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Abstract

We establish the Central Limit Theorem, as the degree goes to infinity, for the normalized volume
of the zero set of a rectangular Kostlan–Shub–Smale random polynomial system. This paper is a
continuation of Central Limit Theorem for the number of real roots of Kostlan–Shub–Smale random
polynomial systems by the same authors in which the case of square systems was considered. Our
main tools are Kac-Rice formula and an expansion of the volume of the level set into the Itô-Wiener
Chaos.
Keywords: Kostlan–Shub–Smale random polynomial systems, co-area formula, Kac-Rice formula,
central limit theorem.
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1 Introduction

The problem of studying the number of roots of random algebraic polynomials has attracted much
interest for a long time. It is worth mentioning the seminal article of M. Kac on the subject [7] where
a proof of the now famous Kac-Rice formula [5] was given. This formula establishes an analytical
expression for computing the expectation of the number of zeros of a Gaussian random process. At
the beginning the main interest was limited to compute the expected value of such a number. Later
on there were also considered its variance [11] and the Central Limit Theorem (CLT) [12].

The algebraic systems of random polynomials of several variables were considered much later
motivated by the inspiring work, due to Shub and Smale, for the understandig of the complexity of
Bézout’s theorem (see [16], [17], [18], [19] and [20]).

Kostlan [8] and Shub-Smale [17] studied random polynomials systems that are invariant under
rotations. The properties of invariance of these polynomials allow considering them as functions over
the multidimensional sphere. In Kostlan’s paper an explicit expression for the expectation of the
number of roots for a square system of such polynomials was given. For rectangular systems the
study was directed to the behavior of the volume of their zero sets.

Wschebor [21], in a seminal work, gave for the first time a bound for a limit variance in the case
when the degree of the system is controlled and the size of the system tends to infinity. A central
limit theorem for this asymptotic scheme is still an open problem, even for the particular case of
quadratic systems.

Another asymptotic regime naturally arises, namely: to fix the number of equations and variables
and to let the degree grow to infinity. Under this scheme, the asymptotic variance for the number of
roots of square systems was obtained in [2] and [10]. In the case of rectangular systems the asymptotic
variance of the volume of the zero level set was given in [9]. Besides, in [3] a central limit theorem
for the number of roots of the system in the square case was obtained.

The present paper extends the results listed in the last paragraph obtaining a central limit theorem
for the volume of the zero set of a Kostlan-Shub-Smale random rectangular system as the (common)
degree tends to infinity (see Section 2 for the precise definition). We also give an alternative (simpler)
proof of the limit variance.
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This paper is a continuation of [2, 3]. The proof has the same structure, but new arguments are
needed, see the comments and remarks.

The fundamental tools for the study of the zero sets are: on the one hand the Kac-Rice formulas
for calculating the mean and variance of the functionals of these sets ([5]) and on the other hand the
well-known theorem of the fourth moment to establish the CLT for nonlinear functionals of Gaussian
processes or fields ([13]).

2 Main result

Consider a rectangular system Yd of r homogeneous polynomial equations in m + 1 variables with
common degree d > 1. More precisely, let Yd = (Y1, . . . , Yr) with

Yℓ(t) =
∑

|j|=d

a
(ℓ)
j tj ; ℓ = 1, . . . , r,

where

1. j = (j0, . . . , jm) ∈ N
m+1 and |j| =∑m

k=0 jk;

2. a
(ℓ)
j ∈ R, ℓ = 1, . . . , r, |j| = d;

3. t = (t0, . . . , tm) ∈ R
m+1 and tj =

∏m
k=0 t

jk
k .

The system Yd has the Kostlan–Shub–Smale (KSS for short) distribution if the coefficients a
(ℓ)
j

are independent centred normally distributed random variables with variances

Var
(
a
(ℓ)
j

)
=

(
d

j

)
=

d!

j0!j1! . . . jm!
.

In the case r < m, we are interested in the zero level set ofYd. Note that, sinceYd is homogeneous,
its roots consist of lines through the origin in R

m+1. Then, each root ray of Yd in R
m+1 corresponds

exactly to two (opposite) roots of Yd on the unit sphere Sm of Rm+1. Hence, the unit sphere Sm is
a natural place where to consider the zero set.

By a Sard-type argument, the zero level set of Yd on Sm is, almost surely, a smooth sub-manifold
of dimension m − r (see for example Azäıs & Wschebor [5, pp.177]). We denote by VYd

(0) the
(m− r)-volume of the zero level set (on the sphere).

Shub and Smale [17] and Kostlan [8] proved that E [VYd
(0)] = 2dr/2cm,r , r ≤ m, where cm,r is the

geometric measure of the sphere Sm−r as a sub-manifold of Sm. Letendre [9] and Letendre-Puchol
[10], proved that there exists 0 < V r

∞ <∞ such that

lim
d→∞

Var(VYd
(0))

dr−m/2
= V r

∞. (2.1)

We include a different proof in Appendix 5.
We now establish the CLT for the rectangular case.

Theorem 1. Let Yd be an r× (m+ 1) KSS homogeneous system. Then, if r < m, the standardized
(m− r)-volume of the zero level set

V̄d =
VYd

(0)− E [VYd
(0)]

d
r
2
−m

4

converges in distribution as d → ∞ towards a centred normal random variable with finite positive
variance.

Remark 2.1. Note that the variance of the volume of the zero level set exhibits a surprising behavior
as d → ∞. More precisely, as d → ∞, if r < m/2, then the variance tends to 0, if r = m/2 it tends
to a constant and if r > m/2 it tends to infinity. Thus, the normalization in the CLT either reduces
or amplifies the oscillations of the volume of the zero level set.

Remark 2.2. This result can be extended to general functionals of the level sets using the same
arguments.

Indeed, let us denote the zero level set of Yd as

CYd
(0) = {t ∈ Sm : Yd(t) = 0}.

If g : Sm → R is an a.s. continuous function we define the level linear functional

< g,1Yd
>=

∫

CYd(0)

g(t)dt,
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where 1Yd
is the indicator function of CYd

(0). Thus VYd
(0) =< 1Yd

,1Yd
>. We point out that the

study conducted in the present paper for VYd
(0), could be made for those functionals. To explain a

little how to proceed we need in first place a Kac-Rice formula for the first and second order for such
a functional. This is considered in Chapter 6 of [5] (Theorm 6.10 p. 168). In the second place the
asymptotic behavior of the variance and the Hermite expansion can be obtained in a similar form as
we have made here. The reader can consult, for a near matter but for m = 1, the following preprint
[6].

3 Preliminaries

This paper is a continuation of [2] and [3]. For the ease of readability, we gather toghether here
the notation and some basic results proved in [2, 3]. We also include the celebrated Fourth moment
Theorem [13, Th.11.8.1] which is used to get the asymptotic normality.

3.1 Notation and basic results

We denote the unit sphere in R
m+1 by Sm and its volume by κm. Concerning integration, the

variables s and t denote points on Sm and ds and dt denote the corresponding geometric measure.
The variables u and v are in R

m and du and dv are the associated Lebesgue measure. The variables
z and θ are reals and dz and dθ are the associated differentials.

We use the Landau’s big O and small o notation. The set N of natural numbers contains 0.
Besides, Const will denote a universal constant that may change from a line to another.

Lemma 3.1 of [2] establishes that for an integrable h : [−1, 1] → R it holds that
∫

Sm×Sm

h(〈s, t〉)dsdt = κmκm−1

∫ π

0

sinm−1(θ)h(cos(θ))dθ, (3.1)

where 〈·, ·〉 is the usual inner product in R
m+1.

Concerning the distribution of Yd, we have

Γd(s, t) := E [Yℓ(s)Yℓ(t)] = 〈s, t〉d ; s, t ∈ R
m+1.

It follows that the distribution of the system Yd is invariant under the action of the orthogonal group
in R

m+1. For ℓ = 1, . . . , r, we denote by Y ′
ℓ (t) the derivative (along the sphere) of Yℓ(t) at the point

t ∈ Sm and by Y ′
ℓk(t) its k-th component on a given basis of the tangent space of Sm at the point t.

We define the standardized derivative as

Y
′
ℓ(t) :=

Y ′
ℓ (t)√
d
, and Y

′
d(t) := (Y

′
1(t), . . . , Y

′
r(t)), (3.2)

where Y
′
ℓ(t) is a row vector. In [2] it is shown that (Yd(t),Y

′
d(t)) is a vector random field, whose

r(1+m) entries are standard normal random variables with covariances depending upon the quantities

A(θ) = −
√
d cosd−1(θ) sin(θ), (3.3)

B(θ) = cosd(θ)− (d− 1) cosd−2(θ) sin2(θ),

C(θ) = cosd(θ),

D(θ) = cosd−1(θ).

where θ is the angle between s and t in Sm. More precisely, the variance-covariance matrix of the
vector

(Yℓ(s), Yℓ(t), Y
′
ℓ(s), Y

′
ℓ(t))

has the following form




A11 A12 A13

A⊤
12 Im A23

A⊤
13 A⊤

23 Im



 , (3.4)

where Im is the m×m identity matrix,

A11 =

[
1 C
C 1

]
, A12 =

[
0 0 · · · 0

−A 0 · · · 0

]
, A13 =

[
A 0 · · · 0
0 0 · · · 0

]
,

and A23 = diag(B,D, . . . ,D)m×m.
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Furthermore, the conditional distribution of (Y
′
d(s),Y

′
d(t)) given that Yd(s) = Yd(t) = 0 is

centered normal with variance-covariance matrix
[
B11 B12

B⊤
12 B22

]
, (3.5)

with B11 = B22 = diag(σ2, 1, . . . , 1)m×m and B12 = diag(σ2ρ,D, . . . ,D)m×m. Here,

σ2(θ) = 1− A(θ)2

1− C(θ)2 ; ρ(θ) =
B(θ)(1− C(θ)2)−A(θ)2C(θ)

1− C(θ)2 −A(θ)2
.

Finally, let us retrieve from [2] the asymptotics and bounds for these quantities after scaling
θ = z/

√
d.

Lemma 3.1 ([2]). There exists 0 < α < 1
2
such that for z√

d
< π

2
it holds that:

|A| ≤ z exp(−αz2); |B| ≤ (1 + z2) exp(−αz2);
|C| ≤ |D| ≤ exp(−αz2); 1− C2 ≥ Const(1− exp(−2αz2));

0 ≤ 1− σ2 ≤ Const · exp(−2αz2); |ρ| ≤ Const · (1 + z2)2 exp(−2αz2).

All the functions on the l.h.s. are evaluated at θ = z/
√
d. �

Lemma 3.2 ([2]). As d→ +∞, it holds that

cos2d
( z√

d

)
→ exp(−z2); A → −z exp(−z2/2);

B → (1− z2) exp(−z2/2); C,D → exp(−z2/2);

σ2
( z√

d

)
→ 1− (1 + z2) exp(−z2)

1− exp(−z2) ;

ρ
( z√

d

)
→ (1− z2 − exp(−z2)) exp(−z2/2)

1− (1 + z2) exp(−z2) .

�

3.2 Fourth Moment Theorem

We present here the well known Fourth Moment Theorem which helps us in the proof of Theorem 1.
Let B = {B(λ) : λ ≥ 0} be a standard Brownian motion defined on some probability space

(Ω,F , P) where F is the σ-algebra generated by B. The Wiener chaos is an orthogonal decomposition
of L2(B) = L2(Ω,F , P):

L2(B) =
∞⊕

q=0

Cq,

where C0 = R and for q ≥ 1, Cq = {IBq (fq) : fq ∈ L2
s([0,∞)q)} where IBq is the q-folded multiple

integral w.r.t. B and L2
s([0,∞)q) the space of kernels fq : [0,∞)q → R which are square integrable

and symmetric, that is, if π is a permutation then fq(λ1, . . . , λq) = fq(λπ(1), . . . , λπ(q)). Equivalently,
each square integrable functional F of the Brownian motion B can be written as a sum of orthogonal
random variables

F = E [F ] +

∞∑

q=1

IBq (fq),

for some uniquely determined kernels fq ∈ L2
s([0,∞)q).

Let fq , gq ∈ L2
s([0,∞)q), then for n = 0, . . . , q we define the contraction by

fq ⊗n gq(λ1, . . . , λ2q−2n) =

∫

[0,∞)n
fq(z1, . . . , zn, λ1, . . . , λq−n)

· gq(z1, . . . , zn, λq−n+1, . . . , λ2q−2n)dz1 . . . dzn.

Now, we can state the generalization of the Fourth Moment Theorem.
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Theorem 2 ([15] Theorem 11.8.3). Let Fd be in L2
s(B) admit chaotic expansions

Fd = E [Fd] +
∞∑

q=1

Iq(fd,q)

for some kernels fd,q. Then, if E [Fd] = 0 and

1. for each fixed q ≥ 1, Var(Iq(fd,q)) −−−→
d→∞

Vq;

2. V :=
∑∞

q=1 Vq <∞;

3. for each q ≥ 2 and n = 1, . . . , q − 1,

lim
d→∞

‖fd,q ⊗n fd,q‖L2
s([0,∞)2q−2n) = 0;

4. limQ→∞ lim supd→∞
∑∞

q=Q+1Var(Iq(fd,q)) = 0.

Then, Fd converges in distribution towards the N(0, V ) distribution. �

4 Proof of Theorem 1

Though the main lines of the proof are the same as in [3], there are some important technical
differences since the volume of the level set is a more complicated object than the number of roots
in the square case. We begin this section with an outline of the proof and a description of the main
technical differences with [3].

• First, we obtain the Hermite or Wiener-chaos expansion of the standardized (m− r)-volume of
the zero level set of Yd on Sm.

In [3], the proof of the expansion profited of the fact that the number of roots of the system
is locally constant and of Bézout’s bound for it. In the present case, to obtain the chaotic
expansion of the volume of the zero level set we need to change our arguments to deal with
co-area and Rice formulas, see Lemma 4.1. In particular, we need to state the continuity of
the volume of the level sets with respect to the level. this requires a careful use of Gaussian
regression.

• In order to get the limit variance of the q-th chaotic component we obtain a domination de-
pending on q based on Mehler’s formula and in Lemma 3.1 above. In [2] a global domination
was obtained from the analysis of the limit variance of the number of roots of the system.

The asymptotic normality is obtained in the same way as in [3]. In particular, we deduce that
the sufficient condition to get the asymptotic normality does not depend on the number of
equations r but on the covariances of the entries of Yd.

• We use a convenient partition of the sphere and the existence of a local limit process in order
to prove the negligibility (of the variance) of the tail of the expansion.

4.1 Hermite expansion of the Volume

In this part we obtain the Hermite expansion of VYd
(0); the (m− r)-volume of the zero level set.

Let δ0(y) =
∏r

ℓ=1 δ0(yℓ) be the Dirac delta distribution for y ∈ R
r.

For ε > 0 consider an approximation 1
εr
ϕ(y

ε
) to Dirac’s delta distribution, where we assume that

ϕ is a continuous density function with bounded support. Consider also the function f defined as

f(y′) =
√

det(y′(y′)⊤), (4.1)

where y′ = (y′1; . . . ; y
′
r) = (y′11, y

′
12, . . . , y

′
1m; y′21, . . . , y

′
2m; . . . , . . . ; y′r1, . . . , y

′
rm) is an m×r matrix and

(y′)⊤ its transpose. Sometimes, according to convenience, we understand y′ as a vector in R
r×m.

Furthermore, for any γ > 0 let

fγ(y
′) = f(γy′11, y

′
12, . . . , y

′
1m; γy′21, . . . , y

′
2m; . . . , . . . ; γy′r1, . . . , y

′
rm). (4.2)

Thus f = f1.

Remark 4.1. The function fγ plays a key role in the alternative proof of the limit variance of the
volume of the zero set of Yd since it allows us to deal with the non-homogeneity of f w.r.t. the first
column in y, see Appendix.

5



Similarly to the case of the number of roots [2], we can obtain the following convergence in L2(B).
As said above, the expansion for the volume of the zero level set is more subtle than that of the
number of roots in the square case.

Lemma 4.1. Almost surely and in the L2 sense it holds that

VYd
(0) = d

r
2 lim

ε→0

1

εr

∫

Sm

ϕ

(
Yd(t)

ε

)
f(Y

′
1(t), . . . , Y

′
r(t))dt.

Proof. By the co-area formula we have

1

εr

∫

Rr

ϕ
(
u

ε

)
VYd

(u)du =
1

εr

∫

Sm

ϕ

(
Yd(t)

ε

)
f(Y

′
1(t), . . . , Y

′
r(t))dt,

where VYd
(u) stands for the (m − r)-volume of the level set {t ∈ Sm : Yd(t) = u}. Changing the

variable in the left hand side integral we can write

Qε :=

∫

Rr

ϕ(u)VYd
(εu)du =

1

εr

∫

Sm

ϕ

(
Yd(t)

ε

)
f(Y

′
1(t), . . . , Y

′
r(t)dt,

we need to prove the convergence in L2(B) for this sequence. Let us evaluate

E [(Qε − VYd
(0))2] = E [Q2

ε]− 2E [QεVYd
(0)] + E [V2

Yd
(0)]. (4.3)

But

E [Q2
ε] =

∫

Rr×Rr

ϕ(u1)ϕ(u2)E [VYd
(εu1)VYd

(εu2)]du1du2

and

E [QεVYd
(0)] =

∫

Rr

ϕ(u1)E [VYd
(εu1)VYd

(0)]du1.

Using the Cauchy-Schwarz inequality we have

E [VYd
(εu1)VYd

(εu2)] ≤ (E [VYd
(εu1)

2]E [VYd
(εu2)

2])
1
2 . (4.4)

Furthermore, below we show that the right hand side is a continuous function in the variable u,
obtaining

lim
ε→0

E [Q2
ε] ≤ E [V2

Yd
(0)].

Moreover, given that the process satisfies the hypothesis of Proposition 6.12 of Azäıs & Wschebor
book [5], it holds that

P{∃t : rank(Y′
d(t)) < r, Yd(t) = u} = 0.

Thus by using the implicit function theorem we have that the function VYd
(·) is a.s. continuous and

by a classical result

VYd
(0) = d

r
2 lim

ε→0

1

εr

∫

Sm

ϕ

(
Yd(t)

ε

)
f(Y

′
1(t), . . . , Y

′
r(t)dt a.s.

In this form by Fatou’s Lemma we get

E [V2
Yd

(0)] ≤ lim
ε→0

E [Q2
ε] ≤ E [V2

Yd
(0)].

The same result can be obtained for the second addend of (4.3), in consequence the convergence in
quadratic mean holds.

It remains to prove that the right hand side of (4.4) is a continuous function, we do that in the
following. This issue is not present in [3]. By Kac-Rice formula

E [(VYd
(u))2] = dr

∫

Sm×Sm

E [f(Y
′
d(t))f(Y

′
d(s)) | Yd(t) = Yd(s) = u] pY(t),Y(s)(u,u)dtds. (4.5)

Clearly the density pY(t),Y(s)(u,u) is continuous as a function of u. We deal now with the conditional
expectation.

Recall the notation in (3.3). Let us define the vector v(〈t, s〉) = (A, 0, . . . , 0)⊤, a regression model
gives that

Y
′
ℓ(t) = v(〈t, s〉) 〈t,s〉d

1−〈t,s〉2d Yℓ(t)− v(〈t, s〉) 1
1−〈t,s〉2d Yℓ(s) + ξℓ1(t, s),

Y
′
ℓ(s) = −v(〈t, s〉) 1

1−〈t,s〉2d Yℓ(t) + v(〈t, s〉) 〈t,s〉d
1−〈t,s〉2d Yℓ(s) + ξℓ2(t, s),

6



with ξℓ1(t, s), ξℓ2(t, s) centered Gaussian random variables independent from Yℓ(s) and Yℓ(t). In this

form we get that the conditional distribution of
(
Y

′
ℓ(t), Y

′
ℓ(s)

)
conditioned to Y(t) = Y(s) = u is

normal with mean 
v(〈t, s〉)( 〈t,s〉d−1

1−〈t,s〉2d )uℓ

v(〈t, s〉)( 〈t,s〉d−1

1−〈t,s〉2d )uℓ


 =

(
−v(〈t, s〉)( 1

1+〈t,s〉d )uℓ

−v(〈t, s〉)( 1
1+〈t,s〉d )uℓ

)

and variance-covariance matrix (3.5). This result implies that the conditional expectation can be
expressed through the following two vectors:

ζ1 :=

(
−v(〈t, s〉) · 1

1 + 〈t, s〉d
· u1

σ
+M1, . . . ,−v(〈t, s〉) · 1

1 + 〈t, s〉d
· ur

σ
+Mr

)
;

ζ2 :=

(
−v(〈t, s〉) · 1

1 + 〈t, s〉d
· u1

σ
+W 1, . . . ,−v(〈t, s〉) · 1

1 + 〈t, s〉d
· ur

σ
+W r

)
,

where the (r ×m)-dimensional vectors

(M1, . . . ,Mr) := (M11, . . . ,M1m,M21, . . . ,M2m, . . . ,Mr1, . . . ,Mrm),

(W 1, . . . ,W r) := (W11, . . . ,W1m,W21, . . . ,W2m, . . . ,Wr1, . . . ,Wrm),

are such that the Mlk (resp. Wlk) are independent standard Gaussian random variables and

E [Ml1k1Wl2k2 ] = ρ1{l1=l2, k1=k2=1} +D1{l1=l2, k1=k2>1}.

In fact, we have

E [f(Y
′
d(t))f(Y

′
d(s)] | Yd(t) = Yd(s) = u) = E [fσ(ζ1)fσ(ζ2)]. (4.6)

Note that this is an example of the importance of the function fσ. By the definition of the function
fσ and the form of the vectors ζ1 and ζ2 this term is evidently a continuous function of the variable
u.

Once we have the approximation in Lemma 4.1, the expansion follows as in [2].
To describe it, we introduce the Hermite polynomials Hn(x), x ∈ R, by H0(x) = 1, H1(x) = x

and Hn+1(x) = xHn(x) − nHn−1(x) for n ≥ 1. The tensorial versions are defined for multi-indices
α = (α1, . . . , αr) ∈ N

r and β = (β11, . . . , β1m, . . . , βr1, . . . , βrm), by

Hα(y) = Hα1(y1) . . .Hαr (yr),

H̃β(y
′) = Hβ11(y

′
11) . . .Hβ1m(y′1m) . . .Hβr1(y

′
r1) . . .Hβrm(y′rm).

We denote the coefficients of Dirac’s delta distribution in the Hermite basis of L2(Rr, φr(x)dx) by bα,
where φk stands for the standard normal density function in R

k. Readily we can show that bα = 0
if at least one index αj is odd, otherwise

bα =
1

[α
2
]!

r∏

j=1

1√
2π

[
− 1

2

][αj
2

]

.

Since f2 is a polynomial, f ∈ L2(Rr×m, φr×m(y′))dy′. For f we have

f(y′) =
∑

β

fβH̃β(y
′), (4.7)

where β and H̃β are as above and

fβ =
1

β!

∫

Rr×m

f(y′)H̃β(y
′)φr×m(y′)dy′.

Let us introduce the functions

gq(y,y
′) =

∑

|α|+|β|=q

bαfβHα(y)H̃β(y
′),

where (y,y′) ∈ R
r × R

r×m.
Thus similarly to [2] we can obtain the expansion.
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Proposition 4.1. With the same notation as above. We have, in the L2 sense, that

V̄d =
VYd

(0)− E [VYd
(0)]

d
r
2
−m

4

= d
m
4

∞∑

q=1

∫

Sm

gq(Yd(t),Y
′
(t)) dt.

�

Remark 4.2. The same type of expansion can be obtained with minor modifications if instead of the
volume of the zero set over the whole sphere we consider the volume of the set restricted to a Borel
set G ⊂ Sm.

The rest of the proof of Theorem 1 consists in the verification of the conditions of Theorem 2 with
Fd = V̄d.

4.2 Computing the variance of the q-th term

To compute the variance of the q-th term in the expansion we use Mehler’s formula [5, L. 10.7].
We have

E

[(∫

Sm

gq(Yd(t),Y
′
d(t))dt

)2
]
=

∑

|α|+|β|=q

∑

|α′|+|β′|=q

bαfβ bα′fβ′

×
∫

Sm×Sm

E [Hα(Y(t))Hα′(Y(s))H̃β(Y
′
(t))H̃β′(Y

′
(s))]dtds.

Recall that the coefficients bα are zero if one of the αj is odd. Furthermore, the function f(y) is
even with respect to each column, thus its Hermite coefficients

fβ = fβ1,β2,...,βr =

∫

Rr×m

√
det(y′(y′)⊤)Hβ1(y

′
1) . . .Hβr (y

′
r)φr×m(y′)dy′,

are zero if at least one of the βℓ satisfies |βℓ| = 2k + 1. In this form |βℓ| =
∑m

j=1 βℓj is necessarily
even. Moreover, q = |α|+ |β| is also even.

By independence we have

E [Hα(Y(t))H̃β(Y(t))Hα′(Y(s))H̃β′(Y
′
(s))]

=

r∏

ℓ=1

E [Hαℓ
(Yℓ(t))Hβℓ

(Y
′
ℓ(t))Hα′

ℓ
(Yℓ(t))Hβ′

ℓ
(Y

′
ℓ(t))]

=
r∏

ℓ=1

E [Hαℓ
(Yℓ(s))Hα′

ℓ
(Yℓ(t))Hβℓ1

(Y
′
ℓ1(s))Hβ′

ℓ1
(Y

′
ℓ1(t))]

×
m∏

j=2

E [Hβℓj
(Y

′
ℓj(s))Hβ′

ℓj
(Y

′
ℓj(t))]. (4.8)

In the second equality we used that the random vectors:

(Yℓ(s), Yℓ(t), Y
′
ℓ1(s), Y

′
ℓ1(t)); (Y

′
ℓj(s), Y

′
ℓj(t)); j ≥ 2

are independent. Using Mehler’s formula [5, L. 10.7], we get

E [Hβℓj
(Y

′
ℓj(s))Hβ′

ℓj
(Y

′
ℓj(t))] = δβℓjβ

′
ℓj
βℓj ! (ρ

′′
ℓj)

βℓj ,

where ρ′′ℓj = ρ′′ℓj(〈s, t〉) = E [Y
′
ℓj(s)Y

′
ℓj(t)] = 〈t, s〉d−1 . Since

∑m
j=1 βℓj is even, we have that either βℓ1

is even and then
∑m

j=2 βℓj is even too or βℓ1 is odd and in this case
∑m

j=2 βℓj is also odd.
For the first factor in the r.h.s. of (4.8), using again Mehler’s formula we get

E [Hαℓ
(Yℓ(s))Hα′

ℓ
(Yℓ(t))Hβℓ1

(Y
′
ℓ1(s))Hβ′

ℓ1
(Y

′
ℓ1(t))] = 0,

if αℓ + βℓ1 6= α′
ℓ + β′

ℓ1. Otherwise, consider Λ ⊂ N
4 defined by

Λ = {(d1, d2, d3, d4) : d1 + d2 = αℓ, d3 + d4 = βℓ1, d1 + d3 = α′
ℓ, d2 + d4 = β′

ℓ1};

then

E [Hαℓ
(Yℓ(s))Hα′

ℓ
(Yℓ(t))Hβℓ1

(Y
′
ℓ1(s))Hβ′

ℓ1
(Y

′
ℓ1(t))] =

∑

(di)∈Λ

αℓ!α
′
ℓ!βℓ1!β

′
ℓ1!

d1!d2!d3!d4!
ρd1(ρ′)d2(ρ′)d3(ρ′′)d4 ,
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where ρ = ρ(〈s, t〉) = E [Yℓ(s)Yℓ(t)], ρ
′ = E [Yℓ(s)Y

′
ℓ1(t)] = E [Y

′
ℓ1(s)Yℓ(t)] and ρ

′′ = E [Y
′
ℓ1(s)Y

′
ℓ1(t)].

Note that the conditions defining the index set Λ implies that the first factor in Equation (4.8) is

r∏

ℓ=1

∑

(di)∈Λ

αℓ!α
′
ℓ!βℓ1!β

′
ℓ1!

d1!d2!d3!d4!
ρd1(ρ′)d2+d3(ρ′′)d4 .

Hence, if we change 〈s, t〉 by −〈s, t〉, for each ℓ we have the factor

(−1)dd1 · (−1)(d−1)(d2+d3) · (−1)dd4 = (−1)d(d1+d4)+(d−1)(d2+d3)

= (−1)dαℓ(−1)
dβ′

ℓ1 (−1)2(α
′
ℓ−d1) = (−1)

dβ′
ℓ1

Remark 4.3. Changing 〈t, s〉 by −〈t, s〉 in (4.8) and considering each term for j = 1, . . . , r of the
product, either β′

ℓ1
and

∑m
j=2 β

′
ℓj

are even and then the sign of this term does not change, or the two
numbers are odd and then they have a minus in front and the sign neither change. Thus we get that
the complete sign of (4.8) does not change.

Let us now define

H̃qd(〈t, s〉) =
∑

|(α,β)|=q

∑

|(α′,β′)|=q

aµaµ′E [Hα(Y(t))H̃β(Y(t))Hα′(Y(s))H̃β′(Y
′
(s))]. (4.9)

Set also, for t ∈ Sm,
Zd(t) = (Z1(t), . . . , Zr(1+m)(t)) = (Yd(t),Y

′
d(t)). (4.10)

In this manner we can write

d
m
2 E

[(∫

Sm

gq(Zd(t))dt

)2
]
= d

m
2

∫

Sm×Sm

H̃qd(〈t, s〉)dtds

= κmκm−1d
m/2

∫ π

0

sinm−1(θ)H̃qd (cos(θ)) dθ

= 2κmκm−1

∫ √
dπ/2

0

d(m−1)/2 sinm−1

(
z√
d

)
H̃qd

(
cos

(
z√
d

))
dz.

For the second equality we used (3.1) about the integration on the sphere of an invariant by rotations
function. In the third equality we use (deduced from Remark 4.3) the invariance of the function with
respect to the change of variable ϕ = π

2
− θ and finally we made θ = z√

d
.

The convergence follows by dominated convergence using for the covariances ρk,ℓ := E [Zk(s)Zℓ(t)],
the bounds in Lemma 3.1 and the expression for the matrix (3.4). In this manner the integrand can
be bounded by Const (1 + z2)q exp (−qαz2). In conclusion we have

V r
q := lim

d→∞
d

m
2 E

[(∫

Sm

gq(Zd(t))dt

)2
]
= 2κmκm−1

∫ ∞

0

zm−1H̃q(z)dz q ≥ 1,

where

H̃q(z) := lim
d→∞

H̃qd

(
cos

(
z√
d

))
.

Implicit in H̃q(z) we use the pointwise limits given in Lemma 3.2.

Remark 4.4. In the present case the domination is obtained via Mehler’s formula separately for each
fixed q. In [3] we used a less ad hoc argument profiting of the computation of the limit global variance
(of the number of roots of the system) using Rice formula.

4.3 Point 2 of Theorem 2

Recall from (2.1) that

V r
∞ = lim

d→∞
Var(V̄d) = lim

d→∞

∞∑

q=0

d
m
2 E

[(∫

Sm

gq(Zd(t))dt

)2
]
.

The second equality follows from Parseval’s identity. Thus, by Fatou’s Lemma

V r :=

∞∑

q=0

V r
q =

∞∑

q=0

lim
d→∞

d
m
2 E

[(∫

Sm

gq(Zd(t))dt

)2
]
≤ V r

∞ <∞.

Actually, equality holds as a consequence of Point 4 and the finiteness of V r
∞.
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4.4 Normality of the q-th term

Lemma 4.3 below gives a sufficient condition on the covariances of the process Zd in order to verify the
convergence of the norm of the contractions (which in turn gives the asymptotic normality). Below
we write the chaotic components

Iq,d = d
m
4

∫

Sm

gq(Zd(t))dt.

in Proposition 4.1 as multiple stochastic integrals w.r.t. a standard Brownian motion B and use this
fact in order to prove Lemma 4.3.

Let B = {B(λ) : λ ∈ [0,∞)} be a standard Brownian motion on [0,∞). By the isometric property
of stochastic integrals there exist kernels ht,ℓ such that the components of the vector Zd defined in
(4.10) can be written as:

Zℓ(t) =

∫ ∞

0

ht,ℓ(λ)dB(λ), ℓ = 1, . . . , r(m+ 1). (4.11)

The kernels ht,ℓ can be computed explicitly from the definition of Zℓ writing the random coefficients
as integrals w.r.t. the Brownian motion B.

The two following lemmas are close to the equivalent lemmas in [2], their proofs are omitted. Note
that the number of equations r of the system Yd does not play any role in the condition (4.12) below.

Lemma 4.2. With the same notation and assumptions as in Proposition 4.1, Iq,d can be written as
a multiple stochastic integral

Iq,d = IBq (gq,d) =

∫

[0,∞)q
gq,d(λ)dB(λ);

with

gq,d(λ) = dm/4
∑

|µ|=q

aµ

∫

Sm

(⊗r(m+1)
ℓ=1 h⊗γℓ

t,ℓ )(λ)dt,

where ht,ℓ is defined in (4.11) and IBq is the q-folded multiple stochastic integral w.r.t. the Brownian
motion B. �

As Γd(s, t) = Γd(〈s, t〉), then Γd can be seen as a function of one real variable.

Lemma 4.3. For k = 0, 1, 2, let Γ
(k)
d indicate the k-th derivative of Γd : [−1, 1] → R. If

dm/3

∫ π/2

0

sinm−1(θ)|Γ(k)
d (cos(θ))|dθ →

d→+∞
0, (4.12)

then, for n = 1, . . . , q − 1 and gq,d defined in Lemma 4.2:

‖gq,d ⊗n gq,d‖2 →d→∞ 0.

�

Therefore, it suffices to verify (4.12). For k = 0, 1, 2 we have

dm/3

∫ π/2

0

sinm−1(θ)|Γ(k)
d (cos(θ))|dθ = dm/3

∫ √
dπ/2

0

sinm−1

(
z√
d

) ∣∣∣∣Γ
(k)
d

(
cos

(
z√
d

))∣∣∣∣
dz√
d

=
1

dm/6

∫ √
dπ/2

0

d
m−1

2 sinm−1

(
z√
d

) ∣∣∣∣Γ
(k)
d

(
cos

(
z√
d

))∣∣∣∣ dz.

Now d
m−1

2 sinm−1
(
z/

√
d
)
≤ zm−1 and taking the worst case in Lemma 3.1 we have |Γ(k)

d (z/
√
d)| ≤

(1 + z2) exp(−αz2). Hence, the last integral is convergent and (4.12) follows.

4.5 Point 4 in Theorem 2

Let πQ be the projection on ⊕q≥QCq. We need to bound the following quantity uniformly in d

dm/2

4
Var(πQ(VYd

(0)) =
1

4

∑

q≥Q

dm/2

∫

Sm×Sm

H̃qd(〈s, t〉)dsdt, (4.13)

where H̃qd is defined in (4.9).
In order to bound this quantity we split the integral depending on the (geodesical) distance

between s, t ∈ Sm

dist(s, t) = arccos(〈s, t〉),
into the integrals over the regions {(s, t) : dist(s, t) < a/

√
d} and its complement, a will be chosen

later. We bound each part in the following two subsections.
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4.5.1 Off-diagonal term

In this subsection we consider the integral in the r.h.s. of (4.13) restricted to the off-diagonal region
{(s, t) : dist(s, t) ≥ a/

√
d}. This is the easier case since the covariances of Zd are bounded away from

1.
We use Arcones’ Lemma ([1], page 2245). Let X be a standard Gaussian vector on R

N and
h : RN → R a measurable function such that E[h2(X)] < ∞ and let us consider its L2 convergent
Hermite’s expansion

h(x) =
∞∑

q=0

∑

|k|=q

hkHk(x).

The Hermite rank of h is defined as

rank(h) = inf{τ : ∃ k , |k| = τ ;E [(h(X)− Eh(X))Hk(X)] 6= 0}.

Then, we have

Lemma 4.4 ([1]). LetW = (W1, . . . ,WN ) and Q = (Q1, . . . , QN) be two mean-zero Gaussian random
vectors on R

N . Assume that
E[WjWk] = E[QjQk] = δj,k,

for each 1 ≤ j, k ≤ N . We define
r(j,k) = E[WjQk].

Let h be a function on R
N with finite second moment and Hermite rank τ, 1 ≤ τ <∞, define

ψ := max

{
max

1≤j≤N

N∑

k=1

|r(j,k)|, max
1≤k≤N

N∑

j=1

|r(j,k)|
}
.

Then
|Cov(h(W ), h(Q))| ≤ ψτ

E[h2(W )].

�

We apply this lemma for N = r × (1 +m), W = Z(s), Q = Z(t) and to the function h(y,y′) =
gq(y,y

′). Recalling that ρk,ℓ(s, t) = ρk,ℓ(〈s, t〉) = E [Zk(s)Zℓ(t)], the Arcones’ coefficient is now

ψ(s, t) = max





∑

1≤k≤m+m2

|ρk,ℓ(s, t)|,
∑

1≤ℓ≤m+m2

|ρk,ℓ(s, t)|




 .

Thus
|H̃qd(〈s, t〉)| ≤ ψ(〈s, t〉)q ||gq||2,

being ‖gq‖2 = E [g2q(ζ)] for standard normal ζ.
The following lemma is obtained as in [3].

Lemma 4.5. For gq it holds that ||gq ||2 ≤ ||f ||22.
To bound the Arcones’ coefficient ψ(〈s, t〉) we use the expressions in (3.1) thanks to the invariance

of the distribution of Yd (and Zd) under isometries. It is not hard to see that the maximum in the

definition of ψ is |C|+|A|, see (3.3). From Lemma 3.1 it follows that |C|+|A| ≤ e−αz2(1+z). For z = 2
the bound takes the value 2e−4α which is less or equal to one if α ≥ 1

4
log 2, this is always possible

because the only restriction that we have is α < 1
2
. Moreover, for δ small enough e−αz2(1 + z) ≥ 1 if

z < δ. Thus, there exists an a < 2 such that for all z ≥ a it holds |C|+ |A| < r0 < 1. Hence,

sup
d

∑

q≥Q

dm/2

4

∫
{

(s,t):dist(s,t)≥ a√
d

}

H̃q,d(〈s, t〉)dsdt

= sup
d

Cm

4

∣∣∣∣∣∣

∑

q≥Q

d
m−1

2

∫ √
dπ

a

sinm−1

(
z√
d

)
H̃q

d

(
cos

(
z√
d

))
dz

∣∣∣∣∣∣

≤ Cm||f ||22
∑

q≥Q

rq−1
0

∫ ∞

a

zm−1(1 + z)e−αz2dz →
Q→∞

0.
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4.5.2 Diagonal term

It remains to prove that the integral in the r.h.s. of (4.13) restricted to the diagonal region {(s, t) :
dist(s, t) < a/

√
d} tends to 0 as Q → ∞ uniformly in d, a < 2 is fixed. This is the difficult part, we

use an indirect argument.
Next proposition, whose proof is similar to that in [3], gives a convenient partition of the sphere

based on the hyperspheric coordinates. For Θ = (θ1, . . . , θm−1, θm) ∈ [0, π)m−1 × [0, 2π) we write

x(m)(Θ) = (x
(m)
1 (Θ), . . . , x

(m)
m+1(Θ)) ∈ Sm in the following way

x
(m)
k (Θ) =

k−1∏

j=1

sin(θj) · cos(θk), k ≤ m and x
(m)
m+1(Θ) =

m∏

j=1

sin(θj);

with the convention that
∏0

1 = 1.

Define the hyperspherical rectangle (HSR for short) with center x(m)(θ̃) with θ̃ = (θ̃1, . . . , θ̃m) and
vector radius η̃ = (η̃1, . . . , η̃m) as

HSR(θ̃, η̃) = {x(m)(θ) : |θi − θ̃i| < η̃i, i = 1, . . . , m}.

Let TtS
m be the the tangent space to Sm at t. This space can be identified with t⊥ ⊂ R

m+1. Let
φt : Sm → t⊥ be the orthogonal projection over t⊥, CYd

(0) be the zero set of Yd on Sm and V its
volume on Sm.

Proposition 4.2. For d large enough, there exists a partition of the unit sphere Sm into HSRs
Rj : j = 1, . . . , k(m, d) = O(dm/2) and an extra set E such that

1. Var(V(CYd
(0) ∩E)) = o(dr−

m
2 ).

2. The HSRs Rj have diameter O( 1√
d
) and if Rj and Rℓ do not share any border point (they are

not neighbors), then dist(Rj , Rℓ) ≥ 1√
d
.

3. The projection of each of the sets Rj on the tangent space at its center cj , after normalizing by
the multiplicative factor

√
d, converges to the rectangle [−1/2, 1/2]m in the sense of Hausdorff

distance. That is, the Hausdorff distance of
[
−1

2
,
1

2

]m
\
√
d φcj (Rj)

tends to 0 as d → ∞. �

Arguing as in [3] it suffices to bound Var
(
πQ(V(CYd

(0) ∩Rj))
)
, where R0 is an HSR contained

in the spherical cap
C(e0, γ/

√
d) = {s : d(s, e0) < γ/

√
d}.

for some γ depending on m.
We use the local chart φ : C(e0, γ/

√
d) → B(0, sin(γ/

√
d)) ⊂ R

m defined by

φ−1(u) = (
√

1− ‖u‖2, u), u ∈ B(0, sin(γ/
√
d)),

to project this set over the tangent space. Define the random field Yd : B (0, γ) ⊂ R
m → R

r, as

Yd(u) = Yd(φ
−1(u

√
d)).

Observe that the ℓ coordinates, Y(ℓ)
d say, of Yd are independent. Clearly, the zero set of Yd on

R ⊂ C(e0, γ/
√
d) and the zero set of Yd on φ(R

√
d) ⊂ B(0, γ) coincide. That is

CYd
(0) ∩ R = CYd

(0) ∩ φ(R
√
d).

Proposition 4.3. The sequence of processes Y(ℓ)
d (u) as well as its first and second order derivatives

converge in the finite dimensional distribution sense towards the mean zero Gaussian processes Y∞

with covariance function Γ(u, v) = e−
||u−v||2

2 and its corresponding derivatives. �

The proof of this proposition can be consulted in [14] and also in [3].

Remark 4.5. The local limit process Y∞ has as coordinates (Y(1)
∞ , . . . ,Y(r)

∞ ) such that each one of

them is an independent copy of the random field with covariance Γ(u) = e−
||u||2

2 , u ∈ R
m. Then its

covariance matrix writes
Γ̃(u) = diag(Γ(u), . . . ,Γ(u)).

The second derivative matrix Γ̃′′(u) can be written in a similar way, but here the blocks are equal to

the matrix Γ′′(u) = (aij) where aij = e−
||u||2

2 H1(ui)H1(uj) if i 6= j, and aii = e−
||u||2

2 H2(ui). It
follows from [4, Th.12] that the variance of V(CY∞(0) ∩K) is finite for any compact K.
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The proof of the main theorem will be achieved as soon as we have proved the following proposition.

Proposition 4.4. For ε > 0 there exist Q0 and d0 such that for Q ≥ Q0

sup
d>d0

E [(πQ(V(CYd
(0) ∩ Rj)))

2] < ε.

Proof. Let R = R0 ⊂ C(e0, γ/
√
d), By Remark 4.2, the Hermite expansion holds true also for the

volume of the zero set of Yd on any subset of Sm. Hence,

V(CYd
(0) ∩ R) =

∞∑

q=0

d
r
2

∫

R

gq(Zd(t))dt.

Let us define R̃ = φ(R) ⊂ B(0, sin a√
d
) ⊂ R

m. It follows that

V(CYd
(0) ∩ R̃) = V(CYd

(0) ∩R) =
∞∑

q=0

d
r
2

∫

R̃

gq(Yd(u),Y ′
d(u))Jφ(u)du,

where Jφ(u) = (1− ‖u‖2)−1/2 is the Jacobian. Rescaling u = v/
√
d we get

V(CYd
(0) ∩ R̃)

d
r
2
−m

4
=

∞∑

q=0

∫
√

dR̃

gq

(
Yd

(
v√
d

)
,Y ′

d

(
v√
d

))
Jφ

(
v√
d

)
dv.

Besides, Kac-Rice formula, the domination for Hqd previously obtained, the convergence of Yd to Y∞
in Proposition 4.3 and the convergence, after normalization, of R̄ to [−1/2, 1/2]m in Proposition 4.2
yield

Var

(
V(CYd

(0) ∩ R̃)
d

r
2
−m

4

)
→

d→∞
Var

(
V
(
CY∞(0) ∩

[
−1

2
,
1

2

]m))
. (4.14)

In fact, for the second moment we have

E

[(
V(CYd

(0) ∩ R̃)
d

r
2
−m

4

)2]

= dm
∫

R̃×R̃

E [f(Y ′
d(u))f(Y ′

d(v)) |Yd(u) = Yd(v) = 0] pu,v(0, 0)Jφ(u)Jφ(v)dudv

=

∫
√

dR̃×
√
dR̃

E

[
f

(
Y ′

d

( u√
d

))
f

(
Y ′

d

( v√
d

))
|Yd

( u√
d

)
= Yd

( v√
d

)
= 0

]

×pu,v(0, 0)Jφ
( u√

d

)
Jφ
( v√

d

)
dudv

→
d→∞

∫

([ 12 , 1
2 ]

m
)2
E [f(Y ′

∞(u))f(Y ′
∞(v)) | Y∞(u) = Y∞(v) = 0] pY∞(u),Y∞(v)(0, 0)dudv

= E

[(
V
(
CY∞(0) ∩

[
−1

2
,
1

2

]m))2
]
<∞.

The term of the square of the expectation is easier.
The same arguments show that for all q we have

V loc
q,d := Var

(
πq

(V(CYd
(0) ∩ R̃)

d
r
2
−m

4

))
→

d→∞
Var

(
πq

(
V
(
(CY∞(0)) ∩

[
−1

2
,
1

2

]m)))
=: V loc

q .

Thus, for all Q it follows that
∑Q

q=0 V
loc
q,d →d→∞

∑Q
q=0 V

loc
q . By Parseval’s identity, (4.14) can be

written as
∞∑

q=0

V loc
q,d →

d→∞

∞∑

q=0

V loc
q .

Thus, by taking the difference we get

∑

q>Q

V loc
q,d →

d→∞

∑

q>Q

V loc
q . (4.15)
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Given that the series
∑∞

q=0 V
loc
q is convergent, we can choose Q0 such that for Q ≥ Q0 it holds∑∞

q>Q V
loc
q ≤ ε/2. Hence, for this Q0 and by using (4.15) we can choose d0 such that for all d > d0

and Q ≥ Q0 ∑

q>Q

V loc
d,q ≤ ε.

Namely, there exists d0 such that for Q ≥ Q0

sup
d>d0

E

[(
πQ

(
V(CYd

(0) ∩ R̃)
d

r
2
−m

4

))2]
< ε.

5 Appendix

Letendre [9] and Letendre & Puchol [10] have studied the asymptotic variance of the volume of the
zero set. We consider this problem using another method.

Write the variance as

Var(VYd
(0)) = E [(VYd

(0)2]− (E [VYd
(0])2.

Let f and fγ be defined as in (4.1) and (4.2) respectively.
We have already computed the second term, as in (4.5)-(4.6), and for the first one we apply the

Rice formula for the second moment ([5, Ch.6]).

E [VYd
(0)2] =

∫

Sm×Sm

E [f(Y′
d(t))f(Y

′
d(s)) |Y(t) = Y(s) = 0]pY(t),Y(s)(0, 0)dtds

= dr
∫

Sm×Sm

E [fσ(ζ1)fσ(ζ2)]pY(t),Y(s)(0, 0)dtds, (5.1)

where pY(t),Y(s)(0, 0) is the density of the vector (Y(t),Y(s)). By independence it holds

pY(t),Y(s)(0, 0) =

r∏

ℓ=1

pYℓ(t),Yℓ(s)(0, 0) =
1

(2π)r(1− 〈t, s〉2d) r
2
.

As in (4.7), we have

fγ(y
′) =

∑

β

fβ(γ)H̃β(y
′),

Remark 5.1. Let us point out that for r = m it holds f(y′) = |dety′|. Here y′ is the m×m matrix
whose columns are the vectors (y′ℓ1, . . . , y

′
ℓ,m) for ℓ = 1, . . . ,m. Furthermore, by the homogeneity of

the determinant we have fγ(y
′) = γf(y′). The lack of this fact when r < m implies that we need a

different approach for obtaining the asymptotic variance.

Thus, the expansion (4.7) and the bi-dimensional Mehler’s formula [5, Th.10.7] give

drE [fσ(ζ1)fσ(ζ2)] = dr
∑

β

[fβ (σ (〈t, s〉))]2 β! [D (〈t, s〉)](|β|−∑r
ℓ=1 βℓ1) [ρ (〈t, s〉)]

∑r
ℓ=1 βℓ1 (5.2)

= drH (〈t, s〉) .

Using (3.1) we obtain

E [VYd
(0)2] = κmκm−1

∫ π

0

H(cos(θ))
dr

(2π)r
1

(1− cos2d(θ))
r
2

sinm−1(θ)dθ

= κmκm−1
dr−

1
2

(2π)r

∫ √
dπ

0

H
(
cos

(
z√
d

)) sinm−1
(

z√
d

)

(
1− cos2d

(
z√
d

)) r
2
dz.

By Parseval equality we have

∑

ν

|fβ(γ)|2β! =
∫

Rr×m

|fγ(x)|2ϕr×m(x)dx ≤ mr(γ ∨ 1)2rE

[
sup

1≤ℓ≤r, 1≤j≤m

∣∣∣∣
Yℓj(e0)√

d

∣∣∣∣
2r
]
.
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Since σ2
(

z√
d

)
≤ 1 (Lemma 3.1), then

∑

β

∣∣∣∣fβ
(
σ

(
z√
d

))∣∣∣∣
2

β! < C. (5.3)

Therefore, we can interchange the series with the integral obtaining

E [(VYd
(0)2] = κmκm−1

dr−
1
2

(2π)r

∑

β

∫ √
dπ

0

Hβ

(
cos

(
z√
d

)) sinm−1
(

z√
d

)

(
1− cos2d

(
z√
d

)) r
2

dz, (5.4)

where H is as in (5.2) and Hβ = [fβ (σ (〈t, s〉))]2 β! [D (〈t, s〉)](|β|−∑r
ℓ=1 βℓ1) [ρ (〈t, s〉)]

∑r
ℓ=1 βℓ1 .

Thus, using the above notation and normalizing we have

E

[(VYd
(0

d
r
2
−m

4

)2
]
= κmκm−1

d
m−1

2

(2π)r

∫ √
dπ

0

∑

|β|≥1

Hβ

(
cos(

z√
d
)

) sinm−1
(

z√
d

)

(
1− cos2d

(
z√
d

)) r
2
dz

+ κmκm−1
d

m−1
2

(2π)r

∫ √
dπ

0

∣∣∣f0
(
σ
( z√

d

))∣∣∣
2 sinm−1

(
z√
d

)

(
1− cos2d

(
z√
d

)) r
2
dz.

We start with the terms |β| ≥ 1. To apply the dominated convergence theorem we must look for a
uniform bound. But let us begin with a remark.

Remark 5.2. The symmetrization argument used in step 3 of section 3.2 of [2] gives that the integral
over [

√
dπ

2
,
√
dπ] of each term in the series (5.4) is equal to the integral of same term on [0,

√
dπ

2
]

except for a multiplication by (−1)(d−1)|β|. In this form the bound that is obtained for applying the
dominated convergence theorem in the latter interval serves also for the former.

Using Lemma 3.1 it holds that there exists a d0 such that for z√
d
< π

2
and d > d0 it holds

|ρ| ≤ C (1 + z2)2 exp(−2αz2) and D ≤ exp
(
− 2αz2

)
.

By the Remark 5.2 it is enough to study only the interval [0,
√
dπ

2
]. In this form we get

∣∣∣∣∣
∑

|β|≥1

[
fβ
(
σ
( z√

d

))]2
β!
[
D
( z√

d

)]|β|−∑r
ℓ=1 βℓ1

[
ρ
( z√

d

)]∑r
ℓ=1 βℓ1

∣∣∣∣∣

≤ C
∑

|β|≥1

[
fβ
(
σ
( z√

d

))]2
β! (1 + z2)2 exp(−2αz2)

≤ C (1 + z2)2 exp(−2αz2).

Above we have used (5.3).
It remains to consider the integral over the interval [0, z0]. But now the integrand can be bounded

by

C
1

(
1− cos2d

(
z√
d

)) r
2

d
m−1

2 sinm−1

(
z√
d

)
≤ C

1

(1− exp(−2αz2))
r
2

zm−1, (5.5)

and the function on the right hand side is integrable whenever r < m.
In this manner, applying the dominated convergence theorem we get

lim
d→∞

κmκm−1
d

m−1
2

(2π)r

∫ √
dπ

0

∑

|β|≥1

Hβ

(
cos

(
z√
d

)) sinm−1
(

z√
d

)

(
1− cos2d

(
z√
d

)) r
2

dz

= κmκm−1
1

(2π)r

∫ ∞

0

∑

|β|≥1

Hβ(z)
zm−1

(1− exp(−z2)) r
2
dz.

The exact expression for the function Hβ(z) is obtained by using the results of the step 2 of [2].
In fact

Hβ(z) =

∣∣∣∣fβ
((1− (1 + z2) exp(−z2)

1− exp(−z2)
)1/2)∣∣∣∣

2

β!

(
exp

(
−z

2

2

))|β|−
∑r

ℓ=1 βℓ1

×
( (1− z2 − exp(−z2)) exp(−z2/2)

1− (1 + z2) exp(−z2)
)∑r

ℓ=1 βℓ1

.
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To end our proof it only remains to consider the zero term in the expansion. Consider first

Id = κmκm−1
d

m−1
2

(2π)r

∫ √
dπ

0

[∣∣∣f0
(
σ
( z√

d

))∣∣∣
2

− |f0(1)|2
] sinm−1

(
z√
d

)

(
1− cos2d

(
z√
d

)) r
2

dz.

But

∣∣∣∣
∣∣∣f0
(
σ
( z√

d

))∣∣∣
2

− |f0(1)|2
∣∣∣∣ = C

∣∣∣∣∣

∫

Rr×m

∫ 1

0

r∑

ℓ=1

∂fξσ+(1−ξ)(x)

∂xℓ1
dξ
(
1− σ

( z√
d

))
ϕr×m(x)dx

∣∣∣∣∣

≤ C 1{z≤z0} +C exp(−2αz2)1{z>z0}.

Yielding by the dominated convergence theorem that

lim
d→∞

Id =
κmκm−1

(2π)r

∫ ∞

0

[∣∣∣∣f0
((1− (1 + z2) exp(−z2)

1− exp(−z2)
)1/2)∣∣∣∣

2

− |f0(1)|2
]

zm−1

(1− exp(−z2)) r
2

dz.

Finally, we will consider the remaining term. In first place let us point out that

κmκm−1|f0(1)|2
d

m−1
2

(2π)r

∫ √
dπ

0

sinm−1

(
z√
d

)
dz =

1

dr−
m
2
(E [V(CYd

(0))])2.

Then, substracting this term we get

Jd = κmκm−1
d

m−1
2

(2π)r

∫ √
dπ

0

|f0(1)|2
[

1
(
1− cos2d

(
z√
d

)) r
2
− 1

]
sinm−1

(
z√
d

)
dz.

The convergence at 0 follows from

1
(
1− cos2d

(
z√
d

)) r
2

− 1 ≤ 1
(
1− cos2d

(
z√
d

)) r
2

,

using (5.5).
On the large interval we use the lower bound for 1−C2 and the upper bound for C in Lemma 3.1

to obtain
∣∣∣∣∣∣∣
d

m−1
2




1
(
1− cos2d

(
z√
d

)) r
2
− 1


 sinm−1

(
z√
d

)
∣∣∣∣∣∣∣
≤ C exp(−2αz2)

zm−1

(1− exp(−2αz2))
3r
2

.

Since these two bounds allow applying the dominated convergence theorem it holds

lim
d→∞

Jd = κmκm−1
|f0(1)|2
(2π)r

∫ ∞

0

[
1

(1− exp(−z2)) r
2

− 1

]
zm−1dz.

Hence, it is possible to write a closed formula for the limit variance. Indeed, we obtain

lim
d→0

Var

( VYd
(0)

d
r
2
−m−1

4

)
= κmκm−1





1

(2π)r

∫ ∞

0




∑

|β|≥1

Hβ(z)



 1

(1− exp(−z2)) r
2
zm−1dz

+
1

(2π)r

∫ ∞

0

[∣∣∣∣f0
((1− (1 + z2) exp(−z2)

1− exp(−z2)
)1/2)∣∣∣∣

2

− |fr
0 (1)|2

]
zm−1

(1− exp(−z2)) r
2
dz

+
|f0(1)|2
(2π)r

∫ ∞

0

[
1

(1− exp(−z2)) r
2
− 1

]
zm−1dz

}

The result follows.
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