
d+1

. It then follows that

for each 1 ≤ p < 2d
d−1

,

f(x) =

∫

Rd

f(y)K(|x− y|) dy, x ∈ R
d, f ∈ Ed

p . (4.2)

In particular, for a radial function f(| · |) ∈ Ed
p with 1 ≤ p < 2d

d−1
,

f(0) =

∫ ∞

0

K(t)f(t) vd(t) dt,

where vd(t) := ωd−1t
d−1. Let Lp(vd) denote the Lebesgue Lp-space defined with respect

to the measure vd(t)dt on [0,∞). Clearly, for each f ∈ Lp(vd), ‖f(| · |)‖Lp(Rd) = ‖f‖Lp(vd).
Our duality results for the Nikolskii constants on the sphere can be stated as follows:
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Theorem 4.1. If 1 ≤ p <∞ and 1
p
+ 1

p′
= 1, then for every positive integer n,

N (Sd;n)p = dist(Gn,P⊥
n,p′)Lp′ (wd)

, (4.3)

where Gn is the reproducing kernel of the space Πd
n given in (3.1). Moreover, there exists

a minimizer F∗ ∈ P⊥
n,p′ of the form

F∗ = Gn −
P ∗(1)|P ∗|p−1 signP ∗

‖P ∗‖pLp(wd)

, (4.4)

such that ‖Gn − F∗‖Lp′ (wd)
= dist(Gn,P⊥

n,p′)Lp′(wd)
, where P ∗ denotes the unique algebraic

polynomial of degree n such that

‖P ∗‖Lp(w∗) = dist(xn,Pn−1)Lp(w∗) with w∗
d(t) = wd(t)(1− t).

Before stating the similar duality results on Rd, we first note that

N (Rd)p = sup
{
|f(0)| : f ∈ Ed

p , ‖f‖p = 1
}
, 1 ≤ p <∞. (4.5)

This holds because each f ∈ Ed
p achieves its maximum on Rd (due to the fact that f(x) → 0

as |x| → ∞ [36, 3.2.5]) and the space Ed
p is invariant under the usual translations on R

d.

Duality formulas for functions in Ed
p can now be stated as follows:

Theorem 4.2. The following statements hold:

(i) For 1 ≤ p <∞, there exists an unique radial extremizer f∗ ∈ Ed
p for the supremum in

(4.5) such that ‖f∗‖Lp(Rd) = 1 and f∗(0) = N (Rd)p. Furthermore, such an extremizer
can be characterized via the following identity:

g(0) = f∗(0)

∫

Rd

g(x)|f∗(|x|)|p−1 sign f∗(|x|) dx, ∀ g ∈ Ed
p ; (4.6)

that is, a radial function f∗(| · |) ∈ Ed
p with ‖f∗‖Lp(vd) = 1 is an extremizer for (4.5)

if and only if the condition (4.6) is satisfied.
(ii) If 1 ≤ p < 2d

d−1
and 1

p
+ 1

p′
= 1, then

N (Rd)p =
Vd

(2π)d
dist(jd/2, E⊥

p′ )Lp′(vd)
,

where E⊥
p′ denotes the space of all functions f ∈ Lp′(vd) such that

∫ ∞

0

f(t)g(t)vd(t) dt = 0 whenever g(| · |) ∈ Ed
p .

(iii) For each 1 ≤ p < 2d
d−1

, there exists an unique extremizer F∗ ∈ E⊥
p′ , which takes the

form

F∗(t) =
Vd

(2π)d
jd/2(t)− f∗(0)|f∗(t)|p−1 sign f∗(t), t ≥ 0, (4.7)

such that ∥∥∥F∗ −
Vd

(2π)d
jd/2

∥∥∥
Lp′ (vd)

=
Vd

(2π)d
dist(jd/2(| · |), E⊥

p )Lp′ (vd)
.

Here f∗ denotes the extremal function in (i).
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As pointed out in the introduction, the main goal in this paper is to estimate the
following normalized Nikolskii constant for p = 1:

L∗(d) = (2π)dV −1
d N (Rd)1.

By the Paley–Wiener–Schwarz theorem [35], if f ∈ Ed
1 , then supp f̂ ⊂ Bd, and hence for

any r ≥ 1,

0 =

∫

Sd−1

f̂(rξ) dσ(ξ) = (D̂rf) ∗ (dσ)(0)

=

∫

Rd

(Drf)(−x)j d
2
−1(|x|) dx =

∫

Rd

f(x)j d
2
−1(r|x|) dx,

where Drf(x) = r−df(x/r), and in the third step we used the fact that the distributional
Fourier transform of jd/2−1(| · |) is the normalized Lebesgue measure dσ on Sd−1. This
shows that j d

2
−1(r| · |) ∈ E⊥

∞ for any r ≥ 1, as desired.

Since j d
2
−1(r·) ∈ E⊥

∞ for any r ≥ 1, by Theorem 4.2 we obtain

Corollary 4.1. For d ≥ 2, we have

L∗(d) ≤ inf
ak∈R,rk≥1

∥∥∥j d
2
(·)−

∞∑

k=1

akj d
2
−1(rk·)

∥∥∥
L∞(R)

with the infimum being taken over all sequences {ak}∞k=1 ⊂ R and {rk}∞k=1 ⊂ [1,∞) such
that

∑∞
k=1 akj d

2
−1(rk·) converges absolutely to an essentially bounded function on [0,∞).

4.1. Proof of Theorem 4.1. For simplicity, we write dµd(t) = wd(t) dt and dµ
∗
d(t) =

w∗
d(t) dt in the proof below.
We start with the proof of (4.3). Using orthogonality of spherical harmonics, we have

that for any f ∈ Πd
n and x ∈ S

d,

f(x) =

∫

Sd

(Gn(x · y)− F (x · y))f(y) dσ(y), ∀F ∈ P⊥
n ∩ Lp′(wd).

It follows by Hölder’s inequality that

N (Sd, n)p = sup
06=f∈Πd

n

‖f‖∞
‖f‖p

≤ inf
{
‖Gn − F‖Lp′(wd)

: F ∈ P⊥
n ∩ Lp′(wd)

}

= dist(Gn,P⊥
n,p′)Lp′ (wd)

.

To show the lower estimate

N (Sd, n)p ≥ dist(Gn,P⊥
n,p′)Lp′(wd)

,

we use the duality formula (4.1) with E := P⊥
n,p′ ⊂ Lp′(wd). Here, if p = 1, then we use

C[−1, 1] in place of L∞, and recall that (C[−1, 1])∗ is the space of Radon measures on
[−1, 1] with the norm given by the total variation of a measure. Since Gj ⊂ E for any
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j > n, it follows that E⊥ = Pn. Thus, using (4.1) , we obtain

dist(Gn,P⊥
n,p′)Lp′(wd)

= sup
ℓ∈(P⊥

n,p′
)⊥

‖ℓ‖≤1

|〈ℓ, Gn〉| = sup
‖P‖Lp(wd)

≤1

P∈Pn

∣∣∣
∫ 1

−1

P (t)Gn(t)dµd(t)
∣∣∣

= sup
‖P‖Lp(wd)

≤1

P∈Pn

|P (1)| ≤ N (Sd;n)p. (4.8)

This proves (4.3).
Next, we show the existence of the extremal function F∗ and the formula (4.4). The

proof relies on the following characterization of best approximants in Lp-spaces.

Lemma 4.1 ([40, 4.2.1, 4.2.2]). Let Y be a closed real subspace of Lp(Q, dµ) for some
measure space (Q, µ) and 1 ≤ p < ∞. Let f ∈ Lp(dµ) . If p = 1, we assume in addition
that f(x) 6= 0 for µ-a.e. x ∈ Q. Then a function g ∈ Y is the best approximant to f from
the space Y in Lp-metric (i.e., ‖f − g‖p = dist(f, Y )p) if and only if

∫

Q

(
|f − g|p−1 sign(f − g)

)
h dµ =

∫

Q

|f − g|p
f − g

h dµ = 0, ∀h ∈ Y.

Now we continue the proof of Theorem 4.1. Note first that by (4.3) and (4.8),

N (Sd;n)p = max
{
P (1) : P ∈ Pn, ‖P‖Lp(wd) ≤ 1

}
.

Let P∗ ∈ Pn denote the maximizer for the maximum in this last equation. Then
‖P∗‖Lp(wd) = 1 and

P (1) ≤ P∗(1)‖P‖Lp(wd), ∀P ∈ Pn.

In particular, this implies that for any

Pn,0 := {P ∈ Pn : P (1) = 0},
we have

P∗(1) ≤ P∗(1) inf
P∈Pn,0

‖P∗ − P‖Lp(wd) = P∗(1) dist(P∗,Pn,0)Lp(wd)

≤ P∗(1)‖P∗‖Lp(wd) = P∗(1).

Thus,
1 = ‖P∗‖Lp(wd) = dist(P∗,Pn,0)Lp(wd).

It then follows from Lemma 4.1 that∫ 1

−1

(|P∗|p−1 sign(P∗))P dµd = P (1)

∫ 1

−1

|P∗|p−1 sign(P∗) dµd, ∀P ∈ Pn. (4.9)

Setting P = P∗ in (4.9), we obtain

1 = ‖P∗‖pLp(wd)
= P∗(1)

∫ 1

−1

|P∗|p−1 sign(P∗) dµd. (4.10)

Multiplying both sides of (4.9) by P∗(1) and using (4.10), we have

P∗(1)

∫ 1

−1

(|P∗|p−1 sign(P∗))Pdµd = P (1) =

∫ 1

−1

P (t)Gn(t)dµd(t), ∀P ∈ Pn.
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This implies that

F∗(t) := Gn(t)− P∗(1)|P∗(t)|p−1 sign(P∗(t)) ∈ P⊥
n,p′.

Note also that

‖Gn − F∗‖Lp′(wd)
= P∗(1)‖P∗‖p−1

Lp(wd)
= P∗(1) = dist(Gn,Pn,p′)Lp′ (wd)

.

This shows (4.4) and that F∗ is the desired extremal function.
Finally, we point out that the connection of P∗ with the extremal polynomial P ∗ was

proved in [4]. For completeness, we include a proof of the identity P∗ = P ∗/‖P ∗‖Lp(wd)

here. By (4.9), we have
∫ 1

−1

|P∗|p−1 sign(P∗)
P (t)− P (1)

1− t
w∗

d(t) dt = 0, ∀P ∈ Pn,

or equivalently,
∫ 1

−1

|P∗|p−1 sign(P∗)P (t)w
∗
d(t) dt = 0, ∀P ∈ Pn−1. (4.11)

By Lemma 4.1, this implies that

‖P∗‖Lp(w∗) = dist(P∗,Pn−1)Lp(w∗) = |Ln,P∗
| dist(xn,Pn−1)Lp(w∗

d)
,

where Ln,P∗
denotes the leading coefficient of the n-th degree polynomial P∗. Note that

by (4.11), we have deg(P∗) = n and all the zeros of P∗ are simple and inside the interval
(−1, 1). Since P∗(1) > 0, we must have Ln,P∗

> 0. It then follows that

P∗ = Ln,P∗
P ∗ =

P ∗

‖P ∗‖Lp(wd)

.

This completes the proof of Theorem 4.1.

4.2. Proof of Theorem 4.2. We start with the proof of (i), which relies on the
following compactness result on entire functions of exponential type.

Lemma 4.2 ([36, 3.3.6]). Let 1 ≤ p < ∞ and let Bd
p := {f ∈ Ed

p : ‖f‖p ≤ 1}. Then

every sequence of functions from the class Bd
p contains a subsequence which converges

uniformly to a function f ∈ Bd
p on every compact subset of Rd.

By (4.5), there exists a sequence of functions {fn} ⊂ Bd
p such that limn→∞ fn(0) =

N (Rd)p. By Lemma 4.2, without loss of generality, we may assume that {fn}∞n=0 converges
uniformly to a function f ∈ Bd

p on every compact subset of Rd (since otherwise we consider
a subsequence of {fn}). Then

f(0) = lim
n→∞

fn(0) = N (Rd)p.

Now consider the following radial part of the function f :

f∗(|x|) :=
∫

Sd−1

f(|x|ξ) dσ(ξ), x ∈ R
d.
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For convenience, we will identify f∗ with the radial function f∗(| · |) on Rd. It is easily
seen that f∗ ∈ Ed

p and f∗(0) = f(0) = N (Rd)p . Thus, f∗ is the extremal function in (4.5);
that is,

|f(0)| ≤ f∗(0)‖f‖p, for every f ∈ Ed
p . (4.12)

The proof of the characterization (4.6) of f∗ follows exactly as that for spherical polyno-
mials on the sphere. Indeed, applying (4.12) to f = f∗ − h with g ∈ Ed

p and g(0) = 0, we
obtain

‖f∗‖p = dist(f∗,H)p,

where H := {f ∈ Ed
p : f(0) = 0}. By Lemma 4.1, this implies that |f∗|p−1 sign(f∗)⊥H,

which is equivalent to (4.6). That (4.6) implies that f∗ ∈ Ed
p is the desired extremal

function follows directly from Hölder’s inequality.
Next, we show the uniqueness of f∗. For 1 < p < ∞, the uniqueness follows directly

from the strict convexity of the space Lp. It remains to deal with the case p = 1. We
consider f∗ as a function in one variable so that f∗ is an even entire function of exponential
type on C. By the classical Hadamard theorem (see, e.g., [9, Ch. 2]), it follows that

f∗(z) = f∗(0)e
bz

∏

n∈Z\{0}

(
1− z

zn

)
exp

( z
zn

)
,

where b ∈ C and {zn}n∈Z\{0} is the sequence of all nonzero zeros of f∗. Since f∗ is an even
function, we may assume that zn = z−n for all positive integers n. Thus, we must have
that b = 0, and

f∗(z) = f∗(0)

∞∏

n=1

(
1− z2

z2n

)
, z ∈ C. (4.13)

We further claim that all the zeros of f∗ must be simple and real (i.e., the numbers zn
are distinct and real). To see this, we first recall that f∗

∣∣
R
is real valued, which implies

f∗(z) = f∗(z̄) for every z ∈ C. Thus, if the claim were not true, then for a nonzero
complex zero w of f , we have the decomposition

f(z) = (z2 − w2)(z2 − w̄2)g(z) = a(z)g(z),

where g ∈ E1
1 , and a(z) = z4−(w2+w̄2)z2+|w|4. It is easily seen that a(x) ≥ 0 for all x ∈ R

and the equality holds only in the case when x = w ∈ R. Thus, sign(f∗)(x) = sign(g)(x)
for all x ∈ R \ {w}. Now consider the functions

ft(z) = a(tz)g(z), z ∈ C, t ∈ R.

Clearly, ft(| · |) ∈ Ed
1 and f∗(0) = ft(0) > 0 for all t ∈ R. Thus, (4.6) implies

1 =
ft(0)

f∗(0)
=

∫

Rd

sign(f∗)(|x|)ft(|x|) dx =

∫

Rd

a(t|x|)|g(|x|)| dx, ∀ t ∈ R.

This last term in this last equation is a polynomial in t ∈ R of degree 4, which can not
be constant. We obtain a contradiction and hence prove the claim.

Now assume that f∗∗ is another radial extremizer for the supremum in (4.5). Then
(4.6) implies

‖f∗∗‖1 = 1 =
f∗∗(0)

f∗(0)
=

∫

Rd

f∗∗(x) sign f∗(x) dx.
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It follows that |f∗∗(x)| = f∗∗(x) sign f∗(x) for a.e. x ∈ R. Since all the zeros of f∗ are
simple, it follows that f∗ changes signs at each of its zeros. By continuity, this further
implies that |f∗∗(x)| = f∗∗(x) sign f∗(x) for every x ∈ R. By symmetry, we also have
|f∗| ≡ f∗ sign f∗∗. This means that f∗∗ and f∗ have common zeros. By (4.13) and the
above claim, we conclude that f∗∗ ≡ f∗, proving the uniqueness.

We point out that the proofs of the duality formulas (4.3) and (4.4) are very similar
to those of (4.3) and (4.4) for spherical polynomials on Sd. We skip the details.

Finally, we show the uniquenss of the extremal function F∗ defined by (4.7). For p > 1,
the uniqueness follows directly of strict convexity of the Lp-norm. It remains to consider
the case of p = 1.

Recall that K(| · |) = Vd

(2π)d
jd/2(| · |), f∗(0) = N (Rd)1, and ‖f∗‖L1(Rd) = 1. If F is

extremal then ‖K − F‖L∞(R) = f∗(0). By (4.2) and (4.6), we have
∫

Rd

(K(|x|)− F (|x|))f∗(|x|) dx = f∗(0)−
∫

Rd

F (|x|)f∗(|x|) dx = f∗(0)

On the other hand,

f∗(0) =

∫

Rd

(K(|x|)− F (|x|))f∗(|x|) dx ≤
∫

Rd

|K(|x|)− F (|x|)| |f∗(|x|)| dx

≤ ‖K − F‖L∞(R)‖f∗‖L1(Rd) = f∗(0).

Thus, we have the sharp Hölder inequality for (p, p′) = (∞, 1) in the third step. It follows
that

K(t)− F (t) = f∗(0) sign f∗(t) a.e. for t ≥ 0.

Therefore, F∗ = K − f∗(0) sign f∗ is unique.

5. Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3.
Note first that the indentify,

1F2

(
α+ 1;α + 2, α+ 2;−q

2
α+1,1

4

)
=

∫ qα+1,1

0
jα+1(t)t

2α+1 dt∫ qα+1,1

0
t2α+1 dt

, (5.1)

follows directly from (3.13). It remains to show that

Iα = a∗0 :=

∫ qα+1,1

0
jα+1(t)t

2α+1 dt∫ qα+1,1

0
t2α+1 dt

, (5.2)

where Iα is defined in (1.9).
For simplicity, we write r0 = q0 = 0, qk = qα+1,k, and rk = rα+1,k = qk

q1
for k = 1, 2, · · · .

Recall that {jα(qkt)}∞k=0 forms an orthogonal basis of the space L2([0, 1], t2α+1 dt). In
particular, we have

0 = q2α+2
1

∫ 1

0

jα(qkt)t
2α+1 dt =

∫ q1

0

jα(rkt)t
2α+1 dt, k = 1, 2, · · · . (5.3)
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The crucial step in our proof is to construct an extremal function F ∗ ∈ Xα with the
following properties:

sup
t>0

|jα+1(t)− F ∗(t)| ≤ a∗0 :=

∫ q1
0
jα+1(t)t

2α+1 dt∫ q1
0
t2α+1 dt

, (5.4)

and

jα+1(t)− F ∗(t) ≡ a∗0, for a.e. t ∈ [0, q1]. (5.5)

For the moment, we assume that there exists an extremal function F ∗ ∈ Xα satisfying
(5.4) and (5.5), and proceed with the proof of (5.2). Indeed, by (5.1) and (5.4), we have

Iα ≤ a∗0 = 1F2

(
α + 1;α+ 2, α+ 2;−q

2
α+1,1

4

)
.

Thus, if Iα 6= a∗0, then Iα < a∗0, and there exists a function F ∈ Xα such that

‖jα+1 − F‖∞ < a∗0.

However, by (5.5), this implies that

jα+1(t)− F (t) < jα+1(t)− F ∗(t) for a.e. t ∈ [0, q1],

or equivalently,

F ∗(t)− F (t) < 0 for a.e. t ∈ [0, q1].

Integrating this last inequality with respect to the measure t2α+1dt on [0, q1], we obtain
∫ q1

0

(F ∗(t)− F (t))t2α+1 dt < 0,

which is impossible since by (5.3), we have
∫ q1
0
F (t)t2α+1 dt = 0 for every F ∈ Xα. Thus,

one must have Iα = a∗0.
It remains to prove the existence of an extremal function F ∗ ∈ Xα satisfying (5.4)

and (5.5). Firstly, the condition (5.5) suggests us to consider the Fourier-Bessel series
of the function jα+1(t) with respect to the orthogonal basis {jα(qkt/q1)}∞k=0 of the space
L2([0, q1], t

2α+1dt). Indeed, by (3.11), we have

jα+1(t) = a∗0 +

∞∑

k=1

a∗kjα(rkt), t ∈ [0, q1], (5.6)

where

a∗0 =

∫ q1
0
jα+1(t)t

2α+1 dt∫ q1
0
t2α+1 dt

, a∗k =
2

(jα(qk))2

∫ 1

0

jα+1(q1t)jα(qkt)t
2α+1 dt, k ≥ 1.

Using (3.3) , we have

a∗k =
4(α + 1)

(jα(qk))2
q−2α−2
1

∫ 1

0

jα(qkt)t
−1

∫ q1t

0

x2α+1jα(x) dxdt

=
4(α + 1)

(jα(qk))2

∫ 1

0

x2α+1

∫ 1

0

jα(qkt)jα(q1xt)t
2α+1dt dx, k ≥ 1.
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It then follows by (3.12) that

a∗k =− 2

jα(qk)

∫ 1

0

jα+1(q1x)x
2α+3

r2k − x2
dx, k = 1, 2, · · · . (5.7)

Note that jα+1(t) > 0 for t ∈ [0, q1) and rk ≥ 1 for k ≥ 1. Thus, (5.7) together with (3.10)
implies that

jα(qk)a
∗
k < 0, (−1)k+1a∗k > 0, k = 1, 2, · · · . (5.8)

Secondly, a straightforward calculation shows that for any t > 0,

|a∗kjα(rkt)| ≤
C

k2

( k

1 + kt

)α+ 1
2

, as k → ∞. (5.9)

This in particular implies that (5.6) holds pointwisely for every t ∈ [0, q1]. Thus, by (5.8),
we have

0 = jα+1(q1) = a∗0 +
∞∑

k=1

a∗kjα(qk) = a∗0 −
∞∑

k=1

|a∗kjα(qk)|. (5.10)

Note also that (5.9) implies that the series in (5.6) converges uniformly on every compact
subset of (0,∞) to a function F ∗ ∈ L∞[0,∞). Thus, we may use the infinite series on the
right hand side of (5.6) to define a function F ∗ on R+ as follows:

F ∗(t) :=

{∑∞
k=1 a

∗
kjα(rkt), if t > 0;

1− a∗0, if t = 0.

Note that by (5.6),

F ∗(t) + a∗0 = jα+1(t), ∀ t ∈ [0, q1].

This together with the uniform convergence of the series on compact subsets of (0,∞)
implies that F ∗ is a uniformly bounded continuous function on [0,∞).

Finally, to complete the proof, it remains to verify that

|jα+1(t)− F ∗(t)| ≤ a∗0, ∀ t ≥ q1. (5.11)

Using (3.10) and (5.10), we obtain that for t ≥ q1,

|jα+1(t)− F (t)| ≤ |jα+1(t)− a∗1jα(t)|+
∞∑

k=2

|a∗kjα(qk)|

= a∗0 − a∗1|jα(qk)|+ |jα+1(t)− a∗1jα(t)|.
Thus, for the proof of (5.11), it suffices to show that

max
t≥q1

∣∣∣jα(t)−
jα+1(t)

a∗1

∣∣∣ ≤ |jα(q1)|. (5.12)

The proof of (5.12) relies on the following technical lemma, which can be seen as an
extension of the property maxt≥qα+1,1 |jα(t)| = |jα(q1)|:

Lemma 5.1. For α ≥ −0.272, we have

sup
t≥qα+1,1

∣∣∣jα(t)− u jα+1(t)
∣∣∣ ≡ |jα(qα+1,1)|, 0 ≤ u ≤ α+ 2

α+ 1
. (5.13)
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The proof of Lemma 5.1 is very technical, and will be given in the next subsection.
For the moment, we take this lemma for granted and proceed with the proof of (5.12).

By Lemma 5.1, it is enough to show

1

a∗1
≤ α + 2

α + 1
. (5.14)

To this end, we define g(x) := jα+1(q1x)
1−x2 for x ∈ [0, 1). Then by (3.8),

g(x) =

∞∏

k=2

(
1− x2

r2k

)
, x ∈ [0, 1).

Since rk ≥ 1 for all k ≥ 1, it is easily seen that g(x) is a strictly decreasing function on
[0, 1). Thus, for any x ∈ [0, 1),

jα+1(q1x)

1− x2
= g(x) > lim

x→1−
g(x) =

q1j
′
α+1(q1)

−2
= −(α + 1)jα(q1),

where the last step uses (3.5). It then follows from (5.7) that

a∗1 = − 2

jα(q1)

∫ 1

0

jα+1(q1x)x
2α+3

1− x2
dx > 2(α + 1)

∫ 1

0

x2α+3 dx =
α + 1

α + 2
,

which proves (5.14).

5.1. Proof of Lemma 5.1. Write as usual q1 := qα+1,1. We first claim that for the
proof of Lemma 5.1, it is enough to show (5.13) for u = α+2

α+1
, or equivalently,

sup
t≥q1

∣∣∣jα(t)−
α + 2

α + 1
jα+1(t)

∣∣∣ = |jα(q1)|. (5.15)

To see this, consider the function

F (t, u) := jα(t)− ujα+1(t), t ≥ q1, u ≥ 0.

Note that for t > q1 and u > 0,

∇F (t, u) = 0 ⇐⇒
{
j′α(t)− uj′α+1(t) = 0

jα+1(t) = 0
⇐⇒ jα+1(t) = jα+2(t) = 0,

which is impossible since jα+1 and jα+2 do not have common positive zeros. This means
that F does not have any critical points in the domain {(t, u) : t > q1, u > 0}. On the
other hand, however, for any u > 0,

lim
t→∞

max
0≤v≤u

|F (t, v)| = 0.

Thus, for any u > 0, |F | has a maximum on the domain Du := {(t, v) : t ≥ q1, 0 ≤ v ≤
u} which is achieved on its boundary ∂Du. Since by (3.10),

sup
t≥q1

|F (t, 0)| = sup
0≤v≤u

|F (q1, v)| = |jα(q1)|, u > 0,

it follows that

max
(t,v)∈Du

|F (t, v)| = max
(t,v)∈∂Du

|F (t, v)| = max
t≥q1

|F (t, u)| =:M(u), u > 0.
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Since Du1 ⊂ Du2 for 0 ≤ u1 < u2, this implies that the functionM(u) := maxt≥q1 |F (t, u)|
is increasing on [0,∞). The claim then follows as M(u) ≥ |F (q1, u)| = |jα(q1)| for any
u ≥ 0.

It remains to show (5.15). Define

f(t) := jα(t)−
α + 2

α + 1
jα+1(t), t ≥ 0.

We need to prove that
max
t≥q1

|f(t)| = |f(q1)| = |jα(q1)|.
Using (3.5) and (3.3), we obtain

f ′(t) = − tjα+1(t)

2(α + 1)
+
tjα+2(t)

2(α + 1)
=

t3jα+3(t)

23(α + 1)(α+ 2)(α + 3)
. (5.16)

This in particular implies that the local extrema of f on (0,∞) can only be attained at
positive zeros of jα+3 (i.e., at the points qα+3,1, qα+3,2, · · · ). We claim that

|f(qα+3,k)| ≥ |f(qα+3,k+1)|, k = 1, 2, · · · , (5.17)

which will imply

max
t≥q1

|f(t)| = max
{
|f(q1)|, |f(qα+3,1)|

}
.

To show (5.17), we need a differential equation for the function f . Indeed, using (3.3),
(5.16), and the formula

j′′α(t) = −2α + 1

t
j′α(t)− jα(t),

we obtain

f ′′(t) =
2

t
j′α(t)−

2α + 3

t
f ′(t)− f(t). (5.18)

Furthermore, using (5.16) and (3.5), we can write f ′ in the form

f ′(t) =
(2(α + 2)

t
− t

2(α+ 1)

)
jα+1(t)−

2(α + 2)

t
jα(t). (5.19)

Now combining (5.18) with (5.19), we deduce via a straightforward calculation that

A2f
′′ + A2f

′ + A0f = 0, (5.20)

where

A0 = t3, A1 = (2α+ 1)t2 + 4(α+ 2)(2α+ 3), A2 = t(t2 + 4(α + 2)).

Now let us consider the function ϕ := f 2 + A2

A0
f ′2. Using (5.20), and by a straightfor-

ward calculation, we obtain that for t > 0,

ϕ′ = 2f ′
(
f +

A2

A0

f ′′
)
+
(A2

A0

)′

f ′2 =
((A2

A0

)′

− 2
A1

A0

)
f ′2

= −2((2α + 1)t2 + 8(α+ 2)2)

t3
f ′2 < 0.

Thus, ϕ is a decreasing function on [0,∞). The claim (5.17) then follows since

ϕ(qα+1,k) = f 2(qα+1,k), k = 1, 2, · · · .
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Thus, to complete the proof of the lemma, it suffices to show that for each α ≥ −0.272,

|f(q1)| ≥ |f(qα+3,1)|. (5.21)

For simplicity, we write q′1 = qα+3,1. Using (3.5), and by straightforward calculations,
we obtain

|f(q1)| =
q21jα+2(q1)

4(α+ 1)(α + 2)
, |f(q′1)| = −(q′21 + 4(α+ 2))jα+2(q

′
1)

4(α + 1)(α+ 2)
.

Thus,

ρ(α) :=
|f(q′1)|
|f(q1)|

= −(q′21 + 4(α+ 2))jα+2(q
′
1)

q21jα+2(q1)
. (5.22)

To complete the proof of (5.21), it remains to verify that ρ(α) ≤ 1 for α ≥ −0.272. We
consider the following two cases: (i) −0.272 ≤ α ≤ 0.575, (ii) α > 0.575.

For the first case, we use the fact that ρ(α) as given in (5.22) is an analytic function
of α ≥ −1

2
. Thus, for α ≤ 0.575 we can use the very precise approximation of Jα

and qα,1 realized in Maple to compute ρ(α). Indeed, easy numerical calculations shows
that α0 = −0.2729 · · · is a solution of the equation ρ(α) = 1, and the function ρ(α) is
decreasing on (−1

2
, 0.575], and ρ(α) ≤ 1 whenever α ∈ [α0, 0.575].

To estimate ρ(α) for the second case, we set y(t) := t
1
2Jα+2(t), and express ρ(α) as

ρ(α) = −
(
1 +

4(α + 2)

q′21

)(q1
q′1

)α+ 1
2 y(q′1)

y(q1)
.

As is well known, the function y satisfies the differential equation

y′′ + A(t)y = 0 with A(t) = 1− (α + 2)2 − 1/4

t2
. (5.23)

Note that by (3.7), q1 > ((α + 2)2 − 1/4)
1
2 . Thus, we have

A(t) > 0, A′(t) > 0, ∀ t ≥ q1.

As in the proof of the claim (5.17), the differential equation (5.23) allows us to construct
a decreasing function on [q1,∞). Indeed, let

ψ(t) := y2 +
1

A(t)

(dy
dt

)2

.

Then

ψ′(t) = −A′(t)

A(t)2

(dy
dt

)2

< 0, t ≥ q1.

Since q1 = qα+1,1 < q′1 = qα+3,1, it follows that

ψ(q′1) < ψ(q1). (5.24)

However, using the relations J ′
α+2(q

′
1) =

α+2
q′1

Jα+2(q
′
1) and J ′

α+2(q1) = −α+2
q1

Jα+2(q1), we

obtain

ψ(q′1) = y2(q′1)
(
1 +

(α + 5
2
)2

q′21 − (α + 2)2 + 1
4

)
, ψ(q1) = y2(q1)

(
1 +

(α + 3
2
)2

q21 − (α+ 2)2 + 1
4

)
.
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Thus, using (5.24), we can estimate the function ρ(α) as follows:

ρ(α) < ρ̃(α) :=
(
1 +

4(α+ 2)

q′21

)( 1 +
(α+ 3

2
)2

q21−(α+2)2+ 1
4

1 +
(α+ 5

2
)2

q′21 −(α+2)2+ 1
4

) 1
2
(q1
q′1

)α+ 1
2
. (5.25)

We then reduce to showing that ρ̃(α) ≤ 1 for α ≥ 0.575. To this end, we use the following
uniform estimates on the first positive zeros of Bessel functions ( see [38]):

α + c1α
1/3 < qα,1 < α + c1α

1/3 + c2α
−1/3, ∀α > 0, (5.26)

where c1 = 1.855 · · · and c2 = 1.033 · · · . Substituting the bounds (5.26) into the expres-
sion of ρ̃(α) in (5.25), one can easily verify via simple numerical calculations that ρ̃(α) < 1
for any α ≥ 0.575. This completes the proof.

6. Proofs of Theorem 1.2 and Corollary 1.1

Proofs of Theorem 1.2. The lower estimate in Theorem 1.2 follows directly from
Theorem 1.1, while the upper estimate in Theorem 1.2 is an easy consequence of Corollary
4.1 and Theorem 1.3. �

Proof of Corollary 1.1. By Theorem 1.2, it suffices to show that

a∗0 :=

∫ q1
0
jα+1(t)t

2α+1 dt∫ q1
0
t2α+1 dt

=
(2
e

)α(1+O(α−2/3))

, α → ∞, (6.1)

where q1 = qα+1,1.
To show (6.1), we use the following known formula (see [6, 7.14.1 (7)]):
∫ z

0

t2α+1jα+1(t) dt = 2αzα+2jα+1(z)Sα−1,α(z)− (2α + 2)zα+1jα(z)Sα,α+1(z), (6.2)

where Sµ,ν(z) denotes the Lommel function. We then obtain

a∗0 = −(2α + 2)2q−α−1
1 jα(q1)Sα,α+1(q1).

Note that by (3.7), α + 1 < q1 = α + 1 +O((α+ 1)1/3) as α → ∞.
We will also use the following estimate of the Lommel function:

Sα,α+1(z) = zα−1(1 +O(z−1)) uniformly for z > α, as α→ ∞. (6.3)

Since we are unable to find this estimate in literature, we decide to include a proof here.
Indeed, using [34, Th. 1.1], we have that for an integer N > α,

Sα,α+1(z) = zα−1
(N−1∑

k=0

∏k
v=1(α− v + 1)v

(z/2)2k
+ rN(z)

)
, z > 0. (6.4)

Here rN (z) ≡ 0 if α is a nonnegtive integer, and rN(z) can be estimated by an integral of
the Macdonald function otherwise:

|rN(z)| ≤
2α+1z−2N

Γ(−α)

∫ ∞

0

t2N−αKα+1(t) dt =
Γ(N + 1)Γ(N − α)

Γ(−α)(z/2)2N . (6.5)

Letting α→ ∞ and setting N = [α + 2] in (6.5), we obtain that for z > α,

rN(z) = O((2/e)2α(z/2)−2(N−α)) = O(z−1).
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Since each fraction in (6.4) is decreasing in k ≥ 1, (6.3) then follows.
Now using (6.2) and (6.3), we obtain that for α→ ∞

a∗0 = −(2α + 2)2

q21
jα(q1)(1 +O(q−1

1 ))

∼ −4jα(q1) = −2α+2Γ(α + 1)

qα1
J ′
α+1(q1),

where the last step uses the formula Jα(q1) = J ′
α+1(q1). On the other hand, however,

according to [37, Eq. 10.19.12], we have

−J ′
α+1(q1) = −J ′

α+1(α + 1 +O((α+ 1)1/3)) = cα−2/3 +O(α−4/3),

where c is a positive constant independent of α that can be expressed explicitly in terms
of the Airy function. Thus, using Stirling’s formula Γ(α+1) ∼ (2πα)1/2(α/e)α, we obtain

a∗0 ∼ Cα−1/6(2α/e)α(α +O(α1/3))−α = (2/e)α(1+O(α−2/3)) as α→ ∞.

This proves (6.1) and hence completes the proof of the corollary. �

7. Applications in the Remez-type problem

In this section, we give an application of our results on Nikolskii constants in a Remez
type problem, which appears frequently in approximation theory and number theory.

Consider a Lebesgue-measurable set E ⊂ Rd for which there exists function f ∈ Ed
1\{0}

such that ∫

E

|f(x)| dx ≥ 1

2

∫

Rd

|f(x)| dx. (7.1)

We define the Remez constant α∗
d to be the infimum of the Lebesgue measure |E| over

all measurable E ⊂ Rd with the above mentioned property. In the case of d = 1, the
exact value of the constant α∗

d was founded in [33], where it was proved that α∗
1 = π and

the corresponding extremal function is cos x
1−(2x/π)2

. The exact value of α∗
d for d ≥ 2 remains

unknown. Note that the Remez constant plays an important role in L1-approximation
of functions with small support and, in particular, in the study of sparse representations
(compressed sensing).

Using our results on Nikolskii constants, we may give an asymptotic estimate of the
constant α∗

d as d → ∞. To be precise, we first recall that N (Rd)1 = N (Rd)1,∞ =
Vd

(2π)d
L∗(d), the constant Iα is given in (1.10), Vd = πd/2

Γ(d/2+1)
= Vol(Bd), and qα,1 is the

first positive zero of the Bessel function Jα. We will need the following known result:

Theorem 7.1 ([21]). For d ≥ 1, we have

rd : = inf
{
r > 0 : ∃ f ∈ Ed

1 \ {0} such that f̂(0) ≥ 0 and f(x) ≤ 0 for all |x| ≥ r
}

= 2q d
2
−1,1

with the extremal function given by

fd(x) :=
(jd/2−1(|x|/2))2
1− (|x|/rd)2)

. (7.2)
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As a consequence, we have

Corollary 7.1. For d ≥ 2,

(2π)d

2VdId/2−1
≤ α∗

d ≤ (2qd/2−1,1)
dVd. (7.3)

In particular, we have

(
√
e/2)1+o(1) ≤

( Vdα∗
d

(2π)d

)1/d

≤ e1+o(1) as d→ ∞. (7.4)

Note that the lower estimate here improves significantly the estimate
( Vdα

∗

d

(2π)d

)1/d ≥ 1

given in [8].

Proof. Let E ⊂ R
d and f ∈ Ed

1 \ {0} be such that (7.1) is satisfied. Then

1

2

∫

Rd

|f(x)| dx ≤
∫

E

|f(x)| dx ≤ |E| ‖f‖∞ ≤ |E|N (Rd)1,∞‖f‖1.

This in particular implies that

α∗
d ≥

1

2N (Rd)1
,

which further implies the lower estimate α∗
d ≥ (2π)d

2VdId/2−1
because

(2π)d

Vd
N (Rd)1 = L∗(d) ≤ Id/2−1.

To show the corresponding upper estimate, let fd be the function given in (7.2). Then

0 =

∫

Rd

fd(x) dx =

∫

|x|≤rd

|fd(x)| dx−
∫

|x|≥rd

|fd(x)| dx,

and hence, ∫

|x|≤rd

|fd(x)| dx =
1

2

∫

Rd

|fd(x)| dx.

This together with (7.1) implies the upper estimate:

α∗
d ≤ (rd)

dVd ≤ (2q d
2
−1,1)

dVd.

Finally, we prove (7.4). Note that the lower asymptotic estimate in (7.4) follows
directly from Corollary 1.1. The upper estimate as d → ∞ follows from the upper
estimate in (7.3) since

V 2
d (rd)

d

(2π)d
=

πd(2qd/2−1,1)
d

(2π)dΓ2(d/2 + 1)
∼ (d/2)d

(d/(2e))d
= ed.

�
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