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Abstract

Gradient descent optimization algorithms are the standard ingredients that are used to
train artificial neural networks (ANNs). Even though a huge number of numerical simu-
lations indicate that gradient descent optimization methods do indeed convergence in the
training of ANNs, until today there is no rigorous theoretical analysis which proves (or dis-
proves) this conjecture. In particular, even in the case of the most basic variant of gradient
descent optimization algorithms, the plain vanilla gradient descent method, it remains an
open problem to prove or disprove the conjecture that gradient descent converges in the
training of ANNs. In this article we solve this problem in the special situation where the
target function under consideration is a constant function. More specifically, in the case of
constant target functions we prove in the training of rectified fully-connected feedforward
ANNs with one-hidden layer that the risk function of the gradient descent method does
indeed converge to zero. Our mathematical analysis strongly exploits the property that the
rectifier function is the activation function used in the considered ANNs. A key contribution
of this work is to explicitly specify a Lyapunov function for the gradient flow system of the
ANN parameters. This Lyapunov function is the central tool in our convergence proof of
the gradient descent method.
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1 Introduction

Gradient descent (GD) optimization schemes are the standard methods for the training of
artificial neural networks (ANNs). Although a large number of numerical simulations hint
that GD optimization methods do converge in the training of ANNs, in general there is no
mathematical analysis in the scientific literature which proves (or disproves) the conjecture
that GD optimization methods converge in the training of ANNs.

Even though the convergence of GD optimization methods is still an open problem of re-
search, there are several promising approaches in the scientific literature which attack this
problem. In particular, we refer, e.g., to [4, 5, 21] and the references mentioned therein for
convergence results for GD optimization methods in the training of convex neural networks,
we refer, e.g., to [2, 3, 7, 8, 9, 10, 14, 18, 23, 25, 26] and the references mentioned therein
for convergence results for GD optimization methods for the training of ANNs in the so-called
overparametrized regime, we refer, e.g., to [1, 11, 17, 19] and the references mentioned therein
for abstract convergence results for GD optimization methods which do not assume convexity of
the considered objective functions, we refer, e.g., to [12, 13, 20, 24] and the references mentioned
therein for results on the effect of initialization in the training of ANNs, and we refer, e.g., to
[6, 16, 20] and the references mentioned therein for lower bounds and divergence results for GD
optimization methods. For more detailed overviews and further references on GD optimization
schemes we also refer, e.g., to [22], [15, Section 1], and [11, Section 1.1].

A key idea of this work is to attack this challenging open problem of convergence of GD
optimization methods in the training of ANNs in the situation of very special target functions:
Our program is to first establish convergence in the case of constant target functions, thereafter,
to prove convergence in the case of affine linear target functions, thereafter, to consider suitable
continuous piecewise affine linear target functions, and, finally, to pass to the limit of general
continuous target functions. In particular, the central contribution of this work is to solve
this problem in the case of constant target functions. More formally, the main result of this
article (see Theorem 4.4 in Subsection 4.2 below) proves that the risk function of the standard
GD process converges to zero in the training of fully-connected rectified feedforward ANNs
with one input, one output, and one hidden layer in the special situation where the target
function under consideration is a constant function and where the input data is continuous
uniformly distributed. In the next result, Theorem 1.1, we illustrate the findings of this work
in more detail within this introductory section. Below Theorem 1.1 we add several explanatory
comments regarding the statement of and the mathematical objects in Theorem 1.1 and we also
highlight the key ideas of the proof of Theorem 1.1.

Theorem 1.1. Let H ∈ N, α ∈ R, γ ∈ (0,∞), let ‖·‖ : R3H+1 → [0,∞) satisfy for all φ =
(φ1, . . . , φ3H+1) ∈ R

3H+1 that ‖φ‖ = [
∑3H+1

i=1 |φi|
2]1/2, let σr : R → R, r ∈ [1,∞], satisfy for

all r ∈ [1,∞), x ∈ R that σr(x) = r−1 ln(1 + r−1erx) and σ∞(x) = max{x, 0}, let Nr =

(Nφ
r )φ∈R3H+1 : R3H+1 → C(R,R), r ∈ [1,∞], and Lr : R

3H+1 → R, r ∈ [1,∞], satisfy for all

r ∈ [1,∞], φ = (φ1, . . . , φ3H+1) ∈ R
3H+1, x ∈ R that Nφ

r (x) = φ3H+1 +
∑H

j=1 φ2H+jσr(φjx +

φH+j) and Lr(φ) =
∫ 1
0 (N

φ
r (y) − α)2 dy, let G = (G1, . . . ,G3H+1) : R

3H+1 → R
3H+1 satisfy

for all φ ∈ {ϕ ∈ R
3H+1 : ((∇Lr)(ϕ))r∈N is convergent} that G(φ) = limr→∞(∇Lr)(φ), and

let Θ = (Θn)n∈N0
: N0 → R

3H+1 satisfy for all n ∈ N0 that Θn+1 = Θn − γG(Θn) and γ ≤
(4‖Θ0‖+ 6|α|+ 2)−2. Then

(i) it holds for all φ ∈ {ϕ ∈ R
3H+1 : L∞ is differentiable at ϕ} that (∇L∞)(φ) = G(φ),

(ii) it holds that supn∈N0
‖Θn‖ <∞, and

(iii) it holds that lim supn→∞ L∞(Θn) = 0.
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Item (i) in Theorem 1.1 is a direct consequence of Corollary 2.9 below and items (ii) and (iii)
in Theorem 1.1 are direct consequences of Corollary 4.5 below. Corollary 4.5, in turn, follows
from Theorem 4.4, which is the main result of this article.

Let us next add a few comments regarding the mathematical objects appearing in Theo-
rem 1.1. In Theorem 1.1 we study the training of ANNs with one input, one output, and one
hidden layer. The natural number H ∈ N in Theorem 1.1 specifies the number of neurons on
the hidden layer (the dimension of the hidden layer) in the ANN. Theorem 1.1 proves that the
risk function of GD converges to zero in the special situation where the input data is continuous
uniformly distributed and where the target function under consideration is a constant function.
The real number α ∈ R is precisely this constant with which the target function is assumed
to coincide. The real number γ ∈ (0,∞) in Theorem 1.1 specifies the learning rate of the GD
method.

In Theorem 1.1 we consider fully-connected feedforward ANNs with 1 neuron on the input
layer, H neurons on the hidden layer, and 1 neuron on the output layer. Therefore, the consid-
ered ANNs have precisely 2H weights, H+1 biases, and 2H+H+1 = 3H+1 ANN parameters
overall. The function ‖·‖ : R3H+1 → R in Theorem 1.1 is nothing else but the standard norm
on the space R

3H+1 of ANN parameters.
In Theorem 1.1 we study the training of ANNs with the rectifier function R ∋ x 7→ σ∞(x) =

max{x, 0} ∈ R as the activation function. Since the rectifier function σ∞ : R → R in Theorem 1.1
is not differentiable at 0, we have that the associated risk function also fails to be differentiable
at some points in the ANN parameter space R3H+1. In view of this, one needs to carefully choose
the values for the driving gradient field in the GD optimization method at the points in the
ANN parameter space R

3H+1 where the risk function is not differentiable. We accomplish this
by approximating the rectifier function and the corresponding risk function through regularized
versions of these functions. More formally, in Proposition 2.2 in Subsection 2.2 below we show
that the functions σr : R → R, r ∈ [1,∞], in Theorem 1.1 satisfy that for all x ∈ R, y ∈ R\{0}
it holds that lim supr→∞ |σr(x)−σ∞(x)| = 0 and lim supr→∞ |(σr)

′(y)− (σ∞)′(y)| = 0. Observe
that for all r ∈ [1,∞) it holds that σr ∈ C

∞(R,R).
The functions Nr : R

3H+1 → C(R,R), r ∈ [1,∞], in Theorem 1.1 describe the realization
functions of the considered ANNs. More formally, note that for every r ∈ [1,∞] and every

φ = (φ1, . . . , φ3H+1) ∈ R
3H+1 we have that the function R ∋ x 7→ N

φ
r (x) ∈ R is the realization

function associated to the ANN with the activation function σr : R → R and the parameter
vector φ = (φ1, . . . , φ3H+1). In particular, observe that for every ANN parameter vector φ ∈

R
3H+1 we have that R ∋ x 7→ N

φ
∞(x) ∈ R is the realization function associated to the rectified

ANN with the parameter vector φ.
The process Θ = (Θn)n∈N0

: N0 → R
3H+1 in Theorem 1.1 is the GD process with constant

learning rate γ. Note that the learning rate γ in Theorem 1.1 is assumed to be sufficiently small
in the sense that γ ≤ (4‖Θ0‖ + 6|α| + 2)−2. Under this assumption, Theorem 1.1 reveals that
the risk of the GD process L∞(Θn), n ∈ N0, does indeed converge to zero as the number of GD
steps n increases to infinity.

Let us also add a few comments on the proof of Theorem 1.1. A key new observation of this
article is the fact that in the situation of Theorem 1.1 we have that the function

R
3H+1 ∋ (φ1, . . . , φ3H+1) 7→

(∑3H+1
i=1 |φi|

2
)
+ (φ3H+1 − 2α)2 ∈ R (1)

is a Lyapunov function for the gradient flow system of the ANN parameters. We refer to item
(iii) in Proposition 2.14 in Subsection 2.5 and Lemma 3.2 in Subsection 3.1 for the proof of this
statement. In addition, in Lemma 4.3 in Subsection 4.1 we show that the function in (1) is
also a Lyapunov function for the time-discrete GD processes if the learning rate is sufficiently
small. We also would like to emphasize that the term (φ3H+1 − 2α)2 in (1) is essential for the
function in (1) to serve as a Lyapunov function. In particular, we would like to point out that
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the function R
3H+1 ∋ φ 7→ ‖φ‖2 ∈ R fails to be a Lyapunov function for the gradient flow

system of the ANN parameters.
The remainder of this article is structured as follows. In Section 2 we present the mathe-

matical framework which we use to study the considered GD processes and we also establish
several regularity properties for the considered risk functions and their gradients. In Section 3
we use the findings from Section 2 to establish that the risks of the considered time-continuous
gradient flow processes converge to zero. In Section 4 we prove that the risks of the considered
time-discrete GD processes converge to zero. The key ingredient in our convergence proofs for
gradient flow and GD processes in Sections 3 and 4 are suitable a priori estimates (which we
achieve by means of the Lyapunov function in (1) above) for the gradient flow processes (see
Lemma 3.2 in Subsection 3.1) and the GD processes (see Lemma 4.3 in Subsection 4.1). In
Section 5 we derive – to stimulate further research activities – related a priori bounds in the
case of general target functions.

2 Regularity properties of the risk functions and their gradients

In Section 2 we present in Setting 2.1 the mathematical framework which we use to study
the considered GD processes and we also establish several regularity results for the considered
risk functions and their gradients. Most notably, we establish in Propositions 2.12 and 2.14
in Subsection 2.5 below that the gradient flow system for the ANN parameters in Setting 2.1
admits an appropriate Lyapunov function. In particular, in item (iii) in Proposition 2.14 we
prove that the function V : R3H+1 → R in Setting 2.1 serves as a Lyapunov function.

We also note that the results in Proposition 2.2 in Subsection 2.2, in Lemma 2.4 in Sub-
section 2.3, and in Corollary 2.5 in Subsection 2.3 are all well-known in the literature and we
include in this section detailed proofs for Proposition 2.2, Lemma 2.4, and Corollary 2.5 only
for completeness.

2.1 Mathematical description of rectified artificial neural networks

Setting 2.1. Let H ∈ N, α ∈ R, let w = ((wφ
1 , . . . ,w

φ
H))φ∈R3H+1 : R3H+1 → R

H , b =

((bφ1 , . . . , b
φ
H))φ∈R3H+1 : R3H+1 → R

H , v = ((vφ1 , . . . , v
φ
H))φ∈R3H+1 : R3H+1 → R

H , and c =

(cφ)φ∈R3H+1 : R3H+1 → R satisfy for all φ = (φ1, . . . , φ3H+1) ∈ R
3H+1, j ∈ {1, 2, . . . ,H}

that w
φ
j = φj , b

φ
j = φH+j , v

φ
j = φ2H+j , and c

φ = φ3H+1, let σr : R → R, r ∈ [1,∞], sat-

isfy for all r ∈ [1,∞), x ∈ R that σr(x) = r−1 ln(1 + r−1erx) and σ∞(x) = max{x, 0}, let

Nr = (Nφ
r )φ∈R3H+1 : R3H+1 → C(R,R), r ∈ [1,∞], and Lr : R

3H+1 → R, r ∈ [1,∞], sat-

isfy for all r ∈ [1,∞], φ ∈ R
3H+1, x ∈ R that N

φ
r (x) = c

φ +
∑H

j=1 v
φ
j σr(w

φ
j x + b

φ
j ) and

Lr(φ) =
∫ 1
0 (N

φ
r (y)− α)2 dy, let G = (G1, . . . ,G3H+1) : R

3H+1 → R
3H+1 satisfy for all φ ∈ {ϕ ∈

R
3H+1 : ((∇Lr)(ϕ))r∈N is convergent} that G(φ) = limr→∞(∇Lr)(φ), let ‖·‖ :

(⋃

n∈N R
n
)

→
[0,∞) and 〈·, ·〉 :

(⋃

n∈N(R
n × R

n)
)
→ R satisfy for all n ∈ N, x = (x1, . . . , xn), y = (y1, . . . , yn) ∈

R
n that ‖x‖ = [

∑n
i=1|xi|

2]1/2 and 〈x, y〉 =
∑n

i=1 xiyi, and let Iφj ⊆ R, φ ∈ R
3H+1, j ∈

{1, 2, . . . ,H}, and V : R3H+1 → R satisfy for all φ ∈ R
3H+1, j ∈ {1, 2, . . . ,H} that Iφj =

{x ∈ [0, 1] : wφ
j x+ b

φ
j > 0} and V (φ) = ‖φ‖2 + (cφ − 2α)2 .

2.2 Smooth approximations of the rectifier function

Proposition 2.2. Let σr : R → R, r ∈ [1,∞], satisfy for all r ∈ [1,∞), x ∈ R that σr(x) =
r−1 ln(1 + r−1erx) and σ∞(x) = max{x, 0}. Then

(i) it holds for all r ∈ [1,∞) that σr ∈ C∞(R,R),

(ii) it holds for all r ∈ [1,∞), x ∈ R that 0 < σr(x) < σ∞(x) + 1,
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(iii) it holds for all x ∈ R that lim supr→∞|σr(x)− σ∞(x)| = 0,

(iv) it holds for all r ∈ [1,∞), x ∈ R that 0 < (σr)
′(x) < 1, and

(v) it holds for all x ∈ R that lim supr→∞|(σr)
′(x)− 1(0,∞)(x)| = 0.

Proof of Proposition 2.2. Observe that the fact that (R ∋ x 7→ ex ∈ R) ∈ C∞(R,R), the fact
that ((0,∞) ∋ x 7→ ln(x) ∈ R) ∈ C∞((0,∞),R), and the chain rule prove item (i). Next note
that for all r ∈ [1,∞), x ∈ (−∞, 0] it holds that 1 < 1 + r−1erx ≤ 2 and therefore

0 < σr(x) ≤ r−1 ln(2) < r−1 ≤ 1 = σ∞(x) + 1. (2)

This establishes for all x ∈ (−∞, 0] that lim supr→∞|σr(x)− σ∞(x)| ≤ lim supr→∞(r−1) = 0.
Moreover, observe that for all r ∈ [1,∞), x ∈ (0,∞) it holds that

0 = r−1 ln(1) < σr(x) ≤ r−1 ln(2erx) = x+ r−1 ln(2) < x+ 1 = σ∞(x) + 1. (3)

This and (2) prove item (ii). In addition, note that for all r ∈ [1,∞), x ∈ (0,∞) it holds that
σr(x) ≥ r−1 ln(r−1erx) = x− r−1 ln(r). Combining this with (3) demonstrates for all x ∈ (0,∞)
that

lim sup
r→∞

|σr(x)− σ∞(x)| = lim sup
r→∞

|σr(x)− x|

≤ lim sup
r→∞

[
max

{
r−1 ln(2), r−1 ln(r)

}]
= 0,

(4)

which completes the proof of item (iii). To prove item (iv), observe that the chain rule implies
for all r ∈ [1,∞), x ∈ R that

(σr)
′(x) =

1

r

[
erx

1 + r−1erx

]

=
1

1 + re−rx
. (5)

This demonstrates for all r ∈ [1,∞), x ∈ R that 0 < (σr)
′(x) < 1, which establishes item (iv).

Next note that (5) and the fact that for all r ∈ [1,∞), x ∈ (−∞, 0] it holds that e−rx ≥ 1 show
that for all r ∈ [1,∞), x ∈ (−∞, 0] it holds that (σr)

′(x) ≤ 1
1+r . On the other hand, observe

that for all x ∈ (0,∞) we have that limr→∞(re−rx) = 0 and thus limr→∞(σr)
′(x) = 1. This

establishes item (v). The proof of Proposition 2.2 is thus complete.

2.3 Differentiability properties of the risk functions

Proposition 2.3. Assume Setting 2.1 and let φ = (w1, . . . , wH , b1, . . . , bH , v1, . . . , vH , c) ∈
R
3H+1. Then

(i) it holds for all r ∈ [1,∞) that Lr ∈ C1(R3H+1,R),

(ii) it holds for all r ∈ [1,∞), j ∈ {1, 2, . . . ,H} that

(
∂
∂wj

Lr
)
(φ) = 2vj

∫ 1

0
x
[
(σr)

′(wjx+ bj)
]
(Nφ

r (x)− α) dx,

(
∂
∂bj

Lr
)
(φ) = 2vj

∫ 1

0

[
(σr)

′(wjx+ bj)
]
(Nφ

r (x)− α) dx,

(
∂
∂vj

Lr
)
(φ) = 2

∫ 1

0
[σr(wjx+ bj)](N

φ
r (x)− α) dx,

(
∂
∂cLr

)
(φ) = 2

∫ 1

0
(Nφ

r (x)− α) dx,

(6)

(iii) it holds that lim supr→∞|Lr(φ) −L∞(φ)| = 0,
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(iv) it holds that lim supr→∞‖(∇Lr)(φ)− G(φ)‖ = 0, and

(v) it holds for all j ∈ {1, 2, . . . ,H} that

Gj(φ) = 2vj

∫

Iφj

x(Nφ
∞(x)− α) dx,

GH+j(φ) = 2vj

∫

Iφj

(Nφ
∞(x)− α) dx,

G2H+j(φ) = 2

∫ 1

0
[σ∞(wjx+ bj)](N

φ
∞(x)− α) dx,

G3H+1(φ) = 2

∫ 1

0
(Nφ

∞(x)− α) dx.

(7)

Proof of Proposition 2.3. Note that Proposition 2.2, the chain rule, and the dominated conver-
gence theorem establish items (i) and (ii). Next observe that Proposition 2.2 demonstrates for

all x ∈ [0, 1] that limr→∞(Nφ
r (x) − α) = N

φ
∞(x) − α. Furthermore, note that Proposition 2.2

shows that for all x ∈ [0, 1], r ∈ [1,∞) it holds that

|Nφ
r (x)− α| ≤ |α|+ |c|+

∑H
j=1 |vj |(σ∞(wjx+ bj) + 1)

≤ |α|+ |c|+
∑H

j=1 |vj |(|wj |+ |bj|+ 1).
(8)

The dominated convergence theorem hence proves that limr→∞Lr(φ) = L∞(φ), which estab-

lishes item (iii). Moreover, observe that the fact that ∀x ∈ [0, 1] : limr→∞(Nφ
r (x) − α) =

N
φ
∞(x)− α, (8), and the dominated convergence theorem prove that

lim
r→∞

[(
∂
∂cLr

)
(φ)
]
= 2

∫ 1

0
(Nφ

∞(x)− α) dx. (9)

Next note that Proposition 2.2 shows for all x ∈ [0, 1], j ∈ {1, 2, . . . ,H} that

lim
r→∞

[

x
[
(σr)

′(wjx+ bj)
]
(Nφ

r (x)− α)
]

= x(Nφ
∞(x)− α)1(0,∞)(wjx+ bj)

= x(Nφ
∞(x)− α)1Iφj (x)

(10)

and

lim
r→∞

[

[(σr)
′(wjx+ bj)](N

φ
r (x)− α)

]

= (Nφ
∞(x)− α)1(0,∞)(wjx+ bj)

= (Nφ
∞(x)− α)1Iφj (x).

(11)

Furthermore, observe that Proposition 2.2 and (8) prove that for all r ∈ [1,∞), x ∈ [0, 1],
j ∈ {1, 2, . . . ,H} it holds that

∣
∣x[(σr)

′(wjx+ bj)](N
φ
r (x)− α)

∣
∣

≤
∣
∣[(σr)

′(wjx+ bj)](N
φ
r (x)− α)

∣
∣

≤ |Nφ
r (x)− α| ≤ |α|+ |c|+

∑H
j=1 |vj |(|wj |+ |bj |+ 1).

(12)

The dominated convergence theorem hence proves for all j ∈ {1, 2, . . . ,H} that

lim
r→∞

[(
∂
∂wj

Lr
)
(φ)
]
= 2vj

∫ 1

0
x(Nφ

∞(x)− α)1Iφj (x) dx = 2vj

∫

Iφ
j

x(Nφ
∞(x)− α) dx (13)

and

lim
r→∞

[(
∂
∂bj

Lr
)
(φ)
]
= 2vj

∫ 1

0
(Nφ

∞(x)− α)1Iφj (x) dx = 2vj

∫

Iφj

(Nφ
∞(x)− α) dx. (14)

7



Moreover, note that Proposition 2.2 and (8) show that for all r ∈ [1,∞), x ∈ [0, 1], j ∈
{1, 2, . . . ,H} it holds that

lim
r→∞

[

[σr(wjx+ bj)](N
φ
r (x)− α)

]

= [σ∞(wjx+ bj)](N
φ
∞(x)− α) (15)

and
∣
∣[σr(wjx+ bj)](N

φ
r (x)− α)

∣
∣

≤ (σ∞(wjx+ bj) + 1)|Nφ
r (x)− α|

≤ (1 + |wj |+ |bj|)|N
φ
r (x)− α|

≤ (1 + |wj |+ |bj|)
(

|α| + |c|+
∑H

j=1 |vj |(|wj |+ |bj |+ 1)
)

.

(16)

This and the dominated convergence theorem demonstrate for all j ∈ {1, 2, . . . ,H} that

lim
r→∞

[(
∂
∂vj

Lr
)
(φ)
]
= 2

∫ 1

0
[σ∞(wjx+ bj)](N

φ
∞(x)− α) dx. (17)

Combining this, (9), (13), and (14) establishes items (iv) and (v). The proof of Proposition 2.3
is thus complete.

Lemma 2.4. Let u ∈ R, v ∈ (u,∞), let f : R × [u, v] → R be locally Lipschitz continuous, let
F : R → R satisfy for all x ∈ R that

F (x) =

∫
v

u

f(x, s) ds, (18)

let x ∈ R, let E ⊆ [u, v] be measurable, assume
∫

[u,v]\E 1 ds = 0, and assume for all s ∈ E that

R ∋ v 7→ f(v, s) ∈ R is differentiable at x. Then

(i) it holds that F is differentiable at x and

(ii) it holds that

F ′(x) =

∫

E

(
∂
∂xf

)
(x, s) ds. (19)

Proof of Lemma 2.4. Observe that the assumption that
∫

[u,v]\E 1 ds = 0 ensures that for all

h ∈ R\{0} we have that

h−1[F (x+h)−F (x)] =

∫
v

u

h−1[f(x+h, s)− f(x, s)] ds =

∫

E
h−1[f(x+h, s)− f(x, s)] ds. (20)

Next note that the assumption that for all s ∈ E it holds that R ∋ v 7→ f(v, s) ∈ R is
differentiable at x implies that for all s ∈ E it holds that

lim|h|ց0

(
h−1[f(x+ h, s)− f(x, s)]

)
=
(
∂
∂xf

)
(x, s). (21)

Furthermore, observe that the assumption that f is locally Lipschitz continuous ensures that
for all δ ∈ (0,∞) there exists C ∈ (0,∞) such that for all h ∈ [−δ, δ]\{0}, s ∈ [u, v] we have that
|h−1[f(x + h, s) − f(x, s)]| ≤ C. Combining this, (20), (21), and the dominated convergence
theorem establishes that

lim|h|ց0

(
h−1[F (x+ h)− F (x)]

)
=

∫

E

[
lim|h|ց0

(
h−1[f(x+ h, s)− f(x, s)]

)]
ds

=

∫

E

(
∂
∂xf

)
(x, s) ds.

(22)

This completes the proof of Lemma 2.4.

8



Corollary 2.5. Let n ∈ N, j ∈ {1, 2, . . . , n}, u ∈ R, v ∈ (u,∞), let f : Rn× [u, v] → R be locally
Lipschitz continuous, let F : Rn → R satisfy for all x ∈ R

n that

F (x) =

∫
v

u

f(x, s) ds, (23)

let x1, x2, . . . , xn ∈ R, let E ⊆ [u, v] be measurable, assume
∫

[u,v]\E 1 ds = 0, and assume for all

s ∈ E that R ∋ v 7→ f(x1, . . . , xj−1, v, xj+1, . . . , xn, s) ∈ R is differentiable at xj . Then

(i) it holds that R ∋ v 7→ F (x1, . . . , xj−1, v, xj+1, . . . , xn) ∈ R is differentiable at xj and

(ii) it holds that
(
∂
∂xj

F
)
(x1, . . . , xn) =

∫

E

(
∂
∂xj

f
)
(x1, . . . , xn, s) ds. (24)

Proof of Corollary 2.5. Note that Lemma 2.4 establishes items (i) and (ii). The proof of Corol-
lary 2.5 is thus complete.

Lemma 2.6. Assume Setting 2.1 and let φ = (φ1, . . . , φ3H+1) ∈ R
3H+1. Then

(i) it holds for all j ∈ N∩(2H, 3H+1] that R ∋ v 7→ L∞(φ1, . . . , φj−1, v, φj+1, . . . , φ3H+1) ∈ R

is differentiable at φj and

(ii) it holds for all j ∈ N ∩ (2H, 3H + 1] that ( ∂
∂φj

L∞)(φ) = Gj(φ).

Proof of Lemma 2.6. Observe that the fact that σ∞ is Lipschitz continuous assures that

R
H+1 × [0, 1] ∋ (u1, . . . , uH+1, x) 7→

(
N

(φ1,...,φ2H ,u1,...,uH+1)
∞ (x)− α

)2
∈ R (25)

is locally Lipschitz continuous. In addition, note that for all u1, u2, . . . , uH+1 ∈ R, j ∈
{1, 2, . . . ,H + 1}, x ∈ [0, 1] it holds that

R ∋ v 7→
(
N

(φ1,...,φ2H ,u1,...,uj−1,v,uj+1,...,uH+1)
∞ (x)− α

)2
∈ R (26)

is differentiable at uj . Moreover, observe that the chain rule implies that for all j ∈ {1, 2, . . . ,H},
x ∈ [0, 1] it holds that

∂
∂φ2H+j

[
(Nφ

∞(x)− α)2
]
= 2[σ∞(φjx+ φH+j)](N

φ
∞(x)− α) (27)

and
∂

∂φ3H+1

[
(Nφ

∞(x)− α)2
]
= 2(Nφ

∞(x)− α). (28)

Combining this, Corollary 2.5, and (7) establishes items (i) and (ii). The proof of Lemma 2.6
is thus complete.

Lemma 2.7. Assume Setting 2.1, let φ = (φ1, . . . , φ3H+1) ∈ R
3H+1, and let j ∈ {1, 2, . . . ,H},

i ∈ {j,H + j} satisfy |φj |+ |φH+j | > 0. Then

(i) it holds that R ∋ v 7→ L∞(φ1, . . . , φi−1, v, φi+1, . . . , φ3H+1) ∈ R is differentiable at φi and

(ii) it holds that ( ∂
∂φi

L∞)(φ) = Gi(φ).

Proof of Lemma 2.7. Throughout this proof let E ⊆ R satisfy E = {x ∈ [0, 1] : φjx+φH+j 6= 0}.
Note that the assumption that |φj |+ |φH+j | > 0 implies that #([0, 1]\E) ≤ 1. This shows that
∫

[0,1]\E 1 ds = 0. Next observe that the fact that σ∞ is Lipschitz continuous ensures that

R
2H × [0, 1] ∋ (u1, . . . , u2H , x) 7→

(
N

(u1,...,u2H ,φ2H+1,...,φ3H+1)
∞ (x)− α

)2
∈ R (29)
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is locally Lipschitz continuous. In addition, note that for all x ∈ R\{0} it holds that σ∞ is
differentiable at x. Furthermore, observe that for all x ∈ R\{0} it holds that (σ∞)′(x) =
1(0,∞)(x). This and the chain rule prove for all x ∈ E that

R ∋ v 7→
(
N

(φ1,...,φj−1,v,φj+1,...,φ3H+1)
∞ (x)− α

)2
∈ R (30)

is differentiable at φj and

∂
∂φj

(Nφ
∞(x)− α)2 = 2φ2H+jx(N

φ
∞(x)− α)1(0,∞)(φjx+ φH+j) = 2φ2H+jx(N

φ
∞(x)− α)1Iφj (x).

(31)
Moreover, note that the chain rule implies that for all x ∈ E we have that

R ∋ u 7→
(
N

(φ1,...,φH+j−1,u,φH+j+1,...,φ3H+1)
∞ (x)− α

)2
∈ R (32)

is differentiable at φH+j and

∂
∂φH+j

(Nφ
∞(x)− α)2 = 2φ2H+j(N

φ
∞(x)− α)1(0,∞)(φjx+ φH+j) = 2φ2H+j(N

φ
∞(x)− α)1Iφj (x).

(33)
Combining (29), (30), (31), Corollary 2.5, and (7) hence establishes items (i) and (ii). The proof
of Lemma 2.7 is thus complete.

Lemma 2.8. Assume Setting 2.1, let φ = (φ1, . . . , φ3H+1) ∈ R
3H+1, j ∈ {1, 2, . . . ,H}, assume

φj = φH+j = 0, and assume that L∞ is differentiable at φ. Then ( ∂
∂φj

L∞)(φ) = Gj(φ) =

( ∂
∂φH+j

L∞)(φ) = GH+j(φ) = 0.

Proof of Lemma 2.8. Throughout this proof let ϕh = (ϕh1 , . . . , ϕ
h
3H+1) ∈ R

3H+1, h = (h1, h2) ∈

R
2, satisfy for all h = (h1, h2) ∈ R

2, k ∈ {1, 2, . . . , 3H + 1}\{j,H + j} that ϕhj = φj + h1,

ϕhH+j = φH+j + h2, and ϕ
h
k = φk. Observe that the assumption that L∞ is differentiable at φ

ensures that for all i ∈ {j,H+j} it holds that R ∋ v 7→ L∞(φ1, . . . , φi−1, v, φi+1, . . . , φ3H+1) ∈ R

is differentiable at φi. Furthermore, note that for all h ∈ (−∞, 0]2, x ∈ [0, 1] it holds that

N
ϕh

∞ (x) = N
φ
∞(x). Hence, we have for all h ∈ (−∞, 0]2 that L∞(ϕh) = L∞(φ). This implies that

( ∂
∂φj

L∞)(φ) = ( ∂
∂φH+j

L∞)(φ) = 0. Moreover, observe that the assumption that φj = φH+j = 0

implies that Iφj = ∅. This and (7) demonstrate that Gj(φ) = GH+j(φ) = 0. Hence, we obtain

that ( ∂
∂φj

L∞)(φ) = 0 = Gj(φ) and ( ∂
∂φH+j

L∞)(φ) = 0 = GH+j(φ). This completes the proof of

Lemma 2.8.

Corollary 2.9. Assume Setting 2.1, let φ = (φ1, . . . , φ3H+1) ∈ R
3H+1, and assume that L∞ is

differentiable at φ. Then (∇L∞)(φ) = G(φ).

Proof of Corollary 2.9. Note that the assumption that L∞ is differentiable at φ ensures that
for all i ∈ {1, 2, . . . , 3H + 1} it holds that R ∋ v 7→ L∞(φ1, . . . , φi−1, v, φi+1, . . . , φ3H+1) ∈ R is
differentiable at φi. Moreover, observe that Lemma 2.6 proves for all j ∈ N∩ (2H, 3H +1] that
( ∂
∂φj

L∞)(φ) = Gj(φ). In addition, note that Lemma 2.7 shows that for all j ∈ {1, 2, . . . ,H}

with |φj |+ |φH+j| > 0 it holds that ( ∂
∂φj

L∞)(φ) = Gj(φ) and ( ∂
∂φH+j

L∞)(φ) = GH+j(φ). On the

other hand, observe that Lemma 2.8 ensures that for all j ∈ {1, 2, . . . ,H} with φj = φH+j = 0
we have that ( ∂

∂φj
L∞)(φ) = 0 = Gj(φ) and ( ∂

∂φH+j
L∞)(φ) = 0 = GH+j(φ). This demonstrates

that (∇L∞)(φ) = G(φ). The proof of Corollary 2.9 is thus complete.

2.4 Upper bounds for gradients of the risk functions

Lemma 2.10. Assume Setting 2.1 and let φ ∈ R
3H+1. Then

‖G(φ)‖2 ≤ (8‖φ‖2 + 4)L∞(φ). (34)
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Proof of Lemma 2.10. Throughout this proof let w1, . . . , wH , b1, . . . , bH , v1, . . . , vH , c ∈ R satisfy
φ = (w1, . . . , wH , b1, . . . , bH , v1, . . . , vH , c). Note that Jensen’s inequality implies that

(∫ 1

0
|Nφ

∞(x)− α|dx

)2

≤

∫ 1

0
(Nφ

∞(x)− α)2 dx = L∞(φ). (35)

This and (7) ensure that for all j ∈ {1, 2, . . . ,H} we have that

|Gj(φ)|
2 = 4(vj)

2

(
∫

Iφj

x(Nφ
∞(x)− α) dx

)2

≤ 4(vj)
2

(
∫

Iφj

|x||Nφ
∞(x)− α|dx

)2

≤ 4(vj)
2

(∫ 1

0
|Nφ

∞(x)− α|dx

)2

≤ 4(vj)
2L∞(φ).

(36)

In addition, observe that (7) and (35) assure that for all j ∈ {1, 2, . . . ,H} it holds that

|GH+j(φ)|
2 = 4(vj)

2

(
∫

Iφj

(Nφ
∞(x)− α) dx

)2

≤ 4(vj)
2

(∫ 1

0
|Nφ

∞(x)− α|dx

)2

≤ 4(vj)
2L∞(φ).

(37)

Furthermore, note that for all x ∈ [0, 1], j ∈ {1, 2, . . . ,H} it holds that |σ∞(wjx + bj)|
2 ≤

(|wj |+ |bj |)
2 ≤ 2((wj)

2 + (bj)
2). Combining this and (7) demonstrates for all j ∈ {1, 2, . . . ,H}

that

|G2H+j(φ)|
2 = 4

(∫ 1

0
[σ∞(wjx+ bj)](N

φ
∞(x)− α) dx

)2

≤ 4

∫ 1

0
|σ∞(wjx+ bj)|

2(Nφ
∞(x)− α)2 dx ≤ 8

[
(wj)

2 + (bj)
2
]
L∞(φ).

(38)

Finally, observe that (7) and (35) show that

|G3H+1(φ)|
2 = 4

(∫ 1

0
(Nφ

∞(x)− α) dx

)2

≤ 4L∞(φ). (39)

Combining (36)–(39) yields

‖G(φ)‖2 ≤
[
∑H

j=1

(
4(vj)

2 + 4(vj)
2 + 8(wj)

2 + 8(bj)
2
)]

L∞(φ) + 4L∞(φ)

≤ (8‖φ‖2 + 4)L∞(φ).
(40)

The proof of Lemma 2.10 is thus complete.

Corollary 2.11. Assume Setting 2.1 and letK ⊆ R
3H+1 be a compact set. Then supφ∈K‖G(φ)‖ <

∞.

Proof of Corollary 2.11. Note that the fact that L∞ is continuous ensures that supφ∈K L∞(φ) <
∞. Combining this with Lemma 2.10 completes the proof of Corollary 2.11.

2.5 Properties of Lyapunov type functions

Proposition 2.12. Assume Setting 2.1 and let φ ∈ R
3H+1. Then

‖φ‖2 ≤ V (φ) ≤ 3‖φ‖2 + 8α2. (41)
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Proof of Proposition 2.12. Observe that V (φ) = ‖φ‖2 + (cφ − 2α)2 ≥ ‖φ‖2. Furthermore, note
that the fact that ∀x, y ∈ R : (x− y)2 ≤ 2(x2 + y2) establishes that

V (φ) ≤ ‖φ‖2 + 2(cφ)2 + 8α2 ≤ 3‖φ‖2 + 8α2. (42)

This completes the proof of Proposition 2.12.

Proposition 2.13. Assume Setting 2.1 and let φ,ψ ∈ R
3H+1. Then

(∇V )(φ)− (∇V )(ψ) = 2(φ − ψ) +
(
0, 0, . . . , 0, 2(cφ − c

ψ)
)
. (43)

Proof of Proposition 2.13. Observe that for all ϕ ∈ R
3H+1 it holds that

(∇V )(ϕ) = 2ϕ+
(
0, 0, . . . , 0, 2(cϕ − 2α)

)
. (44)

This establishes (43). The proof of Proposition 2.13 is thus complete.

Proposition 2.14. Assume Setting 2.1, let V1,V2 ∈ C(R3H+1,R) satisfy for all φ ∈ R
3H+1

that V1(φ) = (cφ)2 − 2αcφ +
∑H

j=1(v
φ
j )

2 and V2(φ) = (cφ)2 − 2αcφ +
∑H

j=1

[
(wφ

j )
2 + (bφj )

2
]
, and

let φ ∈ R
3H+1. Then

(i) it holds that 〈(∇V1)(φ),G(φ)〉 = 4L∞(φ),

(ii) it holds that 〈(∇V2)(φ),G(φ)〉 = 4L∞(φ), and

(iii) it holds that 〈(∇V )(φ),G(φ)〉 = 8L∞(φ).

Proof of Proposition 2.14. Throughout this proof let w1, . . . , wH , b1, . . . , bH , v1, . . . , vH , c ∈ R

satisfy φ = (w1, . . . , wH , b1, . . . , bH , v1, . . . , vH , c). Note that

(∇V1)(φ) = 2
(
0, 0, . . . , 0
︸ ︷︷ ︸

2H

, v1, v2, . . . , vH , c− α
)
. (45)

This and (7) imply that

〈(∇V1)(φ),G(φ)〉

= 4

[
H∑

j=1

vj

∫ 1

0
[σ∞(wjx+ bj)](N

φ
∞(x)− α) dx

]

+ 4(c − α)

∫ 1

0
(Nφ

∞(x)− α) dx

= 4

∫ 1

0

([
∑H

j=1 vjσ∞(wjx+ bj)
]

+ c− α
)

(Nφ
∞(x)− α) dx

= 4

∫ 1

0
(Nφ

∞(x)− α)2 dx = 4L∞(φ).

(46)

This proves item (i). Next observe that

(∇V2)(φ) = 2
(
w1, w2, . . . , wH , b1, b2, . . . , bH , 0, 0, . . . , 0

︸ ︷︷ ︸

H

, c− α
)
. (47)

Combining this and (7) demonstrates that

〈(∇V2)(φ),G(φ)〉

= 4

[
H∑

j=1

vj

∫

Iφj

(wjx+ bj)(N
φ
∞(x)− α) dx

]

+ 4(c − α)

∫ 1

0
(Nφ

∞(x)− α) dx

= 4

[
H∑

j=1

vj

∫ 1

0
[σ∞(wjx+ bj)](N

φ
∞(x)− α) dx

]

+ 4(c − α)

∫ 1

0
(Nφ

∞(x)− α) dx

= 4

∫ 1

0

([
∑H

j=1 vjσ∞(wjx+ bj)
]

+ c− α
)

(Nφ
∞(x)− α) dx

= 4

∫ 1

0
(Nφ

∞(x)− α)2 dx = 4L∞(φ).

(48)
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This establishes item (ii). Furthermore, note that V1(φ) + V2(φ) = V (φ) − 4α2. This ensures
that (∇V1)(φ) + (∇V2)(φ) = (∇V )(φ), which proves item (iii). The proof of Proposition 2.14 is
thus complete.

Corollary 2.15. Assume Setting 2.1 and let φ ∈ R
3H+1. Then it holds that ‖G(φ)‖ = 0 if and

only if L∞(φ) = 0.

Proof of Corollary 2.15. Assume first that ‖G(φ)‖ = 0. Then Proposition 2.14 implies that

8L∞(φ) = 〈(∇V )(φ),G(φ)〉 = 0. Next assume L∞(φ) =
∫ 1
0 (N

φ
∞(x) − α)2 dx = 0. The fact

that N
φ
∞ ∈ C(R,R) then implies that it holds for all x ∈ [0, 1] that N

φ
∞(x) = α. Hence, (7)

demonstrates that G(φ) = 0 ∈ R
3H+1 and therefore ‖G(φ)‖ = 0. This completes the proof of

Corollary 2.15.

3 Convergence analysis for gradient flow processes

In this section we employ the findings from Section 2 to establish in Theorem 3.7 below that the
risks of the considered time-continuous gradient flow processes converge to zero. Our proof of
Theorem 3.7 uses the deterministic Itô type formula for the Lyapunov function V : R3H+1 → R

from Setting 2.1, which we establish in Lemma 3.2 in Subsection 3.1 below, as well as the
deterministic Itô type formula for the risk function L∞ : R3H+1 → R from Setting 2.1, which
we establish in Lemma 3.5 in Subsection 3.2 below.

Our proof of the deterministic Itô type formula for the Lyapunov function V : R3H+1 → R

in Lemma 3.2, in turn, is based on the fact that the function V : R3H+1 → R from Setting 2.1
satisfies the Lyapunov property in item (iii) in Proposition 2.14 as well as on the well-known
deterministic Itô-type formula for continuously differentiable functions in Lemma 3.1 in Subsec-
tion 3.1 below. We include in this section a detailed proof for Lemma 3.1 only for completeness.

In contrast to Lemma 3.2, the deterministic Itô type formula for the risk function L∞ : R3H+1

→ R in Lemma 3.5 can not be proved through an application of Lemma 3.1 as the risk function
L∞ : R3H+1 → R fails to be differentiable. Instead we prove Lemma 3.5 through an approxi-
mation argument by employing the mollified rectifier functions σr ∈ C∞(R,R), r ∈ [1,∞), and
their corresponding risk functions Lr : R

3H+1 → R, r ∈ [1,∞), from Setting 2.1.

3.1 Deterministic Itô formulas for Lyapunov type functions

Lemma 3.1. Let T ∈ (0,∞), n ∈ N, Θ ∈ C([0, T ],Rn), F ∈ C1(Rn,R), let ϑ : [0, T ] → R
n be

a bounded measurable function, and assume for all t ∈ [0, T ] that

Θt = Θ0 +

∫ t

0
ϑs ds. (49)

Then it holds for all t ∈ [0, T ] that

F (Θt) = F (Θ0) +

∫ t

0

(
F ′(Θs)

)
ϑs ds. (50)

Proof of Lemma 3.1. Observe that the fact that ϑ is bounded proves that Θ is Lipschitz con-
tinuous. Combining this and Rademacher’s theorem shows that there exists a measurable set
E ⊆ [0, T ] which satisfies that

∫

[0,T ]\E 1 ds = 0, which satisfies for all t ∈ E that [0, T ] ∋ s 7→

Θs ∈ R
n is differentiable at t, and which satisfies for all t ∈ E that d

dtΘt = ϑt. This and the
chain rule demonstrate that for all t ∈ E it holds that [0, T ] ∋ s 7→ F (Θs) ∈ R is differentiable
at t and that d

dt(F (Θt)) = (F ′(Θt))ϑt. Furthermore, note that the fact that Θ is Lipschitz con-
tinuous and the fact that F is continuously differentiable establish that [0, T ] ∋ t 7→ F (Θt) ∈ R
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is Lipschitz continuous. Hence, we obtain that [0, T ] ∋ t 7→ F (Θt) ∈ R is absolutely continuous.
This shows for all t ∈ [0, T ] that

F (Θt) = F (Θ0) +

∫ t

0

(
F ′(Θs)

)
ϑs ds. (51)

The proof of Lemma 3.1 is thus complete.

Lemma 3.2. Assume Setting 2.1, let T ∈ (0,∞), and let Θ ∈ C([0, T ],R3H+1) satisfy for
all t ∈ [0, T ] that Θt = Θ0 −

∫ t
0 G(Θs) ds. Then it holds for all t ∈ [0, T ] that V (Θt) =

V (Θ0)− 8
∫ t
0 L∞(Θs) ds.

Proof of Lemma 3.2. Observe that Corollary 2.11 and the assumption that Θ ∈ C([0, T ],R3H+1)
imply that [0, T ] ∋ t 7→ G(Θt) ∈ R

3H+1 is bounded. Combining this, the fact that V ∈
C∞(R3H+1,R), Proposition 2.3, Lemma 3.1, and Proposition 2.14 demonstrates that for all
t ∈ [0, T ] we have that

V (Θt)− V (Θ0) = −

∫ t

0
〈(∇V )(Θs),G(Θs)〉ds = −8

∫ t

0
L∞(Θs) ds. (52)

The proof of Lemma 3.2 is thus complete.

Corollary 3.3. Assume Setting 2.1 and let Θ ∈ C([0,∞),R3H+1) satisfy for all t ∈ [0,∞) that
Θt = Θ0 −

∫ t
0 G(Θs) ds. Then supt∈[0,∞)‖Θt‖ ≤ [V (Θ0)]

1/2 <∞.

Proof of Corollary 3.3. Note that Proposition 2.12 implies for all t ∈ [0,∞) that ‖Θt‖ ≤
[V (Θt)]

1/2. Furthermore, observe that Lemma 3.2 and the fact that ∀φ ∈ R
3H+1 : L∞(φ) ≥ 0

demonstrate for all t ∈ [0,∞) that V (Θt) ≤ V (Θ0). This completes the proof of Corol-
lary 3.3.

3.2 Deterministic Itô formulas for risk functions

Lemma 3.4. Assume Setting 2.1 and let K ⊆ R
3H+1 be a compact set. Then supφ∈K supr∈[1,∞)

‖(∇Lr)(φ)‖ <∞.

Proof of Lemma 3.4. Note that Proposition 2.2 demonstrates for all r ∈ [1,∞), φ = (w1, . . . ,
wH , b1, . . . , bH , v1, . . . , vH , c) ∈ R

3H+1, x ∈ [0, 1] that

|Nφ
r (x)| ≤ |c|+

∑H
j=1 |vj |(σ∞(wjx+ bj) + 1) ≤ |c|+

∑H
j=1 |vj|(|wj |+ |bj |+ 1). (53)

Hence, we obtain for all r ∈ [1,∞), φ = (w1, . . . , wH , b1, . . . , bH , v1, . . . , vH , c) ∈ R
3H+1 that

Lr(φ) ≤

∫ 1

0

(
|α|+ |Nφ

r (x)|
)2

dx ≤
(

|α|+ |c|+
∑H

j=1 |vj |(|wj |+ |bj |+ 1)
)2
. (54)

This implies that supφ∈K supr∈[1,∞)Lr(φ) <∞. Next observe that (6) and the Cauchy-Schwarz
inequality demonstrate that for all r ∈ [1,∞), φ = (w1, . . . , wH , b1, . . . , bH , v1, . . . , vH , c) ∈
R
3H+1 it holds that

∣
∣
(
∂
∂cLr

)
(φ)
∣
∣ ≤ 2

∫ 1

0
|Nφ

r (x)− α|dx ≤ 2
√

Lr(φ). (55)

Furthermore, note that the Cauchy-Schwarz inequality, Proposition 2.2, and (6) prove that for
all r ∈ [1,∞), φ = (w1, . . . , wH , b1, . . . , bH , v1, . . . , vH , c) ∈ R

3H+1, j ∈ {1, 2, . . . ,H} it holds
that

∣
∣
(

∂
∂wj

Lr
)
(φ)
∣
∣ ≤ 2|vj |

∫ 1

0
|x(σr)

′(wjx+ bj)||N
φ
r (x)− α|dx

≤ 2|vj |

∫ 1

0
|Nφ

r (x)− α|dx ≤ 2|vj |
√

Lr(φ)

(56)
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and

∣
∣
(
∂
∂bj

Lr
)
(φ)
∣
∣ ≤ 2|vj |

∫ 1

0
|(σr)

′(wjx+ bj)||N
φ
r (x)− α|dx

≤ 2|vj |

∫ 1

0
|Nφ

r (x)− α|dx ≤ 2|vj |
√

Lr(φ).

(57)

In addition, observe that the Cauchy-Schwarz inequality, Proposition 2.2, and (6) demonstrate
that for all r ∈ [1,∞), φ = (w1, . . . , wH , b1, . . . , bH , v1, . . . , vH , c) ∈ R

3H+1, j ∈ {1, 2, . . . ,H} it
holds that

∣
∣
(
∂
∂vj

Lr
)
(φ)
∣
∣ ≤ 2

∫ 1

0
[σr(wjx+ bj)]|N

φ
r (x)− α|dx

≤ 2(1 + |wj |+ |bj|)

∫ 1

0
|Nφ

r (x)− α|dx

≤ 2(1 + |wj |+ |bj|)
√

Lr(φ).

(58)

This, (55), (56), and (57) show that for all r ∈ [1,∞), φ = (w1, . . . , wH , b1, . . . , bH , v1, . . . ,
vH , c) ∈ R

3H+1 it holds that

‖(∇Lr)(φ)‖
2 ≤

[

4 +
∑H

j=1

(
8(vj)

2 + 4(1 + |wj|+ |bj |)
2
)]

Lr(φ). (59)

Combining this with the fact that supφ∈K supr∈[1,∞)Lr(φ) <∞ establishes that

supφ∈K supr∈[1,∞)‖(∇Lr)(φ)‖
2 <∞. (60)

The proof of Lemma 3.4 is thus complete.

Lemma 3.5. Assume Setting 2.1, let T ∈ (0,∞), and let Θ ∈ C([0, T ],R3H+1) satisfy for
all t ∈ [0, T ] that Θt = Θ0 −

∫ t
0 G(Θs) ds. Then it holds for all t ∈ [0, T ] that L∞(Θt) =

L∞(Θ0)−
∫ t
0‖G(Θs)‖

2 ds.

Proof of Lemma 3.5. Note that Lemma 3.1 and item (i) in Proposition 2.3 demonstrate that
for all r ∈ [1,∞), t ∈ [0, T ] it holds that

Lr(Θt)− Lr(Θ0) = −

∫ t

0
〈(∇Lr)(Θs),G(Θs)〉ds. (61)

Next observe that Proposition 2.3 proves that for all t ∈ [0, T ] it holds that limr→∞(Lr(Θt) −
Lr(Θ0)) = L∞(Θt) − L(Θ0). Furthermore, note that Proposition 2.3 ensures that for all s ∈
[0, T ] we have that limr→∞〈(∇Lr)(Θs),G(Θs)〉 = 〈G(Θs),G(Θs)〉 = ‖G(Θs)‖

2. In addition,
observe that the assumption that Θ ∈ C([0, T ],R3H+1) implies that there exists a compact set
K ⊆ R

3H+1 such that ∀ s ∈ [0, T ] : Θs ∈ K. Combining this, the Cauchy-Schwarz inequality,
Corollary 2.11, and Lemma 3.4 shows that

supr∈[1,∞) sups∈[0,T ] |〈(∇Lr)(Θs),G(Θs)〉|

≤ supr∈[1,∞) supφ∈K |〈(∇Lr)(φ),G(φ)〉|

≤ supr∈[1,∞) supφ∈K
(
‖(∇Lr)(φ)‖‖G(φ)‖

)
<∞.

(62)

The dominated convergence theorem hence proves that for all t ∈ [0, T ] we have that

lim
r→∞

[∫ t

0
〈(∇Lr)(Θs),G(Θs)〉ds

]

=

∫ t

0

[

lim
r→∞

〈(∇Lr)(Θs),G(Θs)〉
]

ds =

∫ t

0
‖G(Θs)‖

2 ds. (63)

Combining this with (61) completes the proof of Lemma 3.5.
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3.3 Convergence of the risks of gradient flow processes

Lemma 3.6. Assume Setting 2.1 and let Θ ∈ C([0,∞),R3H+1) satisfy for all t ∈ [0,∞) that
Θt = Θ0 −

∫ t
0 G(Θs) ds. Then it holds that [0,∞) ∋ t 7→ L∞(Θt) ∈ [0,∞) is non-increasing.

Proof of Lemma 3.6. This is an immediate consequence of Lemma 3.5.

Theorem 3.7. Assume Setting 2.1 and let Θ ∈ C([0,∞),R3H+1) satisfy for all t ∈ [0,∞) that
Θt = Θ0 −

∫ t
0 G(Θs) ds. Then

(i) it holds that supt∈[0,∞)‖Θt‖ ≤ [V (Θ0)]
1/2 <∞,

(ii) it holds for all t ∈ (0,∞) that L∞(Θt) ≤
V (Θ0)

8t , and

(iii) it holds that lim supt→∞ L∞(Θt) = 0.

Proof of Theorem 3.7. Note that Corollary 3.3 establishes item (i). Next observe that Lemma 3.2
and Lemma 3.6 prove that for all t ∈ [0,∞) it holds that

tL∞(Θt) =

∫ t

0
L∞(Θt) ds ≤

∫ t

0
L∞(Θs) ds =

V (Θ0)− V (Θt)

8
≤
V (Θ0)

8
<∞. (64)

Hence, we obtain for all t ∈ (0,∞) that

L∞(Θt) ≤
V (Θ0)

8t
. (65)

This establishes items (ii) and (iii). The proof of Theorem 3.7 is thus complete.

4 Convergence analysis for gradient descent processes

In this section we use the findings from Section 2 to prove in Theorem 4.4 in Subsection 4.2
below that the risks of the considered time-discrete GD processes converge to zero. Our proof of
Theorem 4.4 uses the fact that the function V : R3H+1 → R from Setting 2.1 is also a Lyapunov
function for the considered time-discrete GD processes, which we establish in Lemma 3.6 below.
Moreover, in Subsection 4.3 below we apply Theorem 4.4 to establish in Corollary 4.6 that
also the expectations of risks of the time-discrete GD processes with random initializations do
converge to zero.

4.1 Lyapunov type estimates for gradient descent processes

Lemma 4.1. Assume Setting 2.1, let γ ∈ (0,∞), and let Θ = (Θn)n∈N0
= ((Θ1

n, . . . ,Θ
3H+1
n ))n∈N0

:
N0 → R

3H+1 satisfy for all n ∈ N0 that Θn+1 = Θn− γG(Θn). Then it holds for all n ∈ N0 that

V (Θn+1)− V (Θn) ≤ −8γL∞(Θn) + 2γ2‖G(Θn)‖
2. (66)

Proof of Lemma 4.1. Throughout this proof let n ∈ N0 be arbitrary and let g : R → R satisfy
for all t ∈ R that g(t) = V (tΘn+1 + (1 − t)Θn). The fact that V is continuously differentiable
establishes that g is continuously differentiable. The fundamental theorem of calculus and the
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chain rule hence ensure that

V (Θn+1)− V (Θn) = g(1) − g(0) =

∫ 1

0
g′(t) dt

=

∫ 1

0
〈(∇V )(tΘn+1 + (1− t)Θn),Θn+1 −Θn〉dt

= −γ

∫ 1

0
〈(∇V )(tΘn+1 + (1− t)Θn),G(Θn)〉dt

= −γ

∫ 1

0
〈(∇V )(Θn),G(Θn)〉dt

− γ

∫ 1

0
〈(∇V )(tΘn+1 + (1− t)Θn)− (∇V )(Θn),G(Θn)〉dt.

(67)

Next note that Proposition 2.14 implies that 〈(∇V )(Θn),G(Θn)〉 = 8L∞(Θn). Furthermore,
observe that Proposition 2.13 establishes for all t ∈ [0, 1] that

〈(∇V )(tΘn+1 + (1− t)Θn)− (∇V )(Θn),G(Θn)〉

= 〈(∇V )(t(Θn+1 −Θn) + Θn)− (∇V )(Θn),G(Θn)〉

= 2t〈Θn+1 −Θn,G(Θn)〉+ 2t(Θ3H+1
n+1 −Θ3H+1

n )G3H+1(Θn)

= −2tγ‖G(Θn)‖
2 − 2tγ|G3H+1(Θn)|

2 ≥ −4tγ‖G(Θn)‖
2.

(68)

Hence, we obtain that

V (Θn+1)− V (Θn) ≤ −8γL∞(Θn) + 4γ2
∫ 1

0
t‖G(Θn)‖

2 dt

= −8γL∞(Θn) + 2γ2‖G(Θn)‖
2.

(69)

The proof of Lemma 4.1 is thus complete.

Corollary 4.2. Assume Setting 2.1, let γ ∈ (0,∞), and let Θ = (Θn)n∈N0
: N0 → R

3H+1 satisfy
for all n ∈ N0 that Θn+1 = Θn − γG(Θn). Then it holds for all n ∈ N0 that

V (Θn+1)− V (Θn) ≤ 8
(
−γ + γ2(2V (Θn) + 1)

)
L∞(Θn). (70)

Proof of Corollary 4.2. Note that Lemma 2.10 and Proposition 2.12 imply for all n ∈ N0 that

‖G(Θn)‖
2 ≤ (8‖Θn‖

2 + 4)L∞(Θn) = 4(2‖Θn‖
2 + 1)L∞(Θn)

≤ 4(2V (Θn) + 1)L∞(Θn).
(71)

Combining this and Lemma 4.1 ensures that for all n ∈ N0 we have that

V (Θn+1)− V (Θn) ≤ −8γL∞(Θn) + 8γ2(2V (Θn) + 1)L∞(Θn)

= 8
(
−γ + γ2(2V (Θn) + 1)

)
L∞(Θn).

(72)

The proof of Corollary 4.2 is thus complete.

Lemma 4.3. Assume Setting 2.1, let γ ∈ (0,∞), and let Θ = (Θn)n∈N0
: N0 → R

3H+1 satisfy
for all n ∈ N0 that Θn+1 = Θn− γG(Θn) and γ ≤ (4V (Θ0)+ 2)−1. Then it holds for all n ∈ N0

that V (Θn+1)− V (Θn) ≤ −4γL∞(Θn) ≤ 0.

Proof of Lemma 4.3. We prove the statement by induction on n ∈ N0. Observe that Corol-
lary 4.2 implies that

V (Θ1)− V (Θ0) ≤
(
−8γ + 8γ2(2V (Θ0) + 1)

)
L∞(Θ0)

≤
(

−8γ + 8γ
[
2V (Θ0)+1
4V (Θ0)+2

])

L∞(Θ0) = −4γL∞(Θ0) ≤ 0.
(73)
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This establishes the assertion in the base case n = 0. For the induction step let n ∈ N satisfy
for all m ∈ {0, 1, . . . , n− 1} that

V (Θm+1)− V (Θm) ≤ −4γL∞(Θm) ≤ 0. (74)

Note that (74) shows that V (Θn) ≤ V (Θn−1) ≤ · · · ≤ V (Θ0). The assumption that γ ≤
(4V (Θ0)+2)−1 hence ensures that γ ≤ (4V (Θ0)+2)−1 ≤ (4V (Θn)+2)−1. Combining this and
Corollary 4.2 demonstrates that

V (Θn+1)− V (Θn) ≤
(
−8γ + 8γ2(2V (Θn) + 1)

)
L∞(Θn)

≤
(

−8γ + 8γ
[
2V (Θn)+1
4V (Θn)+2

])

L∞(Θn) = −4γL∞(Θn) ≤ 0.
(75)

This completes the proof of Lemma 4.3.

4.2 Convergence of the risks of gradient descent processes

Theorem 4.4. Assume Setting 2.1, let γ ∈ (0,∞), and let Θ = (Θn)n∈N0
: N0 → R

3H+1 satisfy
for all n ∈ N0 that Θn+1 = Θn − γG(Θn) and γ ≤ (4V (Θ0) + 2)−1. Then

(i) it holds that supn∈N0
‖Θn‖ ≤ [V (Θ0)]

1/2 <∞ and

(ii) it holds that lim supn→∞ L∞(Θn) = 0.

Proof of Theorem 4.4. Observe that Lemma 4.3 proves that for all n ∈ N0 we have that
V (Θn) ≤ V (Θn−1) ≤ · · · ≤ V (Θ0). This and the fact that ∀n ∈ N0 : ‖Θn‖ ≤ [V (Θn)]

1/2

establish item (i). Next note that Lemma 4.3 implies for all N ∈ N that

N−1∑

n=0

(
4γL∞(Θn)

)
≤

N−1∑

n=0

(
V (Θn)− V (Θn+1)

)
= V (Θ0)− V (ΘN ) ≤ V (Θ0). (76)

Hence, we have that
∞∑

n=0

L∞(Θn) ≤
V (Θ0)

4γ
<∞. (77)

This shows that lim supn→∞L∞(Θn) = 0. The proof of Theorem 4.4 is thus complete.

Corollary 4.5. Assume Setting 2.1, let γ ∈ (0,∞), and let Θ = (Θn)n∈N0
: N0 → R

3H+1 satisfy
for all n ∈ N0 that Θn+1 = Θn − γG(Θn) and γ ≤ [12‖Θ0‖

2 + 32α2 + 2]−1. Then

(i) it holds that supn∈N0
‖Θn‖ ≤ [V (Θ0)]

1/2 <∞ and

(ii) it holds that lim supn→∞ L∞(Θn) = 0.

Proof of Corollary 4.5. Observe that Proposition 2.12 proves that 4V (Θ0) + 2 ≤ 12‖Θ0‖
2 +

32α2+2. Hence, we have that γ ≤ (4V (Θ0)+2)−1. Combining this with Theorem 4.4 completes
the proof of Corollary 4.5.

4.3 Gradient descent processes with random initializations

Corollary 4.6. Assume Setting 2.1, let c, γ ∈ (0,∞), let (Ω,F ,P) be a probability space, let
Θ = (Θn)n∈N0

: Ω × N0 → R
3H+1 be a stochastic process, assume Θ0(Ω) ⊆ [−c, c]3H+1, assume

for all n ∈ N0 that Θn+1 = Θn − γG(Θn), and assume γ ≤ [12c2(3H + 1) + 32α2 + 2]−1. Then

(i) it holds that supω∈Ω supn∈N0
‖Θn(ω)‖ ≤ [3c2(3H + 1) + 8α2]1/2 <∞,

(ii) it holds for all ω ∈ Ω that lim supn→∞L∞(Θn(ω)) = 0, and
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(iii) it holds that lim supn→∞ E[L∞(Θn)] = 0.

Proof of Corollary 4.6. Note that Proposition 2.12 demonstrates for all φ ∈ [−c, c]3H+1 that

V (φ) ≤ 3‖φ‖2 + 8α2 ≤ 3c2(3H + 1) + 8α2. (78)

Hence, we have for all φ ∈ [−c, c]3H+1 that

γ ≤ [12c2(3H + 1) + 32α2 + 2]−1 ≤ [4V (φ) + 2]−1. (79)

This demonstrates for all ω ∈ Ω that γ ≤ (4V (Θ0(ω)) + 2)−1. Lemma 4.3 and (78) hence
prove that for all ω ∈ Ω, n ∈ N0 we have that ‖Θn(ω)‖ ≤ [V (Θn(ω))]

1/2 ≤ [V (Θ0(ω))]
1/2 ≤

[3c2(3H + 1) + 8α2]1/2. This establishes item (i). Next observe that Theorem 4.4 shows for
all ω ∈ Ω that lim supn→∞ L∞(Θn(ω)) = 0, which proves item (ii). Furthermore, note that
Lemma 4.3 assures that for all ω ∈ Ω, N ∈ N it holds that

N−1∑

n=0

(
4γL∞(Θn(ω))

)
≤

N−1∑

n=0

(
V (Θn+1(ω)) − V (Θn(ω))

)
≤ V (Θ0(ω)). (80)

Proposition 2.12 hence shows that for all ω ∈ Ω we have that

∞∑

n=0

L∞(Θn(ω)) ≤
V (Θ0(ω))

4γ
≤

3‖Θ0(ω)‖
2 + 8α2

4γ
. (81)

Combining this, item (ii), and the dominated convergence theorem establishes item (iii). The
proof of Corollary 4.6 is thus complete.

5 A priori estimates for general target functions

The key ingredient in our convergence proofs for gradient flow and GD processes in Sections 3
and 4 are suitable a priori estimates for the gradient flow processes (see Lemma 3.2 in Subsec-
tion 3.1) and the GD processes (see Lemma 4.3 in Subsection 4.1). To initiate further research
activities of this kind, we derive in this section related a priori bounds in the case of general
target functions. For details we refer to (83) and (84) in Proposition 5.1 below.

Proposition 5.1. Let H ∈ N, f ∈ C([0, 1],R), let w = ((wφ
1 , . . . ,w

φ
H))φ∈R3H+1 : R3H+1 →

R
H , b = ((bφ1 , . . . , b

φ
H))φ∈R3H+1 : R3H+1 → R

H , v = ((vφ1 , . . . , v
φ
H))φ∈R3H+1 : R3H+1 → R

H ,

c = (cφ)φ∈R3H+1 : R3H+1 → R, and ‖·‖ : R3H+1 → [0,∞) satisfy for all φ = (φ1, . . . , φ3H+1) ∈

R
3H+1, j ∈ {1, 2, . . . ,H} that w

φ
j = φj , b

φ
j = φH+j, v

φ
j = φ2H+j , c

φ = φ3H+1, and ‖φ‖ =

[
∑3H+1

i=1 |φi|
2]1/2, let N = (Nφ)φ∈R3H+1 : R3H+1 → C(R,R) and L : R3H+1 → R satisfy for all

φ ∈ R
3H+1, x ∈ R that N

φ(x) = c
φ +

∑H
j=1 v

φ
j max{wφ

j x + b
φ
j , 0} and L(φ) =

∫ 1
0 (N

φ(y) −

f(y))2 dy, let V : R3H+1 → R and G = (G1, . . . ,G3H+1) : R
3H+1 → R

3H+1 satisfy for all φ ∈
R
3H+1, j ∈ {1, 2, . . . ,H} that V (φ) = ‖φ‖2 + |cφ|2 and

Gj(φ) = 2vφj

∫ 1

0
x(Nφ(x)− f(x))1(0,∞)(w

φ
j x+ b

φ
j ) dx,

GH+j(φ) = 2vφj

∫ 1

0
(Nφ(x)− f(x))1(0,∞)(w

φ
j x+ b

φ
j ) dx,

G2H+j(φ) = 2

∫ 1

0
[max{wφ

j x+ b
φ
j , 0}](N

φ(x)− f(x)) dx,

G3H+1(φ) = 2

∫ 1

0
(Nφ(x)− f(x)) dx,

(82)

and let Θ ∈ C([0,∞),R3H+1) satisfy for all t ∈ [0,∞) that Θt = Θ0 −
∫ t
0 G(Θs) ds. Then
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(i) it holds for all t ∈ [0,∞) that

V (Θt) = V (Θ0)−8

∫ t

0

∫ 1

0
N

Θs(x)(NΘs(x)−f(x)) dxds ≤ V (Θ0)+2t

∫ 1

0
|f(x)|2 dx (83)

and

(ii) it holds for all t ∈ [0,∞) that

‖Θt‖ ≤ (V (Θ0))
1/2 +

[

2
∫ 1
0 |f(x)|

2 dx
]1/2

t1/2. (84)

Proof of Proposition 5.1. Throughout this proof let 〈·, ·〉 : R3H+1 × R
3H+1 → R satisfy for all

φ = (φ1, . . . , φ3H+1), ψ = (ψ1, . . . , ψ3H+1) ∈ R
3H+1 that 〈φ,ψ〉 =

∑3H+1
i=1 φiψi. Observe that

for all φ ∈ R
3H+1 it holds that

(∇V )(φ) = 2
(
w
φ
1 ,w

φ
2 , . . . ,w

φ
H , b

φ
1 , b

φ
2 , . . . , b

φ
H , v

φ
1 , v

φ
2 , . . . , v

φ
H , 2c

φ
)
. (85)

This implies for all φ ∈ R
3H+1 that

〈(∇V )(φ),G(φ)〉

= 4

[
H∑

j=1

v
φ
j

∫ 1

0
[max{wφ

j x+ b
φ
j , 0}](N

φ(x)− f(x)) dx

]

+ 8cφ
[∫ 1

0
(Nφ(x)− f(x)) dx

]

+ 4

[
H∑

j=1

v
φ
j

∫ 1

0
(wφ

j x+ b
φ
j )(N

φ(x)− f(x))1(0,∞)(w
φ
j x+ b

φ
j ) dx

]

= 8

[∫ 1

0

(
∑H

j=1 v
φ
j [max{wφ

j x+ b
φ
j , 0}]

)

(Nφ(x)− f(x)) dx

]

+ 8cφ
[∫ 1

0
(Nφ(x)− f(x)) dx

]

= 8

∫ 1

0
N
φ(x)(Nφ(x)− f(x)) dx.

(86)

Next note that the fact that for all x, y ∈ R it holds that x(x − y) = (x − y
2 )

2 − 1
4y

2 ≥ −1
4y

2

ensures that for all x ∈ [0, 1], φ ∈ R
3H+1 it holds that N

φ(x)(Nφ(x) − f(x)) ≥ −1
4(f(x))

2.
Hence, we have for all φ ∈ R

3H+1 that

〈(∇V )(φ),G(φ)〉 ≥ −2

∫ 1

0
|f(x)|2 dx. (87)

This, (86), the fact that V ∈ C∞(R3H+1,R), and Lemma 3.1 shows for all t ∈ [0,∞) that

V (Θt)− V (Θ0) = −

∫ t

0
〈(∇V )(Θs),G(Θs)〉ds

= −8

∫ t

0

∫ 1

0
N

Θs(x)(NΘs(x)− f(x)) dxds

≤ 2

∫ t

0

∫ 1

0
|f(x)|2 dxds = 2t

∫ 1

0
|f(x)|2 dx.

(88)

This proves item (i). Next observe that item (i) and the fact that ∀φ ∈ R
3H+1 : ‖φ‖2 ≤ V (φ)

demonstrate that for all t ∈ [0,∞) it holds that

‖Θt‖ ≤ (V (Θt))
1/2 ≤

[

V (Θ0) + 2t
∫ 1
0 |f(x)|

2 dx
]1/2

. (89)

Combining this and the fact that ∀x, y ∈ [0,∞) : (x + y)1/2 ≤ x1/2 + y1/2 ensures that for all
t ∈ [0,∞) we have that

‖Θt‖ ≤ (V (Θ0))
1/2 +

[

2
∫ 1
0 |f(x)|

2 dx
]1/2

t1/2. (90)

This establishes item (ii). The proof of Proposition 5.1 is thus complete.
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