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This paper is devoted to the problem of optimal approximation of solutions of ordinary
differential equations (ODEs) of the following form{

z′(t) = f(t, z(t)), t ∈ [a, b],
z(a) = η,

(1)

where −∞ < a < b < ∞, d ∈ N, η ∈ Rd, f : [a, b] × Rd → Rd. We consider the case when f
is only locally Lipschitz. Due to the low regularity of the problem, we focus on the class of
randomized algorithms. Moreover, we assume that we have access to f only through its noisy
evaluations. We aim at defining an algorithm that approximates z optimally, i.e. with the
minimal possible error. Moreover, we want to investigate stability properties of the optimal
scheme.

Approximation of solutions of ODEs via randomized algorithms and under exact infor-
mation about right-hand side functions is a problem well studied in the literature, see, for
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example,[1, 4, 5, 7, 8, 14, 24, 25]. However, there are still few papers on approximate solving
(even via deterministic algorithms) of ODEs when the available information is corrupted, see
[11]. Inexact information has been mainly investigated in the context of function integration
and approximation ([16, 17]), approximate solving of PDEs ([27, 28]), stochastic integration
and SDEs ([13, 18, 19]). Such analysis, under noisy information, seems to be important from
the point of view of applications and stability issues, see [22] and Remarks 1, 5. We also refer
to [9, 10,15] for further discussion and examples.

In this paper we extend the results concerning randomized Runge-Kutta scheme (known
from [14]) in three directions. Firstly, we investigate the error and optimality of the random-
ized Runge-Kutta method in the case when f is only locally Lipschitz. Secondly, we allow
noisy evaluations of f . This means that the (randomized) evaluations of f might be cor-
rupted by some noise at level of at most δ ∈ [0, 1], which corresponds to the precision level.
Finally, we rigorously prove fundamental properties of regions of stability, such as openness,
boundedness, symmetry. We consider three types of such regions due to the three types of
convergence of underlying sequences of random variables: mean-square, with probability 1,
and in probability. For the stability analysis we adopt the approach used in [6] in the context
of stochastic differential equations.

The novelty and main results of the paper can be summarized as follows:

• We present upper bound on the Lp(Ω)-error for the randomized Runge-Kutta method
in the presence of informational noise and under local Lipschitz condition (Theorem
1). We emphasise a strong connection between the error analysis under inexact infor-
mation and 0-stability of the method (Remark 5).
• We show respective lower bound and then we justify that the randomized Runge-

Kutta scheme is optimal in the class of locally Lipschitz right-hand side functions f ,
among all algorithms based on randomized inexact information about f (Theorem 2).
• We rigorously prove properties of regions of stability for the randomized Runge-Kutta

scheme (Theorems 3, 4 and the equality (111)). According to our best knowledge this
is a first attempt in this direction.

The paper is organized into seven sections. Section 1 contains problem definition and descrip-
tion of the used model of computation under noisy information. Upper bounds on the error of
randomized Runge-Kutta methods are established in Section 2. Corresponding lower bound
and optimality are discussed in Section 3. In Section 4 we report the results of numerical
experiments performed for two exemplary equations, where one of them is the SIR model.
Properties of regions of stability for the randomized Runge-Kutta method are investigated
in Section 6. Finally, Appendix consists of some auxiliary results that are used in the paper.

1. Preliminaries

Let ‖ · ‖ be the first norm in Rd, i.e. ‖x‖ =
d∑

k=1

|xk| for x ∈ Rd. By {ek}dk=1 we denote the

canonical base in Rd. For x ∈ Rd and r ∈ [0,∞) we denote by B(x, r) = {y ∈ Rd | ‖y−x‖ ≤ r}
the closed ball in Rd. Moreover, we write C− = {z ∈ C : <(z) < 0}. Let (Ω,Σ,P) be a
complete probability space. For a random variable X : Ω → R, defined on (Ω,Σ,P), we

denote by ‖X‖p = (E|X|p)1/p, p ∈ [2,∞). For a Polish space E by B(E) we denote the Borel
σ-field on E.

Let K,L ∈ (0,∞), % ∈ (0, 1]. We will consider a class F % = F %(K,L) of pairs (η, f) defined
by the following conditions:

(A0) ‖η‖ ≤ K,
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(A1) f ∈ C
(
[a, b]× Rd

)
,

(A2) ‖f(t, x)‖ ≤ K(1 + ‖x‖), for all (t, x) ∈ [a, b]× Rd.
Take R̄ = R̄(a, b,K) as

R̄ = max
{
K(1 + b− a)

(
1 + eK(b−a)(1 +K(b− a))

)
,

K + (b− a)(1 +K) +
( 1

K
+ 1
)

(1 +K(b− a))
(
eK(b−a)(1+K(b−a))(1 +K)− 1

)}
. (2)

By Lemma 1 below we will see that it is sufficient for our analysis to assume that f satis-
fies Lipschitz condition only in the ball B(η, R̄). Namely, in addition to (A0), (A1), (A2) we
assume that

(A3) ‖f(t, x)− f(s, x)‖ ≤ L|t− s|% for all t, s ∈ [a, b], x ∈ B(η, R̄),
(A4) ‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖ for all t ∈ [a, b], x, y ∈ B(η, R̄).

The numbers a, b, d, %,K,L will be called parameters of the class F %. Except for a, b, and d
the parameters are, in general, not known and the algorithms presented later on will not use
them as input parameters.

We wish to approximate solution of (1) for f ∈ F % by an algorithm that is based on
noisy information about f . Namely, we assume that access to the function f is possible only
through its noisy evaluations

f̃(t, y) = f(t, y) + δ̃f (t, y), (t, y) ∈ [a, b]× Rd, (3)

where δ̃f (t, y) is an error function corrupting the exact value f(t, y), such that ‖δ̃f (t, y)‖ ≤
δ. We refer to δ as to precision parameter. Moreover, we allow randomized choice of the
evaluation points (t, y). We now describe model of computation in all details.

In order to define model of computation under randomized inexact information about f
we need to introduce the following auxiliary class

K(δ) = {δ̃ : [a, b]× Rd → Rd : δ̃ − Borel measurable, ‖δ̃(t, y)‖ ≤ δ for all t ∈ [a, b], y ∈ Rd},

where we assume for the precision parameter δ that δ ∈ [0, 1]. Note that the constant map-

pings δ̃(t, y) = ±δe1 belong to K(δ). (This is important fact when establishing lower bounds,
see [18] and Section 4 below.) Moreover, for (η, f) ∈ F % let

V(η,f)(δ) = B(η, δ)× Vf (δ), (4)

where

Vf (δ) = {f̃ : ∃δ̃f∈K(δ) f̃ = f + δ̃f}. (5)

It holds that V(η,f)(δ) ⊂ V(η,f)(δ
′) for 0 ≤ δ ≤ δ′ ≤ 1 and V(η,f)(0) = {η} × {f}.

For (η, f) ∈ F % let (η̃, f̃) ∈ V(η,f)(δ). A vector of noisy information about (η, f) is as follows

N (η̃, f̃) = [f̃(t0, y0), . . . , f̃(ti−1, yi−1), f̃(θ0, z0), . . . , f̃(θi−1, zi−1), η̃], (6)

where i ∈ N and (θ0, θ1, . . . , θi−1) is a random vector on (Ω,Σ,P). For Borel measurable

mappings ψj : R(2j+1)d → Rd × Rd, j ∈ {0, . . . , i− 1}, we set

(y0, z0) = ψ0(η̃), (7)

and

(yj , zj) = ψj

(
f̃(t0, y0), . . . , f̃(tj−1, yj−1), f̃(θ0, z0), . . . , f̃(θj−1, zj−1), η̃

)
(8)

for j ∈ {1, . . . , i− 1}. The total number of noisy valuations of f is l = 2i. Note that N (η̃, f̃) :

Ω→ R(2i+1)d is a random vector.



RANDOMIZED RUNGE-KUTTA METHOD 4

Any algorithm A using N (η̃, f̃) that computes the approximation to z is given by

A(η̃, f̃ , δ) = ϕ(N (η̃, f̃)), (9)

where

ϕ : R(2i+1)d → D([a, b];Rd) (10)

is a Borel measurable function. In the Skorokhod space D([a, b];Rd) we consider the Borel
σ-field B(D([a, b];Rd)) that coincides with the σ-field generated by coordinate mappings, see

Theorem 7.1 in [21]. This assures that A(η̃, f̃ , δ) : Ω → D([a, b];Rd) is Σ-to-B(D([a, b];Rd))
measurable and, by Theorem 7.1 in [21], for all t ∈ [a, b] the mapping

Ω 3 ω 7→ A(η̃, f̃ , δ)(ω)(t) ∈ Rd (11)

is Σ-to-B(Rd)-measurable. For a given n ∈ N we denote by Φn a class of all algorithms of the
form (9) for which the total number of evaluations l is at most n.

Let p ∈ [2,∞). For a fixed (η, f) ∈ F % the error of A ∈ Φn is given as

e(p)(A, η, f, δ) = sup
(η̃,f̃)∈V(η,f)(δ)

∥∥∥ sup
a≤t≤b

‖z(η, f)(t)−A(η̃, f̃ , δ)(t)‖
∥∥∥
p
, (12)

see Remark 2. The worst-case error of the algorithm A is defined by

e(p)(A,G, δ) = sup
(η,f)∈G

e(p)(A, η, f, δ), (13)

where G is a certain subclass of F %, see [26]. Finally, we consider the nth minimal error
defined as follows

e(p)
n (G, δ) = inf

A∈Φn
e(p)(A,G, δ). (14)

Our aim is two fold:

• determine sharp bounds on the nth minimal error and to define implementable al-
gorithm for which the infimum in (14) is asymptotically attained. We call such an
algorithm the optimal one, see [26].
• investigate stability (in certain sense) of the defined optimal method.

We follow the usual convention that all constants appearing in this paper (including those in
the ”O”, ”Ω”, and ”Θ” notation) will only depend on the parameters of the class F % and p.
Furthermore, the same symbol may be used for different constants.

Remark 1. We want to underline here that proposed model of computation covers the
phenomenon of lowering precision of computations. For example, in the scalar case (i.e. d = 1)

we can model relative round off errors by considering the following disturbing functions δ̃f :

δ̃f (t, y) = δ · α(t, y) · f(t, y), (t, y) ∈ [0, T ]× R, (15)

where α is a Borel measurable bounded function on [0, T ] × R. This is a frequent case for
efficient computations using both CPUs and GPUs. See [13], where similar model of noisy
information was considered and Monte Carlo simulations were performed on GPUs. Moreover,
in [18,19] the authors show results of numerical experiments (performed on CPUs) concerning
approximate solving of SDEs under inexact information.

Remark 2. Due to Lemma 1 (i) for all ω ∈ Ω the mapping [a, b] 3 t 7→ ‖z(η, f)(t) −
A(η̃, f̃ , δ)(ω)(t)‖ ∈ [0,∞) belongs to D([a, b]; [0,∞)), and by (11) for all t ∈ [a, b] the function

Ω 3 ω 7→ ‖z(η, f)(t) − A(η̃, f̃ , δ)(ω)(t)‖ ∈ [0,∞) is a Σ-to-B([0,∞)) measurable. Hence,

Ω 3 ω 7→ sup
a≤t≤b

‖z(η, f)(t)−A(η̃, f̃ , δ)(ω)(t)‖ ∈ [0,∞) is Σ-to-B([0,∞)) measurable function

and the error (12) is well-defined.
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2. Randomized Runge-Kutta method under noisy information

In the case of inexact information about (η, f) the randomized two-stage Runge-Kutta
algorithm is defined as follows. Let n ∈ N, h = (b − a)/n, and tj = a + jh, j ∈ {0, . . . , n}.
We assume that (τj)j∈N are independent and identically distributed random variables on

(Ω,Σ,P), uniformly distributed on [0, 1]. Let (η, f) ∈ F % and (η̃, f̃) ∈ V(η,f)(δ). Then we set
V̄ 0 := η̃,

V̄ j
τ := V̄ j−1 + hτj f̃(tj−1, V̄

j−1),

V̄ j := V̄ j−1 + hf̃(θj , V̄
j
τ )

(16)

for j ∈ {1, . . . , n}, where θj := tj−1 + τjh. The final approximation of z in the interval [a, b]
is obtained by taking

l̄(t) = l̄j(t), t ∈ [tj , tj+1], j ∈ {0, . . . , n− 1} , (17)

where

l̄j(t) =
V̄ j+1 − V̄ j

tj+1 − tj
(t− tj) + V̄ j . (18)

The algorithm uses 2n noisy evaluations of f . Moreover, its combinatorial cost is O(n) arith-
metic operations.

In the case of exact information (i.e. δ = 0) we write V j , V j
τ , l, lj instead of V̄ j , V̄ j

τ , l̄,
l̄j , respectively. Of course l̄ = l̄n but we will omit the subscript n in order to simplify the
notation.

Note that the algorithm (16) can be written as
V̄ 0 := η̃,

V̄ j
τ := V̄ j−1 + hτj

[
f(tj−1, V̄

j−1) + δjτ
]
,

V̄ j := V̄ j−1 + h
[
f(θj , V̄

j
τ ) + δj

]
,

(19)

for j ∈ {1, . . . , n}, where for the noise δjτ , δj we have

max
1≤j≤n

max
{
‖δjτ‖, ‖δj‖

}
≤ δ (20)

almost surely. We stress that the only source of randomness in the noise are τj ’s, since

δj is σ(τ1, . . . , τj)-measurable for j ∈ {1, . . . , n}, while δjτ is σ(τ1, . . . , τj−1)-measurable for
j ∈ {2, . . . , n} (δ1

τ is deterministic).
Lemma below is a crucial result that allow us to estimate error of the randomized Runge-

Kutta algorithm in the case when f is only locally Lipschitz. Similar localization technique
was used in [12] for right-hand side functions that are globally Lipschitz but only locally
differentiable.

Lemma 1. Let R̄ = R̄(a, b,K) be as in (2). Then for any n ∈ N, δ ∈ [0, 1], (η, f) ∈ F %, and

(η̃, f̃) ∈ V(η,f)(δ) the following holds:

(i) There exists a unique solution z = z(η, f), z ∈ C1([a, b];Rd), of (1). Moreover, it
holds that

z(t) ∈ B(η, R̄), t ∈ [a, b], (21)

there exists C̄ = C̄(a, b,K,L) ∈ (0,∞) such that for all s, t ∈ [a, b]

‖z′(t)− z′(s)‖ ≤ C̄|t− s|%, (22)

and for all j ∈ {1, . . . , n}
z(tj−1) + hτjf(tj−1, z(tj−1)) ∈ B(η, R̄) (23)
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almost surely.
(ii) For all j ∈ {0, 1, . . . , n}

V j , V̄ j ∈ B(η, R̄) (24)

almost surely.
(iii) For all j ∈ {1, . . . , n}

V j
τ , V̄

j
τ ∈ B(η, R̄) (25)

almost surely.

Proof. Let (η, f) ∈ F %. According to suitable version of Peano’s theorem (see, for example,
Theorem 70.4, page 292. in [2]) under conditions (A1), (A2) the equation (1) has at least one
solution z ∈ C1([a, b];Rd). Hence, firstly we show that there exists R ∈ [0, R̄] such that for
any solution z we have z(t) ∈ B(η,R) for all t ∈ [a, b]. Note that

‖z(t)‖ ≤ K(1 + b− a) +K

t∫
a

‖z(s)‖ds, t ∈ [a, b],

and, by the Gronwall’s lemma,
sup
a≤t≤b

‖z(t)‖ ≤ C1, (26)

where
C1 = C1(a, b,K) = eK(b−a)K(1 + b− a).

Moreover,
sup
a≤t≤b

‖z(t)− η‖ ≤ C2,

with
C2 = C2(a, b,K) = C1 +K ≤ R̄,

where R̄ is defined in (2). Hence, for all z being the solution of the problem (1) and it holds

z(t) ∈ B(η, C2) ⊂ B(η, R̄), t ∈ [a, b]. (27)

Now, let z and z̃ are two solutions of (1). Due to (27) we have that z(t), z̃(t) ∈ B(η, R̄) for
all t ∈ [a, b]. Therefore, by (A4) we have for all t ∈ [a, b]

‖z(t)− z̃(t)‖ ≤
t∫

a

‖f(s, z(s))− f(s, z̃(s))‖ ds ≤ L
t∫

a

‖z(s)− z̃(s)‖ds.

This implies that for all t ∈ [a, b] we have z(t) = z̃(t), and the uniqueness in (i) follows. For
the unique solution z of (1), by (A2) and (26), we have for all t, s ∈ [a, b]

‖z(t)− z(s)‖ ≤
max{t,s}∫

min{t,s}

‖f(u, z(u))‖du ≤ K(1 + C1)|t− s|.

Hence, by (A3) and (A4) we have for all t, s ∈ [a, b]

‖z′(t)− z′(s)‖ ≤ L|t− s|% + L‖z(t)− z(s)‖ ≤ C̄|t− s|% (28)

with C̄ = L
(

1 +K(1 + C1)(1 + b− a)
)

. This ends the proof of (22). Moreover, for all n ∈ N,

j ∈ {1, . . . , n}, and almost surely

‖z(tj−1) + hτjf(tj−1, z(tj−1))− η‖ ≤ ‖z(tj−1)− η‖+ hK(1 + ‖z(tj−1)‖) ≤ C3,

where
C3 = C3(a, b,K) = C2 + (b− a)K(1 + C1).
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For any n ∈ N, δ ∈ [0, 1], (η̃, f̃) ∈ V(η,f)(δ), and j ∈ {0, 1, . . . , n} we get

‖V̄ 0‖ ≤ K + 1,

‖V̄ j
τ ‖ ≤ ‖V̄ j−1‖+ h

(
‖f(tj−1, V̄

j−1)‖+ ‖δjτ‖
)
≤ (1 + hK)‖V̄ j−1‖+ h(K + 1), (29)

and therefore

‖V̄ j‖ ≤ ‖V̄ j−1‖+ h
(
‖f(θj , V̄

j
τ )‖+ 1

)
≤ (1 +K1h)‖V̄ j−1‖+K2h,

where

K1 = K1(a, b,K) := K(1 + (b− a)K), K2 = K2(a, b,K) := (K + 1)(1 + (b− a)K).

Hence, we get for all 0 ≤ j ≤ n

‖V̄ j‖ ≤ (1 +K1h)j(K + 1) +
(1 +K1h)j − 1

K1h
K2h ≤ C4, (30)

where

C4 = C4(a, b,K) :=
K + 1

K

(
(K + 1)eK1(b−a) − 1

)
.

By (29) we obtain for all 1 ≤ j ≤ n
‖V̄ j

τ ‖ ≤ C5, (31)

with

C5 = C5(a, b,K) := C4(1 + (b− a)K) + (b− a)(K + 1).

Therefore

max
0≤j≤n

‖V̄ j − η‖ ≤ max
0≤j≤n

‖V̄ j‖+ ‖η‖ ≤ C6, (32)

max
1≤j≤n

‖V̄ j
τ − η‖ ≤ C7, (33)

where

C6 = C6(a, b,K) = C4 +K, C7 = C7(a, b,K) = C5 +K. (34)

Note that R̄ = max{C2, C3, C6, C7} = max{C3, C7} and the inclusions in (i)-(iii) follow. �

We are ready to prove the following theorem that states upper error bounds for random-
ized Runge-Kutta algorithm under noisy information about the right-hand side function.

Theorem 1. Let p ∈ [2,∞). There exists C, depending only on the parameters of the class

F % and p, such that for all n ≥ bb− ac+ 1, δ ∈ [0, 1], (η, f) ∈ F %, (η̃, f̃) ∈ V(η,f)(δ) we have∥∥∥ sup
a≤t≤b

‖z(η, f)(t)− l̄(η̃, f̃ , δ)(t)‖
∥∥∥
p
≤ C

(
h%+1/2 + δ

)
. (35)

Proof. We define

z̄j(t) =
z(tj+1)− z(tj)

h
(t− tj) + z(tj), (36)

for t ∈ [tj , tj+1], j ∈ {0, . . . , n− 1}. Then∥∥∥ sup
a≤t≤b

‖z(t)− l̄(t)‖
∥∥∥
p
≤ max

0≤j≤n−1
sup

tj≤t≤tj+1

‖z(t)− z̄j(t)‖

+
∥∥∥ max

0≤j≤n−1
sup

tj≤t≤tj+1

‖z̄j(t)− l̄j(t)‖
∥∥∥
p
, (37)

where, from (18), (36), it holds∥∥∥ max
0≤j≤n−1

sup
tj≤t≤tj+1

‖z̄j(t)− l̄j(t)‖
∥∥∥
p
≤ 3
∥∥∥ max

0≤j≤n
‖z(tj)− V j‖

∥∥∥
p
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+3
∥∥∥ max

0≤j≤n
‖V j − V̄ j‖

∥∥∥
p
. (38)

In the case of global Lipschitz condition the first term
∥∥∥ max

0≤j≤n
‖z(tj)− V j‖

∥∥∥
p

was estimated

in Theorem 5.2 in [14]. Under local Lipschitz assumptions (A3), (A4) and with the help of
Lemma 1 we can estimate it essentially in the same fashion as in [14], and we get the same
upper bound ∥∥∥ max

0≤j≤n
‖z(tj)− V j‖

∥∥∥
p
≤ Ch%+1/2. (39)

However, for the convenience of the reader we present complete justification of (39), where
we explicitly point out the use of Lemma 1.

For k ∈ {1, . . . , n} we have

z(tk)− V k = Sk1 + Sk2 + Sk3 , (40)

where

Sk1 =
k∑
j=1

( tj∫
tj−1

z′(s)ds− hz′(θj)
)
, (41)

Sk2 = h
k∑
j=1

(
f(θj , z(θj))− f(θj , z(tj−1) + hτjf(tj−1, z(tj−1)))

)
, (42)

Sk3 = h
k∑
j=1

(
f(θj , z(tj−1) + hτjf(tj−1, z(tj−1)))− f(θj , V

j
τ )
)
. (43)

By (22) in Lemma 1 and Theorem 3.1 in [14] we have that there exists C1 > 0 such that for
all n ≥ bb− ac+ 1∥∥∥ max

1≤k≤n
‖Sk1‖

∥∥∥
p
=

∥∥∥∥∥ max
1≤k≤n

∥∥∥ tk∫
a

z′(s)ds− h
k∑
j=1

z′(θj)
∥∥∥∥∥∥∥∥

p

≤ C1h
%+1/2. (44)

Furthermore, by Lemma 1 and (A4) we get for k ∈ {1, . . . , n}

‖Sk2‖ ≤ hL
k∑
j=1

‖z(θj)− z(tj−1)− hτjf(tj−1, z(tj−1))‖

≤ hL
k∑
j=1

θj∫
tj−1

‖z′(s)− z′(tj−1)‖ds ≤ C2h
%+1. (45)

Moreover, by (19) (with δ = 0), Lemma 1 and (A4) we have for k ∈ {1, . . . , n}

‖Sk3‖ ≤ hL
k∑
j=1

‖z(tj−1) + hτjf(tj−1, z(tj−1))− V j
τ ‖

≤ hL(1 + L(b− a))
k∑
j=1

‖z(tj−1)− V j−1‖ ≤ hC3

k∑
j=1

max
0≤i≤j−1

‖z(ti)− V i‖. (46)

From (40), (44), (45), and (46) we have for k ∈ {1, . . . , n} that∥∥∥max
1≤i≤k

‖z(ti)− V i‖
∥∥∥
p
≤
∥∥∥max

1≤i≤n
‖Si1‖

∥∥∥
p
+
∥∥∥max

1≤i≤n
‖Si2‖

∥∥∥
p
+hC3

k−1∑
j=1

∥∥∥max
0≤i≤j

‖z(ti)− V i‖
∥∥∥
p
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≤ C4h
%+1/2 + hC3

k−1∑
j=1

∥∥∥max
0≤i≤j

‖z(ti)− V i‖
∥∥∥
p
. (47)

Using the weighted version of discrete Gronwall’s lemma (see, for example, Lemma 2.1. in
[14]) we obtain (39).

We now establish upper bound on
∥∥∥ max

0≤j≤n
‖V j − V̄ j‖

∥∥∥
p
. We have

‖V 0 − V̄ 0‖ ≤ δ,

and by Lemma 1 (ii), (iii) it holds for j ∈ {1, . . . , n}

‖V j − V̄ j‖ ≤ ‖V j−1 − V̄ j−1‖+ hL‖V j
τ − V̄ j

τ ‖+ hδ, (48)

where

‖V j
τ − V̄ j

τ ‖ ≤ ‖V j−1 − V̄ j−1‖+ hδ + hL‖V j−1 − V̄ j−1‖. (49)

Hence

‖V j − V̄ j‖ ≤ (1 + C5h) · ‖V j−1 − V̄ j−1‖+ hδC6, (50)

and for all j ∈ {0, 1, . . . , n}

‖V j − V̄ j‖ ≤ (1 + C5h)j‖V 0 − V̄ 0‖+
(1 + C5h)j − 1

C5h
· hδC6 ≤ C7δ. (51)

Therefore,

max
0≤j≤n

‖V j − V̄ j‖ ≤ C7δ, (52)

almost surely and by (39) we get∥∥∥ max
0≤j≤n−1

sup
tj≤t≤tj+1

‖z̄j(t)− l̄j(t)‖
∥∥∥
p
≤ C8(h%+1/2 + δ). (53)

We now show the upper bound on max
0≤j≤n−1

sup
tj≤t≤tj+1

‖z(t)− z̄j(t)‖, which is the deterministic

term in the error estimate (37).
For every t ∈ [tj , tj+1], j ∈ {0, . . . , n− 1} we obtain, by applying the mean value-theorem

component-wise,

z(t) =

d∑
k=1

zk(t)ek =

d∑
k=1

(
zk(tj) + z′k(α

t
k,j)(t− tj)

)
ek,

z̄j(t) =
d∑

k=1

z̄j,k(t)ek =
d∑

k=1

(
z′k(βk,j)(t− tj) + zk(tj)

)
ek (54)

for some αtk,j ∈ [tj , t] ⊂ [tj , tj+1] and βk,j ∈ [tj , tj+1]. Thereby, for t ∈ [tj , tj+1]

z(t)− z̄j(t) =
d∑

k=1

(
z′k(α

t
k,j)− z′k(βk,j)

)
(t− tj)ek. (55)

Since ‖ek‖ = 1 for k ∈ {1, . . . , d}, by (22) we get for j ∈ {0, . . . , n− 1}, t ∈ [tj , tj+1]

‖z(t)− z̄j(t)‖ ≤ h
d∑

k=1

|z′k(αtk,j)− z′k(βk,j)| ≤ dC̄h%+1. (56)

Combining (37), (53), and (56) we get the thesis. �
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3. Lower bounds and optimality of the randomized Runge-Kutta algorithm

This section is devoted to lower bounds on the worst-case error of any algorithm from the
class Φn. They will allow us to conclude that the randomized Runge-Kutta l̄ is asymptotically
optimal within this setting.

Lemma 2. Let p ∈ [2,∞) and % ∈ (0, 1], then

e(p)
n (F %, δ) = Ω(max{n−(%+1/2), δ})

as n→∞ and δ → 0+.

Proof. Firstly, for the exact randomized information the following lower bound holds

e(p)
n (F %, δ) ≥ e(p)

n (F %, 0) = Ω(n−(%+1/2)), n→∞. (57)

This follows from reducing an integration problem of Hölder continuous functions to the
solution of initial value problem, see [5] and [20] for the details.

Note that for any algorithm A ∈ Φn and any (η1, f1), (η2, f2) ∈ F %, such that V(η1,f1)(δ) ∩
V(η2,f2)(δ) 6= ∅, we have

e(p)(A, F %, δ) ≥ 1

2
sup
a≤t≤b

‖z(η1, f1)(t)− z(η2, f2)(t)‖. (58)

Hence, let us take (η1, f1) = (0e1,+δe1), (η2, f2) = (0e1,−δe1) that belong to F % if δ ∈
[0,min{K, 1}]. Then (0e1, 0e1) ∈ V(η1,f1)(δ) ∩ V(η2,f2)(δ) and

e(p)(A, F %, δ) ≥ δ sup
a≤t≤b

‖(t− a)e1‖ = (b− a)δ,

which implies the following

e(p)
n (F %, δ) ≥ (b− a)δ. (59)

By (57) and (59) we get the thesis. �

Lemma 2, together with Theorem 1 immediately imply the following theorem of optimal-
ity of randomized Runge-Kutta algorithm.

Theorem 2. Let p ∈ [2,∞) and % ∈ (0, 1], then

e(p)
n (F %, δ) = Θ(max{n−(%+1/2), δ})

as n→∞ and δ → 0+. The optimal algorithm is the randomized Runge-Kutta algorithm l̄.

Remark 3. If we restrict considerations to deterministic algorithms, then the following sharp
bounds on the nth minimal error hold

e(p)
n (F %, δ) = Θ(max{n−%, δ}), (60)

as n → ∞ and δ → 0+. The classical Euler scheme, based on the equidistant mesh, is the
optimal one.

4. Numerical experiments

In order to support the obtained theoretical results we conducted several numerical exper-
iments. The worst case noise was simulated in two ways: by using two constant noises equal
to δ and −δ (as in the proof of the lower bounds), and then taking the worst of them, and by
generating 100 of repetitions of random noise from the uniform distribution on [−δ, δ] for each
step of the algorithm, and then by taking the worst of them. The error was approximated
in L2 norm at the terminal point by M repetitions of the randomized Runge-Kutta scheme
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(with M equal to 1000 for the constant noise and 100 for the random noise).

Example 1. As the first problem we consider the following scalar ODE{
z′(t) = 1 + z(t) cos

(
10(2− t)1/γ |z(t)|3/2

)
, t ∈ [0, 2]

z(0) = −1
(61)

for different values of γ ∈ (0,+∞). Note that the right-hand side function f in (61) satisfies the
assumptions (A1)–(A4) with % = 1/γ. The results for exact information (δ = 0), γ ∈ {2, 5, 10}
and n varying for 100 to 50000 are presented in Figure 1 (left graph). The results are printed
in the logarithmic scale as the relation lg(err) versus lg(n). We have added also the slope of
the relations. Note that we get a little better behavior that it follows from the theoretical
results, which may be due to the fact that the the right-hand side function f = f(t, y) is
Lipschitz continuous with respect to time variable t on every interval [0, β] with β < 2.
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Figure 1. lg(err) vs lg(n) for Example 1 with δ = 0 (left graph) and δ =

h%+1/2 (right graph)

In Figure 2 the relation − lg(err) versus lg(n) for γ = 3 and different values of δ is pre-

sented. We have also run the test with varying δ � h%+1/2. The result is presented in Figure 1
(right graph). As we can see, the error decreases proportionally to δ, which confirms the
theoretical results.

Example 2. Below we recall the well-known SIR model that models the spread of disease

[S′(t), I ′(t), R′(t)] = [−βS(t)I(t), βS(t)I(t)− γI(t), γI(t)], t ∈ [0, 30]. (62)

In numerical experiments we set [S(0), I(0), R(0)] = [50, 1, 0], β = 1
768 , γ = 1

120 . The right-
hand side function in (62) does not belong to the class F %, since it is not globally of at most

linear growth. However, we still achieve the desired empirical convergence rate O(h3/2). This
suggests possibility of weakening the assumption (A2) in the future investigations.

We have made similar simulation as for Example 1. In Figure 3 we present the relation
lg(err) versus lg(n) for exact information (left graph) and for inexact information with the

precision parameter δ � h3/2 (right graph). We can see on both graphs that the error is

proportional to n−3/2. In Figure 4 we present also the relation − lg(err) versus lg(n) for
different values of δ.
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noise, right graph – random noise)
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5. Three types of regions of stability for the randomized Runge-Kutta
method

In the case when the information is exact we investigate absolute stability of the random-
ized Runge-Kutta method (V j)j∈{0,1,...,n}. Since now the algorithm is random we have to
generalize definitions concerning the absolute stability known for deterministic methods, see,
for example, [3].

Let us consider the well-known test problem{
z′(t) = λz(t), t ≥ 0,
z(0) = η

(63)

with λ ∈ C, η 6= 0. The exact solution of (63) is z(t) = η exp(λt) and

lim
t→∞

z(t) = 0 iff <(λ) < 0. (64)
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graph – random noise)

For a fixed step-size h > 0 we apply the algorithm (V j)∈{0,1,...,n} based on the mesh tj = jh,
j ∈ N0, to the test problem (63). As a result we obtain the following recurrence

V 0 = η and V j = pj(hλ) · V j−1 for j ∈ {1, . . . , n} , (65)

where

pj(z) = τj · z2 + z + 1, z ∈ C (66)

is a second-degree polynomial with random coefficient τj . Let us substitute z = hλ. For any
z ∈ C, (pj(z))j∈N is a sequence of complex-valued, independent, and identically distributed
random variables on (Ω,Σ,P). Solving (65) we get that

V k = η ·
k∏
j=1

pj(z). (67)

We consider three sets

RMS = {z ∈ C : V k → 0 in L2(Ω) as k →∞},
RAS = {z ∈ C : V k → 0 almost surely as k →∞},

RSP =
{
z ∈ C : V k → 0 in probability as k →∞

}
, (68)

where we call RMS the region of mean-square stability, RAS – the region of asymptotic
stability, while RSP – the region of stability in probability. Of course we have that

RMS ∪RAS ⊂ RSP , (69)

but we will show more accurate inclusions. If in (V j)j∈{0,1,...,n} we set τj := 1/2 for all j ∈ N
then we arrive at the well-known (deterministic) midpoint scheme. The well-known region of
absolute stability of this algorithm is

RMid =
{
z ∈ C :

∣∣∣1
2
z2 + z + 1

∣∣∣2 < 1
}
. (70)

We use RMid as a reference set for RMS , RAS , and RSP . We also investigate the intervals
of absolute stability

I� = R� ∩ {z ∈ C : =(z) = 0}, � ∈ {MS,AS, SP}. (71)
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In [6] regions RMS , RAS were defined in order to investigate stability of numerical schemes
for stochastic differential equations. Here we adopt this methodology for randomized Runge-
Kutta algorithm in the context of deterministic ordinary differential equations. According to
our best knowledge this is the first attempt in that direction. Moreover, we also investigate
properties of the region RSP , which was not the case in [6].

5.1. Region RMS of mean-square stability. For all z ∈ C and j ∈ N

|pj(z)|2 = 1 + 2<(z) + |z|2 + 2τj

(
2(<(z))2 − |z|2 + |z|2<(z)

)
+ τ2

j |z|4, (72)

and hence

E|pj(z)|2 = 1 + 2<(z)
(

1 +
1

2
|z|2
)

+ 2(<(z))2 +
1

3
|z|4. (73)

By (67) we get that

‖V k‖2 = |η| · (E|p1(z)|2)k/2. (74)

Hence, we can write that

RMS = {z ∈ C : E|p1(z)|2 < 1}. (75)

Theorem 3.

(i) The sets RMS, RMid are open and symmetric with respect to the real axis.
(ii) There exists r0 ∈ (0,∞) such that RMS ⊂ RMid ⊂ C− ∩ {z ∈ C : |z| < r0}.
(iii) IMS = (x0, 0) with x0 = −1− (

√
2− 1)−1/3 + (

√
2− 1)1/3, while IMid := RMid∩{z ∈

C : =(z) = 0} = (−2, 0), and IMS ⊂ IMid.

Proof. It holds

RMS = (φMS)−1((−∞, 0)), (76)

RMid = (φMid)−1((−∞, 0)), (77)

where the functions φMS , φMid : C→ R are given as follows

φMS(z) = 2<(z)
(

1 +
1

2
|z|2
)

+ 2(<(z))2 +
1

3
|z|4,

φMid(z) = 2<(z)
(

1 +
1

2
|z|2
)

+ 2(<(z))2 +
1

4
|z|4. (78)

Note that φMS , φMid are continuous, thereby RMS , RMid are open. Since for all z ∈ C we
have that φMS(z) = φMS(z̄), φMid(z) = φMid(z̄), the conclusion in (i) follows. Moreover
φMid(z) ≤ φMS(z) for all z ∈ C, and hence RMS ⊂ RMid. Furthermore, for any z ∈ RMid

we have

<(z) <
−2(<(z))2 − 1

4 |z|
4

2
(

1 + 1
2 |z|2

) < 0, (79)

which implies that

RMid ⊂ C−. (80)

Let us consider any z ∈ RMid. Then, by the definition of RMid we obtain what follows

1 >

∣∣∣∣12z2 + z + 1

∣∣∣∣ ≥ ∣∣∣∣12z2 + z

∣∣∣∣− 1 = |z| ·
∣∣∣∣12z + 1

∣∣∣∣− 1 ≥ |z| ·
(

1

2
|z| − 1

)
− 1, (81)

leading to

0 >
1

2
|z|2 − |z| − 2 =

1

2
·
(
|z| −

(
1 +
√

5
))
·
(
|z| −

(
1−
√

5
))

. (82)

Since |z| −
(
1−
√

5
)
> 0 for all z ∈ C, we conclude that |z| < 1 +

√
5. Thus,

RMid ⊂ {z ∈ C : |z| < r0} , (83)
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where r0 = 1 +
√

5. Inclusion (80), combined with (83), leads to (ii). By (75) and Cardano’s
formula we get that

IMS = {x ∈ (−∞, 0) : x3 + 3x2 + 6x+ 6 > 0} = (x0, 0), (84)

where

x0 = −1− 1

(
√

2− 1)1/3
+ (
√

2− 1)1/3. (85)

It is well-known that for the deterministic mid-point method IMid = (−2, 0), however, for the
convenience of the reader we provide a short justification. Namely, from (72) with τj = 1/2
we get that

IMid = {x ∈ (−∞, 0) : x3 + 4x2 + 8x+ 8 > 0} = (−2, 0). (86)

Since x0 > −2 we get the inclusion IMS ⊂ IMid. This proves (iii). �

5.2. Region RAS of asymptotic stability. The following result is a rearrangement of
Lemma 5.1 in [6].

Lemma 3. Given a sequence of real-valued, independent and identically distributed random
variables {Zn}n∈N0 with P(Z1 > 0) = 1, consider the sequence of random variables {Yn}n∈N
defined by

Yn =
(n−1∏
i=0

Zi

)
Y0, (87)

where Y0 is independent of {Zn}n∈N0 and P(Y0 > 0) = 1. The following holds:

(i) if ln(Z1) is integrable, then

E(ln(Z1)) < 0⇒ lim
n→∞

Yn = 0,with probability 1⇒ E(ln(Z1)) ≤ 0. (88)

(ii) if ln(Z1) is square-integrable, then

lim
n→∞

Yn = 0,with probability 1⇔ E(ln(Z1)) < 0. (89)

In our case we set Zj := |pj(z)| for a chosen z ∈ C, where pj defined as in (66). Recall
from (68) that

RAS =

z ∈ C : lim
k→∞

|η| · k∏
j=1

|pj(z)|

 = 0 with probability 1

 .

Let us observe that |p1(z)| =
∣∣τ1 · z2 + z + 1

∣∣ =
√
fa,b(τ1) for z = a + bi, a, b ∈ R, where

function fa,b is defined as in Appendix and τ1 is uniformly distributed over [0, 1]. From Fact
1 in Appendix it follows that, for all z ∈ C, P (|p1(z)| > 0) = 1, whereas Fact 3 implies that
the random variable ln (|p1(z)|) = 1

2 ln (fa,b (τ1)) is square-integrable. Hence, by Lemma 3(ii)
we obtain

RAS = {z ∈ C : E(ln |p1(z)|) < 0} . (90)

Theorem 4.

(i) The set RAS is open and symmetric with respect to the real axis.
(ii) It holds that IMid ⊂ [−2, 0) ⊂ IAS ⊂

(
−
√

2e, 0
)
.

(iii) There exists r0 ∈ (0,∞) such that RAS ⊂ C− ∩ {z ∈ C : |z| < r0}}.
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Proof. In this proof we will refer many times to the family of functions
{
fa,b : (a, b) ∈ R2

}
defined by (114) and the function F linked to this family via (116).

Let us notice that RAS given by (90) is isomorphic with the following set (we will use the
same name for both sets):

RAS =
{

(a, b) ∈ R2 : F (a, b) < 0
}
. (91)

Since function F : R2 → R is continuous (see Proposition 1), the set RAS = F−1 ((−∞, 0)) is
open. Moreover, F (a, b) = F (a,−b) for all (a, b) ∈ R2 (see the proof of Proposition 1), which
implies symmetry of RAS with respect to the abscissa. This proves (i).

By (91),

IAS = {x ∈ R : F (x, 0) < 0} . (92)

Fact 2 gives the formula for F (x, 0):

F (x, 0) =
x2 + x+ 1

x2
ln
(
x2 + x+ 1

)
− x+ 1

x2
ln |x+ 1| − 1 (93)

for x ∈ (−∞,−1) ∪ (−1, 0) ∪ (0,∞), F (−1, 0) = −1 and F (0, 0) = 0.
For x ∈ (−1, 0) we have 1 > x2 + x+ 1 > x+ 1 > 0. Function (0, 1) 3 t 7→ t ln t− t ∈ R is

decreasing. As a result,(
x2 + x+ 1

)
ln
(
x2 + x+ 1

)
−
(
x2 + x+ 1

)
< (x+ 1) ln (x+ 1)− (x+ 1) , (94)

which is equivalent to F (x, 0) < 0. We conclude that (−1, 0) ⊂ IAS .
Let us consider a function g : (−∞,−1]→ R given by g(x) = x2 · F (x, 0), that is

g(x) =
(
x2 + x+ 1

)
ln
(
x2 + x+ 1

)
− (x+ 1) ln (−(x+ 1))− x2 (95)

for x < −1 and g(−1) = −1. Function g is continuous in (−∞,−1] (since F is continuous)
and convex because its second derivative

g′′(x) = 2 ln
(
x2 + x+ 1

)
+

(2x+ 1)2

x2 + x+ 1
+

1

−(x+ 1)
(96)

is positive for x ∈ (−∞,−1) (as each term of the above sum is positive). From Jensen’s
inequality it follows that

g(x) = g ((x+ 2) · (−1) + (1− x) · (−2)) ≤ (x+ 2) · g(−1) + (1− x) · g(−1) < 0 (97)

for all x ∈ [−2,−1]. Hence, [−2,−1] ⊂ IAS .
We have already shown that [−2, 0) ⊂ IAS . The inclusion IAS ⊂

(
−
√

2e, 0
)

follows from

the Fact that RAS ⊂ C−, which will be proved later in (iii), and the well-known log sum
inequality:

n∑
i=1

ai ln

(
ai
bi

)
≥ a ln

(a
b

)
for any n ∈ Z+ and a1, . . . , an, b1, . . . , bn > 0, a = a1 + . . .+ an, b = b1 + . . . , bn. In fact, for
x ∈ IAS ∩ (−∞,−1) we have

x2 >
(
x2 + x+ 1

)
ln
(
x2 + x+ 1

)
− (x+ 1) ln (−(x+ 1)) ≥ x2 ln

(
x2

2

)
, (98)

where the former inequality follows from the condition F (x, 0) < 0 and the latter is log sum

inequality with a1 = x2 +x+1, a2 = −(x+1) and b1 = b2 = 1. We conclude that 1 > ln
(
x2

2

)
,

which leads to x > −
√

2e and the proof of (ii) is completed.
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Now we will show that RAS ⊂ C−. This inclusion is equivalent to the condition F (a, b) ≥ 0
for all a ≥ 0 and b ∈ R. Since the difference

fa,b(t)− f0,b(t) =
(
a4 + 2a2b2

)
t2 + 2

(
a3 + a2 + ab2

)
t+ a2 + 2a (99)

is non-negative for all t ∈ [0, 1], a ∈ [0,∞) and b ∈ R, we have

F (a, b) =
1

2
E (ln (fa,b(τ))) ≥ 1

2
E (ln (f0,b(τ))) = F (0, b). (100)

Thus, it suffices to show that F (0, b) ≥ 0 for all b ∈ R.
As stated in Fact 2, F (0, 0) = 0. Hereinafter we assume that b 6= 0. Then f0,b : R 3 t 7→

b4t2− 2b2t+ b2 + 1 ∈ R is a quadratic function and its global minimum b2 is achieved for the
argument b−2. When |b| ≥ 1, we have ln (f0,b(t)) ≥ ln

(
b2
)
≥ ln 1 = 0 for all t ∈ [0, 1] and as

a result F (0, b) = 1
2 · E (ln (f0,b(τ))) ≥ 0.

Now we will investigate the remaining case 0 < |b| < 1. Recall that ln(x) ≥ 1− 1
x for x > 0,

arctg(x)− arctg(y) = arctg

(
x− y
1 + xy

)
(101)

for y < x < 0 and 0 < arctg(x) < x for x > 0. Hence, for x > 0 it follows that

2F (0, b) = E (ln (f0,b(τ))) ≥ 1− E
(

1

f0,b(τ)

)
= 1−

arctg
(
|b|3
)

|b|3
> 0. (102)

This completes the proof of inclusion RAS ⊂ C−.
From (ii) we know that IAS is bounded. The boundedness ofRAS follows from the following

observation: if z ∈ RAS and |z| ≥ 4, then −|z| ∈ IAS .
Let us consider z = a+ bi ∈ RAS , where a, b ∈ R, such that |z| ≥ 4. For t ∈ [0, 1] we have∣∣tz2 + z + 1

∣∣2 − ∣∣t|z|2 − |z|+ 1
∣∣2

= 2
(√

a2 + b2 + a
)

+ 2t
[(
a2 + b2

)√
a2 + b2 + a

(
a2 + b2

)
− 2b2

]
≥ 0.

We need to provide justification for the last inequality. Firstly, let us observe that√
a2 + b2 + a ≥ |a|+ a ≥ 0.

Secondly, let us notice that a < 0 because z ∈ RAS ⊂ C− and choose α ∈ R such that
b = α · a. Then |z| = |a|

√
1 + α2 and

(
a2 + b2

)√
a2 + b2 + a

(
a2 + b2

)
− 2b2 = a2α2

(
|z|

√
1 + α2

√
1 + α2 + 1

− 2

)
≥ 0,

since |z| ≥ 4 and
√

1+α2√
1+α2+1

≥ 1
2 for all α ∈ R.

Hence, for z ∈ RAS such that |z| ≥ 4 the following holds:

z ∈ RAS ⇔ E
(
ln
∣∣τz2 + z + 1

∣∣) < 0 ⇒ E
(
ln
∣∣τ |z|2 − |z|+ 1

∣∣) < 0 ⇔ −|z| ∈ IAS .

This concludes the proof. �
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5.3. Region RSP of stability in probability. Below we prove analogous result to Lemma
3, but now we deal with convergence in probability.

Lemma 4. Given a sequence of real-valued, independent and identically distributed random
variables {Zn}n∈N0 with P(Z1 > 0) = 1, consider the sequence of random variables {Yn}n∈N
defined by

Yn =
(n−1∏
i=0

Zi

)
y0, (103)

where y0 ∈ R+. The following holds:

(i) if ln(Z1) is integrable, then

E(ln(Z1)) < 0⇒ lim
n→∞

Yn = 0 in probability ⇒ E(ln(Z1)) ≤ 0. (104)

(ii) if ln(Z1) is square-integrable, then

lim
n→∞

Yn = 0 in probability ⇔ E(ln(Z1)) < 0. (105)

Proof. By Lemma 3 we obtain

E(ln(Z1)) < 0 ⇒ Yn
a.s.−→ 0 ⇒ Yn

P−→ 0. (106)

To prove the second implication in (i), let us suppose that Yn
P−→ 0 and E(ln(Z1)) > 0.

By Riesz theorem, there exists a subsequence (Ynk)∞k=0 of the sequence (Yn)∞n=0 such that

Ynk
a.s.−→ 0. On the other hand, by the strong law of large numbers,

Snk
nk

=
1

nk

nk−1∑
i=0

ln (Zi)
a.s.−→ E (ln (Z1)) > 0. (107)

Thus, nk ·
Snk
nk

a.s.−→∞ and Ynk = y0 · exp

(
nk ·

Snk
nk

)
a.s.−→∞. This contradiction proves (i).

To prove part (ii), it suffices to show that the case Yn
P−→ 0 and E(ln(Z1)) = 0 is impossible.

Let us consider this case. Then, by the central limit theorem,

P

(
n−1∑
i=0

ln (Zi) >
√
n · σ

)
= P


1
n

n−1∑
i=0

ln (Zi)

σ√
n

> 1

 n→∞−−−→ 1− Φ(1), (108)

where σ =
√

Var (ln(Z1)) > 0 and Φ denotes the CDF of the standard normal distribution.
For all n ∈ Z+ we have

√
n · σ > 0. As a result,

P

(
n−1∑
i=0

ln (Zi) >
√
n · σ

)
≤ P

(
n−1∑
i=0

ln (Zi) > 0

)
= P (Yn > y0)

n→∞−−−→ 0, (109)

because Yn
P−→ 0. From (108) and (109) it follows that 1−Φ(1) = 0, which is a contradiction.

Hence, the proof of the lemma is completed. �

From Lemmas 3, 4 we get the following.

Corollary 1. Under the assumptions of Lemma 4, if ln(Z1) is square-integrable, then

Yn
a.s.−→ 0 ⇔ E(ln(Z1)) < 0 ⇔ Yn

P−→ 0. (110)
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Figure 5. Stability regions RAS , RMS and RMid

Corollary 1, (68), and (90) imply that

RSP = {z ∈ C : E(ln |p1(z)|) < 0} = RAS . (111)

Hence, for the randomized Runge-Kutta scheme the notions of asymptotic stability and sta-
bility in probability coincide. Furthermore, by (69), (111), and Theorem 3 (ii) we have that

RMS ⊂ RAS ∩RMid. (112)

Remark 4. The sets RMS , RAS , RMid are open (so Borel) and, since they are also bounded,
their Lebesgue measure is well defined and finite. Below we present estimates for areas of
RMS , RAS and RMid

area(RMS) ≈ 3.92 ≤ area(RAS) = area(RSP ) ≈ 5.38 ≤ area(RMid) ≈ 5.87,

however

IMS ⊂ IMid ⊂ IAS = ISP .
In Figure 5 we show the pictures of RMS , RAS , and RMid obtained by the Maple package.
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Remark 5. Note that (52) the randomized Runge-Kutta method under exact information
is almost surely 0-stable in the sense that there exists K,h0 > 0 such that for all f ∈ F %,
ε ∈ (0, 1), δ ≤ ε the following holds

max
0≤j≤n

‖V j − V̄ j‖ ≤ Kε. (113)

6. Conclusions and future work

As we have seen, randomization decreases the error (under mild assumptions on right-hand
side functions) and, in the case of asymptotic stability, extends the interval of absolute sta-
bility. However, all considered regions of stability are bounded. Therefore, in our future work
we intend to consider randomized implicit schemes. We conjecture that at least one of the
regions RMS , RAS , RSP contains C−.

Acknowledgments. This research was partly supported by the National Science Centre,
Poland, under project 2017/25/B/ST1/00945.

7. Appendix

Let us define a function fa,b : R→ [0,∞) for all pairs (a, b) ∈ R2 by the following formula:

fa,b(t) =
∣∣t(a+ bi)2 + a+ bi+ 1

∣∣2
=
(
a2 + b2

)2
t2 + 2

(
a2 + a3 + ab2 − b2

)
t+ (a+ 1)2 + b2. (114)

Let us notice that f0,0 ≡ 1. For each pair (a, b) ∈ R2 \ {(0, 0)} the function fa,b is quadratic
and its discriminant

∆a,b = −4b2
(
2a+ a2 + b2

)2
(115)

is non-positive. This leads to Fact 1 below.

Fact 1. The function fa,b has at most one real root. Moreover,

(i) there exists t0 ∈ R such that fa,b (t0) = 0 if and only if{
a 6= 0
b = 0

or

{
a ∈ (−2, 0)

b2 = −a2 − 2a
,

(ii) there exists t0 ∈ [0, 1] such that fa,b (t0) = 0 if and only if{
a ∈ (−∞,−1]

b = 0
or

{
a ∈

(
−2,−1

2

]
b2 = −a2 − 2a

.

Let us consider the following function

F : R2 3 (a, b) 7→ 1

2
E (ln fa,b(τ)) ∈ R, (116)

where τ is a random variable uniformly distributed over the interval [0, 1]. We will show that
F is well-defined and we will express it in explicit form. Let us observe that

F (a, b) =
1

2

1∫
0

ln
(
A(a, b)t2 +B(a, b)t+ C(a, b)

)
dt, (117)

where A(a, b) =
(
a2 + b2

)2
, B(a, b) = 2

(
a2 + a3 + ab2 − b2

)
, C(a, b) = (a + 1)2 + b2. In

the case of a = b = 0 we immediately get F (0, 0) = 0. Hereinafter we assume that at
least one of numbers a, b is non-zero, i.e. a2 + b2 > 0. It implies that A(a, b) > 0 and fa,b
is a quadratic function. We will usually skip arguments (a, b) when using functions A =
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A(a, b), B = B(a, b), C = C(a, b). The vertex of a parabola t 7→ At2 + Bt + C has the
coordinates (P,Q), where

P = P (a, b) = − B

2A
= −a

2 + a3 + ab2 − b2

(a2 + b2)2 , (118)

Q = Q(a, b) =
4AC −B2

4A
=
b2
(
2a+ a2 + b2

)2
(a2 + b2)2 . (119)

The proof of the following fact can be delivered by quite long but straightforward calculations.
Hence, we left it to the reader.

Fact 2. On the axis b = 0, the function F can be expressed by

F (a, 0) =
a2 + a+ 1

a2
ln
(
a2 + a+ 1

)
− a+ 1

a2
ln |a+ 1| − 1 (120)

for a ∈ (−∞,−1) ∪ (−1, 0) ∪ (0,∞). Additionally, F (0, 0) = 0 and F (−1, 0) = −1. On the
circle with center (−1, 0) and radius 1, function F has the following formula:

F (a, b) =
2a+ 1

2a
ln |2a+ 1| − 1 (121)

for a ∈
(
−2,−1

2

)
∪
(
−1

2 , 0
)

and b2 = −a2 − 2a. Additionally, F
(
−1

2 ,
√

3
2

)
= F

(
−1

2 ,−
√

3
2

)
=

−1. For all the remaining pairs (a, b) ∈ R2 function F takes the form

F (a, b) =
1

2
(1− P ) ln(A+B + C)− 1 +

P

2
lnC

+

√
Q

A

[
arctg

(
(1− P )

√
A

Q

)
− arctg

(
−P

√
A

Q

)]
. (122)

Proposition 1. The function F , defined in (116), is continuous in R2.

Proof. From (117) it follows that F (a, b) = F (a,−b) for all (a, b) ∈ R2, so it suffices to check
continuity of function F in R × [0,∞). Let us split R × [0,∞) into the following pairwise
disjoint sub-regions associated to equations (120)–(122) of function F given in Fact 2:

Z1 = ((−∞,−1) ∪ (−1, 0) ∪ (0,∞))× {0},

Z2 =

{
(a, b) ∈ R× (0,∞) : a ∈

(
−2,−1

2

)
∪
(
−1

2
, 0

)
∧ b2 = −a2 − 2a

}
,

Z3 =
{

(a, b) ∈ R× (0,∞) : b2 6= −a2 − 2a
}
.

Let us notice that R× [0,∞) = Z1∪Z2∪Z3∪{X0, X1, X2}, where X0 = (0, 0), X1 = (−1, 0),

and X2 =
(
−1

2 ,
√

3
2

)
. Restriction of F to each of the sets Z1, Z2, Z3 is continuous and Z3 is

open in R × [0,∞). Hence, it is enough to show that F is continuous in each of the points
X0, X1, X2 and in each point belonging to Z1 or Z2.

Using (120), (121) and the L’Hôpital’s rule, it is easy to check that

lim
(a,b)→(0,0), (a,b)∈Z1

F (a, b) = lim
(a,b)→(0,0), (a,b)∈Z2

F (a, b) = 0. (123)

Let us notice that A =
(
a2 + b2

)2 → 0, B = 2
(
a2 + a3 + ab2 − b2

)
→ 0 and C = (a + 1)2 +

b2 → 1, when (a, b) → (0, 0). For (a, b) ∈ Z3 sufficiently close to (0, 0) the following identity
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holds:

arctg

(
(1− P )

√
A

Q

)
− arctg

(
−P

√
A

Q

)
= arctg


√

A
Q

1− P (1− P )AQ

 , (124)

since arctgx− arctg y = arctg
(
x−y
1+xy

)
for x, y ∈ R such that arctgx− arctg y ∈

(
−π

2 ,
π
2

)
and

xy 6= −1. Let us notice that arctg
(

(1− P )
√

A
Q

)
−arctg

(
−P
√

A
Q

)
> 0 because (1−P )

√
A
Q >

−P
√

A
Q . If P > 1, then 0 > (1− P )

√
A
Q > −P

√
A
Q and

arctg

(
(1− P )

√
A

Q

)
− arctg

(
−P

√
A

Q

)
< arctg 0− lim

x→−∞
arctgx =

π

2
.

For P < 0 we proceed analogously. If P ∈ [0, 1], then B2 ≤ 4A2 and as a result

A

Q
=

4A2

4AC −B2
≤ 4A2

4AC − 4A2
=

A

C −A
< 1

for (a, b) ∈ Z3 sufficiently close to (0, 0), since A → 0 and C → 1. Thus, 1 > (1 − P )
√

A
Q >

−P
√

A
Q > −1 and

arctg

(
(1− P )

√
A

Q

)
− arctg

(
−P

√
A

Q

)
< arctg 1− arctg(−1) =

π

2
.

for (a, b) ∈ Z3 sufficiently close to (0, 0). Given that 1
1−P (1−P )A

Q

= 2C
2C+B −

B2

4A ·
2

2C+B , we

obtain

√
Q

A
· arctg


√

A
Q

1− P (1− P )AQ

 =
1

1− P (1− P )AQ
·

arctg

( √
A
Q

1−P (1−P )A
Q

)
√
A
Q

1−P (1−P )A
Q

=

(
C − B2

4A

)
· g1(a, b), (125)

where

g1(a, b) =
2

2C +B
·

arctg

( √
A
Q

1−P (1−P )A
Q

)
√
A
Q

1−P (1−P )A
Q

→ 1 as (a, b) ∈ Z3 and (a, b)→ (0, 0) (126)

because

√
A
Q

1−P (1−P )A
Q

=
√

4AC−B2

2C+B → 0. Furthermore,

1

2
(1− P ) ln(A+B + C) +

P

2
lnC =

1

2
ln(A+B + C) +

B

4A
· A+B

C
ln

(
1 +

A+B

C

) C
A+B

= g2(a, b) +
B2

4A
· g3(a, b), (127)

where

g2(a, b) =
1

2
ln(A+B + C) +

B

4C
· ln
(

1 +
A+B

C

) C
A+B

→ 0 (128)
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and

g3(a, b) =
1

C
· ln
(

1 +
A+B

C

) C
A+B

→ 1 (129)

as (a, b) ∈ Z3 and (a, b) → (0, 0). We can show that B2

4A is bounded for 0 < a2 + b2 < 1.
For this purpose let us introduce polar coordinates: a = r cosϕ and b = r sinϕ, where
r ∈ (0, 1), ϕ ∈ [0, 2π). Then

B2

4A
= (r cosϕ+ cos 2ϕ)2 ≤ (r |cosϕ|+ |cos 2ϕ|)2 ≤ (r + 1)2 < 4. (130)

By (122) and (124)–(130):

F (a, b) = g2(a, b) +
B2

4A
· (g3(a, b)− g1(a, b)) + C · g1(a, b)− 1→ 0

as (a, b) ∈ Z3 and (a, b)→ (0, 0). This combined with (123) implies continuity of F in (0, 0).

Now we check the continuity of function F in point X1 = (−1, 0). From (120) it is easy
to see that F (a, b) → −1 as (a, b) ∈ Z1 and (a, b) → X1. Let us notice that A → 1, B → 0,
C → 0, P → 0, Q → 0 and 1

2(1 − P ) ln(A + B + C) → 0, when (a, b) ∈ Z3 tends to X1.

Moreover, P
2 lnC → 0 because

lim
(a,b)→(−1,0)

B lnC

2
= lim

(a,b)→(0,0)

[
(a− 2)

(
a2 + b2

)
ln
(
a2 + b2

)
+ a ln

(
a2 + b2

)]
= 0.

Furthermore, √
Q

A
·

[
arctg

(
(1− P )

√
A

Q

)
− arctg

(
−P

√
A

Q

)]
→ 0,

when (a, b) ∈ Z3 and (a, b) → X1, since Q
A → 0 and arctangent is a bounded function. As a

result, F (a, b)→ −1, when (a, b) ∈ Z3 tends to X1 and continuity of F in X1 follows.

We check the continuity of function F in point X2 =
(
−1

2 ,
√

3
2

)
. Let us observe that A→ 1,

B → −2, C → 1, P = − B
2A → 1 and Q = 4AC−B2

4A → 0 when (a, b) ∈ Z3 and (a, b) → X2.
Thus,

P

2
lnC → 0 and

√
Q

A
·

[
arctg

(
(1− P )

√
A

Q

)
− arctg

(
−P

√
A

Q

)]
→ 0, (131)

when (a, b) ∈ Z3 and (a, b) → X2. Moreover, since
√
A+B + C · ln

√
A+B + C → 0 and

A+B
2√

A+B+C
is bounded for (a, b) ∈ Z3 in some neighbourhood of X2, we get

1

2
(1− P ) ln(A+B + C) =

1

A
·

A+ B
2√

A+B + C
·
√
A+B + C · ln

√
A+B + C → 0 (132)

as (a, b) ∈ Z3 tends to X2. From (122), (131) and (132) it follows that F (a, b)→ −1 = F (X2),
when (a, b) → X2 and (a, b) ∈ Z3. Thus, F is continuous in X2. Since the boundedness of
A+B

2√
A+B+C

is not straightforward, we will provide a justification. To analyse this expression, it

will be convenient to use the polar coordinates:{
a = r cosϕ− 1

2

b = r sinϕ+
√

3
2

with r > 0, ϕ ∈ [0, 2π).
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Then

A+ B
2√

A+B + C
=

r3 + r2
(
2
√

3 sinϕ− cosϕ
)

+ r
(

5
2 + sin2 ϕ−

√
3 sinϕ cosϕ

)
+
√

3
2 sinϕ− 3

2 cosϕ√
r2+r·2

√
3 sinϕ+3

and we can observe that the above expression is bounded for r ≤ 1
2 :∣∣A+ B

2

∣∣
√
A+B + C

≤ r3 + r2
(
2
√

3 |sinϕ|+ |cosϕ|
)

+ r
(

5
2 + sin2 ϕ+

√
3 |sinϕ cosϕ|

)
+
√

3
2 |sinϕ|+

3
2 |cosϕ|√

r2−r·2
√

3|sinϕ|+3

≤
1
8 + 1

4

(
2
√

3 + 1
)

+ 1
2

(
5
2 + 1 +

√
3
)

+
√

3
2 + 3

2√
3−
√

3
.

We check the continuity of function F in points from Z1. Let us consider (a0, b0) ∈ Z1. Then
a0 ∈ (−∞,−1) ∪ (−1, 0) ∪ (0,∞) and b0 = 0. Let us observe that A→ a4

0, B → 2a2
0(a0 + 1),

C → (a0 + 1)2, P → −a0+1
a20

and Q→ 0, when (a, b) ∈ Z3 and (a, b)→ (a0, 0). Hence,

1

2
(1− P ) ln(A+B + C)→ a2

0 + a0 + 1

a2
0

ln
(
a2

0 + a0 + 1
)

and
P

2
lnC → −a0 + 1

a2
0

ln |a0 + 1| .

Since Q
A → 0, we obtain√

Q

A
·

[
arctg

(
(1− P )

√
A

Q

)
− arctg

(
−P

√
A

Q

)]
→ 0.

We combine the above considerations with (122), which results in the following:

F (a, b)→ a2
0 + a0 + 1

a2
0

ln
(
a2

0 + a0 + 1
)
− a0 + 1

a2
0

ln |a0 + 1| − 1 = F (a0, 0) ,

when (a, b) ∈ Z3 and (a, b)→ (a0, 0). This means that F is continuous in (a0, 0) if a0 6= −2.
The point (−2, 0) is special because in each its punctured neighbourhood there are points
not only from Z1 and Z3, but also from Z2. Hence, we need to calculate the following limit:

lim
(a,b)→(−2,0), (a,b)∈Z2

F (a, b) = lim
a→−2+

[
2a+ 1

2a
ln (−2a− 1)− 1

]
=

3

4
ln 3− 1 = F (−2, 0)

and only now we can conclude that F is continuous in (−2, 0).

We check the continuity of function F in points from Z2. Let us consider (a0, b0) ∈ Z2.
Then a0 ∈

(
−2,−1

2

)
∪
(
−1

2 , 0
)

and b20 = −a2
0 − 2a0. Let us observe that A→ 4a2

0, B → 4a0,

C → 1, P → − 1
2a0

and Q → 0, when (a, b) ∈ Z3 and (a, b) → (a0, b0). As a result, by (122)
we obtain

F (a, b)→ 2a0 + 1

2a0
ln |2a0 + 1| − 1 = F (a0, b0) ,

when (a, b) ∈ Z3 and (a, b)→ (a0, b0). Therefore, F is continuous in (a0, b0).
Finally, we can conclude that the function F is continuous in R2. �

Fact 3. The random variable ln fa,b(τ), where τ is uniformly distributed over the interval
[0, 1], is square integrable for all (a, b) ∈ R2.
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Proof. As stated in Fact 1, the function [0, 1] 3 t 7→ (ln fa,b(t))
2 ∈ R is continuous for all

pairs (a, b) ∈ R2 but those satisfying one of the following conditions:

1◦
{
a ∈ (−∞,−1]

b = 0
or 2◦

{
a ∈

(
−2,−1

2

]
b2 = −a2 − 2a

.

In case 1◦ we obtain

E (ln fa,b(τ))2 =

1∫
0

(ln fa,b(t))
2 dt =

4

a2

[
G(−a− 1) +G

(
a2 + a+ 1

)
− 2G(0)

]
<∞,

where G(x) = x(lnx)2−2x lnx+2x is continuous on (0,∞) and can be continuously extended
on [0,∞) with G(0) = 0. In case 2◦ we proceed similarly and arrive at

1∫
0

(ln fa,b(t))
2 dt = − 1

2a
[G(1) +G (−2a− 1)− 2G(0)] <∞.

This completes the proof. �
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Complex. 32 (2016), 122–136.

[17] P. M. Morkisz, L. Plaskota, Complexity of approximating Hlder classes from information with varying

Gaussian noise, to appear in J. Complex.

[18] P. M. Morkisz, P. Przyby lowicz, Optimal pointwise approximation of SDE’s from inexact information,

Journal of Computational and Applied Mathematics 324 (2017), 85–100.



RANDOMIZED RUNGE-KUTTA METHOD 26

[19] P. M. Morkisz, P. Przyby lowicz, Randomized derivative-free Milstein algorithm for efficient approximation

of solutions of SDEs under noisy information, submitted.

[20] E. Novak, Deterministic and Stochastic Error Bounds in Numerical Analysis, Lecture Notes in Mathe-

matics, vol. 1349, New York, Springer–Verlag, 1988.

[21] K. R. Parthasarathy, Probability Measures on Metric Spaces, AMS Chelsea Publishing, 2005.

[22] L. Plaskota, Noisy Information and Computational Complexity, Cambridge Univ. Press, Cambridge, 1996.

[23] L. Plaskota, Noisy information: optimality, complexity, tractability, in Monte Carlo and quasi-Monte

Carlo Methods 2012, J. Dick, F.Y. Kuo, G.W. Peters, I.H. Sloan (Eds.), Springer 2013, 173–209.

[24] G. Stengle, Numerical methods for systems with measurable coefficients, Appl. Math. Lett. 3 (1990) 25–29.

[25] G. Stengle, Error analysis of a randomized numerical method, Numer. Math. 70(1995) 119–128.
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