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WORST CASE TRACTABILITY OF LINEAR PROBLEMS

IN THE PRESENCE OF NOISE: LINEAR INFORMATION

LESZEK PLASKOTA AND PAWE L SIEDLECKI

Abstract. We study the worst case tractability of multivariate linear problems defined on separa-
ble Hilbert spaces. Information about a problem instance consists of noisy evaluations of arbitrary
bounded linear functionals, where the noise is either deterministic or random. The cost of a single
evaluation depends on its precision and is controlled by a cost function. We establish mutual inter-
actions between tractability of a problem with noisy information, the cost function, and tractability
of the same problem, but with exact information.

1. Introduction

Tractability of multivariate problems is nowadays one of the most active areas of information-
based complexity ; we mention only the three-volume monograph [3–5]. Tractability research con-
centrates on establishing both quantitative and qualitative properties of the interplay between the
cost and accuracy of approximation, and the number of variables occurring in a multivariate com-
putational problem. To the best of the authors’ knowledge, all tractability research has hitherto
concentrated on exact information, i.e., information consisting of exact evaluations of information
functionals. The goal of this article is to extend tractability studies to include noisy information,
where observations of functionals are contaminated by some noise.

We study tractability in the worst case setting, in the presence of deterministic (bounded) or
random (Gaussian) noise. The model of noise and cost is adopted from [2,6]. That is, information
is built out of a finite number of noisy evaluations of functionals, which are subject to our choice.
Moreover, prior to their noisy evaluation it is also possible to set required precision σ, which is
a bound on the absolute value of the noise in the deterministic case, and the standard deviation
of a Gaussian variable in the case of random noise. The cost of a single evaluation with a given
precision is controlled by a cost function $, which is a part of the problem formulation. The higher
the precision, the higher the cost.

The main theme of our work is a comparative study of exact and noisy information from the
point of view of tractability of multivariate linear problems Sd : Fd → Gd acting between separable
Hilbert spaces. We assume that noisy evaluations of any linear functionals with norm bounded by
one are possible. The focus is on (strong) polynomial tractability, weak tractability, intractability,
and the curse of dimensionality. We are interested in establishing mutual interactions between
tractability of a multivariate problem with noisy information, the cost function, and tractability of
the same problem, but with exact information. In particular, we seek for conditions guaranteeing
equivalence of various tractability notions for both, the exact and noisy settings.

Such equivalence is established, for instance, for polynomial tractability provided the cost func-
tion grows polynomially. To give a flavor of our results, suppose that the problem with exact
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information is polynomially tractable, i.e., its (ε, d)-complexity is upper bounded by Cdqε−p,
where ε is the required error of approximation, and that the cost function grows polynomially,
i.e., $(σ, d) ≤ 1 + Ddtσ−2s. Then the same problem with noisy information is also polynomially
tractable. Moreover, its complexity is essentially bounded as

comp$(ε, d) 4 dt+q(s+1)ε−max(p(s+1),2s),

where (s, t) = (s, t) for bounded noise, and (s, t) = (s, t)/max(1, s) for Gaussian noise, see The-
orem 1 and Theorem 4. We stress that we do not know whether the exponents of polynomial
tractability above are optimal. The point is that, unlike in the case of exact information, it is gen-
erally an open question how to optimally select functionals when their evaluations are corrupted
by noise.

As for the technical part, it turns out that an important role in the analysis plays the complexity
of a one-dimensional problem that relies on approximating an unknown real parameter from its
noisy observations. This problem is trivial in the case of bounded noise, but far from that in the
case of Gaussian noise, cf. [1, 2]. Some difficulty in showing lower bounds adds the fact that in
the case of random noise one has to consider deterministic as well as randomized approximations.
Indeed, although randomization is formally not allowed in the problem formulation, it can be
mimicked with the help of adaption, cf. [7, 8].

The paper is organized as follows. The scene is formally set in Section 2. The results for bounded
noise are in Section 3, and those for Gaussian noise in Section 4. The Appendix contains some
additional material concerning the optimal choice of information functionals in the case of bounded
and Gaussian noise.

2. Preliminaries

We consider a multivariate problem S = {Sd}d≥1 where

Sd : Fd → Gd,

Fd and Gd are separable Hilbert spaces, both over the reals, and Sd are nonzero continuous linear
operators with norms

‖Sd‖ = sup
‖f‖Fd

≤1

‖Sd(f)‖Gd
.

2.1. Information and approximation. The values Sd(f) for f ∈ Fd are approximated based
on information y = (y1, y2, . . . , yn) ∈ R

n about f, which consists of finitely many noisy values of
some functionals at f. That is,

yi = Li(f) + ei, 1 ≤ i ≤ n,

where Li are in a class Λd ⊂ F ∗
d of permissible functionals, and ei is noise. A crucial assumption

of the current paper is that arbitrary continuous functionals with norm at most one are allowed,

Λd = {L ∈ F ∗
d : ‖L‖ ≤ 1},

where ‖L‖ = sup‖f‖Fd
≤1 |L(f)|. The noise can be deterministic (bounded) or random (Gaussian),

|ei| ≤ σi or ei
iid∼ N (0, σ2

i ),
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where σi represents precision of the ith evaluation, and N (0, σ) is the standard zero-mean Gaussian
distribution with variance σ2. Then an approximation to Sd(f) is given as Φ(y), where

Φ : Y → Gd,

called an algorithm, is an arbitrary mapping acting on the set Y of all possible values of information.

We now describe the information more formally. We first deal with nonadaptive (or parallel)
information, in which case the functionals Li and precisions σi are the same for all problem instances
f ∈ Fd. In the case of bounded noise, nonadaptive information is a multi-valued operator, i.e.,
N : Fd → 2Y , where 2Y is the power set of Y = R

n, and

N(f) =
{(
L1(f) + e1, L2(f) + e2, . . . , Ln(f) + en

)
: |ei| ≤ σi, 1 ≤ i ≤ n

}
.

Then y is information about f iff y ∈ N(f).
In case of Gaussian noise, nonadaptive information y about f is a realization of the random vari-

able with n dimensional Gaussian distribution πf whose mean element is mf = (L1(f), . . . , Ln(f))
and correlation matrix Σ = diag(σ2

1, . . . , σ
2
n). Therefore nonadaptive information is now a mapping

N : Fd → P(Y ), where P(Y ) is a set of probability distributions on the Borel sets of Y = R
n, and

N(f) = πf for f ∈ Fd.

Although we will mainly exploit nonadaptive information in this paper, in a generic approxima-
tion scheme we also allow a more general adaptive (or sequential) information, where the choice of
the successive functionals Li and precisions σi, as well as the number of them, depend on f and
noise via the previously obtained values y1, . . . , yi−1. The process of obtaining adaptive information
y = (y1, . . . , yn) about f can be schematically described as follows:





y1 = L1(f) + e1, σ1,
y2 = L2(f ; y1) + e2, σ2(y1),
y3 = L3(f ; y1, y2) + e3, σ3(y1, y2),

· · ·
yn = Ln(f ; y1, y2, . . . , yn−1) + en, σn(y1, y2, . . . , yn−1),

(1)

where Li( · ; y1, . . . , yi−1) ∈ Λd. The process terminates when (y1, y2, . . . , yn) ∈ Y, where the set
Y of all values of information consists of finite sequences of (possibly) various lengths. For the
termination criterion to be well defined we assume that for any infinite sequence (y1, y2, y3 . . .) there
is exactly one n such that (y1, . . . , yn) ∈ Y. The corresponding operator N is for both, bounded
and Gaussian noise, determined by the above construction. (In case of Gaussian noise appropriate
measurability assumptions on L(f ; ·) and σi(·) have to be met.) For details, see [6, Sect. 2.7 & 3.7].

2.2. Cost function. We assume that we are free to choose the information functionals and pre-
cisions, but we have to pay more for more accurate evaluations. That is, the cost of a single noisy
evaluation of L(f) for f ∈ Fd with precision σ equals $(σ, d), where

$ : [0,+∞)× {1, 2, 3, . . .} → [1,+∞]

is a cost function that is non-decreasing in both σ−1 and d. Note that $ ≥ 1, which corresponds to
a natural assumption that one has to pay at least one unit even for ‘slightest touch’ of a functional.
For instance,

$(σ, d) =

{
+∞, 0 ≤ σ < σ0,

1, σ0 ≤ σ,
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corresponds to the situation when one can only observe with precision σ0 at cost 1. If, in addition,
σ0 = 0 then information is exact at the unit cost for all σ ≥ 0 and d ≥ 1. We distinguish several
types of cost functions depending on how they grow as σ−1 and d increase. In particular, we have:

• polynomial growth in σ−1 and d iff

$(σ, d) ≤ 1 +Ddtσ−s for all d ≥ 1 and σ ∈ (0, 1),

where D, t, s are some nonnegative numbers,
• sub-exponential growth in σ−1 + d iff

lim
σ−1+d→∞

ln $(σ, d)

σ−1 + d
= 0,

• exponential growth in σ−1 + d iff

lim sup
σ−1+d→∞

ln $(σ, d)

σ−1 + d
> 0.

We will also consider corresponding growths in only one of the variables, σ−1 or d, with the other
variable fixed. For instance, we have polynomial growth in σ−1 iff $(σ, d) ≤ Dψ(d)σ−s for all d ≥ 1
and σ ∈ (0, 1), or we have sub-exponential growth in d iff limd→∞ ln $(σ, d)/d = 0 for all σ ∈ (0, 1).

A total cost costsett$ (N) of given information N and error esett(Sd, N,Φ) of an algorithm Φ using
it depend on a setting under consideration, and will be defined separately for each setting. The
settings ware distinguished by whether we have bounded or Gaussian noise.

2.3. Tractability notions. For a given setting, let

compsett
$ (ε, d) = inf

{
costsett$ (N) : N,Φ such that esett(Sd, N,Φ) ≤ ε‖Sd‖

}

be the minimal cost of information sufficient to approximate Sd with (normalized) error ε. We call
compsett

$ (ε, d) the information (ε, d)-complexity, or simply (ε, d)-complexity of our problem. We
consider the following tractability notions, cf. [3].

• A multivariate problem S = {Sd}d≥1 is polynomially tractable iff

(2) compsett
$ (ε, d) ≤ Cdqε−p for all d ≥ 1 and ε ∈ (0, 1),

where C, q, p are some nonnegative numbers. If, in addition, (2) holds with q = 0 then the
problem is strongly polynomially tractable, and the infimum of p satisfying (2) with q = 0
is the strong exponent.

• A problem is weakly tractable iff

lim
ε−1+d→+∞

ln
(
compsett

$ (ε, d)
)

ε−1 + d
= 0.

• A problem is intractable iff it is not weakly tractable.
• A problem suffers from the curse of dimensionality iff there are ε0 > 0, C > 0, and γ > 0,
such that for infinitely many d we have

compsett
$ (ε0, d) ≥ C(1 + γ)d.

Equivalently, we have the curse iff there is ε0 > 0 such that

lim sup
d→∞

ln
(
compsett

$ (ε0, d)
)

d
> 0.
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We will later draw conclusions about tractability in the case of noisy information assuming
we know tractability for exact information. As we already noticed, in the latter case we have
$(σ, d) = 1, which means that we just count the number of functional evaluations. In the two
settings considered in this paper the complexities in the case of exact information are the same
and denoted by

nw(ε, d),

where ‘w’ stands for ‘worst’.

3. Worst case setting with bounded noise

In this section we assume that the noise is bounded. That is, information about f is given as
y = (y1, y2, . . . , yn(y)) where

yi = Li(f ; y1, . . . , yi−1) + ei, |ei| ≤ σi(y1, . . . , yi−1).

The (total) cost of information N is defined as

costww
$ (N) = sup

‖f‖Fd
≤1

sup
y∈N(f)

n(y)∑

i=1

$(σi(y1, . . . , yi−1)),

and the error of an algorithm Φ using information N as

eww(Sd, N,Φ) = sup
‖f‖Fd

≤1

sup
y∈N(f)

‖Sd(f)− Φ(y)‖Gd
.

We assume that Sd is a compact operator which, as well known, is necessary if we want to assure
that compww

$ (ε, d) < +∞ for all ε > 0.

We now recall some auxiliary facts about the current setting that can be found, e.g., in [6].
Let N : Fd → 2Y be arbitrary information and radww(N) be its radius, i.e., the minimal error

that can achieved using N. If N is nonadaptive and uses n functionals Li with precisions σi then

(3) radww(N) = max
{
‖Sd(h)‖Gd

: ‖h‖Fd
≤ 1, |Li(h)| ≤ σi, 1 ≤ i ≤ n

}
.

Next we notice that we can restrict our considerations to algorithms using nonadaptive information.
Indeed, for any adaptive information Nada of the form (1) and with range Y ada one can define
nonadaptive information Nnon with range Y non = R

n where n is such that (0, . . . , 0︸ ︷︷ ︸
n

) ∈ Y ada and

(y1, . . . , yn) ∈ Nnon(f) iff yi = Li(f ; 0, . . . , 0︸ ︷︷ ︸
i−1

) + ei, |ei| ≤ σi(0, . . . , 0︸ ︷︷ ︸
i−1

), 1 ≤ i ≤ n.

Then radww(Nnon) ≤ radww(Nada) and costww
$ (Nnon) ≤ costww

$ (Nada), which means that adaption
does not help. This and (3) imply that

compww
$ (ε, d) = inf

{
costww

$ (N) : N -nonadaptive, radww(N) ≤ ε‖Sd‖
}
.

To avoid notational difficulties, from now on we assume that dim(Fd) = +∞, which can ob-
viously be done without loss of generality. Let {f ∗

d,j}j≥1 be the complete orthonormal system of
eigenelements of S∗

dSd : Fd → Fd, and

λd,1 ≥ λd,2 ≥ · · · ≥ λd,j ≥ · · ·
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the corresponding eigenvalues. We have ‖Sd‖ =
√
λd,1 and limj→∞ λd,j = 0. Furthermore, in the

noiseless case, information

(4) Nd
n =

(
〈 · , f ∗

d,1〉Fd
, . . . , 〈 · , f ∗

d,n〉Fd

)

is nth optimal, and its radius radw(Nd
n) =

√
λd,n+1, cf. [3]. Hence

(5) nw(ε, d) = min
{
n :
√
λd,n+1 ≤ ε

√
λd,1

}
.

We first show a general though important result that will be used later.

Lemma 1. For all ε ∈ (0, 1) and d ≥ 1 we have

compww
$ (ε, d) ≥

nw(ε,d)∑

k=1

$
(
ε
√

λd,1

λd,k
, d
)
.

Hence, compww
$ (ε, d) ≥ max

{
nw(ε, d)$(1, d), $(ε, d)

}
.

Proof. Let N be nonadaptive information using m functionals Li with precisions σi, such that
radww(N) ≤ ε‖Sd‖. Assume without loss of generality that σ1 ≤ σ2 ≤ · · · ≤ σm. To prove the
lemma, it suffices to show that

σk ≤ ε
√

λd,1

λd,k
< 1, 1 ≤ k ≤ nw(ε, d).

Let k be as above. The inequality ‘<’ follows from (5). To show ‘≤’, define the linear subspace

Vk−1 =
{
f ∈ F : Li(f) = 0, 1 ≤ i ≤ k − 1

}
(where Vk−1 = F if k = 1).

Obviously codim(Vk−1) ≤ k − 1. Since for any h with ‖h‖Fd
≤ σ is |Li(h)| ≤ σ, we have

radww(Nn) ≥ max{‖Sd(h)‖Fd
: ‖h‖Fd

≤ 1, h ∈ Vk−1, |Li(h)| ≤ σi, k ≤ i ≤ m}
≥ max{‖Sd(h)‖Fd

: ‖h‖Fd
≤ σk, h ∈ Vk−1} ≥ σk

√
λd,k,

where we used the fact that the norm of Sd restricted to the subspace Vk−1 is at least
√
λk. Hence

σk ≤ ε
√

λd,1

λd,k
since otherwise we would have radww(N) > ε

√
λd,1 = ε‖Sd‖. �

To achieve upper bounds on tractability, we will use noisy version of the nonadaptive information
Nd

n defined in (4). That is, for given d, n and σi we have y = (y1, . . . , yn) ∈ Nd
n(f) iff

(6) yi = 〈f, f ∗
d,i〉Fd

+ ei, where |ei| ≤ σi.

The radius of Nd
n can be estimated from above by the error of the approximation

Φd
n(y) =

n∑

i=1

yiSd(f
∗
d,i).

Specifically, using f =
∑∞

i=1〈f, f ∗
d,i〉Fd

f ∗
d,i and orthogonality of {Sd(f

∗
d,i)}i≥1 in Gd we have

‖Sd(f)− Φd
n(y)‖2Gd

=

∥∥∥∥−
n∑

i=1

eiSd(f
∗
d,i) +

+∞∑

i=n+1

〈f, fd,i〉Fd
Sd(f

∗
d,i)

∥∥∥∥
2

Gd

=
n∑

i=1

λd,i|ei|2 +
+∞∑

i=n+1

λd,i
∣∣〈f, f ∗

d,i〉Fd

∣∣2.
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Taking the suprema with respect to ‖f‖Fd
≤ 1 and |ei| ≤ σi we obtain

(7) eww(Nd
n ,Φ

d
n) =

√√√√
n∑

i=1

σ2
i λd,i + λd,n+1.

In particular, for exact information we restore the known result that eww(Sd, N
d
n ,Φ

d
n) =

√
λd,n+1,

which is the minimal error when n exact functional evaluations are used. The cost of such approx-
imation is obviously

∑n
i=1 $(σi, d).

3.1. Polynomial tractability. We use the following asymptotic notation. For two nonnegative
functions of ε and d we write

ψ1(ε, d) 4 ψ2(ε, d) iff ψ1(ε, d) ≤ Aψ2(ε, d),

for some A < +∞ and all ε ∈ (0, 1) and d ≥ 1.

Theorem 1. Consider a multivariate problem S = {Sd}d≥1.

(i) The problem with noisy information is polynomially tractable if and only if
• it is polynomially tractable for exact information, and
• the cost function grows polynomially in σ−1 and d.

(ii) The problem with noisy information is strongly polynomially tractable if and only if
• it is strongly polynomially tractable for exact information, and
• the cost function grows polynomially in σ−1 and is bounded in d for any σ > 0.

(iii) Suppose that nw(ε, d) ≤ Cdqε−p and $(σ, d) ≤ 1 +Ddtσ−2s.
If p = 0 and s = 0 then compww

$ (ε, d) 4 dt+q; otherwise

compww
$ (ε, d) 4 dt+q(s+1)





ε−p(s+1), p(s+ 1) > 2s,
lns+1(1/ε) ε−2s, p(s+ 1) = 2s,

ε−2s, p(s+ 1) < 2s.

Proof. Suppose that the problem is polynomially tractable for noisy information, i.e.,

compww(ε, d) ≤ Cdqε−p.

Then we have by Lemma 1 that, on one hand,

nw(ε, d) ≤ compww(ε, d) ≤ Cdqε−p

and, on the other hand,
$(σ, d) ≤ compww(σ, d) ≤ 1 + Cdqσ−p.

This proves the necessary conditions in (i) and (ii). The sufficient conditions follow from (iii).

In the proof of (iii) we distinguish several cases.
If s = 0 and p ≥ 0 then exact observations are possible at cost 1 +Ddt, and therefore

compww
$ (ε, d) ≤ (1 +Ddt)nw(ε, d) ≤ (1 +D)Cdt+qε−p 4 dt+qε−p.

Assume s > 0. We first optimize the cost of obtaining an ε-approximation using information Nd
n

with precisions σi ≤ 1 together with the algorithm Φd
n. Let e

ww(Sd, N
d
n,Φ

d
n) ≤ ε

√
λ1. The cost of

Nd
n is upper bounded by

ψn(σ1, . . . , σn) = n +Ddt
n∑

i=1

σ−2s
i .
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Minimizing ψn with respect to the condition eww(Sd, N
d
n ,Φ

d
n)

2 =
∑n

i=1 σ
2
i λd,i + λd,n+1 ≤ λd,1ε

2 we
obtain the optimal values

σ̂−2
k =

(
λd,k
λd,1

) 1
s+1

n∑

i=1

(
λd,i
λd,1

) s
s+1
(
ε2 − λd,n+1

λd,1

)−1

, 1 ≤ k ≤ n,

and

ψn(σ̂1, . . . , σ̂n) = n+Ddt

(
n∑

i=1

(
λd,i
λd,1

) s
s+1

)s+1(
ε2 − λd,n+1

λd,1

)−s

.

Now, taking n = max
(
2, nw(ε/

√
2, d)

)
we have

λd,n+1

λd,1
≤ ε2

2
<

λd,n

λd,1
and

σ̂−2
k ≥ σ̂−2

n =

(
λd,n
λd,1

) 1
s+1

n∑

i=1

(
λd,i
λd,1

) s
s+1
(
ε2 − λd,n+1

λd,1

)−1

≥ n

(
λd,n
λd,1

)
ε−2 >

n

2
≥ 1,

i.e., 0 < σ1 ≤ · · · ≤ σn < 1. Then an ε-approximation is obtained at cost

(8) costww
$ (Nd

n) ≤ n+ 2sDdt

(
n∑

i=1

(
λd,i
λd,1

) s
s+1

)s+1

ε−2s.

Assume now that we have polynomial tractability for exact information, i.e.,

nw(ε, d) ≤ Cdqε−p for d ≥ 1 and ε ∈ (0, 1).

If p = 0 then λj = 0 for j ≥ ⌊Cdq⌋+ 1 and we have from (8) that

costww
$ (Nd

n) 4 dt
⌊
Cdq

⌋s+1
ε−2s 4 dt+q(s+1)ε−2s.

Assume p > 0. We need to estimate the ratios λd,j/λd,1. For 1 ≤ j ≤ ⌊Cdq⌋ + 1 we have
λd,j/λd,1 ≤ 1. Let j ≥ ⌊Cdq⌋+2. Let εj ∈ (0, 1) be such that j = Cdqε−p

j +1. Then j−1 ≥ nw(εj, d),
which implies √

λd,j
λd,1

≤ εj =

(
Cdq

j − 1

)1/p

.

Hence for all j ≥ 1

(9)
λd,j
λd,1

≤ min

(
1,
( Cdq
j − 1

)2/p)
.

Assuming C ≥ 2 (which can be done without loss of generality) the estimates (8) and (9) give

compww
$ (ε, d) ≤

⌊
Cdq

(
ε√
2

)−p
⌋
+ 2sDdt

(
⌊Cdq⌋+ 1 +

⌊Cdq(ε/
√
2)−p⌋∑

j=⌊Cdq⌋+2

(
Cdq

j − 1

) 2s
p(s+1)

)s+1(
1

ε

)2s

.

Using the formula
n∑

i=k+1

j−β ≤
∫ n

k

x−β dx =

{
lnn− ln k, β = 1,
n1−β−k1−β

1−β
, β 6= 1,

with 2 ≤ k + 1 ≤ n and β = 2s
p(s+1)

, we finally obtain the desired upper bounds. �
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Remark 1. The algorithm Φd
n is not optimal for Nd

n if information is contaminated by noise (6).
Indeed, we have by (3) that

radww(Nd
n) = max

{( ∞∑

i=1

a2iλd,i

)1/2

:

n∑

i=1

a2i ≤ 1, |ai| ≤ σi, 1 ≤ i ≤ n

}
(10)

=

√√√√
ℓ∑

i=1

σ2
i λd,i +

(
1−

ℓ∑

i=1

σ2
i

)
λd,ℓ+1 =

√√√√
ℓ∑

i=1

σ2
i (λd,i − λd,ℓ+1) + λd,ℓ+1,

where ℓ is the largest k satisfying
∑k

i=1 σ
2
i < 1, cf. (7). Nevertheless, Φd

n gives optimal exponents
of tractability when one relies only on information Nd

n .
To see this, let Nd

m be information (6) that uses precisions σi and whose radius is at most
ε
√
λd,1. Then m ≥ n = nw(ε, d). A crucial observation is that, in view of (5) and (10), we then

have
∑n

i=1 σ
2
i ≤ 1. Hence the cost of Nd

m can be lower bounded by minimization of n+
∑n

i=1 σ
−2s
i

(which does not exceed costww(Nd
m)) with respect to the condition

∑n
i=1 σ

2
i λd,i ≤ ε2λd,1 (which is

weaker than radww(Nd
m) ≤ ε

√
λd,1). In this way we obtain

costww
$ (Nd

m) ≥ n +Ddt

(
n∑

i=1

(
λd,i
λd,1

) s
s+1

)s+1

ε−2s.

This bound differs from the upper bound in (8) at most by the factor of 2s, which does not influence
the exponents of polynomial tractability.

We believe that the tractability exponents in (iii) of Theorem 1 are best possible, but a formal
justification of this fact is missing. The point is that these exponents are obtained using particular
information Nd

n . On one hand, Proposition 1 of Appendix shows that this information is indeed
optimal in some situations, even if we fix precisions σi. On the other hand, the following exam-
ple shows that the cost can be sometimes significantly reduced by applying more sophisticated
information.

Example 1. Suppose we approximate vectors ~x = (x1, x2)
T ∈ R

2 in the ℓ2 norm. Consider noisy
information consisting of 2n observations y = (~y T

1 , . . . , ~y
T
n ), where

(11) R
2 ∋ ~yi = (Ri~x)

T + ~ei , ‖~ei‖∞ ≤ σ < 1,

and

Ri =

(
cos θi − sin θi
sin θi cos θi

)
, θi =

π(i− 1)

2n
, 1 ≤ i ≤ n,

is the clockwise rotation through the angle θi. Note that n = 1 corresponds to y = ~x+~e, ‖~e ‖∞ ≤ σ,
which is the information exploited in the proof of Theorem 1 for this particular problem.

Using geometrical arguments one can easily show that, given n ≥ 1 and ε ∈ (0, 1), one has
to use precision σn(ε) = ε cos

(
π
4n

)
to get an ε-approximation of ~x, and then the cost of the ε-

approximation equals cost(n, ε) = 2n$(σn(ε)), where $ is a cost function. Let $(σ) = 1+σ−2s with
s > 0. Then the cost is

(12) costs(n, ε) = 2n
(
1 +

(
ε cos( π

4n
)
)−2s

)
.
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Taking n∗ =
⌈
π
4

√
2s
⌉
we have the asymptotic equality

costs(n
∗, ε) ≈ π

√
s

2

(
1 +

√
e ε−2s

)
as s→ ∞,

where we used the fact that limx→0 (cosx)
−1/x2

=
√
e. Hence for 0 < ε < 1 we have

costs(1, ε)

costs(n∗, ε)
≈ 2

(
1 + 2sε−2s

)

π
√
s/2

(
1 +

√
e ε−2s

) ≈ 2s+1

π
√
s e/2

.

As we can see, for large s the ‘rotated’ information offers a serious improvement compared to the
‘un-rotated’ information consisting of only 2 observations as in the case of exact information.

3.2. Weak tractability and the curse of dimensionality.

Theorem 2. Consider a multivariate problem S = {Sd}d≥1.

(i) Suppose that the problem with noisy information is weakly tractable. Then
• it is weakly tractable for exact information, and
• the cost function grows sub-exponentially in σ−1 + d.

(ii) Suppose that
• the problem is weakly tractable for exact information, and
• the cost function grows polynomially in σ−1 and sub-exponentially in d.

Then the same problem with noisy information is weakly tractable.

(iii) Suppose that
• the problem is strongly polynomially tractable for exact information with p < 2, and
• the cost function grows sub-exponentially in σ−1 + d.

Then the same problem with noisy information is weakly tractable.

Proof. To show (i) we use Lemma 1. On one hand we have nw(ε, d) ≤ compww
$ (ε, d), which implies

lim
ε−1+d→∞

ln
(
nw(ε, d)

)

ε−1 + d
≤ lim

ε−1+d→∞

ln
(
compww

$ (ε, d)
)
− ln

(
$(1, d)

)

ε−1 + d
= 0.

On the other hand $(σ, d) ≤ compww
$ (σ, d), which implies

lim
σ−1+d→∞

ln
(
$(σ, d)

)

σ−1 + d
≤ lim

σ−1+d→∞

ln
(
compww

$ (σ, d)
)

σ−1 + d
= 0.

Now we show (ii). Suppose that $(σ, d) ≤ 1 + Dσ−2sκ(d) where limd→∞ ln
(
κ(d)

)
/d = 0. Pro-

ceeding as in the proof of (iii) of Theorem 1 we get from (8) that

compww
$ (ε, d) ≤ n + 2sDκ(d)ns+1ε−2s where n = nw

(
ε/
√
2, d
)
.

Hence, if the problem is weakly tractable for exact information, then

lim
ε−1+d→∞

ln
(
compww

$ (ε, d)
)

ε−1 + d
= lim

ε−1+d→∞

ln
(
κ(d)

)
+ (s+ 1) lnn + 2s ln(1/ε)

ε−1 + d

= (s+ 1) lim
ε−1+d→∞

ln
(
nw(ε/

√
2, d)

)

ε−1 + d
= 0,

which means that the problem with noisy information is also weakly tractable.
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To show (iii), suppose that the problem with noisy information is strongly tractable for exact
information, nw(ε, d) ≤ Cε−p where p < 2. Then, by (9),

A :=
∞∑

j=1

λd,j
λd,1

≤ 1 + C2/p
∞∑

j=1

j−2/p ≤ 1 +
pC2/p

2− p
< +∞.

Let

n = nw

(
ε√
2
, d

)
≤ C

(√
2

ε

)p

.

For the algorithm Φd
n using noisy information Nd

n with fixed precision σ = ε√
2A

we have by (7) that

eww(Sd, N
d
n ,Φ

d
n) =

√√√√σ2

n∑

i=1

λd,i + λd,n+1 ≤
√
λd,1

√
σ2A +

λd,n+1

λd,1
≤
√
λd,1

√
1

2
ε2 +

1

2
ε2 =

√
λd,1 ε,

and

compww
$ (ε, d) ≤ costww(Nd

n) = n $

(
ε√
2A

, d

)
≤ C

(√
2

ε

)p

$

(
ε√
2A

, d

)
.

Hence

lim
ε−1+d→∞

ln
(
compww

$ (ε, d)
)

ε−1 + d
≤ lim

ε−1+d→∞

lnC + p
(
1
2
ln 2 + ln(1

ε
)
)
+ ln $

(
ε√
2A
, d
)

ε−1 + d

=
√
2A lim

ε−1+d→∞

ln $
(

ε√
2A
, d
)

√
2A
ε

+ d
√
2A

= 0,

where we used sub-exponential growth of the cost function. �

Remark 2. The sufficient conditions in (iii) of Theorem 2 for weak tractability in the case of noisy
information can be generalized as follows. Suppose that

nw(ε, d) ≤ Cε−pκ(d),

where κ(d) grows sub-exponentially in d. Then

Ad
n :=

n∑

j=1

λd,j
λd,1

4
(
κ(d)

) 2
p





1, p < 2,
lnn, p = 2,
n1−2/p, p > 2.

Applying the information Nd
n and algorithm Φd

n with n = nw( ε√
2
, d) and fixed precision σ = ε√

Ad
n

,

as in the proof of Theorem 2, we obtain that eww(Sd, N
d
n ,Φ

d
n) ≤

√
λd,1 ε and

compww
$ (ε, d) ≤ costww(Nd

n) 4 ε−pκ(d) $
(
ε̂, d
)
,

where

ε̂ = ε̂(ε, d) =





ε
(
κ(d)

)−1/p
, p < 2,

ε
(
κ(d) ln(κ(d)ε−2

)−1/2
, p = 2,

εp/2
(
κ(d)

)−1/2
, p > 2.
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Hence the problem is weakly tractable for noisy information if the cost function satisfies

(13) lim
ε−1+d→∞

ln $
(
ε̂, d
)

ε−1 + d
= 0.

Observe that (iii) of Theorem 2 is obtained by taking p < 2 and κ(d) = 1, in which case ε̂ = ε.
It is not clear whether the condition (13) is not only sufficient, but also necessary for weak

tractability.

Since intractability is defined as the lack of weak tractability, necessary and sufficient conditions
for a problem to be intractable follow immediately from Theorem 2. We move to the curse of
dimensionality.

Theorem 3. Consider a multivariate problem S = {Sd}d≥1.

(i) Suppose that
• the problem with exact information suffers from the curse of dimensionality, or
• the cost function grows exponentially in d for some σ0 ≥ 0.

Then the same problem with noisy information also suffers from the curse.

(ii) Suppose the problem with noisy information suffers from the curse of dimensionality. Then
• the problem with exact information also suffers from the curse, or
• the cost function grows faster than polynomially in σ−1, or grows exponentially in d.

(iii) Suppose the problem with noisy information suffers from the curse of dimensionality. Then
• the problem is not strongly polynomially tractable for exact information, or
• the cost function grows exponentially in d for some σ0 ≥ 0.

Proof. To show (i) it suffices to use again Lemma 1. If the curse is present for exact information
then, owing to compww

$ (ε0, d) ≥ nw(ε0, d)$(1, 1), it is also present for noisy information. If the cost
function grows exponentially in d for some σ0 > 0 then for ε0 = σ0 we have

lim sup
d→∞

ln
(
compww

$ (ε0, d)
)

d
≥ lim sup

d→∞

ln
(
$(σ0, d)

)

d
> 0.

To show (ii), assume that there is no curse for exact information, and $(σ, d) ≤ 1 +Dσ−2sκ(d),
where limd→∞ ln(κ(d))/d = 0. Then, applying the reasoning from the proof (ii) of Theorem 2 we
get that compww

$ (ε, d) ≤ n+ 2sDκ(d)ns+1ε−2s with n = nw(ε/
√
2, d). Hence

lim
d→∞

ln
(
compww

$ (ε, d)
)

d
= (s+ 1) lim

d→∞

ln
(
nw(ε/

√
2, d
)

d
= 0,

which means that the problem with noisy information does not suffer from the curse.
And finally, to show (iii) we assume that the problem is strongly polynomially tractably for

exact information, i.e., nw(ε, d) ≤ Cε−p, and that $(σ, d) grows sub-exponentially in d for all
σ > 0. Using

∑n
j=1 λd,j/λd,1 ≤ n and proceeding as in the proof of (iii) of Theorem 2 we obtain for

n(ε) =
⌈
C
(√

2
ε

)p⌉
that

lim
d→∞

ln
(
compww

$ (ε, d)
)

d
≤ lim

d→∞

ln $
(

ε
2n(ε)

, d
)

d
= 0,

which means that there is no curse for noisy information. �



TRACTABILITY IN THE PRESENCE OF NOISE 13

4. Worst case setting with Gaussian noise

In this section we assume that the noise is random. That is, information about f is given as
y = (y1, y2, . . . , yn(y)) where

yi = Li(f ; y1, . . . , yi−1) + ei, ei ∼ N
(
0, σ2

i (y1, . . . , yi−1)
)
,

and the noise coming from different observations is independent. The (total) cost of information
N = {πf}f∈F , where πf is the probability distribution of information y for given f, is defined as

costwa$ (N) = sup
‖f‖Fd

≤1

∫

Y

n(y)∑

i=1

$
(
σi(y1, . . . , yi−1)

)
πf (dy),

and the error of an algorithm Φ using information N as

ewa(Sd, N,Φ) = sup
‖f‖Fd

≤1

(∫

Y

‖Sd(f)− Φ(y)‖2Gd
πf (dy)

)1/2

.

As before, Sd are compact operators.

Define an auxiliary cost function $̂ in such a way that $̂(σ, d) is the complexity of approximating
a real parameter f ∈ R in the current setting using the cost function $( · , d). (We stress that here
f is not restricted to the interval [−1, 1]. Possible approximations use noisy observations of f with
adaptively chosen precisions σi.)

We clearly have
̂̂
$ = $̂, and $̂ ≤ $ since the approximation f̃ = f + e, where e ∼ N (0, σ2), gives

error σ at cost $(σ, d).

Lemma 2. For all ε ∈ (0, 1) and d ≥ 1 we have

compwa
$ (ε, d) ≥ nw

(
2 ε, d

)
+ 1

4
.

Also, there is c ∈ (0, 1) such that for all ε ∈ (0, c) and d ≥ 1 we have

compwa
$ (ε, d) ≥ 1

2
$̂

(
ε

c
√
2
, d

)
.

Proof. Let an algorithm Φ using information N = {πf}f∈F be such that ewa(Sd, N,Φ) ≤ ε
√
λ1. Let

n = sup
‖f‖Fd

≤1

∫

Y

n(y) πf(dy).

Since $ ≥ 1, we have n ≤ costwa$ (N). Observe that any deterministic algorithm that uses noisy
information can be interpreted as a randomized algorithm that uses exact information, where
the noise is treated as a random parameter. Then, by [3, Theorem 4.42], there is deterministic
algorithm using exact information of cardinality 4n−1 whose worst case error is at most 2ε. Hence

costwa$ (N,Φ) ≥ n ≥ nw
(
2ε, d

)
+ 1

4
.

Taking the infimum with respect to all Φ and N we obtain the desired inequality.

To show the second inequality, we estimate the complexity of our problem from below by the
complexity of the same problem, but with error taken over the interval [−f ∗

d,1, f
∗
d,1] where, as before,
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f ∗
d,1 is the eigenelement corresponding to the largest eigenvalue of S∗

dSd. This is equivalent to the
one-dimensional problem of approximating a prameter f ∈ [−1, 1] from its noisy observations that
is analyzed in Appendix of [2]. The worst case error of the latter can be lower bounded by the
average error with respect to the two-point probability measure µ that assigns 1/2 to ±1. For any
adaptive information such average error is not larger than cmin(σ, 1) for some c > 0, where σ is
such that

σ−2 =

∫ 1

−1

∫

Y

σ−2
y
πf(dy)µ(df) =

∫

Y

σ−2
y
µ1(dy), σ−2

y
=

n(y)∑

i=1

σ−2
i

(
y1, . . . , yi−1

)
,

and µ1 is the a priori distribution of information y on Y, cf. [2, Lemma 3]. Another important
property is that for any σ1, . . . , σn and σ such that σ−2 =

∑n
i=1 σ

−2
i we have

n∑

i=1

$(σi, d) ≥ $̂(σ, d),

which follows directly from the definition of $̂.
Let A ⊂ Y be the set of all y such that σ−2

y
≤ 2σ−2. Then µ1(A) ≥ 1/2. Hence, if the error is

at most ε < c then σ ≤ ε/c and the cost is at least

∫

A

n(y)∑

i=1

$
(
σi(y1, . . . , yi−1), d

)
µ1(dy) ≥

∫

A

n(y)∑

i=1

$̂(σy, d)µ1(dy) ≥
1

2
$̂

(
ε

c
√
2
, d

)
,

as claimed. �

We now show some useful properties of $̂. For d ≥ 1, define the two functions, h1 and h2,λ.

(0,+∞) ∋ x 7→ h1(x, d) = $

(√
1

x
, d

)
, and

(0, λ) ∋ x 7→ h2,λ(x, d) = $

(√
λx

λ− x
, d

)
.

Lemma 3. For any d ≥ 1 we have the following.

(i) Suppose that h1( · , d) is concave, and h2,λ( · , d) is convex for all λ sufficiently large. Then

$̂( · , d) = $( · , d).
(ii) Suppose there is a line ℓ(x) = αx supporting h1( · , d) at some x0 > 0, i.e., ℓ(x0) = h1(x0, d)

and ℓ(x) ≤ h(x, d) for all x ≥ 0. Then for all σ > 0 we have

α

σ2
≤ $̂(σ, d) ≤

⌈
σ2
0

σ2

⌉
α

σ2
0

, where σ2
0 = 1/x0.

(iii) We always have

$̂(σ, d) ≤
⌈
σ2
0

σ2

⌉
$(σ0, d), for any σ0 > 0.
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Proof. (i) We already noticed that $̂ ≤ $. To bound $̂ from below we use the average case complexity
of approximating f ∈ R from observations of f with Gaussian noise, where the average squared
error and average cost are taken with respect to the one-dimensional Gaussian distribution µλ with
mean zero and variance λ.

Consider first nonadaptive information consisting of n observations yi = f + ei with precisions
σi. Then the optimal algorithm is

φ∗(y) =
σ2λ

σ2 + λ

n∑

i=1

yi
σ2
i

, where σ−2 =
n∑

i=1

σ−2
i ,

and its average squared error depends only on σ2 and λ and equals
∫

F

∫

Rn

|f − φ∗(y)|2πf(dy)µλ(df) =
σ2λ

σ2 + λ
,

cf. [6, Sect. 3.5]. By concavity of h1 we have

h1(σ
−2, d) = h1

( n∑

i=1

σ−2
i , d

)
≤ h1(0, d) + h1

( n∑

i=1

σ−2
i , d

)
≤ h1

( n−1∑

i=1

σ−2
i , d

)
+ h1(σ

−2
n , d)

≤ h1

( n−2∑

i=1

σ−2
i , d

)
+ h1(σ

−2
n−1, d) + h1(σ

−2
n , d) ≤ · · · ≤

n∑

i=1

h1(σ
−2
i , d),

so that $(σ, d) ≤∑n
i=1 $(σi, d). This means that the cheapest way of obtaining an approximation

with the average squared error σ2 < λ using nonadaptive information is to use just one observation
y = f + e with variance σ2

1 = σ2λ/(λ− σ2), for which the cost is

ψλ(σ) = $

(√
σ2λ

λ− σ2
, d

)
.

Since, by assumption, the function σ 7→ ψλ(
√
σ ) is convex for large λ, we can use [6, Lemma 3.9.2]

to claim, that the cost ψλ(σ) cannot be reduced using adaptive information. Hence $̂(σ) ≥ ψλ(σ),

and letting λ→ ∞ we obtain $̂(σ) ≥ $(σ), which forces $̂(σ) = $(σ).

(ii) If the cost function is $1(σ, d) = ασ−2 then we have from (i) that $̂1 = $1. (Note that here

we violate the assumption that the cost is at least 1.) Since $( · , d) ≥ $1( · , d) then $̂(σ, d) ≥
$̂1(σ, d) = ασ−2. On the other hand, we can approximate f ∈ R with error σ using n nonadaptive
observations with the same precision σ0/

√
n, where n = ⌈σ2

0/σ
2⌉. Hence,

$̂(σ, d) ≤ n $(σ0, d) =

⌈
σ2
0

σ2

⌉
α

σ2
0

.

(iii) The bound can be easily obtained by repetitive observations of variance σ2
0 , as in (ii). �

Example 2. Assume that the cost function grows polynomially,

$(σ, d) = 1 +Ddtσ−2s.

For s ≤ 1 the function h1( · , d) is obviously concave, and

x 7→ h2,λ(x, d) = 1 +Ddt
(
1

x
− 1

λ

)s
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is convex for all λ > 0, and therefore $̂ = $.

For s ≥ 1 the function $( · , d) is supported at x0 =
(
(s− 1)Ddt

)−1/s
by ℓ(x) = αdx, where

αd = s(s− 1)1/s−1(Ddt)1/s.

Hence $̂(σ, d) essentially equals αdσ
−2.

Remark 3. Lemma 2 is an analogue of Lemma 1. In the case of bounded noise the corresponding

auxiliary cost function would always be $̂ = $.

Similarly to the case of bounded noise, for upper bounds on tractability we use

(14) Φd
n(y) =

n∑

i=1

yiSd(f
∗
d,i),

where yi approximates 〈f, f ∗
d,i〉Fd

for all f ∈ F with the expected squared error σ2
i , and with cost

$̂(σi, d). Then, for the corresponding information we have

(15) ewa(Sd, N
d
n ,Φ

d
n) =

√√√√
n∑

i=1

σ2
i λd,i + λd,n+1 ,

and costwa$ (Nd
n) =

∑n
i=1 $̂(σi, d). Note that ewa(Sd, N

d
n ,Φ

d
n) = eww(Sd, N

d
n,Φ

d
n), where in the deter-

ministic case the noise of ith observation is bounded by σi, cf. (7). Hence we can adopt the proof

technique from Section ?? with the cost function $̂ to obtain complexity bounds in the case of
random noise. In particular, Lemma 3(iii) gives the following general upper bound.

Corollary 1. Suppose that nw(ε, d) ≤ Cdqε−p. Then for any fixed σ0 > 0 we have

compwa
$ (ε, d) 4 σ2

0 $(σ0, d) d
2q





ε−2p, p > 1,
ln2(1/ε) ε−2, p = 1,

ε−2, p < 1.

4.1. Polynomial tractability.

Theorem 4. Consider a multivariate problem S = {Sd}d≥1.

(i) The problem with noisy information is polynomially tractable if and only if
• it is polynomially tractable for exact information, and
• the auxiliary cost function grows polynomially in d for some σ0 > 0.

(ii) The problem with noisy information is strongly polynomially tractable if and only if
• it is strongly polynomially tractable for exact information, and
• the auxiliary cost function is bounded in d for some σ0 > 0.

(iii) Suppose that nw(ε, d) ≤ Cdqε−p and $(σ, d) ≤ 1 +Ddtσ−2s.
If p = 0 and s = 0 then compww

$ (ε, d) 4 dt+q; otherwise

compww
$ (ε, d) 4 dt+q(s+1)





ε−p(s+1), p(s+ 1) > 2s,
lns+1(1/ε) ε−2s, p(s+ 1) = 2s,

ε−2s, p(s+ 1) < 2s,

where t = min(t, t/s) and s = min(s, 1).
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Proof. Suppose the problem with noise is polynomially tractable, i.e., compwa(ε, d) ≤ Cdqε−p for
ε ∈ (0, 1) and d ≥ 1. Then we have by Lemma 2 that, on one hand,

nw(ε, d) ≤ 4 compwa
(
ε
2
, d
)
− 1 ≤ 4Cdq

(
ε
2

)−p
4 dqε−p,

and, on the other hand,

$̂(σ0, d) ≤ 2 compwa
(
c
√
2σ0, d

)
≤ 2 + 2Cdq

(
c
√
2σ0

)−p
.

This proves the necessary conditions in (i) and (ii). The sufficient conditions follow from Corollary 1.

To show (iii) it suffices to note that $̂(σ, d) 4 d tσ s, as in Example 2, and use Theorem 1. �

Remark 4. As in the case of bounded noise, see Remark 1, for Gaussian noise the algorithm Φd
n is

not optimal for information Nd
n ; however, one can show that the exponents of tractability in (iii) of

Theorem 4 cannot be improved when one relies only on information Nd
n . If arbitrary information

is allowed then the optimal exponents are unknown. The point is that we do not know in general
how to optimally choose the information. For a particular case, see Proposition 2 of Appendix.

4.2. Weak tractability and the curse of dimensionality.

Theorem 5. Consider a multivariate problem S = {Sd}d≥1.

(i) The problem with noisy information is weakly tractable if and only if the same problem with
exact information is weakly tractable.

(ii) The problem with noisy information suffers from the curse of dimensionality if and only if
the same problem with exact information suffers from the curse.

Proof. (i) The necessary condition follows from the first inequality in Lemma 2. For sufficiency it is
enough to consider the information Nd

n and algorithm Φd
n with n = nw(ε/

√
2, d) and σ2

i = ε2/(2n)

for all i. Then the error is ε and the cost is n $̂(ε/
√
n, d) ≤ βn2/ε2 for some β > 0. This implies

lim
ε−1+d→∞

ln
(
compwa

$ (ε, d)
)

ε−1 + d
≤ lim

ε−1+d→∞

lnβ + 2 lnn + 2 ln(1/ε)

ε−1 + d
= 0.

(ii) The sufficiency follows again from the first inequality in Lemma 2. For necessity it is enough to
consider the same approximation as in (i) to get that if the problem with exact information does
not suffer from the curse then for all ε we have

lim
d→∞

ln
(
compwa

$ (ε, d)
)

d
≤ lim

d→∞

ln β + 2 lnn + 2 ln(1/ε)

d
= 0,

i.e., the problem with noise as well does not suffer from the curse. �
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noise. Journal of Complexity 60 (2020) 101497.
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Appendix

Let F and G be unitary spaces with dimF = m < +∞, and S : F → G a nonsingular linear
operator. Let {x∗i }mi=1 be an orthonormal basis in F of eigenelements of the operator S∗S and
{λi}mi=1 the corresponding eigenvalues, where λ1 ≥ λ2 ≥ · · · ≥ λm > 0.

We fix the numbers

0 = σ1 = · · · = σn0 < σn0+1 ≤ · · · ≤ σn

(where n0 = 0 if all σis are positive) and for any functionals Li define

Rww(L1, L2, . . . , Ln) = max
{
‖Sx‖Y : x ∈ X, |Lix| ≤ σi, 1 ≤ i ≤ n

}
.

This is obviously the radius of information yi = Lix+ ei, 1 ≤ i ≤ n, in the worst case setting with
bounded noise, |ei| ≤ σi, where the worst case error is taken with respect to the whole space F
(instead of the unit ball of F ), cf. (3).

Proposition 1. Let n = m. For any functionals Li with ‖Li‖ ≤ 1 for 1 ≤ i ≤ n, we have

(16) Rww(L1, L2, . . . , Ln) ≥
( n∑

i=n0+1

σ2
i λi

)1/2

.

The equality above holds for L∗
i = 〈 · , x∗i 〉F .

Proof. We can assume without loss of generality that the functionals Li are linearly independent
since otherwise Rww(L1, L2, . . . , Ln) is infinite.

Let {xj}nj=1 be the basis in F that is adjoint to {Li}ni=1, i.e., Lixj = δi,j for 1 ≤ i, j ≤ n. Let

Vi = span
(
xj : 1 ≤ j ≤ n, j 6= i

)
.

Observe that

‖Li‖ = max
x 6=0

|Lix|
‖x‖F

= max
v∈Vi

1

‖xi + v‖F
=

1

dist(xi, Vi)
.

Hence the condition ‖Li‖ ≤ 1 is equivalent to

dist(xi, Vi) ≥ 1.
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Since for any x =
∑n

j=1 cjxj ∈ F is Lix = ci, inequality (16) can be equivalently rewritten as

(17) max
{∥∥∥

n∑

i=1

ciSxi

∥∥∥
2

G
: |ci| ≤ σi, 1 ≤ i ≤ n

}
≥

n∑

i=1

σ2
i λi.

To show (17) we use induction on n. For n = 1 we have

max
|c1|≤σ1

‖c1Sx1‖2G = max
|c1|≤σ1

c21λ1 = σ2
1λ1.

Suppose n ≥ 2. Let
W = span

(
Sx1, . . . , Sxn−1

)

and Z be the subspace of imA that is perpendicular to W. We obviously have dimW = n− 1 and
dimZ = 1. Let us decompose S as

S = PWS + PZS,

where PW and PZ are the orthogonal projections onto W and Z, respectively, and denote by

SW : Vn → G and SZ : V ⊥
n → G

the operators PWS and PZS restricted, respectively, to Vn and V ⊥
n . Let

λ̂1 ≥ · · · ≥ λ̂n−1 > 0

be the eigenvalues of S∗
WSW : Vn → Vn, and λ̂n > 0 be the only eigenvalue of S∗

ZSZ : V ⊥
n → V ⊥

n .
Observe that for 1 ≤ i ≤ n−1 the distance of xi from the subspace span

(
xj : j ∈ {1, . . . , n}\{i, n}

)

is at least 1. Then, by induction hypothesis, there are ci such that |ci| ≤ σi, 1 ≤ i ≤ n− 1, and

∥∥∥
n−1∑

i=1

ciSxi

∥∥∥
2

G
≥

n−1∑

i=1

σ2
i λ̂i.

Letting v be the orthogonal projection of xn onto V ⊥ we also have that

‖Sxn‖2G ≥ ‖PZSxn‖2G = ‖PZSv‖2G = σ2
nλ̂n.

Setting cn = σn if
〈∑n−1

i=1 ciSxi, Sxn
〉
G
≥ 0, and cn = −σn otherwise, we obtain

∥∥∥
n−1∑

i=1

ciSxi + cnSxn

∥∥∥
2

G
≥
∥∥∥

n−1∑

i=1

ciSxi

∥∥∥
2

G
+
∥∥Sxn

∥∥2
G
≥

n∑

i=1

σ2
i λ̂i.

To complete the proof of (17) it suffices to use the fact that

k∑

i=1

λ̂i ≤
k∑

i=1

λi for 1 ≤ k ≤ n− 1, and
n∑

i=1

λ̂i =
n∑

i=1

λi,

which implies
∑n

i=1 σ
2
i λ̂i ≥

∑n
i=1 σ

2
i λi.

The remaining part of the proposition is obvious, since orthogonality of {Sx∗i }ni=1 implies that
for any ci with |ci| ≤ σi we have

∥∥∥
n∑

i=1

ciSx
∗
i

∥∥∥
2

G
=

n∑

i=1

c2i ‖Sx∗i ‖2G =
n∑

i=1

c2iλi ≤
n∑

i=1

σ2
i λi.

�
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Proposition 1 should be confronted with the related result in the case of Gaussian noise. Let

Rwa(L1, L2, . . . , Ln) = inf
Φ

sup
x∈F

(∫

Rn

‖Sx− Φ(y)‖2G πx(dy)
)1/2

,

where πf is the n-dimensional Gaussian measure with mean (L1x, . . . , Lnx) and covariance matrix
diag(σ2

1, . . . , σ
2
n), be the mimimal error in the worst case setting with Gaussian noise, where again

the worst case error is taken with respect to the whole space F. In this case the optimal choice of
the functionals Li is known for all n ≥ m, but their construction is much more complicated.

Proposition 2. Let n ≥ m. For any functionals Li with ‖Li‖ ≤ 1 for 1 ≤ i ≤ n, we have

(18) Rwa(L1, L2, . . . , Ln) ≥
( m∑

i=n0+1

σ̂2
i λi

)1/2

,

where σ̂n0+1 ≤ · · · ≤ σ̂m minimize the sum
∑m

i=n0+1 η
2
i λi with respect to all ηn0+1 ≤ · · · ≤ ηm

satisfying
m∑

i=k

η−2
i ≤

n∑

i=k

σ−2
i for k = n0 + 1 ≤ k ≤ n,

and
∑m

i=n0+1 η
−2
i =

∑n
i=i0+1 σ

−2
i . The equality in (18) holds for L∗

i = 〈 · , x∗i 〉F , 1 ≤ i ≤ n0, and

L∗
n0+i = σn0+i

m−n0∑

j=1

wi,j〈 · , x∗n0+j〉F , 1 ≤ i ≤ n− n0,

where the matrix W = {wi,j} ∈ R
(n−n0)×(m−n0) satisfies

W TW = diag
(
σ̂−2
n0+1, . . . , σ̂

−2
m

)
and

∥∥W T~ei
∥∥2
2
= σ−2

n0+i, 1 ≤ i ≤ n− n0.

A proof of this proposition as well as construction of the matrix W can be derived from Theo-
rems 3.8.1 and 3.8.2 and Lemma 2.8.1 in [6]. One considers the average case error with respect to
the Gaussian measure on R

m with mean zero and covariance matrix λIm (where Im is the m×m
identity matrx). The worst case error is obtained as the limiting case when λ increases to infinity.

We add that for n = m we have L∗
i = 〈 · , x∗i 〉F for all 1 ≤ i ≤ n if and only if

σ−2
n0+i =

λ
1/2
n0+i∑n

j=n0+1 λ
1/2
j

n∑

j=n0+1

σ−2
j for 1 ≤ i ≤ n− n0,

and then R
(
〈 ·, x∗1〉F , . . . , 〈 ·, x∗n〉F

)
=
(∑n

i=n0+1 σ
2
i λi
)1/2

.
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