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Abstract

Two numerical schemes are developed for solutions of theneiasional Maxwell-Bloch
equations in nonlinear optical crystals. The Maxwell-Blonodel was recently extended
[1] to treat anisotropic materials like nonlinear crystalis semiclassical model seems
to be adequate to describe the wave-matter interactiontigshibort pulses in nonlinear
crystals [2] as it is closer to the physics than most macqisamodels. A bidimensional
finite-difference-time-domain (FDTD) scheme, adaptednéee [3], was already devel-
oped in [4]. This schemes yields very expensive computstiomthis paper, we present
two numerical schemes much more efficient with their rebafidvantages and drawbacks.

Key words: Nonlinear optics, Harmonic Generation, Quantum desompdif light and
matter, Nonlinear optical crystal, Numerical schemes.
PACS:42.65.An, 42.65.Ky, 42.50Ct, 42.70.Mp

1 Introduction

Today, laser sources make it possible to produce shortestaorter, yet powerful,
light pulses. Pulses of a few dozen of attoseconds are noanattie. For such
time-length, the classical mathematical models from m@&ar optics are no longer
relevant. Because the optical pulses are extremely shest,are beyond the limi-
tations of the slowly varying envelope approximation tlsatised in the derivation
of the nonlinear Schrodinger equation [5,6]. Mathematmatels with a disper-
sive linearity are well known [7]. Adding a quadratic dispige nonlinearity is a
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complex task [8,2]. As shown in [1], the Maxwell-Bloch remsl@ny order of the
nonlinearity with its dispersive relation.

Furthermore, for practical applications, we would like tady the wave-matter
interaction in anisotropic media. We are particularly rested in nonlinear optical
crystals with a discrete group of symmetries. Among thigdarass of crystals, the
KDP crystal is of very common use for harmonic generations Thystal will be
used in our experiments.

In [1], we have derived a semiclassical model based on thendBsBloch equa-
tions, adapted to describe the wave-matter interactioromlimear crystals. The
propagation of an electromagnetic wave is classically rifgsd by the full-vector
time-dependent Maxwell equations. The modeling of the enagtperformed with
the Bloch equations, which are derived in the context of uammechanics. To
obtain the model, we had to find relations between the linedrgmadratic optical
susceptibilities of the crystal and its quantum structwieich can not be recov-
ered from experimental data. With these relations and ghosk of the group of
symmetries of the crystal, we were able to postulate the swogtle quantum struc-
ture adequate to describe the light-matter interactioe. mbdel has three distinct
energy levels, one of which is three-fold degenerate.

Then, in [9], we write a discretization scheme when the wizgale-depends only on
one space variable in the direction of propagation of therlagam. The electro-
magnetic field is discretized using the classical Yee sch&ineith temporal and
spatial staggered grids. To obtain a second-order schém@gints of discretiza-
tion of the polarization and the density matrix must be chaseefully. The time-
derivative of the polarization is computed with the Blochuatijons and is replaced
in the Maxwell equations by its expression as a function efdansity matrix and
the electric field. Thus, in order to compute the electridfiak each time step, we
have to solve a bloc-diagonal linear system. The Bloch égpusre solved using
a splitting scheme: the Hamiltonian is divided into the fiégmiltonian and the
Hamiltonian resulting from the interaction of the wavediglith the matter.

With this scheme, we compare our model with two macroscopdets based on
nonlinear Maxwell equations [2]. In the first one, the pdation is instantaneous,
while it takes the linear and quadratic dispersions intmantin the second one.
We show that the Maxwell-Bloch model renders more physitfaces than these
macroscopic models. Indeed, with this model, we can seeatiieagion of the non-
linearity or Raman scattering. . . Furthermore, the nomlirgolarization is not re-
stricted to its quadratic part as it is in the macroscopic emdEvery order of the
nonlinearity is computed and takes the dispersion into@tco

However, several physical phenomena are still not obsérvéth a one-dimensional
model. The diffraction or self-focusing effects can onlydmen with a bidimen-
sional study. A first scheme for solutions of the two-dimenai Maxwell-Bloch



equations was described in [4]. This scheme is a naive agrten$the unidimen-
sional FDTD scheme [9]. It discretizes the wave-field désatiby the paifE,H)
with a Yee scheme adapted to take the polarization and thatgdenatrix into ac-
count. Unfortunately, this scheme yields a large lineatesysvhich is to be solved
at each time step. It significantly increases its computatioost. Thus, this scheme
can only be used for short distances of propagation.

After writing [4], we saw a clear need to develop more effitcischemes for the
Maxwell-Bloch equations in order to study numerically rst&t physical phenom-
ena. In this article, we present two schemes, which shouldead this problem.
The first scheme uses a pseudospectral method. The timatikes/are still ob-
tained by finite differences, but the spatial derivatives @lptained by mean of a
Fourier transform. This scheme is much simpler than theipuswone as the use of
staggered grids in space for the electric and magnetic #eklso longer mandatory
to ensure a second-order scheme. Because of the wraparbecicbéthe discrete
Fourier transform, absorbing layers have to be added todhmpatational domain.

The last scheme presented is a FDTD scheme, which shouleszdtie main draw-
back of our first scheme. The three components of the nomlp@arization are
now computed at the same points in space. Moreover, we nogvideshe wave-
field by the pairD,H), whereD is the electric induction. The nonlinear polariza-
tion term is not explicitly involved in the Maxwell equatisn

The outline of this paper is as follows. In the first Sectior, present the physical
setup and the Maxwell-Bloch model.

In the second Section, we describe the three numerical sheheir advantages
and drawbacks. The first and third ones are FDTD schemeseatiiptn the Yee
scheme [3]. The second one is a pseudospectral schemedattaptg10].

In the last Section, we perform several numerical experim@nunderline some
numerical considerations and to study the validity of oudeig1].

2 Physical context

Let us quickly describe the Maxwell-Bloch model (for a coetplderivation of this
model, one can see [11,12]). In this model, the wave-fieleescdbed by the pair
(D,H), D being the electric induction artd the magnetic field, ofE,H), E being
the electric field. Its evolution is driven by the Maxwell egns. We assume that
the medium does not have any free charge.



In the (E,H) formulation, the Maxwell equations are written as

(odH = —O xE,
eE = O x H — P,
O0-(eE+P)=0,
|[O-H=0

(1)

We shall denote by the matrixe 1, the inverse of the static tensor of susceptibility
€.

Remark 1 Let us recall that without any loss of generality in a unid>aaystal,

as shown in [9], we can choose the axis y in order to make foaffmbents of the
matricese andn vanish (namely)yxy = Nyx = Nyz = Nzy = 0). In the sequel of this
paper, we assume that this choice has been made as it simtifi@liscretization.

We know thatD = eE + P. Thus, in the(D,H) formulation, the previous system
yields

(
HodH = —0 x E,
oD =0xH,
(2)
0.D=0,
O0-H=0
\

The two relations]-D = 0 andd-H = 0 do not play any role in the sequel.

In the Maxwell-Bloch model, the material is statisticallystribed at the quantum-
mechanical level with the density matrix formulation [1LEjach molecule of the
crystal is considered as a quantum system Witdiscrete levels of energy. The
density matrixp represents in its diagonal terms the various populatioreach
of the energy levels of the free Hamiltonian. The off-diagiderms of the density
matrix represent the quantum coherences of a set of atoatesst

This density matrix evolves through the Bloch equations:

| .
atpjkz—ijkpijrﬁ[u-E,p]jk, 1<j,k<N, (3)

where wjx = wj — wx, M is the dipolar matrix characterizing the material at the
guantum-mechanical level arttlis the electric field of the incoming laser pulse.
We recall that, for two operatosandB, [A,B] = AB— BA

The physical meaning of this model is the following. Each ecale of the crystal
is seen as a single atom with one electron independent frerottter molecules of
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Figure 1. Physical domain.

the crystal. This atom reacts to the wave-field as a quantpoiaiAlbeit this over-
simplification of the physics involved, this model can betguaiccurate to describe
the wave-matter interaction.

In this paper, we consider electromagnetic fields dependmgwo variables in
space. One variable in the direction of propagation of the laser pulse and the
othery in a transverse direction. To ease the writing of the boundanditions,
we assume that all interfaces are normal (in fact this is le@xperimental setup
in order to minimize reflexion and to avoid damaging the @taevices). Fig. 1
presents this setup, the nonlinear optical crystal is sunded by a linear isotropic
material. The linear index of the medium is chosen to minatine reflexion of the
beam at the interfaces with the crystal.

3 Numerical schemes

Let us first introduce a notation. The physical quantites, H, P, p) depend on
three variables: the timeand the space variablggin the transverse direction) and
z (in the direction of propagation). The experimental setughiown in Fig. 1.

For a functionu defined on the grid, we wrltﬂn  (or u|n ) for the value olu at the

grid point(tn,yj, z), wheret, = ndt, y; = joy, zk kéz ot being the time ste@y
the space step in the directigranddz the step in directiom.

We will denote byD!, DY, D?, the central differencing operators in the directions
Y, Z

For instance, using this notation,

n+
n+2 . EX| +fk EX|

+32 3.k 6y

(]D>yEx)




3.1 Afirst FDTD scheme

This scheme was deeply described in [4]. For reader’s coemea, we shall recall
it shortly.

The idea behind [4] was to use the same method as in [9]. Thasey that we use
an adapted Yee scheme, where the density matrix is compiiteel same points as
the electric fieldEy in space and at the same points as the magneticHiefdtime.
This is summarized in Fig. 2.

3.1.1 Discretization of the Maxwell equations

: e t=nd

t— ok
W E
B E

B SRR . """""" I t:(n+%)6t
5 ® o
H H,

5 I H
| o= e &l

Figure 2. A grid cell of the FDTD scheme [4] for the electrometic wave(E,H) and the
density matrixp.

Using the scheme, we are able to discretize Eq. (1).

For the equations leading the evolution of the magnetic,figllobtain

Ho(D'Hy) " = - (D'E)] +(DEy)]

j+5.k+3 j+5.k+3 j+3k+3
Ho (D! Hy>?7k+% = —(DZExkar%, (4)
Ho(DHY 4 = (DB 4



Using the same scheme, we obtain the equations on the elgeldiE:

1 3 3
DEIE = o (@] - @)}~ mm

@RI~ NldP) T
(DT, = (@] 3, — @RI 2 ©)
B, = ) {(aszM”*Z - @I,
0PI nzz<ath>|Jk+1,
where the two term&yH, )\Tkil and(azHy)\J 1 . in the latter equation can easily

be computed with

(]DVHZ)’.1+2 + (DYH )”*2

3 jk+1
(ayHZ)‘j7k+% - 2 ) (6)
and,
|n+% _ ‘n+%
i Ykd Yk
(aZHY)|j7k+% - 257 . (7)

The polarization term is still to be determined. For thisgmse, we use the contin-
uous expression @ P obtained by deriving the Bloch equations:

0Py = AL tr(up) = ACtr(LaR(p)) — %tr(ud[V, p]), d € {xy,z}, (8)

whereV = —Exlx — Eyly — Ezl4,. For convenience, we have used the notation

R(P)jk = —1(w] — &x)Pjk

Then we replacé;P by the expression (8) in the Ampere equations.

For instance, for the first equation of (5), we have to complgefollowing two
terms:

|
(0R)|2 = ACtr (eR(PTL2)) ?f (V2T 2), 9)
and,
(0P2)[1E = ACtr (1eR(P]2)) — ”,f (V] 2, 072). (10)

With the scheme of Fig. 2 in mind, we now write

Nl

n+ n+3 nel ntd
Vik = —Exlj = Bylj by — KBl "y (11)



where we take

1
o3 Bl + Bl

EX|J7|( 2 Y
n+1 n+1 n n
E n+3 Ey|j+%7k+Ey|j—%7k+Ey|j+%7k+Ey|j—%7k
y|Jk ~ 4 )
n+1 n+1 n n
et iy PR BN TR
2K~ :

4

Solving the Ampere equations yields a linear system on thetréd fieldE, which
could be written as

AEn+1 _ F(En,HrH_%,er—%), (12)

whereA, k is a(Ny x N;)2 matrix andF a linear function with values iR >Nz, We
have denoted by, andN;, the grid sizes in directionsandz respectively.

This system is not diagonal neither trigonal. It has to beexblusing an iterative
solver such as GMRES. Because of the resolution of this \&gellinear system
(typical values aréNy ~ 100,N; ~ %, where/ is the crystalline depth ankithe
wavelength of the pulse), the computational cost of thigs@his very high and re-
stricts its use to very short distances of propagation Heanmhore, the development
of a parallel algorithm is complex as the iterative solves tashare the computa-

tion between the processors. In [13], this was achievedy .

It shall be noted that the complexity of this scheme comem filoe fact that the

three coordinates of the electric fidkdare not discretized at the same space points.
Then the computation of the polarization teggl involves taking several aver-
ages in space @ to keep a second order scheme. These space averages yields an
implicit scheme of order two in space and time.

3.1.2 Discretization of the Bloch equations

Let us recall the method used to discretize the Bloch equs@g it was described
in [9]. The Bloch equations give

| .
0iPjk = —1WKPjKk — ﬁ[V,p]jk, 1<j,k<N,

This equation is divided in two parts. The first one

0iPjk = —1WikPjk, L < j,K<N, (13)



can easily be rewritten as a diagonal system. The solvingatgreof this equation
is denoted by5, .

The second one

[ .
atpjk:_ﬁ[v7p]jkv 1§ J:ngv (14)
is solved thanks to the exact solution of this equation
It It
p(t) _exp(—ﬁfo V(s)ds) p(0) exp(ﬁ/0 V(s)ds). (15)

The integral is computed by the formula

/IV(s)dSNtV(E). (16)
0 2

The exponential of a matrik is obtained with

-1
expM ~ (I — %M) (I + %M) . @an

We use this approximation to ensure that the discretizedit;elmatrixp”*% keeps
the same algebraic properties as the continuous one (sdé[tp should be her-
mitian, with a unity trace. With some other discretizati¢as [17]), some diagonal
terms of the density matrix could take negative values aadrite could be greater
than 1.

The solving operator of Eq. (14) will be denoted &y .

Using a Strang splitting method, we have a second-ordemseter the Bloch
equations. The density matrix is computed by

s _ g g o o
Pk =SS SyPik - (18)

Let us note that, at each step, the potenttialas to be computed as
n n n n
EY‘ +Ey|j_2_217k Ez‘j7k_‘_2_2l+EZ|'

J+%7k IJ. o Jvk_%
2 y 2

V'rjk = —E4 ?J( Mx — Hz. (19)

J

3.2 Pseudospectral scheme

This scheme was very briefly announced in [18]. The main giahi®scheme is to
lighten the computational burden of the resolution of thdirbensional Maxwell-
Bloch equations with the scheme described in Sec. 3.1. Wa adadea from [10].



The complexity of [4] comes from the fact that, to keep a seeortder scheme, we
have to use staggered grids for the three components ofdbeielfield. This leads
to a very large linear system to solve at each time step irnr éodzbtain the electric
field.

Hence, we have tried to avoid the use of spatial staggerdd.gks in [10], we shall
use Fourier transforms to compute the spatial derivatifésecelectric fielde and
magnetic fieldH with a spectral order of accuracy. For a functibof the space
variablex € R3, its derivative in the directiod is given by

daf(¥) = [7 (—1&a7 (£))](%), (20)

whereéy is the spectral variable in the directidnThe discrete Fourier transform
is achieved by using the fast-Fourier-transform (FFT) atgm. We denote bxa('j
the discrete derivative in directiah

The temporal grid is still staggered because central @iffeing is used for time
stepping.

The Bloch equations are solved using the method describ®ddn3.1.2. The only
difference is that the electric field is discretized in theegoints in space as the
density matrix so there is no need for the approximation.(19)

3.2.1 Discretization of the Maxwell equations

To compute the polarization terdP involved in the Ampere equations, we use
the same method as in Section 3.1 with the Bloch equationseker, the density
matrix and the components of the electric field are now apprated on the same
grid points in space (see Fig. 3).

For the equations leading the evolution of the magnetic,fisklobtain

Mo(D'H) T = — (05 E) ] + (8T By,
o(D'Hy) T = ) B ko (21)

Ho(D'Hy) Tk = (05 EX)?,k’

10



Using the same scheme, we obtain the equations on the elgeldiE:

1 1
(Dt Ex)r;:l‘; nxx |:(0F Hz)n+2 <a§ Hy)T;2:| - nXZ(a)E HX)TIZ

+1 1
_r]xx(atpx>|1 k2 - r]xz(atpz>|?7|tza

1 1

(D'Ey)] )2 = Nyy(d HX)n+2 Ny (@R[ 2, (22)
1

(Dth)?IZ = r]zz(aFHx)n+2‘|‘r]zx {(GFHZMIHZ (aFHy)‘n+2

@R[~ nzd0P)|
The polarization terms are computed with Eq. (8):
n+3 n+3 N n+3 n+3
(atpd)‘Lk = Ntr(UdR(pJ k )) - ?tr(lld[v] k 7pJ k ])7 d € {X,y,Z}, (23)
n+3 n+3 : i
SOP; andVLk are to be approximated to determine these terms.

1
We have a second order approximation\f’ﬁr.r)'[f2 with

(24)

nt1 Ex|r.‘T(1 +Ex|" Ey\r.‘+k1 + Eymk Ez|r-]]§1 + Ez\'{k
V 2 _ J J7 _ 17 ] _ J ]

The density matri>p”+% is obtained thanks to the Bloch equations. We replace V

1
by its value (24) in equation (23), thQﬁth)\?T(z from Eq. (23) is injected into
equations (22).

Let us write the corresponding equation @1”*1 From the second equation of
(22) and Eq. (23), (24), we have

E —E :
w yy(05 Hx)n+2 ﬂnytr(“VR(pTJtZ»
|N Ex‘ '7k + EX‘ -7k
S lfltr(uy[ux,pr,‘?]) (25)
IN Ez|n11+EZ|n.k +3
Ny g ] ).

|n+1

The componenEy is computed at each time step with

11



10t A 1 1
Byl = Ny —7— <tf(l1y[l1x, 071 DB T+ tr(y [z, p?IZ])Ez\?T(l)
Ot 1 1
Ny (tf(lly[llx, 0} 2D Exl T+ tr(by [ p?IZ])EZW,k) (26)

n+3

1
+Ey [+ 8tnyy (0} Hy)j* — 5tr1yy9\[tr(UyR(p?,|t2 )

Remark 2 We have used several relations to get Eq. (26). We knowr{iAé#, B|) =

n+3

0, VA, B (thentr(py 1y, P |) =0) . As the matrices p anglare Hermitian, we also
1 ’ 1
havetr(udl[udz,pﬁ(z]) €IR andtr(udR(p?;z)) eR.

The first line of (26) contains the quantities to compute rakti,. 1, the two re-
maining lines involves quantities computed at the previteration (fort <t

In order to simplify the equations, we introduce the follogrnotations

n+%)
IN
ledz(p) = ?tr(wl[Udmp]): dl:dZ € {X7y7 Z}-

Eq. (26) may be rewritten as

6t 1 n+l~
Ey[M = Ny <Tyx(Pn+2)Ex|TI1 + Tyz(Pj *) EZ\?Il)
6t n-Q-l n+l~
g (Tl DB+ T BN ) (27)

n+3

1
HEy |+ Bty (05 Hy) |\ 2 — Btnyy A tr(wR(0] ).

The two remaining components are obtained using the sanfediet

12



N+
TXy(p] k2

(o OB+ Taleli BT
—ﬂxzz[ (sz(thz)ExWIl + sz(pTT(z)Ey\nH)
(Txy(thz)Ey\ +TXZ(pT+k2)EZ|?,k)
_nxz% <sz(p?I% JEx[} K+ sz(p?ﬁ )Ey| Tk)
FE|T -+ Bty {(05 Hz)?f(% —(0; Hy)?,T(ﬂ
& (nxz<a§ HO T2 — o (R(PT2)) — N tr<qu<p?Tk%>>) ,

and

n+ n+
Ez\”ﬂ Np— Txy pj k2 Ey|n+1+sz(p] kZ)EZ‘m_l

2 )
Ny (ToB) Ex|”+1+sz<pT+k2>Ey\”“)
—Nzx— (Txy P,k Ey|1k+sz(P,k )E] )
—Nzz (sz(PTT(z)ExwkﬂLsz(p?;%)Eymk)
FE) )+ Btz {(aE Ho) i — (35 Hﬁ?ﬂ

1 1 1
3t (nzz<a§ Ho' 2 — Nz tr(BR(] ) 7)) — Nzt tr<qu<p?fk2>>) :

Collecting the above equations, we may rewrite the equa{(@?) as a single linear
system

AKEMEE = F(ED P2 05 HTL 2 0EHTE2), (] k), (28)
whereA, i is a 3x 3 matrix andF; k a linear function.

Thus, the resolution of the Ampere equations on the wholeadorgields a bloc di-
agonal linear system (blocs are the 3 sub-matrices given by the equation (28) for
each poin{ j,k) of the domain). This system is easily solvable by a directoet

3.2.2 Boundary conditions

The consequence of using a discrete Fourier transform (feff the spatial deriva-
tives is to periodize the domain in both directions. The diomauld be considered

13



Figure 3. Pseudospectral scheme for the electromagnetie (#aH ) and the density ma-
trix p.

as atore. The pulses, which, physically, should leave tineailo, now reenters the
computational domain and may interfere with the pulsekistpropagation. This
is called thewraparoundeffect.

To counter the wraparound effect due to the FFT, we use pbrieatched layers
(PML) boundary conditions [19]. We shall now describe the ofsthese conditions
in our particular case.

In the absorbing layers, the electric fidddand magnetic fieldH in the x-direction
are decomposed as

Ex = Exy+ Exz, (29)
HX — ny+ sz. (30)

Then the electric field is driven in the PML cells by

0tExy +0yExy = _UOCZOyHL
0tExz+ 07Exz = |..100202Hy,
otEy+0.Ey = UOCzasz
0t Ez+ 0yE; = —HoC®dyHy,

and the magnetic field by

OtHxz+ 05Hy = U(;lazEw
OtHyz + 0'§sz = —HalayEL
dtHy + aHy = —pg 10,Ex,

OtHzy+ 0y Hzy = Hg 10y Ex.

14



These equations are discretized using an exponential tepeas shown in [7].

Whenoy = 0; = oy = 0; = 0, we get the Maxwell equations in a linear medium.
In the absorbing layers, we use a quadratic or cubic profite & PML cells. In
Fig. 4, we have represented the areas where the PML coeffaeandc* are not
vanishing. For instance, we took at the entry of the domain

k
oz(k) — omz(l— —)3,

nz
wherek is the z-coordinate of the point consideragdthe number of PML cells in
this direction andby; = 114.9%62. We obtaing; at the exit by periodicity. For the

PML cells in directiony, we use the same formula after replacdzpy dy, n, by
Ny.

Oyz Oy Oyz

oy Physical domain oy

0-yZ Gy Gyz
L» V4

Figure 4. Non-vanishing PML coefficients in the absorbingeta around the physical do-
main.

<

In contrast with the previous scheme, the incoming wavetfagn not be intro-
duced within the boundary conditions. So the incoming puslseuld be put in
the domain as initial datum. The linear medium before thetafyhas to be large
enough to contain entirely this datum (this prevents thdystf sinusoidal waves
for instance).

3.2.3 Parallelization

In the Bloch equations (3), the space variableend z act as parameters. These
equations do not involve any spatial derivatives. They asdived at each point
in space independently from each other. The sharing of g@ugon between sev-
eral processing units is straightforward. The computafia@lomain is divided as
described in Fig. 5. In fact, as shown in [13], a quasi lingeesl-up with the num-
ber of CPU could be observed.

The development of parallel algorithms for the Yee schenaésis well known (see
[7]). In our case, the computation of the polarization tetmwdd also be shared

15



c.lcpu1l

lcpuz

CPU 3

CpPU4

Figure 5. Load sharing between four processors.

between the CPU. With the first scheme of Sec. 3.1, this yekisere decrease of
the efficiency of the parallel method [13].

With the pseudospectral scheme, the polarization termngpated on the same
points in space as the wave-field and the density matrix.ridwnputations are
purely local to a given CPU. The only process requiring ergles between the
processing units is the computation of the spatial dekieatin they-direction.
With a parallel algorithm for the FFT, this scales well wikiethumber of CPU.

3.2.4 Conclusion

In this scheme, we have used central differencing and destegiaging in time.
The spatial derivatives are computed on the whole domaimaviFT algorithm.

Proposition 3 The PSTD scheme is of second order in time and space.

From [10], we could get the stability criterion for the limescheme i(e. without

the polarization term)
1 1 2
Oty | =+ =5 < — 31
¢ \/622+6y2<n’ (31)

wherec is the speed of light in the mediudy anddz the two space steps.

Furthermore, in contrast with FDTD schemes, this schemetimtroduce numer-
ical dispersion through the approximation of the spatiaivééives. This is quite
interesting when studying the propagation of ultrashotsgsiin media with dis-
persive nonlinearities.

3.3 Second FDTD scheme using a centered nonlinearity

The main drawback of the scheme 3.1 can also be alleviatbdutitising a spectral
method. In this section, we shall present a new FDTD schersavidescribe the
wave field with the paifD, H) instead of the paifE,H).
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3.3.1 Discretization of the Maxwell equations

In the bidimensional case, in th{®,H) formulation, the Maxwell equations be-
come

(

0¢Dx = dyH,—0,Hy,
0tDy = 0d-Hy,
0tD; = —0yHy, (32)
Ho0tHx = —0yE; +0,Ey,
HodtHy = —0,E,
\ HodtHz = 0dyEx.

The Maxwell equations ofD, H) do not involve explicitly the polarizatioR. How-
ever, the polarization is still necessary to comgdnteom E or E from D.

@ = @ L(=ndt

f ® D,
B Dy
B D,

B S B o(=(n+dat

B H,
B Hy

Figure 6. FDTD scheme with centered nonlinearity for thetetenagnetic wavg¢D,H),
the polarizatiorP and the density matrig.

With the scheme of Fig. 6, we obtain the following set of equret

t n —_mY n z n
Ho(D Hx)j+%,k+% =—(D Ez>j+%,k+% +(@ Ey)j+%,k+%’
Ho(D' Hy)?7k+% = _(DZEX)?M%’ (33)
HO(DtHZ)L%k = (DyEx)?Jr%k,

which allows us to evaluate the magnetic field at each timemtavided the electric
field is known.
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Using the same scheme, we obtain the equations on the electtictionD:

n+3 n+3 n+3 n+3
(D'Dy) i = |(DHz) 2 — (DHy) . * | — (DYHy)j 2
n+3 n+;
(DtDy)]+§7k - (DZHX)]'_’_;J( (34)
t IH-% _ y n+%
(D DZ)j7k+% =—(D HX)J'JH%’

1 1
where we computéf)sz)|?J|:frl and(azHy)|?J|:frl with equations (6) and (7).
) 2 ) 2

First, let us treat the semi-discretization in time of thexMall-Bloch equations.
Let us assume that all the physical values are computediet t< t, = ndt. We use

the Faraday equations (33) to compm@% on the whole domain. Thanks to the

Bloch equations (3), we get the density mathﬁ. With the Ampere equations
(34), we obtairD"1,

To proceed, we need to estimate the electric fi€ld! to solve the Faraday equa-
tions (33) at tim&n+%. Four steps will be necessary to obtain its value. The étectr

field is given by the equation
En+1 _ n(Dn—H. o Pn+1)7 (35)
so we have to approximate the polarizati®at timety, 1.

The polarizatioP"*! could be computed from

Pn+1 — Ntr(pdpn+1)7
or from the equation

(DR = actr (o) — St (v 3,07 d € {x,y,2)

As the density matrix is evaluated at tim§§%, the first equation would yield an
implicit scheme, which we wish to avoid. We use the latteratigun to compute the

. . 1. . . .
polarization term, sz is to be estimated. If we use the centered approximation

vz — VIV e would encounter the same problem as with the first FDTD
scheme of Sec. 3.1.

Thus, we use two more steps to obtain the poteh‘t‘i‘él%. In a first step, we com-
pute

P™ 2 = a(tr(pp™2),
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D'p=—3[H,p]
pn+%
P = aCtr(up)
pn+1 pn+%
DrI /
E=nD_P)
En+2
pn+1 ‘DIP: Ntr(uatp)‘
pn+l

Figure 7. Algorithm of the FDTD scheme with centered nordiity.

then the electric fiel&"*7 is obtained through

n+1 n
et (22 e ) (36)

It is then straightforward to compute the potenﬂéﬁ% and the polarizatioP"*1.
Finally, we haveE™! from Eq. (35).

The algorithm is summarized in Fig. 7.

For describing the full discretization of the equations,imteoduce a notation: for
a functionu on the grid, we define the central averaging operatby

UH_

Nl
Nl

7.—|—Uj_
(AM);. = 5

Y

using the same idea, we definé, A'.

The electric fielckE is discretized a® for timest,, and asP for timestn+%.
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1 1
To computeE™*2 from D", D™ andP™ 2z, we use

nti n+3
Ay7z7tD T2 _ T2
. ( X)1+l%7k+% X H—l%7k+%
n+35 . zt n+35 . n+3 7
Ej+%7k+%_n' (& DV)H%H% Py‘j+%7k+% ' (37)
(Ay’tD >n+§ . ‘TH‘?
Yitikts  Aj+ik+3

Finally, the electric fieldE""? is obtained fromD"*1 andP"! through the equa-
tions

BT = o (Dl = (%RITLE) + (4D - (%R0
n+1  _ n+1  (aZ n+1
Ey\H%?k—ﬂyy (Dy|3+%7k (A Py)\j+%7k), (38)

Sty = (WD~ R, ) (D - R )

3.3.2 Discretization of the Bloch equations

At the wavelengths, we consider, a KDP crystal is transpafdre relaxation terms
in the Bloch equations [16] may be neglected. Thus, the Bépditting is no longer
necessary as the Bloch equations might be rewritten as

|
0iPjk = —ﬁ[Ho +V,pljks (39)

whereHp = diag(h0y ) is the matrix describing the free Hamiltonian operator.

The Bloch equations can be solved using their analytic olwtritten at Eq. (15),
where we replac¥ byV + Hp. The discretization is performed thanks to equations
(16) and (17).

3.3.3 Boundary conditions

In the directionz of propagation of the wave, we wish to consider the boundarie
as transparent for the wave. For this purpose, we shall es8iter-Muller condi-
tions. Let us recall that these conditions are written inlithear isotropic material
(see Fig. 1).

If (Di,H;) is the incident wave-field and the outer normal vector to the domain,
these conditions are written as

(D—Di)xn—%(H—Hi)xnxn:O, (40)
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at the entry of the domairz & 0) and
1
Dxn—EDxnxn:O, (41)

at the exit.

In the bidimensional case, this yields

{—Dy+Di>/+%(Hx—H>i<)=0, 42)
Dy — D} + 1(Hy—H)) =0;
and
{Dy+%HX:o, (43)
Dyx—iH,=0.

These equations are written, using the scheme of Fig. 6yvEyeg, z=1,z=N;
and for timet,,, 1. The missing values of the magnetic figdd* 3 are obtained with
the Faraday equations (33). This gives us the electric imlub at the boundaries,
which could not be recovered from the equations (34). Thenatg fieldH is
interior to the domain, and can be computed completely frqoagons (33).

In the transverse direction we use periodic conditions.

Remark 4 These boundary conditions do not require the entire puldeetm the
domain as an initial datum (as with the PSTD scheme).

3.3.4 Conclusion

In this scheme, we have only used central differencing aredaging. The overall
accuracy of the scheme is second-order:

Proposition 5 The FDTD scheme with centered nonlinearity is of secondrorde
space and time.

From the dispersion analysis of the FDTD scheme for the Mébeggiations, we
can derive the stability criterion of the linear scheme. vhen the polarization
term is vanishing) [7]

1,1
072 dy?
wherec is the speed of light in the mediudy anddz the two space steps.

cot <1, (44)

Obtaining a stability for the whole nonlinear scheme is a glemtask and is still
an open question beyond the scope of this article.
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4 Experiments

A particular experiment will be of much importance in thigten for highlight-
ing numerical problems as well as for studying the validitylee Maxwell Bloch
model. This experiment is a run of second harmonic generaiecond harmonic
generation is a physical phenomenon, where as the waveati¢tee frequency
propagates in the crystal, the optical quadratic nonlibeeareates a wave-field at
the frequency @&. Each molecule of the crystal may generate a second harmonic
with its own phase. In order for this second harmonic to grivse phases must
match. In a uniaxial crystal like the KDP, the angle of incide can be chosen to
make these phases match, this angle is callegliase matching angl®©wing to
the expression of the quadratic susceptibility of a KDP talysve know that (see
page 44 of [11] for instance), if the wave is initially polzed in they-direction, the
second and even harmonics will appear inxtkdirection.

The dipolar matrix for a KDP crystal is given in [1]. We belesthat the method
exposed in [1] could be extended to treat a large class ofaisyd-or instance, in
[2], we perform several computations with an AgGa&8ystal.

4.1 Numerical considerations

To compare the computational cost of the three schemes twenave-field travel
through a KDP crystal.

We measure the computations times for the three schemesfious crystalline
lengths. In this experiment, we study the propagation offa,(800um, 1 V/m)
Gaussian pulse at normal incidence. We téak= 10.6 nm (100 points per wave-
length),dy = 5.6um (100 points in the transverse directio®) = 0.013fs.

We put the incoming wave-field as an initial datum in the Immeaterial (see Fig.
1). Thus the crystal starts afteph of this medium.

As shown on Fig. 8, the two new schemes presented in this @apenore than
two times faster than the scheme of Sec. 3.1 ([4]). The FDT2e [4] is clearly
too expensive to be used for a physical experiment.

Remark 6 The scheme [4] is heavily optimized for the testing platf@nmainly
through [14]). This optimization is still a work in progregs the two other schemes
(for instance we could improve the efficiency of the FFT athar) and we hope to
improve the results shown in Fig. 8.
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Figure 8. Computation times for the three schemes (PSTospectral scheme,
NLc=FDTD scheme of Sec. 3.3) for several crystalline leagthn an IntéP
Xeon™2.2 GHz.

4.1.1 Space and time steps sizes

In the linear isotropic case, we know from [3,10] that thecgpstep can be chosen
as small as 16 points per wavelength (FDTD) or 2 points peeleagth (PSTD).
For the one-dimensional Maxwell-Bloch equations in ispicanaterial, 30 points
per wavelength were sufficient [15]. It shall also be noted this is relative to the
wave-length of the higher harmonic we have to study.

In this section, we show that for the nonlinear anisotropise; space steps have
to be taken much smaller than expected. In Fig. 9, we havéepldhe results of
a second harmonic generation experiment aftqur2®f propagation in a crystal
of KDP. The incoming wave-field is a 20fs Gaussian pulse &f\iifn initially
polarized in the directioy. The even harmonics appear in theoordinate of the
electric field. This coordinate of the field is plotted for eeal sizes of the space
step ranging from 40 to 100 points per wavelength. Eheomponent does not
change with the various step sizes, so we have not plottétlethave used the
pseudospectral scheme for the computations.

From [10], we could expect that a space step of 40 points peeleagth in the
fundamental harmonic (that is to say 20 points per wavetteimgthe second har-
monic) would be sufficient to correctly describe the wavetaranteraction. As
seen in Fig. 9, this is far from being the case.

Grids coarser than 80 points per wavelength are clearlydagited to study second
harmonic generation and nonlinear effects.
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Figure 9.Ex component and its Fourier transform in an experiment of rsg@dwarmonic
generation using the pseudospectral (PSTD) scheme faredeizes of the space step. For
comparison, we have also plotted the result obtained bydhense of Sec. 3.1 (FDTD).
The frequency is relative to the frequency of the incomingevield.

4.1.2 Bloch splitting

We could expect that using a Strang splitting method forieglthe Bloch equa-
tions or not would make a difference only for coarser grids. Mh a second har-
monic generation experiment at the phase matching anglé pmlof KDP. The
incoming wave is a 20 fs Gaussian pulse of ¥0m. The results are plotted on Fig.
10. We have used the one-dimensional PSTD scheme, wheratledangth of the
pulse is 106um. The time ste@dt is determined frondz and the stability criterion
of Eg. (31) with a CFL condition of 0.75.

---- 75 pts
-- 106 pts
137 pts
--- 168 pts
---- 200 pts |
— 75pts
106 pts
137 pts
168 pts
200 pts |

65000

60000)-

Amplitude (V/m)

55000j-

50000j--

6.96e-06 6.98e-06 7e-06 7.02e-06
Distance (m)

V

6.94e-06

Figure 10. Head of the main peak of tBgcomponent in a second harmonic generation (as
in Fig. 9) for several numbers of points per wavelength wisipliting for Bloch equations
(dotted lines) or without (plain lines).

Using a splitting method for the Bloch equations, we undérege the quadratic
nonlinearity. As the grid size decreases, the intensitig;ahcreases. On the con-
trary, if the Bloch equations are solved directly withoupéiting method, we tend
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to overestimate the quadratic nonlinearity. As the gri@ siecreases, the intensity
of Ex decreases.

4.2 Physical experiments

In the following experiments, instead of plotting the coments of the electric
field E of the wave-field as usual, we use the energy flux in each pal&n. The
energy flux is defined as

T

Fx(yv Z) :/0 EX(tvyv Z) Hy(t7y7 Z>dt7
T

Fy<y7 Z) :/0 Ey<t7y7 Z) HX(t7y7 Z)dta

where we run the experiment foe [0, T].

4.2.1 Second Harmonic Generation with phase matching

We will perform a second harmonic generation experimentaiphase matching
angle. We inject a Gaussian (5fs, 200 wide, 1¢V /m) pulse in 1um of KDP,
The pulse is initially polarized in thg-direction.

In this run, we used the FDTD scheme of Sec. 3.3. The grid si2@0 points per
wavelength in the-direction z= 10.6 nm). We took 100 points in the directign
and a CFL condition of 0.8 in Eq. (31).

The results are shown in Fig. 11 and 12, where we have plaotteccomponents
of the energy flux in the crystal. The coordindecontains the fundamental har-
monic and odd orders harmonics. The coordirfgteontains even harmonics and
in particular the second harmonic.

On Fig. 11, we observe that the fundamental harmonic doesa®wh to be much
affected by the travel through the crystal. The energy aéttigy = Oum) and at
the exit (y=1Qum) is quite the same. Indeed, the crystal length is too shotie
SHG process to significantly decrease the intensity of tise barmonic.

On Fig. 12, we observe the evolution of tRecomponent of the energy flux. We
see that initially there is no energy in this polarizatios.the pulse propagates, the
energy grows. The growth is bigger in the center of the beamtwis where most
intensity of the fundamental harmonic is located. We alsseole that the beam is
thinner in this polarization.

We will now study the evolution of the electric field at the tarof the beam. On
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Figure 11. Energy flu¥, in a SHG experiment at the phase matching angle after a propa-
gation in 1Qum of KDP. We have used arbitrary units for the intensity.
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Figure 12. Energy fluky in a SHG experiment at the phase matching angle after a propa-
gation in 1Qum of KDP. We have used arbitrary units for the intensity asig E1.

Fig. 13, we have plotted the evolution of the coordinajeof the electric field at
seven points in the crystal.

The intensity does not seem much affected by the propagattos width of the
spectrum shall also be noted as we study the propagationhaframulse. We have
plotted the evolution of th&, component on Fig. 14.

We can see the growth of the second harmonic in this polasizathere is also
optical rectification as shown on the lower frequencies efgpectrum as expected.
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Figure 13. TheE, component and its Fourier transform in an experiment of rsedaar-
monic generation for seven points in the crystal. The annbditof the Fourier transform is
plotted in arbitrary units, the frequency is relative to tme of the incoming beam.
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Figure 14. TheE, component and its Fourier transform in an experiment of rsédaar-
monic generation for seven points in the crystal. The fraquaunits of the Fourier trans-
form is relative to the frequency of the incoming laser puldee amplitude of the spectrum
is shown in arbitrary units.

4.2.2 Second Harmonic Generation without phase matching

In this section, we study the effect of phase mismatch on dwersd harmonic
growth. In this run, we take an angle of incidence far fromghase matching. We
also choose to take a very thin beam in order to have an impdafiféraction effect.

The diffraction will bend the wavefront of the propagatingwe-field. The phase
matching condition will then be fulfilled in another diremti that the direction of
propagatiorz.

In this experiment, the laser beams impinges a KDP cryst&0pin at normal
incidence. We consider a 3fs Gaussian pulse, whose ingengif!° vV/m and width

4 um.

We use the pseudospectral scheme and take 80 points peewgtreln the direc-
tion of propagation and 150 points in the transverse dwactivhich givesdz =
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11.8nm,dy = 1493 nm anddt = 0.0014 fs.

The two components of the energy flux after 400 fs are showngrilb and 16.
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Figure 15. Energy fluky in a SHG experiment without phase matching after a propagati
in 50um of KDP (268 fs). We have used the same arbitrary units foirttemsity.

On Fig. 15, we can observe the effect of the diffraction onléiser beam.
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Figure 16. Energy flu¥, in a SHG experiment without phase matching after a propagati
in 50um of KDP (268 fs). We have used the same arbitrary units fomtemsity as in Fig.

15.

On Fig. 16, second harmonic generation is observable. Thestéwond harmonic
pulses do not propagate in the direction of propagation efftindamental har-
monic. After a few microns, the diffraction starts to attateuthe intensity of the

laser beam.

28



4.2.3 Self-focusing effect

For intense laser beams, the optical Kerr effect can prodaklidocusing. In this
run, we study this effect with our model.

We shall consider a 7.5fs Gaussian pulse, whose strengt is 10'°°VV/m and
width 12um. We have taken a very intense laser beam to reduce the lénesta
depth needed to observe the self-focusing effect. The \iialteimpinges a KDP
crystal of 9Qum at normal incidence.

We use the pseudospectral scheme of Section 3.2. For thésieent, we took
100 points per wave-length in the directiandz = 10.6 nm) and 150 points in
the transverse direction(dy = 149.3nm). The CFL parameter is taken to be 0.8
(&t = 0.0014fs). To avoid the wraparound effect, we have added 5 P#lis i
each transverse boundary and 10 in the normal boundaries.

To speed-up the computations, we have used two CPU as deganifparagraph
3.2.3.

On Fig. 17, we have plotted the energy flexafter 400 fs.
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Figure 17. Energy flux after 400 fs of propagation in a KDP talydNVe have used arbitrary
units for the intensity of the energy flux.

The self-focusing effect is easily observable on Fig. 1#& Maxwell-Bloch model

renders the cubic nonlinearity of the crystal. Yet, we shatk that for such inten-
sity, the crystal would have melt. To study such phenomewershould complexify
the model to treat the ionization of the material.

However, for practical applications, it is important to baw correct rendering of
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the cubic nonlinearity in nonlinear crystals. Indeed, aswshin [20], the cubic
nonlinearity may decrease the efficiency of second harngemeration.

5 Conclusion

In this paper, we have presented three numerical schemekddridimensional
Maxwell-Bloch equations. The first scheme, which is a diexténsion of the uni-
dimensional scheme [9] is too computationally expensivbdaeally useful for
distances longer than a few dozens of microns. The secondsasea pseudospec-
tral method and yields a very simple scheme, which can bé/gmsiallelized. The
last FDTD scheme is quite fast to solve compared to the fits¢rse. It is also
rather simple to write as the computation of the nonlingasitseparated from the
solving of the Maxwell equations.

For large distances of propagation and short pulses, onglslise the PSTD
scheme as it is the fastest of the three exposed in this pepstudy longer pulses,
the last FDTD scheme is more efficient as the laser beam dadsawme to be en-
tirely contained in the computational domain as with theupespectral scheme.

We have also shown the high complexity of the nonlinearitgexed by the Maxwell-
Bloch model. As shown on paragraph 4.1.1, the grids used toalve much finer
than with Schrodinger models for instance. This could bdaered by the interplay
between the anisotropy of the material and the optical nealiities. The Maxwell-
Bloch model renders many physical effects (high-order efisipe nonlinearities,
saturation effect, Raman scattering as shown in [2]). Tredative contributions
are hard to fully understand.

The schemes presented in this paper could easily be extemttedt three-dimensional
wave-fields. However, the amount of computations involved probably be be-
yond the reach of common workstations.
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