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Abstract

This paper focuses on the approximation of continuous functions on the unit sphere by spher-
ical polynomials of degree n via hyperinterpolation. Hyperinterpolation of degree n is a discrete
approximation of the L

2-orthogonal projection of degree n with its Fourier coefficients evaluated
by a positive-weight quadrature rule that exactly integrates all spherical polynomials of degree at
most 2n. This paper aims to bypass this quadrature exactness assumption by replacing it with
the Marcinkiewicz–Zygmund property proposed in a previous paper. Consequently, hyperinter-
polation can be constructed by a positive-weight quadrature rule (not necessarily with quadrature
exactness). This scheme is referred to as unfettered hyperinterpolation. This paper provides a
reasonable error estimate for unfettered hyperinterpolation. The error estimate generally con-
sists of two terms: a term representing the error estimate of the original hyperinterpolation of full
quadrature exactness and another introduced as compensation for the loss of exactness degrees.
A guide to controlling the newly introduced term in practice is provided. In particular, if the
quadrature points form a quasi-Monte Carlo (QMC) design, then there is a refined error estimate.
Numerical experiments verify the error estimates and the practical guide.

Keywords: hyperinterpolation, quadrature, exactness, Marcinkiewicz–Zygmund inequality, spher-
ical t-designs, QMC designs
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1 Introduction

Let Sd := {x ∈ R
d+1 : ‖x‖2 = 1} be the unit sphere in the Euclidean space R

d+1 for d ≥ 2, endowed
with the surface measure ωd; that is, |Sd| :=

∫

Sd
dωd denotes the surface area of the unit sphere

S
d. Many real-world applications can be modeled as spherical problems. A critical task of spherical

modeling is to find an effective data fitting strategy to approximate the underlying mapping between
input and output data. Hyperinterpolation, introduced by Sloan in [56], is a simple yet powerful
method for fitting spherical data, and it has received a great deal of interest since its birth, see, e.g.,
[3, 28, 38, 41, 52, 53, 57, 59, 66]. Given sampled data {(xj , yj)}mj=1 ⊂ S

d×R, the underlying mapping
can be modeled as a spherical hyperinterpolant of degree n in the form of

x ∈ S
d 7→

m
∑

j=1

wjyjGn(x, xj) ∈ R, (1.1)

where wj > 0, j = 1, 2, . . . ,m, are some prescribed weights,

Gn(x, y) =
n
∑

ℓ=0

Z(d,ℓ)
∑

k=1

Yℓ,k(x)Yℓ,k(y)

is a kernel generated by the spherical harmonics {Yℓ,k} of degree ℓ at most n, and the the precise
number Z(d, ℓ) of spherical harmonics of exact degree ℓ is given in (2.1).

The simplicity of spherical hyperinterpolation is manifested in the modeled mapping (1.1). Unlike
many other fitting techniques that usually need to solve a system of linear equations to obtain
the modeled mapping, e.g., the least squares, the spherical hyperinterpolation (1.1) can be directly
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Bypassing the quadrature exactness assumption of hyperinterpolation

written down and immediately generates the output from any input x ∈ S
d without any mathematical

manipulations but only addition and multiplication. Moreover, adding a new data pair or withdrawing
an existing one can be directly achieved without a new computation from scratch.

However, the construction of hyperinterpolation of degree n requires a positive-weight quadrature
rule

m
∑

j=1

wjf(xj) ≈
∫

Sd

fdωd (1.2)

to be exact for polynomials up to degree 2n, that is,

m
∑

j=1

wjf(xj) =

∫

Sd

fdωd ∀f ∈ P2n(S
d), (1.3)

where Pn(S
d) be the space of spherical polynomials of degree at most n. A convenient L2-orthonormal

basis (with respect to ωd) for Pn is provided by the spherical harmonics {Yℓ,k : k = 1, 2, . . . Z(d, ℓ); ℓ =
0, 1, 2, . . . , n}. The hyperinterpolation operator Ln : C(Sd) → Pn(S

d) maps a continuous function
f ∈ C(Sd) to

Lnf :=
n
∑

ℓ=0

Z(d,ℓ)
∑

k=1

〈f, Yℓ,k〉m Yℓ,k ∈ Pn(S
d), (1.4)

where 〈f, g〉m :=
∑m

j=1 wjf(xj)g(xj) is the numerical evaluation of the inner product 〈f, g〉 :=
∫

Sd
f(x)g(x)dωd by the quadrature rule (1.2) with the exactness assumption (1.3). In other words,

the hyperinterpolation (1.4) of f ∈ C(Sd) can be regarded as a discrete version of the famous L2-
orthogonal projection

Pnf :=

n
∑

ℓ=0

Z(d,ℓ)
∑

k=1

〈f, Yℓ,k〉 Yℓ,k ∈ Pn(S
d) (1.5)

of f from C(Sd) onto Pn(S
d). Sometimes we may consider equal-weight quadrature rules of the form

1

m

m
∑

j=1

f(xj) ≈
∫

Sd

fdωd. (1.6)

Regarding this very restrictive nature of (1.3) that it is impractical and sometimes impossible
to obtain data on the desired quadrature points in practice, our aim in this paper is to bypass this
quadrature exactness assumption by replacing it with the Marcinkiewicz–Zygmund property (see [4]):

Assumption 1.1 We assume that there exists an η ∈ [0, 1) such that

∣

∣

∣

∣

∣

∣

m
∑

j=1

wjχ(xj)
2 −

∫

Sd

χ2dωd

∣

∣

∣

∣

∣

∣

≤ η

∫

Sd

χ2dωd ∀χ ∈ Pn(S
d). (1.7)

If n′ = n, i.e., the quadrature exactness is not relaxed, then the exactness (1.3) implies η = 0.

Then the construction of hyperinterpolation is feasible with many more quadrature rules outside the
traditional candidates. Traditionally, quadrature rules using spherical t-designs are used to construct
hyperinterpolation. As we can see in this paper, quadrature rules using scattered points, equal
area points, minimal energy points, maximal determinant points, and many other kinds of points
are also feasible for constructing hyperinterpolation. The Marcinkiewicz–Zygmund property (1.7) is
equivalent to

(1 − η)

∫

Sd

χ2dωd ≤
m
∑

j=1

wjχ(xj)
2 ≤ (1 + η)

∫

Sd

χ2dωd ∀χ ∈ Pn(S
d),

which can be regarded as the Marcinkiewicz–Zygmund inequality [22, 43, 45] applied to polynomials
χ2 of degree at most 2n with χ ∈ Pn(S

d), and it has been utilized in our recent work [4] that
quadrature rules are assumed to have exactness degree n+ n′ with 0 < n′ ≤ n for the construction
of hyperinterpolation.
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Bypassing the quadrature exactness assumption of hyperinterpolation

To tell the difference between the original hyperinterpolation Ln and the hyperinterpolation re-
lying only on the Marcinkiewicz–Zygmund property (1.7), we refer to the latter as the unfettered
hyperinterpolation, indicating that the application of hyperinterpolation is no longer limited by the
quadrature exactness assumption, and denote it by

Unf :=

n
∑

ℓ=0

Z(d,ℓ)
∑

k=1

〈f, Yℓ,k〉mYℓ,k ∈ Pn(S
d), (1.8)

where the quadrature rule (1.2) for evaluating 〈f, Yℓ,k〉m is only assumed to satisfy the property (1.7).
We derive in this paper that

‖Unf − f‖L2 ≤







√

1 + η





m
∑

j=1

wj





1/2

+ |Sd|1/2






En(f) +

√

η2 + 4η‖χ∗‖L2 , (1.9)

where En(f) denotes the best uniform error of f ∈ C(Sd) by a polynomial in Pn(S
d), that is, En(f) :=

infχ∈Pn(Sd) ‖f − χ‖∞, and χ∗ ∈ Pn(S
d) is the best approximation polynomial of f in Pn(S

d) in the
sense of ‖f − χ∗‖∞ = En(f). Thus, no matter what kind of point distributions is adopted, it is
sufficient for a reasonable approximation error bound to control the numerical integration error so
that the constant η in the Marcinkiewicz–Zygmund property (1.7) is reasonably small.

The L2 error estimate (1.9) reduces to the classical result ‖Lnf − f‖L2 ≤ 2|Sd|1/2En(f) of hyper-
interpolation derived in [56] when the quadrature exactness degree is assumed to be 2n, because such
an assumption leads to η = 0 and

∑m
j=1 wj =

∫

Sd
dωd = |Sd|. If the quadrature exactness degree is

assumed to be n+ n′ with 0 < n′ ≤ n, then the estimate (1.9) can be refined as

‖Unf − f‖L2 ≤
(

√

1 + η + 1
)

|Sd|1/2En′(f),

and this convergence rate in terms of En′(f) coincides with the result in our recent work [4] that

‖Lnf − f‖L2 ≤
(

1√
1− η

+ 1

)

|Sd|1/2En′(f) (1.10)

under the same assumption. A Sobolev analog to the error estimate (1.9), i.e., the error measured
by a Sobolev norm, is also established in this paper.

We also highlight the connection between the unfettered hyperinterpolation and QMC designs.
Historically, quadrature exactness is often a starting point in designing quadrature rules. Never-
theless, this trend has recently received growing concerns regarding whether exactness is a reliable
designing principle, see, e.g., [62]. The concept of QMC designs, introduced by Brauchart, Saff, Sloan,
and Womersley in [15], is an important quadrature-designing principle against this historical trend.
QMC designs include many points distributions that are easy to obtain numerically, and quadrature
rules using QMC designs provide the same asymptotic order of convergence as rules with quadra-
ture exactness when the integrand belongs to the Sobolev space Hs(Sd) with s > d/2. Moreover,
quadrature exactness is not a necessary assumption for QMC designs. If the quadrature points form
a QMC design, then we show quadrature rules using them also satisfy the Marcinkiewicz–Zygmund
property (1.7). Hence hyperinterpolation using QMC designs is a special case in the general frame-
work of unfettered hyperinterpolation. However, the general error estimate (1.9) may not be sharp
for hyperinterpolation using QMC designs, and we can refine them. Regarding the particularity of
QMC designs, we may refer to the hyperinterpolation of f ∈ Hs(Sd) using QMC designs, though a
special case of unfettered hyperinterpolation, as the QMC hyperinterpolation, and denote it by

Qnf :=

n
∑

ℓ=0

Z(d,ℓ)
∑

k=1

〈f, Yℓ,k〉m Yℓ,k ∈ Pn(S
d), (1.11)

where the quadrature rule (1.2) for evaluating 〈f, Yℓ,k〉m adopt a QMC design for Hs(Sd) as the set
of quadrature points. We show in this paper that for f ∈ Hs(Sd),

‖Qnf − f‖L2 ≤ c′′(s, d)

(

n−s +
1

ms/d

√

Z(d+ 1, n)

a
(s)
n

)

‖f‖Hs ,

3



Bypassing the quadrature exactness assumption of hyperinterpolation

where c′′(s, d) > 0 is some constant depending only on c and s, and a
(s)
n is of order (1 + n)−2s.

Organization. The paper is organized as follows. Section 2 collects some technical facts regarding
spherical harmonics, our Sobolev space setting, spherical t-designs, and QMC designs. Section 3 gives
the approximation theory of the unfettered hyperinterpolation under the only assumption of the
Marcinkiewicz–Zygmund property (1.7). Section 4 develops the approximation theory of the QMC
hyperinterpolation under the only assumption that {xj}mj=1 is a QMC design. Section 5 contains
numerical experiments that validate our theory.

2 Background

We are concerned with real-valued functions on the sphere Sd in the Euclidean space Rd+1 for d ≥ 2.

2.1 Spherical harmonics and hyperinterpolation

Let L2(Sd) denote the Hilbert space of all square-integrable functions on S
d with the inner product

〈f, g〉 :=
∫

Sd

f(x)g(x)dωd(x)

and the induced norm ‖f‖L2 :=
√

〈f, f〉. By C(Sd) we denote the space of continuous functions on
S
d, endowed with the uniform norm ‖f‖∞ := supx∈Sd |f(x)|.
The restriction to S

d of a homogeneous and harmonic polynomial of total degree ℓ defined on R
d+1

is called a spherical harmonic of degree ℓ on S
d. We denote, as usual, by {Yℓ,k : k = 1, 2, . . . , Z(d, ℓ)}

a collection of L2-orthonormal real-valued spherical harmonics of exact degree ℓ, where

Z(d, 0) = 1, Z(d, ℓ) = (2ℓ+ d− 1)
Γ(ℓ+ d− 1)

Γ(d)Γ(ℓ + 1)
∼ 2

Γ(d)
ℓd−1 as ℓ → ∞, (2.1)

where Γ(z) is the gamma function and f(x) ∼ g(x) as x → c means f(x)/g(x) → 1 as x → c. The
spherical harmonics of degree ℓ ∈ {0, 1, 2, . . .} satisfy the addition theorem [46, Theorem 2], that is,

Z(d,ℓ)
∑

k=1

Yℓ,k(x)Yℓ,k(y) =
Z(d, ℓ)

|Sd| P
(d)
ℓ (x · y),

where P
(d)
ℓ is the normalized Gegenbauer polynomial on [−1, 1], orthogonal on with respect to the

weight function (1− t2)d/2−1, and normalized such that P
(d)
ℓ (1) = 1. As an immediate application of

the addition theorem, we have

‖Yℓ,k‖∞ ≤
(

Z(d, ℓ)/|Sd|
)1/2 ∀ℓ = 0, 1, 2, . . . and k = 1, 2, . . . , Z(d, ℓ). (2.2)

Indeed, for any spherical harmonic Yℓ,k, suppose |Yℓ,k(x)| attains ‖Yℓ,k‖∞ at the point x∗ ∈ S
d, then

‖Yℓ,k‖∞ = |Yℓ,k(x
∗)| ≤





Z(d,ℓ)
∑

k=1

|Yℓ,k(x
∗)|2





1/2

= (Z(d, ℓ)P
(d)
ℓ (1)/|Sd|)1/2 =

(

Z(d, ℓ)/|Sd|
)1/2

.

Besides, it is well known (see, e.g., [46, pp. 38–39]) that each spherical harmonic Yℓ,k of exact degree
ℓ is an eigenfunction of the negative Laplace–Beltrami operator −∆∗

d for Sd with eigenvalue

λℓ := ℓ(ℓ+ d− 1). (2.3)

The family {Yℓ,k : k = 1, . . . , Z(d, ℓ); ℓ = 0, 1, 2, . . .} of spherical harmonics forms a complete
L2-orthonormal (with respect to ωd) system for the Hilbert space L2(Sd). Thus, for any f ∈ L2(Sd),
it can be represented by a Laplace–Fourier series

f(x) =
∞
∑

ℓ=0

Z(d,ℓ)
∑

k=1

f̂ℓ,kYℓ,k(x)

4
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with coefficients

f̂ℓ,k := 〈f, Yℓ,k〉 =
∫

Sd

f(x)Yℓ,k(x)dωd(x), ℓ = 0, 1, 2, . . . and k = 1, 2, . . . , Z(d, ℓ). (2.4)

The space Pn(S
d) of all spherical polynomials of degree at most n (i.e., the restriction to S

d of all
polynomials in R

d+1 of degree at most n) coincides with the span of all spherical harmonics up to
(and including) degree n, and its dimension satisfies dim(Pn(S

d)) = Z(d+1, n). The space Pn(S
d) is

also a reproducing kernel Hilbert space with the reproducing kernel

Gn(x, y) =

n
∑

ℓ=0

Z(d,ℓ)
∑

k=1

Yℓ,k(x)Yℓ,k(y) (2.5)

in the sense that
〈χ,G(·, x)〉 = χ(x) ∀χ ∈ Pn(S

d), (2.6)

see, e.g., [51]. Given f ∈ C(Sd), it is often simpler in practice to express the hyperinterpolant Lnf
using the reproducing kernel Gn(·, ·) defined by (2.5). By rearranging the summation,

Lnf(x) =

n
∑

ℓ=0

Z(d,ℓ)
∑

k=1





m
∑

j=1

wjf(xj)Yℓ,k(xj)



Yℓ,k(x) =

m
∑

j=1

wjf(xj)Gn(x, xj).

Since such a summation-rearranging procedure does not depend on the quadrature exactness, such
an expression also applies to Unf and Qnf . What makes the above three expressions different is the
quadrature rules used for constructing different kinds of hyperinterpolants.

2.2 Sobolev spaces

The study of hyperinterpolation in a Sobolev space setting can be traced back to the work [28] by
Hesse and Sloan. The Sobolev space Hs(Sd) on the sphere S

d may be defined for s ≥ 0 as the set of
all functions f ∈ L2(Sd) whose Laplace–Fourier coefficients (2.4) satisfy

∞
∑

ℓ=0

Z(d,ℓ)
∑

k=1

(1 + λℓ)
s|f̂ℓ,k|2 < ∞,

where λℓ is given as (2.3). When s = 0, we have H0(Sd) = L2(Sd). The norm in Hs(Sd) may be
defined as the square root of the expression on the left-hand side of the last inequality; however, in
this paper, we shall take advantage of the freedom to define equivalent Sobolev space norms. Let

s > d/2 be fixed and suppose we are given a sequence of positive real numbers (a
(s)
ℓ )ℓ≥0 satisfying

a
(s)
ℓ ≍ (1 + λℓ)

−s ≍ (1 + ℓ)−2s, (2.7)

where an ≍ bn denotes that there exist c1, c2 > 0 independent of n such that c1an ≤ bn ≤ c2bn. Then
we can define a norm in Hs(Sd) by

‖f‖Hs :=





∞
∑

ℓ=0

Z(d,ℓ)
∑

k=1

1

a
(s)
ℓ

|f̂ℓ,k|2




1/2

.

The norm ‖ · ‖Hs therefore depends on the particular choice of the sequence (a
(s)
ℓ )ℓ≥0, but a change

to this sequence merely leads to an equivalent Sobolev norm.
The following lemmas are necessary for our analysis.

Lemma 2.1 For any f ∈ Pn(S
d), ‖f‖Hs ≤ c̃ (n+ 1)

s ‖f‖L2, where c̃ > 0 is a constant.

Proof. It is straightforward that

‖f‖Hs =





n
∑

ℓ=0

Z(d,ℓ)
∑

k=1

1

a
(s)
ℓ

|f̂ℓ,k|2




1/2

≤
(

1

a
(s)
n

‖f‖2L2

)1/2

≤ c̃ (n+ 1)
s ‖f‖L2 ∀f ∈ Pn(S

d),

where we used the order (2.7) of (a
(s)
ℓ )ℓ≥0. �
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Lemma 2.2 If s > d/2, then ‖fg‖Hs ≤ č‖f‖Hs‖g‖Hs, where č > 0 is some constant.

Proof. For any Lipschitz domain Ω, let W s,2(Ω) be the Sobolev space of those functions in L2(Ω)
whose distributional derivatives up to (and including) order s are in L2(Ω). Note that the Sobolev
spaces Hs(Sd) can also be defined with the help of charts (that is, the so-called Sobolev spaces over
boundaries), giving the space W s,2(Sd) with an equivalent norm, that is,

c1‖f‖Hs ≤ ‖f‖W s,2(Sd) ≤ c2‖f‖Hs , (2.8)

where c1, c2 > 0 are some constants; see [42, Chapter 7.3] or [5, Chapter 7.2.3]. If s > d/2, then the
Sobolev space W s,2(Sd) is a Banach algebra, that is, for any f, g ∈ W s,2(Sd),

‖fg‖W s,2(Sd) ≤ c3‖f‖W s,2(Sd)‖g‖W s,2(Sd), (2.9)

where c3 > 0 is some constant; we refer to [1, Theorem 5.23] or [44, Section 6.1] for this result.
Together with (2.8) and (2.9), we have the desired estimate. �

Remark 2.1 The norm equivalence (2.8) is also identified and utilized in some other spherical ap-
proximation schemes, see, e.g., [30, 37].

2.3 Spherical t-designs and QMC designs

A spherical t-design, introduced in the remarkable paper [19] by Delsarte, Goethals, and Seidel, is a
set of points {xj}mj=1 ⊂ S

d with the characterizing property that an equal-weight quadrature rule in
these points exactly integrates all polynomials of degree at most t, that is,

1

m

m
∑

j=1

χ(xj) =

∫

Sd

χ(x)dωd(x) ∀χ ∈ Pt. (2.10)

A majority of studies in the literature on spherical designs care about the relation between m and
t in (2.10). It was known by Seymour and Zaslavsky [55] that a spherical t-design always exists if
m is sufficiently large, but no quantitative results on the size of m were established. In the original
manuscript [19] of spherical t-designs, lower bounds on m of exact order td were derived in the sense
that

m ≥















(

d+ t/2

d

)

+

(

d+ t/2− 1

d

)

for even t,

2

(

d+ ⌊t/2⌋
d

)

for odd t;

but according to Bannai and Damerell [7, 8], the number m of quadrature points could achieve these
lower bounds only for a few small values of t. Bondarenko, Radchenko, and Viazovska asserted in
[9] that for each m ≥ ctd with some positive but unknown constant c > 0, there exists a spherical
t-design in S

d consisting of m points.
Quadrature rules (1.2) using spherical t-designs are known to have fast-convergence property

when the integrand belongs to the Sobolev space Hs; namely, given s > d/2, there exists C(s, d) > 0
depending only on s and d such that for every m-point spherical t-design {xj}mj=1 on S

d, there holds

sup
f∈Hs(Sd),
‖f‖Hs≤1

∣

∣

∣

∣

∣

∣

1

m

m
∑

j=1

f(xj)−
∫

Sd

f(x)dωd

∣

∣

∣

∣

∣

∣

≤ C(s, d)

ts
. (2.11)

The estimate (2.11) was established gradually: It was first proved for the particular case s = 3/2 and
d = 2 in [26], then extended to all s > 1 for d = 2 in [27], and finally extended to all s > d/2 and all
d ≥ 2 in [14]. The condition s > d/2 is a natural one because functions to be approximated in this
paper are assumed to be continuous, and by the Sobolev embedding theorem, Hs(Sd) is continuously
embedded in C(Sd) if s > d/2.

If only spherical t-designs with m ≍ td are concerned, then the upper bound on the error (2.11) is
of order m−s/d. Here comes the concept of QMC designs, introduced by Brauchart, Saff, Sloan, and
Womersley in [15]: Given s > d/2, a sequence {xj}mj=1 of m-point configurations on S

d with m → ∞

6
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is said to be a sequence of QMC designs for Hs(Sd) if there exists c(s, d) > 0 independent of m such
that

sup
f∈Hs(Sd),
‖f‖Hs≤1

∣

∣

∣

∣

∣

∣

1

m

m
∑

j=1

f(xj)−
∫

Sd

f(x)dωd

∣

∣

∣

∣

∣

∣

≤ c(s, d)

ms/d
. (2.12)

In a nutshell, quadrature rules using QMC designs provide the same asymptotic order of convergence
as exact rules (e.g., rules using spherical t-designs) when the integrand belongs to the Sobolev space
Hs, but are easier to obtain numerically. For more studies on the numerical integration on the sphere
with the integrand belonging to a Sobolev space, we refer the reader to [11, 12, 29, 35]. Equal-weight
numerical integration rules with the integrand belonging to many other spaces of smoothness also
attracts much interest, see, e.g., [6, 20, 21, 23, 24, 31, 32, 60], to name a few.

A substantial definition related to QMC designs {xj}mj=1 is the QMC strength, denoted by s∗. For
every sequence of QMC designs {xj}mj=1, there is some number s∗ such that {xj}mj=1 is a sequence
of QMC designs for all s satisfying d/2 < s ≤ s∗ and is not a QMC design for s > s∗. Even if the
integrand f is infinitely differentiable, the convergence rate of the numerical integration error (2.12)
using a QMC design with strength s∗ is controlled by m−s∗/d.

3 General framework of unfettered hyperinterpolation

With the aid of the reproducing property (2.6), the Marcinkiewicz–Zygmund property (1.7) implies
the following lemma.

Lemma 3.1 For any χ ∈ Pn(S
d), we have

(a) (1− η)‖χ‖2L2 ≤ 〈Unχ, χ〉 ≤ (1 + η)‖χ‖2L2.
(b) (1 − η)‖χ‖L2 ≤ ‖Unχ‖L2 ≤ (1 + η)‖χ‖L2 .
(c) ‖Unχ− χ‖2L2 ≤ (η2 + 4η)‖χ‖2L2.

Proof. (a) The reproducing property (2.6) of Gn(·, ·) implies

〈Unχ, χ〉 =
〈

m
∑

j=1

wjχ(xj)Gn(x, xj), χ(x)

〉

=

m
∑

j=1

wjχ(xj) 〈Gn(x, xj), χ(x)〉 =
n
∑

j=1

wjχ(xj)
2.

Thus by the Marcinkiewicz–Zygmund property (1.7),

(1− η)‖χ‖2L2 = (1 − η)

∫

Sd

χ2dωd ≤
n
∑

j=1

wjχ(xj)
2 ≤ (1 + η)

∫

Sd

χ2dωd = (1 + η)‖χ‖2L2 .

(b) By part (a), we have (1 − η)‖χ‖2L2 ≤ 〈Unχ, χ〉 ≤ ‖Unχ‖L2‖χ‖L2, leading to (1 − η)‖χ‖L2 ≤
‖Unχ‖L2 . We also have

‖Unχ‖2L2 ≤ 〈Unχ,Unχ〉 =
〈

m
∑

j=1

wjχ(xj)Gn(x, xj),Unχ(x)

〉

=
m
∑

j=1

wjχ(xj)Unχ(xj)

≤





m
∑

j=1

wjχ(xj)
2





1/2



m
∑

j=1

wj (Unχ(xj))
2





1/2

≤ (1 + η)‖χ‖L2‖Unχ‖L2,

where the first inequality is due to the Cauchy–Schwarz inequality, and the second one is ensured by
the Marcinkiewicz–Zygmund property (1.7). Thus part (b) is proved.

(c) Using parts (a) and (b) above, it is straightforward that

‖Unχ− χ‖2L2 = ‖Unχ‖2L2 − 2 〈Unχ, χ〉+ ‖χ‖2L2 ≤ (1 + η)2‖χ‖2L2 − 2(1− η)‖χ‖2L2 + ‖χ‖2L2

= (η2 + 4η)‖χ‖2L2.

Hence this lemma is proved. �

We are now ready to state our main theorem.
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Bypassing the quadrature exactness assumption of hyperinterpolation

Theorem 3.1 Given f ∈ C(Sd), let Unf ∈ Pn be its unfettered hyperinterpolant defined by (1.8),
where the m-point positive-weight quadrature rule (1.2) is only assumed to have the Marcinkiewicz–
Zygmund property (1.7) with η ∈ [0, 1). Then

‖Unf‖L2 ≤
√

1 + η





m
∑

j=1

wj





1/2

‖f‖∞, (3.1)

and

‖Unf − f‖L2 ≤







√

1 + η





m
∑

j=1

wj





1/2

+ |Sd|1/2






En(f) +

√

η2 + 4η‖χ∗‖L2 , (3.2)

where En(f) denotes the best uniform error of f by a polynomial in Pn(S
d) and χ∗ ∈ Pn(S

d) denotes
the best approximation polynomial of f in Pn(S

d) in the sense of ‖f − χ∗‖∞ = En(f).

Proof. For any f ∈ C(Sd), we have Unf ∈ Pn and hence 〈Gn(x, xj),Unf(x)〉 = Unf(xj). Thus,

〈Unf,Unf〉 =
〈

m
∑

j=1

wjf(xj)Gn(x, xj),Unf(x)

〉

=

m
∑

j=1

wjf(xj)Unf(xj)

≤





m
∑

j=1

wjf(xj)
2





1/2



m
∑

j=1

wj (Unχ(xj))
2





1/2

≤





m
∑

j=1

wj





1/2

‖f‖∞
√

1 + η‖Unf‖L2 ,

where the first inequality is due to the Cauchy–Schwarz inequality and the second one holds by using
∑m

j=1 wjf(xj)
2 ≤ ‖f‖2∞

∑m
j=1 wj and the Marcinkiewicz–Zygmund property (1.7). This estimate

immediately implies the stability result (3.1).
The error bound (3.2) is obtained by the following argument. For any χ ∈ Pn, we have

‖Unf − f‖L2 = ‖Un(f − χ) + (χ− f) + (Unχ− χ)‖L2 ≤ ‖Un(f − χ)‖L2 + ‖f − χ‖L2 + ‖Unχ− χ‖L2

≤
√

1 + η





m
∑

j=1

wj





1/2

‖f − χ‖∞ + |Sd|1/2‖f − χ‖∞ + ‖Unχ− χ‖L2.

It follows, since this estimate holds for all polynomials in Pn(S
d), that

‖Unf − f‖L2 ≤







√

1 + η





m
∑

j=1

wj





1/2

+ |Sd|1/2






En(f) + ‖Unχ

∗ − χ∗‖L2 .

By part (c) of Lemma 3.1, we have ‖Unχ
∗ − χ∗‖L2 ≤

√

η2 + 4η‖χ∗‖L2 . �

3.1 Connections in the literature

If the quadrature rule (1.2) is additional assumed to integral all constant functions (polynomials of
degree zero) exactly, that is,

∑m
j=1 wj = |Sd|, then we have ‖Unf‖L2 ≤ √

1 + η|Sd|1/2‖f‖∞ and

‖Unf − f‖L2 ≤
(

√

1 + η + 1
)

|Sd|1/2En(f) +
√

η2 + 4η‖χ∗‖L2 .

If the quadrature rule (1.2) exactly integrate all polynomials of degree at most 2n, i.e., the
constant η is zero, then the stability result (3.1) and error bound (3.2) reduce to the classical results
of hyperinterpolation in [56]; namely, ‖Unf‖L2 ≤ |Sd|1/2‖f‖∞ and

‖Unf − f‖L2 ≤ 2|Sd|1/2En(f).

If the quadrature rule (1.2) has exactness degree n + n′ with 0 < n′ ≤ n, then Unχ = χ for all
χ ∈ Pn′(Sd), see [4, Lemma 2.1]. By the stability result (3.1), we have for any χ ∈ Pn′(Sd),

‖Unf − f‖L2 ≤ ‖Un(f − χ)− (f − χ)‖L2 ≤ ‖Un(f − χ)‖L2 + ‖f − χ‖L2.
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Bypassing the quadrature exactness assumption of hyperinterpolation

As this estimate holds for all χ ∈ Pn′(Sd), it is straightforward that

‖Unf − f‖L2 ≤
(

√

1 + η + 1
)

|Sd|1/2En′(f), (3.3)

which has the same convergence rate in terms of En′(f) as our previous estimate (1.10) in [4]. In
[4], we make use of the discrete orthogonal projection property (see [4, Lemma 3.1]) to obtain the
estimate (1.10), while in this paper we utilize the reproducing property (2.6) for the estimate (3.3).

Moreover, in light of Theorem 3.1 and the study on spherical hyperinterpolation in a Sobolev
space setting by Hesse and Sloan in [28], we have the following Sobolev estimates, which reduce to
their results in [28] when the exactness degree 2n is assumed. For simplicity and without loss of
generality, we assume

∑m
j=1 wj = |Sd| in Corollary 3.1. Note that Hs(Sd) ⊂ L2(Sd).

Corollary 3.1 Let d ≥ 2, and let t and s be fixed real numbers with s ≥ t ≥ 0 and s ≥ d/2. Under
the conditions of Theorem 3.1, for any unfettered hyperinterpolation operator Un : Hs(Sd) → Ht(Sd),
there hold

‖Unf‖Ht ≤ c̃
[(

√

1 + η|Sd|1/2 + 1
)

(n+ 1)d/2+t−s‖f‖Hs + (n+ 1)t
√

η2 + 4η‖f‖L2

]

+ ‖f‖Hs (3.4)

and

‖Unf − f‖Ht ≤ c̃
[(

√

1 + η|Sd|1/2 + 1
)

(n+ 1)d/2+t−sEn(f ;H
s(Sd)) + c̃(n+ 1)t

√

η2 + 4η‖f‖L2

]

,

(3.5)
where c̃ > 0 is some constant that may vary line to line, and En(f ;H

s(Sd)) is the best Hs approxi-
mation of f ∈ Hs(Sd) by a polynomial in Pn(S

d), that is, En(f ;H
s(Sd)) := infχ∈Pn(Sd) ‖f − χ‖Hs .

Remark 3.1 When the exactness degree of the rule (1.2) is assumed to be 2n, η = 0 and the results
(3.5) and (3.4) reduce to the respective results of the original hyperinterpolation (some constants may
be different) derived by Hesse and Sloan in [28].

Proof. Similar to the decomposition of ‖Unf − f‖L2 in the proof of Theorem 3.1, we have

‖Unf − f‖Ht ≤ ‖Un(f − Pnf)‖Ht + ‖Pnf − f‖Ht + ‖Un(Pnf)− Pnf‖Ht . (3.6)

The first term on the right-hand side of (3.6) can be bounded by

‖Un(f − Pnf)‖Ht ≤ c̃(n+ 1)t‖Un(f − Pnf)‖L2 ≤ c̃(n+ 1)t
√

1 + η|Sd|1/2‖f − Pnf‖∞
≤ c̃(n+ 1)t

√

1 + η|Sd|1/2(n+ 1)d/2−s‖f − Pnf‖Hs ,

where the first inequality is due to Lemma 2.1, the second is due to the stability result (3.1), and the
third is due to [28, Lemma 3.5]. This lemma also guarantees that

‖Pnf − f‖Ht ≤ c̃(n+ 1)t−s‖Pnf − f‖Hs .

The third term can be estimated as

‖Un(Pnf)− Pnf‖Ht ≤ c̃(n+ 1)t‖Un(Pnf)− Pnf‖L2 ≤ c̃(n+ 1)t
√

η2 + 4η‖Pnf‖L2

≤ c̃(n+ 1)t
√

η2 + 4η‖f‖L2

where the first inequality is due to Lemma 2.1, the second is due to part (c) of Lemma 3.1, and the
third is due to the fact that the norm of Pn as an operator from L2(Sd) onto L2(Sd) is 1. Thus we
have

‖Unf − f‖Ht ≤ c̃
[(

√

1 + η|Sd|1/2 + 1
)

(n+ 1)d/2+t−sEn(f ;H
s(Sd)) + (n+ 1)t

√

η2 + 4η‖f‖L2

]

,

where En(f ;H
s(Sd)) = ‖f − Pnf‖Hs is verified by [28, Equ. (3.22)].

As ‖f − Pnf‖Hs ≤ ‖f‖Hs and ‖f‖Ht ≤ ‖f‖Hs , we have

‖Unf‖Ht ≤ ‖Unf − f‖Ht + ‖f‖Ht

≤ c̃
[(

√

1 + η|Sd|1/2 + 1
)

(n+ 1)d/2+t−s‖f‖Hs + (n+ 1)t
√

η2 + 4η‖f‖L2

]

+ ‖f‖Hs ,

which completes the proof of this corollary. �
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Bypassing the quadrature exactness assumption of hyperinterpolation

3.2 Scattered data

Now together with the work [36] of Le Gia and Mhaskar, we can obtain a probabilistic description of
Theorem 3.1.

Lemma 3.2 ([36, p. 463]) Let the quadrature rule for constructing the unfettered hyperinterplants
be an equal-weight rule (1.6) with an independent random sample of m points drawn from the dis-
tribution ωd, and let γ > 0 and η ∈ (0, 1). Then there exists a constant c̄ := c̄(γ) such that if
m ≥ c̄nd logn/η2, then the Marcinkiewicz–Zygmund property (1.7) holds with probability exceeding
1− c̄n−γ .

Corollary 3.2 Adopt conditions of Theorem 3.1 and Lemma 3.2, where the quadrature rule for
constructing Unf takes the form of (1.6) and uses m ≥ c̄(γ)nd logn/η2 quadrature points. Then the
stability result (3.1) and error bound (3.2) are valid with probability exceeding 1− c̄n−γ .

As we can see, having bypassed the quadrature exactness assumption of the original hyperin-
terpolation, Theorem 3.1 provides a general framework of analyzing the behavior of the unfettered
hyperinterpolation. What we need to do in practice is to control the constant η occurred in the
Marcinkiewicz–Zygmund property (1.7). As a practical guide, if the quadrature points are indepen-
dently random samples from the the distribution ωd, then Corollary 3.2 suggests a simple way to
decrease η by increasing the number m of quadrature points.

4 Unfettered hyperinterpolation with QMC designs

If {xj}mj=1 is a QMC design for Hs(Sd), it can be managed to satisfy the Marcinkiewicz–Zygmund
property (1.7), as shown in Section 4.1. Hence the unfettered hyperinterpolation using QMC designs
is a special case of the general framework analyzed in Theorem 3.1. Recall that we refer to such
approximation as the QMC hyperinterpolation, denoted by Qn. However, the obtained error estimate
may not be optimal due to the generality of Theorem 3.1, and we can find a sharper estimate
customized for the unfettered hyperinterpolation using QMC designs.

4.1 QMC hyperinterpolation in the general framework of unfettered hy-

perinterpolation

It is critical to note that the numerical integration error (2.12) of the QMC design-based quadrature
rule and the Marcinkiewicz–Zygmund property (1.7) cannot imply each other. On the one hand,
the error (2.12) applies to all functions in Hs(Sd) with the property (1.7) only holds for polynomial
χ2 with χ ∈ Pn(S

d). On the other hand, if the integrand in the quadrature rule (1.6) is χ2 with
χ ∈ Pn(S

d), the error bound (2.12) suggests
∣

∣

∣

∣

∣

∣

1

m

m
∑

j=1

χ(xj)
2 −

∫

Sd

χ2dωd

∣

∣

∣

∣

∣

∣

≤ c(s, d)

ms/d
‖χ2‖Hs . (4.1)

This error (4.1) is not compatible with the Marcinkiewicz–Zygmund property (1.7) because the con-
trolling term is ‖χ2‖Hs instead of

∫

Sd
χ2dωd. Nevertheless, we can find an upper bound of ‖χ2‖Hs in

terms of
∫

Sd
χ2dωd to transform the error (4.1) into a Marcinkiewicz–Zygmund property (1.7). With

the aid of Lemma 2.1, we have

‖χ2‖Hs ≤ c̃(2n+ 1)s‖χ2‖L2 ≤ c̃(2n+ 1)s‖χ‖∞‖χ‖L2 ≤ c̃(2n+ 1)s
‖χ‖∞
‖χ‖L2

∫

Sd

χ2dωd.

For any χ =
∑n

ℓ=0

∑Z(d,ℓ)
k=1 αℓ,kYℓ,k ∈ Pn(S

d), we have

‖χ‖∞
‖χ‖L2

≤
∑n

ℓ=0

∑Z(d,ℓ)
k=1 |αℓ,k|‖Yℓ,k‖∞

√

∑n
ℓ=0

∑Z(d,ℓ)
k=1 |αℓ,k|2

≤
√

Z(d, n)

|Sd| Z(d+ 1, n),

where we used the estimate (2.2) on the uniform norm of Yℓ,k and regard {αℓ,k} as a vector of size
Z(d+ 1, n). Then we can let

η =
c(s, d)c̃

ms/d
(2n+ 1)s

√

Z(d, n)

|Sd| Z(d+ 1, n) (4.2)

10



Bypassing the quadrature exactness assumption of hyperinterpolation

and enforce it to be in (0, 1). Thus in this case, with the asymptotic result (2.1) of the size of Z(d, ℓ),

the number m should have a lower bound of order nd+d2

s − d
2s as n → ∞. Moreover, regarding the

term
√

η2 + 4η‖χ∗‖L2 in the error estimate (3.2) in Theorem 3.1, for a fixed degree, the convergence
rate of this term with respect to m is m−s/(2d).

4.2 Approximation theory of QMC hyperinterpolation

We then show that the QMC hyperinterpolation has a sharper error estimate than the general estimate
(3.2) in Theorem 3.1.

Theorem 4.1 Given f ∈ Hs(Sd) ⊂ L2(Sd), let Qnf ∈ Pn be its QMC hyperinterpolant defined by
(1.11), where the m-point equal-weight quadrature rule (1.6) adopts a QMC design for Hs(Sd) as
quadrature points. Then

‖Qnf‖L2 ≤ ‖f‖L2 +
c′(s, d)

ms/d
(n+ 1)s‖f‖Hs , (4.3)

where c′(s, d) > 0 is some constant depending only on s and d, and

‖Qnf − f‖L2 ≤ c′′(s, d)

(

n−s +
1

ms/d

√

Z(d+ 1, n)

a
(s)
n

)

‖f‖Hs , (4.4)

where c′′(s, d) > 0 is some constant depending only on s and d.

Proof. For f ∈ Hs(Sd), we have

‖Qnf‖2L2 = 〈Qnf,Qnf〉 =
〈

m
∑

j=1

wjf(xj)Gn(x, xj),Qnf(x)

〉

=
m
∑

j=1

wjf(xj)Qnf(xj)

≤
∫

Sd

(Qnf)fdωd +
c(s, d)

ms/d
‖(Qnf)f‖Hs ≤ ‖f‖L2‖Qnf‖L2 +

c(s, d)č

ms/d
‖f‖Hs‖Qnf‖Hs

≤ ‖f‖L2‖Qnf‖L2 +
c(s, d)č

ms/d
‖f‖Hs(n+ 1)s‖Qnf‖L2,

where the first inequality is due to the integration error (2.12) using QMC designs, the second one is
due to the Cauchy–Schwarz inequality and Lemma 2.2 with č given there, and the last one is due to
Lemma 2.1. Hence we have the stability result (4.3).

For the error estimate (4.4), we have

‖Qnf − f‖L2 ≤ ‖Qnf − Pnf‖L2 + ‖Pnf − f‖L2,

where Pn is the L2-orthgonal projection operator (1.5). For the term ‖Pnf − f‖L2, we have

‖Pnf − f‖2L2 =

∞
∑

ℓ=n+1

Z(d,ℓ)
∑

k=1

|〈f, Yℓ,k〉|2 =

∞
∑

ℓ=n+1

Z(d,ℓ)
∑

k=1

|〈f, Yℓ,k〉|2
a
(s)
ℓ

a
(s)
ℓ

≤ a(s)n ‖f‖2Hs . n−2s‖f‖2Hs .

For the term ‖Qnf − Pnf‖L2 , we have

‖Qnf − Pnf‖2L2 =

n
∑

ℓ=0

Z(d,ℓ)
∑

k=1

∣

∣〈f, Yℓ,k〉m − 〈f, Yℓ,k〉
∣

∣

2

and
∣

∣〈f, Yℓ,k〉m − 〈f, Yℓ,k〉
∣

∣

2 ≤
(

c(s, d)

ms/d
‖fYℓ,k‖Hs

)2

≤
(

c(s, d)č

ms/d
‖f‖Hs‖Yℓ,k‖Hs

)2

,

where the first inequality is described by the integration error (2.12) using QMC designs, and the
second is due to Lemma 2.2. Note that

‖Yℓ,k‖2Hs =

n
∑

ℓ′=0

Z(d,ℓ)
∑

k′=1

1

a
(s)
ℓ

|〈Yℓ,k, Yℓ′,k′ 〉|2 =
1

a
(s)
ℓ

.
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Thus

‖Qnf − Pnf‖2L2 ≤
(

c(s, d)č

ms/d
‖f‖Hs

)2
1

a
(s)
n

n
∑

ℓ=0

Z(d,ℓ)
∑

k=1

1 =

(

c(s, d)č

ms/d
‖f‖Hs

)2
Z(d+ 1, n)

a
(s)
n

,

leading to the error estimate (4.4). �

The estimate (4.4) consists of two terms, one representing the error of the original hyperinter-
polation, and the other is newly introduced in terms of m. In addition to hyperinterpolation, the
fully discrete needlet approximation [64] using spherical needlets [47, 48] and using quadrature rules
without exactness assumption also has error estimates of this type, see a recent contribution [13].

Corollary 4.1 If f ∈ Hs(Sd) ∩ Pn(S
d), then ‖Pnf − f‖L2 = 0 and

‖Qnf − f‖L2 ≤ c(s, d)č

ms/d

√

Z(d+ 1, n)

a
(s)
n

‖f‖Hs .

Remark 4.1 If the number m of quadrature points has a lower bound of order nd, then ‖Qnf‖L2 is

uniformly bounded by some constant. Recall from (2.7) that a
(s)
n ≍ (1 + n)−2s and from (2.1) that

Z(d+ 1, n) ∼ 2
Γ(d+1)n

d as n → ∞. Thus if m has a lower bound of order nd+ d2

2s , then ‖Qnf − f‖L2

is uniformly bounded by some constant as n → ∞. Moreover, if m has a lower bound of order

(n+ 1)d+ε1n
d2

2s +ε2 (4.5)

where ε1, ε2 > 0, then ‖Qnf − f‖L2 → 0 as n → ∞

If the QMC hyperinterpolation is regarded as a special case of the unfettered hyperinterpolation,
then the expression (4.2) on η requires m to have a lower bound of order

(2n+ 1)d+ε1n
2d2−d

2s +ε2 (4.6)

so that η → 0 and hence ‖Qnf − f‖L2 → 0 as n → ∞. For the same values of ε1 and ε2, the
order (4.6) derived from regarding the QMC hyperinterpolation as a special case of the unfettered
hyperinterpolation is unconditionally greater than the order (4.5) derived from Theorem 4.1, as
d2

2s < d2

s − d
2s holds for any d ≥ 1. Moreover, as the term En(f) in the estimate (3.2) in Theorem 3.1

also has convergence rate of n−s, what essentially varies the general estimate (3.2) and the refined

estimate (4.4) is the other term in both estimates: the term
√

η2 + 4η‖χ∗‖L2 in the estimate (3.2)

and the term 1
ms/d

√

Z(d+1,n)

a
(s)
n

‖f‖Hs in the refined estimate (4.4). For a fixed degree n, we have

demonstrated in Section 4.1 that the convergence rate of the term in (3.2) with respect to m is
m−s/(2d), and we can see the convergence rate of the term in (4.4) is m−s/d.

Corollary 4.2 With the aid of Remark 4.1, we know that if En(f) . n−s, then letting m & (n +

1)dn
d2

2s nd gives
‖Qnf − f‖L2 . n−s.

Remark 4.2 For the above results, we assume f ∈ Hs(Sd) and {xj}mj=1 is a QMC design for Hs(Sd).

Recall the concept of QMC strength. Suppose f ∈ Hs′ and {xj}mj=1 is a QMC design with strength
s∗, then s in the above results should be s = min{s′, s∗}.

5 Numerical experiments

5.1 Point sets and test functions

Many different sequences of point sets on the sphere have been introduced in the literature. In the
following experiments, we use points sets including

12



Bypassing the quadrature exactness assumption of hyperinterpolation

◦ Random scattered points generated by the following MATLAB commands:
rvals = 2*rand(m,1)-1;

elevation = asin(rvals); % calculate an elevation angle for each point

azimuth = 2*pi*rand(m,1); % create an azimuth angle for each point

% convert to Cartesian coordinates

[x1,x2,x3] = sph2cart(azimuth,elevation,ones(m,1));

◦ Equal area points [50] based on an algorithm given in [40];

◦ Fekete points which maximize the determinant for polynomial interpolation [58];

◦ Coulomb energy points, which minimize
∑m

i,j=1(1/‖xi − xj‖2);

◦ Spherical t-designs.

Random scattered points are directly generated in MATLAB, equal area points are generated based
on the Recursive Zonal Equal Area (EQ) Sphere Partitioning Toolbox by Leopardi, Fekete points and
Coulomb energy points are computed by Womersley in advance and are available on his website∗,
and spherical t-designs are generated as the so-called well conditioned spherical t-designs in [2].

Moreover, we consider four kinds of test functions, including

◦ A polynomial f1(x) = (x1 + x2 + x3)
2 ∈ P6(S

d);

◦ f2(x1, x2, x3) := |x1 + x2 + x3|+ sin2(1 + |x1 + x2 + x3|), which is continuous but non-smooth;

◦ The Franke function for the sphere [54, p. 146]

f3(x1, x2, x3) :=0.75 exp(−((9x1 − 2)2)/4− ((9x2 − 2)2)/4− ((9x3 − 2)2)/4)

+ 0.75 exp(−((9x1 + 1)2)/49− ((9x2 + 1))/10− ((9x3 + 1))/10)

+ 0.5 exp(−((9x1 − 7)2)/4− ((9x2 − 3)2)/4− ((9x3 − 5)2)/4)

− 0.2 exp(−((9x1 − 4)2)− ((9x2 − 7)2)− ((9x3 − 5)2)),

which is in C∞(Sd);

◦ The sums of six compactly supported Wendland radial basis function [64]

f4,σ :=

6
∑

i=1

φσ(zi − x), σ ≥ 0,

where z1 = [1, 0, 0]T, z2 = [−1, 0, 0]T, z3 = [0, 1, 0]T, z4 = [0,−1, 0]T, z5 = [0, 0, 1]T, and
z6 = [0, 0,−1]T. The original Wendland functions

φ̃σ(r) :=































(1− r)2+, σ = 0,

(1− r)4+(4r + 1), σ = 1,

(1− r)6+(35r
2 + 18r + 3)/3, σ = 2,

(1− r)8+(32r
3 + 25r2 + 8r + 1), σ = 3,

(1− r)10+ (429r4 + 450r3 + 210r2 + 50r + 5)/5, σ = 4,

are defined in [65], where (r)+ := max{r, 0} for r ∈ R, and the normalized Wendland functions
(test functions below) as defined in [10] are

φσ(r) := φ̃σ

(

r

δσ

)

, δσ :=
3(σ + 1)Γ(σ + 1/2)

2Γ(σ + 1)
, σ ≥ 0.

The normalized Wendland functions converge pointwise to a Gaussian as σ → ∞, see [18];
moreover, f4,σ ∈ Hσ+3/2(Sd), see [39, 49].

∗Robert Womersley, Interpolation and Cubature on the Sphere, http://www.maths.unsw.edu.au/~rsw/Sphere/; ac-
cessed in August, 2022.
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5.2 Unfettered hyperinterpolation and scattered data

We start with a very interesting example of the unfettered hyperinterpolation with scattered data.
As we have discussed in Theorem 3.1 and Corollary 3.2, the performance (i.e., the L2 error) of the
unfettered hyperinterpolation is heavily dependent on the constant η, and what we need to do is to
control this constant. In particular, if the degree n and the number m of quadrature points are fixed,
Corollary 3.2 suggests that η has a lower bound of order

√

n2 logn/m. It is immediate to see that η

is positively correlated to n and negatively to m. Moreover, the term
√

η2 + 4η‖χ∗‖L2 in the error
bound (3.2) has a lower bound of order

√

n2 logn

m
+ 4

√

n2 logn

m
.

That is, for a given n, the term
√

η2 + 4η‖χ∗‖L2 has a lower bound of order m−1/4.

We first solely investigate the term
√

η2 + 4η‖χ∗‖L2 that arises as an artifact when the quadrature
exactness assumption is discarded and leads to the divergence of the unfettered hyperinterpolation
by examining the test function f1 ∈ P6(S

d). As En(f1) = 0 for all n ≥ 6, we can focus on this

term
√

η2 + 4η‖χ∗‖L2 by letting n ≥ 6. The L2 errors are depicted in Figure 1: For each pair of
(n,m), we test ten times and report the average in terms of solid lines with markers; the maximal and
minimal errors among these ten tests contribute to the upper and lower bounds of the filled region.
We have at least three observations. Firstly, a larger degree n of the unfettered hyperinterpolation,
counterintuitively but rigorously asserted by our theory, leads to a larger value of

√

η2 + 4η‖χ∗‖L2,
because Corollary 3.2 suggests that η is negatively related to n. Secondly, as n increases, the unfet-
tered hyperinterpolation becomes more stable in the sense that the gap between the maximal and
minimal errors among the ten tests for each pair of (n,m) shrinks. This is also asserted by Corollary
3.2 that the error bound (3.2) is valid with probability exceeding 1− c̄n−γ . Thirdly, as m increases,
the decaying rate of the unfettered hyperinterpolation with respect to m for each n coincides with
the rate of m−1/4. This observation is partially covered by our theory that the term

√

η2 + 4η‖χ∗‖L2

has a lower bound of order m−1/4, see discussions in the previous paragraph, and we conjecture that
there may hold

√

η2 + 4η‖χ∗‖L2 ≍ m−1/4.

Figure 1: Convergence of the unfettered hyperinterpolation in the approximation of f1.

After characterizing the behavior of the term
√

η2 + 4η‖χ∗‖L2 , we then consider the L2 error of
the unfettered hyperinterpolation. If En(f) is not zero, then error estimate (3.2) is controlled by two

terms, En(f) and
√

η2 + 4η‖χ∗‖L2 . We repeat the above procedure for non-polynomial functions
f2 and f3, and the L2 errors are displayed in Figure 2, in which we only report the average errors.
We see that when m is relatively small, the term

√

η2 + 4η‖χ∗‖L2 dominates the error bound, so a
smaller n leads to a smaller η and hence a smaller error bound; when m is relatively large, η becomes
tiny, and the term En(f) dominates the error bound, so a larger n leads to a smaller error bound.

Thus, we may conclude a rule of thumb for determining the degree n of the unfettered hyperin-
terpolation in real-world applications: If the number of samples is limited, then choose a small n; on
the other hand, if the samples are relatively sufficient, then choose a large n.

14
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0 0.5 1 1.5 2

105

100

0 0.5 1 1.5 2

105

10-1

100

Figure 2: Convergence of the unfettered hyperinterpolation in the approximation of f2 and f3.

5.3 QMC hyperinterpolation and QMC designs

We then investigate the QMC hyperinterpolation, using equal area points, Coulomb energy points,
Fekete points, and spherical t-designs. We first consider the approximation of f1 ∈ P6 by the QMC
hyperinterpolation using equal area points, and we show that the refined error estimate (4.4) in
Theorem 4.1 is indeed sharper than the estimate (3.2) in Theorem 3.1. A convergence result of
quadrature rules using equal area points can be found in [29, Section 6.1]. For any n ≥ 6, we have

‖Qnf1 − f1‖L2 ≤ c′′(s, d)

ms/d

√

Z(d+ 1, n)

a
(s)
n

‖f1‖Hs , (5.1)

in the light of Corollary 4.1. As the QMC strength s∗ of equal area points is conjectured in [15]
to be 2, we may expect the decaying rate of ‖Qnf1 − f1‖L2 with respect to m to be m−1 on the
2-sphere S2. However, from the general framework of the unfettered hyperinterpolation, we can only
expect the decaying rate to be m−1/2; see discussions in Section 4.1. The L2 errors are depicted in
Figure 3, which perfectly coincide with these deductions from our theory. We see that although the
QMC hyperinterpolation can be regarded as a special case in the general framework of unfettered
hyperinterpolation, the general estimate may not be sharp. Moreover, we find that a smaller n leads
to a smaller error, as suggested by the error bound (5.1).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

105
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10-5

10-4

10-3

10-2

10-1

Figure 3: Convergence of the QMC hyperinterpolation in the approximation of f1 using equal area
points.
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We then consider the approximation of the normalized Wendland function f4,2 by QMC hyper-
interpolation, in which the term n−s‖f4,2‖Hs cannot be ignored. Thus, the terms n−s and m−s/2

jointly determine the convergence rate of ‖Qnf4,2−f4,2‖L2 . It is conjectured in [15] that the strength
of Fekete points, equal area points, and Coulomb energy points is 1.5, 2, and 2, respectively. The
L2 errors are depicted in Figure 4. Similarly to the unfettered hyperinterpolation using scattered

data, we see that the term 1
ms/d

√

Z(d+1,n)

a
(s)
n

‖f‖Hs dominates the error bound when m is relatively

small, so a smaller n leads to a smaller error; and the term n−s‖f‖Hs dominates the error bound
when m is relatively large. We observe that each error curve flattens as m increases, and the curve
of n = 6 is higher than others when m is large enough. Note that each curve corresponds to a fixed
degree n. Thus the rule of thumb for determining the degree n of the unfettered hyperinterpolation
also applies to the QMC hyperinterpolation. The error curves of the QMC hyperinterpolation us-
ing spherical t-designs quickly flatten once the number m of spherical t-designs renders the required
quadrature exactness degrees. The convergence of the QMC hyperinterpolation using Fekete points
is not monotonic. In light of Womersley’s caveat on his website, the non-monotonic convergence is
possibly caused by the fact that all computed Fekete points are only approximate local maximizers
of the determinant for polynomial interpolation.

0 2 4

104

10-4

10-3

10-2

10-1

0 2 4

104

10-4

10-3

10-2

10-1

0 2 4

104

10-3

10-2

10-1

100

0 5000 10000
10-5

10-4

10-3

10-2

10-1

100

101

Figure 4: Convergence of the QMC hyperinterpolation in the approximation of f4,2 using different
kinds of point sets.

We then study the performance of the QMC hyperinterpolation in the approximation of functions
with different levels of smoothness. As we mentioned, the normalized Wendland function f4,σ belongs
to Hσ+3/2(Sd). The L2 errors of the QMC hyperinterpolation of degree n = 5 in the approximation of
f4,σ with σ = 0, 1, . . . , 4 are displayed in Figure 5, and the degree is intentionally set so small that error
curves corresponding to different σ can be distinguished. As we expect, the QMC hyperinterpolation
is better in terms of L2 errors if the function to be approximated is smoother.
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Figure 5: Convergence of the QMC hyperinterpolation in the approximation of f4,σ with σ =
0, 1, 2, 3, 4.

Finally, we give a numerical example related to Remark 4.1 and Corollary 4.2 by considering the
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approximation of f4,σ. As we mentioned in Section 2.3, to form a spherical t-design, m should satisfy
m ≍ td. Thus, to construct an original hyperinterpolant Lnf of degree n on the 2-sphere S

2 requires
m to be of order n2, and we have ‖Lnf − f‖L2 → 0 as n → ∞. According to Remark 4.1, m should

have a lower bound of order (n + 1)d+ε1n
d2

2s +ε2 for any ε1, ε2 > 0 to imply ‖Qnf − f‖L2 → 0 as
n → ∞. The L2 errors with respect to the degree n are depicted in Figure 6, and we let m = (n+1)2

and ⌈(n + 1)2n
2

σ+3/2 ⌉. The choice of m = (n + 1)2, which suffices to ensure the convergence of
the original hyperinterpolation as n → ∞, fails to imply the monotonic convergence of the QMC

hyperinterpolation. The choice of m = ⌈(n + 1)2n
2

σ+3/2 ⌉, according to our theory, can ensure the
convergence of Qnf as n → ∞, as shown in Figure 6. It may be strange to find that a larger σ leads

to a larger error level; this is due to the choice of m = ⌈(n+ 1)2n
2

σ+3/2 ⌉: a larger σ implies a smaller
m.
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Figure 6: Performance of the QMC hyperinterpolation in the approximation of f4,σ with m = (n+1)2

and m = ⌈(n+ 1)2n
2

σ+3/2 ⌉.

By Corollary 4.2, if we let m & (n + 1)2n
2
s+2, then we can expect ‖Qnf − f‖L2 . n−s. This

corollary is asserted by Figure 7, in which we investigate the approximation of f4,2. We know that

f4,2 ∈ H2+3/2(Sd), thus we test on five choices of the number m, namely, m = β⌈(n + 1)2n2+ 2
2+3/2 ⌉

with β = 1, 2, . . . , 5. We see that the decaying rates of five choices all coincide with m−(2+3/2). This
observation suggests ‖Qnf4,2 − f4,2‖L2 . n−(2+3/2), and more importantly, successfully verifies our
theory on the QMC hyperinterpolation.
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Figure 7: Convergence of the QMC hyperinterpolation in the approximation of f4,2 with m been a

multiple β of ⌈(n+ 1)2n2+ 2
σ+3/2 ⌉ for β = 1, 2, . . . , 5.
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6 Concluding Remarks

In this paper, we investigate the approximation scheme of hyperinterpolation on the sphere. The
quadrature rules used in the construction of hyperinterpolation are not required to be exact for any
polynomials but only to satisfy the Marcinkiewicz–Zygmund property, and we give the corresponding
error estimate. Such an approximation scheme without the quadrature exactness assumption is
referred to as the unfettered hyperinterpolation. If the quadrature rules use QMC designs, then
the error estimate can be refined. To emphasize the particularity of QMC designs, we refer to the
hyperinterpolation using QMC designs as quadrature points as the QMC hyperinterpolation. Note
that the QMC hyperinterpolation can be regarded as a special case in the general framework of the
unfettered hyperinterpolation. The general and refined estimates are split into two terms: a term
representing the error estimate of the original hyperinterpolation of full quadrature exactness and
another term introduced as compensation for the loss of exactness degrees. The newly introduced
term may not converge to zero as the degree of hyperinterpolation tends to ∞, and we need to
control it in practice. The numerical experiments show that the construction of hyperinterpolation
using quadrature rules without exactness is feasible, and they verify the error estimates given in
Sections 3 and 4. The general framework of the unfettered hyperinterpolation on the sphere may be
extended to the scheme of hyperinterpolation on other regions, such as a disk [25], a square [16], a
cube [17, 63], a spherical triangle [61], and a spherical shell [33, 34].
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