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Abstract

Two numerical schemes are developed for solutions of the bidimensional Maxwell-Bloch
equations in nonlinear optical crystals. The Maxwell-Bloch model was recently extended
[1] to treat anisotropic materials like nonlinear crystals. This semiclassical model seems
to be adequate to describe the wave-matter interaction of ultrashort pulses in nonlinear
crystals [2] as it is closer to the physics than most macroscopic models. A bidimensional
finite-difference-time-domain (FDTD) scheme, adapted from Yee [3], was already devel-
oped in [4]. This schemes yields very expensive computations. In this paper, we present
two numerical schemes much more efficient with their relative advantages and drawbacks.

Key words: Nonlinear optics, Harmonic Generation, Quantum description of light and
matter, Nonlinear optical crystal, Numerical schemes.
PACS:42.65.An, 42.65.Ky, 42.50Ct, 42.70.Mp

1 Introduction

Today, laser sources make it possible to produce shorter andshorter, yet powerful,
light pulses. Pulses of a few dozen of attoseconds are now obtainable. For such
time-length, the classical mathematical models from nonlinear optics are no longer
relevant. Because the optical pulses are extremely short, they are beyond the limi-
tations of the slowly varying envelope approximation that is used in the derivation
of the nonlinear Schrödinger equation [5,6]. Mathematicalmodels with a disper-
sive linearity are well known [7]. Adding a quadratic dispersive nonlinearity is a
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complex task [8,2]. As shown in [1], the Maxwell-Bloch renders any order of the
nonlinearity with its dispersive relation.

Furthermore, for practical applications, we would like to study the wave-matter
interaction in anisotropic media. We are particularly interested in nonlinear optical
crystals with a discrete group of symmetries. Among this large class of crystals, the
KDP crystal is of very common use for harmonic generation. This crystal will be
used in our experiments.

In [1], we have derived a semiclassical model based on the Maxwell-Bloch equa-
tions, adapted to describe the wave-matter interaction in nonlinear crystals. The
propagation of an electromagnetic wave is classically described by the full-vector
time-dependent Maxwell equations. The modeling of the matter is performed with
the Bloch equations, which are derived in the context of quantum mechanics. To
obtain the model, we had to find relations between the linear and quadratic optical
susceptibilities of the crystal and its quantum structure,which can not be recov-
ered from experimental data. With these relations and careful use of the group of
symmetries of the crystal, we were able to postulate the mostsimple quantum struc-
ture adequate to describe the light-matter interaction. The model has three distinct
energy levels, one of which is three-fold degenerate.

Then, in [9], we write a discretization scheme when the wave-field depends only on
one space variable in the direction of propagation of the laser beam. The electro-
magnetic field is discretized using the classical Yee scheme[3] with temporal and
spatial staggered grids. To obtain a second-order scheme, the points of discretiza-
tion of the polarization and the density matrix must be chosen carefully. The time-
derivative of the polarization is computed with the Bloch equations and is replaced
in the Maxwell equations by its expression as a function of the density matrix and
the electric field. Thus, in order to compute the electric field, at each time step, we
have to solve a bloc-diagonal linear system. The Bloch equations are solved using
a splitting scheme: the Hamiltonian is divided into the freeHamiltonian and the
Hamiltonian resulting from the interaction of the wave-field with the matter.

With this scheme, we compare our model with two macroscopic models based on
nonlinear Maxwell equations [2]. In the first one, the polarization is instantaneous,
while it takes the linear and quadratic dispersions into account in the second one.
We show that the Maxwell-Bloch model renders more physical effects than these
macroscopic models. Indeed, with this model, we can see the saturation of the non-
linearity or Raman scattering. . . Furthermore, the nonlinear polarization is not re-
stricted to its quadratic part as it is in the macroscopic models. Every order of the
nonlinearity is computed and takes the dispersion into account.

However, several physical phenomena are still not observable with a one-dimensional
model. The diffraction or self-focusing effects can only beseen with a bidimen-
sional study. A first scheme for solutions of the two-dimensional Maxwell-Bloch
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equations was described in [4]. This scheme is a naive extension of the unidimen-
sional FDTD scheme [9]. It discretizes the wave-field described by the pair(E,H)
with a Yee scheme adapted to take the polarization and the density matrix into ac-
count. Unfortunately, this scheme yields a large linear system which is to be solved
at each time step. It significantly increases its computational cost. Thus, this scheme
can only be used for short distances of propagation.

After writing [4], we saw a clear need to develop more efficient schemes for the
Maxwell-Bloch equations in order to study numerically realistic physical phenom-
ena. In this article, we present two schemes, which should address this problem.
The first scheme uses a pseudospectral method. The time derivatives are still ob-
tained by finite differences, but the spatial derivatives are obtained by mean of a
Fourier transform. This scheme is much simpler than the previous one as the use of
staggered grids in space for the electric and magnetic fieldsare no longer mandatory
to ensure a second-order scheme. Because of the wraparound effect of the discrete
Fourier transform, absorbing layers have to be added to the computational domain.

The last scheme presented is a FDTD scheme, which should address the main draw-
back of our first scheme. The three components of the nonlinear polarization are
now computed at the same points in space. Moreover, we now describe the wave-
field by the pair(D,H), whereD is the electric induction. The nonlinear polariza-
tion term is not explicitly involved in the Maxwell equations.

The outline of this paper is as follows. In the first Section, we present the physical
setup and the Maxwell-Bloch model.

In the second Section, we describe the three numerical schemes, their advantages
and drawbacks. The first and third ones are FDTD schemes adapted from the Yee
scheme [3]. The second one is a pseudospectral scheme adapted from [10].

In the last Section, we perform several numerical experiments to underline some
numerical considerations and to study the validity of our model [1].

2 Physical context

Let us quickly describe the Maxwell-Bloch model (for a complete derivation of this
model, one can see [11,12]). In this model, the wave-field is described by the pair
(D,H), D being the electric induction andH the magnetic field, or(E,H), E being
the electric field. Its evolution is driven by the Maxwell equations. We assume that
the medium does not have any free charge.
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In the(E,H) formulation, the Maxwell equations are written as































µ0∂tH = −∇×E,

ε∂tE = ∇×H−∂tP,

∇ · (εE+P) = 0,

∇ ·H = 0

(1)

We shall denote byη the matrixε−1, the inverse of the static tensor of susceptibility
ε.

Remark 1 Let us recall that without any loss of generality in a uniaxial crystal,
as shown in [9], we can choose the axis y in order to make four coefficients of the
matricesε andη vanish (namelyηxy = ηyx = ηyz = ηzy = 0). In the sequel of this
paper, we assume that this choice has been made as it simplifies the discretization.

We know thatD = εE + P. Thus, in the(D,H) formulation, the previous system
yields































µ0∂tH = −∇×E,

∂tD = ∇×H,

∇ ·D = 0,

∇ ·H = 0

(2)

The two relations∇ ·D = 0 and∇ ·H = 0 do not play any role in the sequel.

In the Maxwell-Bloch model, the material is statistically described at the quantum-
mechanical level with the density matrix formulation [11].Each molecule of the
crystal is considered as a quantum system withN discrete levels of energy. The
density matrixρ represents in its diagonal terms the various populations ineach
of the energy levels of the free Hamiltonian. The off-diagonal terms of the density
matrix represent the quantum coherences of a set of atomic states.

This density matrix evolves through the Bloch equations:

∂tρ jk = −ıω jkρ jk +
ı
~
[µ.E,ρ] jk, 1≤ j,k≤ N, (3)

whereω jk = ω j − ωk, µ is the dipolar matrix characterizing the material at the
quantum-mechanical level andE is the electric field of the incoming laser pulse.
We recall that, for two operatorsA andB, [A,B] ≡ AB−BA.

The physical meaning of this model is the following. Each molecule of the crystal
is seen as a single atom with one electron independent from the other molecules of
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Figure 1. Physical domain.

the crystal. This atom reacts to the wave-field as a quantum dipole. Albeit this over-
simplification of the physics involved, this model can be quite accurate to describe
the wave-matter interaction.

In this paper, we consider electromagnetic fields dependingon two variables in
space. One variablez in the direction of propagation of the laser pulse and the
othery in a transverse direction. To ease the writing of the boundary conditions,
we assume that all interfaces are normal (in fact this is alsothe experimental setup
in order to minimize reflexion and to avoid damaging the optical devices). Fig. 1
presents this setup, the nonlinear optical crystal is surrounded by a linear isotropic
material. The linear index of the medium is chosen to minimize the reflexion of the
beam at the interfaces with the crystal.

3 Numerical schemes

Let us first introduce a notation. The physical quantities (E, D, H, P, ρ) depend on
three variables: the timet and the space variablesy (in the transverse direction) and
z (in the direction of propagation). The experimental setup is shown in Fig. 1.

For a functionu defined on the grid, we writeun
j ,k (or u|nj ,k) for the value ofu at the

grid point(tn,y j ,zk), wheretn = nδt, y j = jδy, zk = kδz, δt being the time step,δy
the space step in the directiony andδz the step in directionz.

We will denote byDt , D
y, D

z, the central differencing operators in the directionst,
y, z.

For instance, using this notation,

(DyEx)
n+ 1

2

j+ 1
2 ,k

=
Ex|

n+ 1
2

j+1,k−Ex|
n+ 1

2
j ,k

δy
.
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3.1 A first FDTD scheme

This scheme was deeply described in [4]. For reader’s convenience, we shall recall
it shortly.

The idea behind [4] was to use the same method as in [9]. That isto say that we use
an adapted Yee scheme, where the density matrix is computed at the same points as
the electric fieldEx in space and at the same points as the magnetic fieldH in time.
This is summarized in Fig. 2.

3.1.1 Discretization of the Maxwell equations

Ex

Ez

Ey

z

y

t = nδt

t = (n+ 1
2)δt

ρ
Hz
Hy
Hx

Figure 2. A grid cell of the FDTD scheme [4] for the electromagnetic wave(E,H) and the
density matrixρ.

Using the scheme, we are able to discretize Eq. (1).

For the equations leading the evolution of the magnetic field, we obtain

µ0(D
tHx)

n
j+ 1

2 ,k+ 1
2
= −(DyEz)

n
j+ 1

2 ,k+ 1
2
+(DzEy)

n
j+ 1

2 ,k+ 1
2
,

µ0(D
tHy)

n
j ,k+ 1

2
= −(DzEx)

n
j ,k+ 1

2
, (4)

µ0(D
tHz)

n
j+ 1

2 ,k
= (DyEx)

n
j+ 1

2 ,k
.
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Using the same scheme, we obtain the equations on the electric field E:

(DtEx)
n+ 1

2
j ,k = ηxx

[

(DyHz)
n+ 1

2
j ,k − (DzHy)

n+ 1
2

j ,k

]

−ηxz(D
yHx)

n+ 1
2

j ,k

−ηxx(∂tPx)|
n+ 1

2
j ,k −ηxz(∂tPz)|

n+ 1
2

j ,k ,

(DtEy)
n+ 1

2

j+ 1
2 ,k

= ηyy(D
zHx)

n+ 1
2

j+ 1
2 ,k

−ηyy(∂tPy)|
n+ 1

2

j+ 1
2 ,k

,

(DtEz)
n+ 1

2

j ,k+ 1
2

= −ηzz(D
yHx)

n+ 1
2

j ,k+ 1
2
+ηzx

[

(∂yHz)|
n+ 1

2

j ,k+ 1
2
− (∂zHy)|

n+ 1
2

j ,k+ 1
2

]

−ηzx(∂tPx)|
n+ 1

2

j ,k+ 1
2
−ηzz(∂tPz)|

n+ 1
2

j ,k+ 1
2
,

(5)

where the two terms(∂yHz)|
n+ 1

2

j ,k+ 1
2

and(∂zHy)|
n+ 1

2

j ,k+ 1
2

in the latter equation can easily

be computed with

(∂yHz)|
n+ 1

2

j ,k+ 1
2
=

(DyHz)
n+ 1

2
j ,k+1+(DyHz)

n+ 1
2

j ,k

2
, (6)

and,

(∂zHy)|
n+ 1

2

j ,k+ 1
2
=

Hy|
n+ 1

2

j ,k+ 3
2
−Hy|

n+ 1
2

j ,k− 1
2

2δz
. (7)

The polarization term is still to be determined. For this purpose, we use the contin-
uous expression of∂tP obtained by deriving the Bloch equations:

∂tPd = N tr(µρ) = N tr(µdR(ρ))−
ıN
~

tr(µd[V,ρ]), d ∈ {x,y,z}, (8)

whereV = −Exµx−Eyµy−Ezµz. For convenience, we have used the notation

R(ρ) j ,k = −ı(ω j −ωk)ρ j ,k.

Then we replace∂tP by the expression (8) in the Ampere equations.

For instance, for the first equation of (5), we have to computethe following two
terms:

(∂tPx)|
n+ 1

2
j ,k = N tr(µxR(ρn+ 1

2
j ,k ))−

ıN
~

tr(µx[V
n+ 1

2
j ,k ,ρn+ 1

2
j ,k ]), (9)

and,

(∂tPz)|
n+ 1

2
j ,k = N tr(µzR(ρn+ 1

2
j ,k ))−

ıN
~

tr(µz[V
n+ 1

2
j ,k ,ρn+ 1

2
j ,k ]). (10)

With the scheme of Fig. 2 in mind, we now write

V
n+ 1

2
j ,k = −Ex|

n+ 1
2

j ,k µx−Ey|
n+ 1

2
j ,k µy−µzEz|

n+ 1
2

j ,k µy, (11)
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where we take

Ex|
n+ 1

2
j ,k ∼

Ex|
n+1
j ,k +Ex|

n
j ,k

2
,

Ey|
n+ 1

2
j ,k ∼

Ey|
n+1
j+ 1

2 ,k
+Ey|

n+1
j− 1

2 ,k
+Ey|

n
j+ 1

2 ,k
+Ey|

n
j− 1

2 ,k

4
,

Ez|
n+ 1

2
j ,k ∼

Ez|
n+1
j ,k+ 1

2
+Ez|

n+1
j ,k− 1

2
+Ez|

n
j ,k+ 1

2
+Ez|

n
j ,k− 1

2

4
.

Solving the Ampere equations yields a linear system on the electric fieldE, which
could be written as

AEn+1 = F(En,Hn+ 1
2 ,ρn+ 1

2), (12)

whereA j ,k is a(Ny×Nz)
2 matrix andF a linear function with values inRNy×Nz. We

have denoted byNy andNz the grid sizes in directionsy andz respectively.

This system is not diagonal neither trigonal. It has to be solved using an iterative
solver such as GMRES. Because of the resolution of this very large linear system
(typical values areNy ∼ 100,Nz ∼

100ℓ
λ , whereℓ is the crystalline depth andλ the

wavelength of the pulse), the computational cost of this scheme is very high and re-
stricts its use to very short distances of propagation. Furthermore, the development
of a parallel algorithm is complex as the iterative solver has to share the computa-
tion between the processors. In [13], this was achieved using [14].

It shall be noted that the complexity of this scheme comes from the fact that the
three coordinates of the electric fieldE are not discretized at the same space points.
Then the computation of the polarization term∂tP involves taking several aver-
ages in space ofE to keep a second order scheme. These space averages yields an
implicit scheme of order two in space and time.

3.1.2 Discretization of the Bloch equations

Let us recall the method used to discretize the Bloch equations as it was described
in [9]. The Bloch equations give

∂tρ jk = −ıω jkρ jk −
ı
~
[V,ρ] jk, 1≤ j,k≤ N,

whereV = −Exµx−Eyµy−Ezµz.

This equation is divided in two parts. The first one

∂tρ jk = −ıω jkρ jk, 1≤ j,k≤ N, (13)
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can easily be rewritten as a diagonal system. The solving operator of this equation
is denoted bySH0

.

The second one
∂tρ jk = −

ı
~
[V,ρ] jk, 1≤ j,k≤ N, (14)

is solved thanks to the exact solution of this equation

ρ(t) = exp

(

−
ı
~

Z t

0
V(s)ds

)

ρ(0)exp

(

ı
~

Z t

0
V(s)ds

)

. (15)

The integral is computed by the formula
Z t

0
V(s)ds∼ tV(

t
2
). (16)

The exponential of a matrixM is obtained with

expM ∼

(

I−
1
2

M

)−1(

I +
1
2

M

)

. (17)

We use this approximation to ensure that the discretized density matrixρn+ 1
2 keeps

the same algebraic properties as the continuous one (see [15,16]): ρ should be her-
mitian, with a unity trace. With some other discretizations(as [17]), some diagonal
terms of the density matrix could take negative values and the trace could be greater
than 1.

The solving operator of Eq. (14) will be denoted bySV .

Using a Strang splitting method, we have a second-order scheme for the Bloch
equations. The density matrix is computed by

ρn+ 1
2

j ,k = S
1
2
H0

SV S
1
2
H0

ρn− 1
2

j ,k . (18)

Let us note that, at each step, the potentialV has to be computed as

Vn
j ,k = −Ex|

n
j ,kµx−

Ey|
n
j+ 1

2 ,k
+Ey|

n
j− 1

2 ,k

2
µy−

Ez|
n
j ,k+ 1

2
+Ez|

n
j ,k− 1

2

2
µz. (19)

3.2 Pseudospectral scheme

This scheme was very briefly announced in [18]. The main goal of this scheme is to
lighten the computational burden of the resolution of the bidimensional Maxwell-
Bloch equations with the scheme described in Sec. 3.1. We adapt an idea from [10].
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The complexity of [4] comes from the fact that, to keep a second-order scheme, we
have to use staggered grids for the three components of the electric field. This leads
to a very large linear system to solve at each time step in order to obtain the electric
field.

Hence, we have tried to avoid the use of spatial staggered grids. As in [10], we shall
use Fourier transforms to compute the spatial derivatives of the electric fieldE and
magnetic fieldH with a spectral order of accuracy. For a functionf of the space
variablex∈ R

3, its derivative in the directiond is given by

∂d f (x) = [F̄ (−ıξdF ( f ))](x), (20)

whereξd is the spectral variable in the directiond. The discrete Fourier transform
is achieved by using the fast-Fourier-transform (FFT) algorithm. We denote by∂F

d
the discrete derivative in directiond.

The temporal grid is still staggered because central differencing is used for time
stepping.

The Bloch equations are solved using the method described inSec. 3.1.2. The only
difference is that the electric field is discretized in the same points in space as the
density matrix so there is no need for the approximation (19).

3.2.1 Discretization of the Maxwell equations

To compute the polarization term∂tP involved in the Ampere equations, we use
the same method as in Section 3.1 with the Bloch equations. However, the density
matrix and the components of the electric field are now approximated on the same
grid points in space (see Fig. 3).

For the equations leading the evolution of the magnetic field, we obtain

µ0(D
tHx)

n
j ,k = −(∂F

y Ez)
n
j ,k +(∂F

z Ey)
n
j ,k,

µ0(D
tHy)

n
j ,k = −(∂F

z Ex)
n
j ,k, (21)

µ0(D
tHz)

n
j ,k = (∂F

y Ex)
n
j ,k.
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Using the same scheme, we obtain the equations on the electric field E:

(DtEx)
n+ 1

2
j ,k = ηxx

[

(∂F
y Hz)

n+ 1
2

j ,k − (∂F
z Hy)

n+ 1
2

j ,k

]

−ηxz(∂F
y Hx)

n+ 1
2

j ,k

−ηxx(∂tPx)|
n+ 1

2
j ,k −ηxz(∂tPz)|

n+ 1
2

j ,k ,

(DtEy)
n+ 1

2
j ,k = ηyy(∂F

z Hx)
n+ 1

2
j ,k −ηyy(∂tPy)|

n+ 1
2

j ,k ,

(DtEz)
n+ 1

2
j ,k = −ηzz(∂F

y Hx)
n+ 1

2
j ,k +ηzx

[

(∂F
y Hz)|

n+ 1
2

j ,k − (∂F
z Hy)|

n+ 1
2

j ,k

]

−ηzx(∂tPx)|
n+ 1

2
j ,k −ηzz(∂tPz)|

n+ 1
2

j ,k .

(22)

The polarization terms are computed with Eq. (8):

(∂tPd)|
n+ 1

2
j ,k = N tr(µdR(ρn+ 1

2
j ,k ))−

ıN
~

tr(µd[V
n+ 1

2
j ,k ,ρn+ 1

2
j ,k ]), d ∈ {x,y,z}, (23)

soρn+ 1
2

j ,k andV
n+ 1

2
j ,k are to be approximated to determine these terms.

We have a second order approximation forV
n+ 1

2
j ,k with

V
n+ 1

2
j ,k = −

Ex|
n+1
j ,k +Ex|

n
j ,k

2
µx−

Ey|
n+1
j ,k +Ey|

n
j ,k

2
µy−

Ez|
n+1
j ,k +Ez|

n
j ,k

2
µz. (24)

The density matrixρn+ 1
2 is obtained thanks to the Bloch equations. We replace V

by its value (24) in equation (23), then(∂tPd)|
n+ 1

2
j ,k from Eq. (23) is injected into

equations (22).

Let us write the corresponding equation forEy|
n+1
j ,k . From the second equation of

(22) and Eq. (23), (24), we have

Ey|
n+1
j ,k −Ey|

n
j ,k

δt
= ηyy(∂F

z Hx)
n+ 1

2
j ,k −ηyyN tr(µyR(ρn+ 1

2
j ,k ))

−ηyy
ıN
~

Ex|
n+1
j ,k +Ex|

n
j ,k

2
tr(µy[µx,ρ

n+ 1
2

j ,k ]) (25)

−ηyy
ıN
~

Ez|
n+1
j ,k +Ez|

n
j ,k

2
tr(µy[µz,ρ

n+ 1
2

j ,k ]).

The componentEy|
n+1
j ,k is computed at each time step with

11



Ey|
n+1
j ,k =−ηyy

ıδtN
2~

(

tr(µy[µx,ρ
n+ 1

2
j ,k ])Ex|

n+1
j ,k + tr(µy[µz,ρ

n+ 1
2

j ,k ])Ez|
n+1
j ,k

)

−ηyy
ıδtN
2~

(

tr(µy[µx,ρ
n+ 1

2
j ,k ])Ex|

n
j ,k + tr(µy[µz,ρ

n+ 1
2

j ,k ])Ez|
n
j ,k

)

(26)

+Ey|
n
j ,k +δtηyy(∂F

z Hx)
n+ 1

2
j ,k −δtηyyN tr(µyR(ρn+ 1

2
j ,k )).

Remark 2 We have used several relations to get Eq. (26). We know thattr(A[A,B]) =

0, ∀A,B (thentr(µy[µy,ρ
n+ 1

2
j ,k ]) = 0) . As the matrices µ andρ are Hermitian, we also

havetr(µd1[µd2,ρ
n+ 1

2
j ,k ]) ∈ ıR andtr(µdR(ρn+ 1

2
j ,k )) ∈ R.

The first line of (26) contains the quantities to compute at time tn+1, the two re-
maining lines involves quantities computed at the previousiteration (fort ≤ tn+ 1

2
).

In order to simplify the equations, we introduce the following notations

Td1d2(ρ) =
ıN
~

tr(µd1[µd2,ρ]), d1,d2 ∈ {x,y,z}.

Eq. (26) may be rewritten as

Ey|
n+1
j ,k =−ηyy

δt
2

(

Tyx(ρn+ 1
2)Ex|

n+1
j ,k +Tyz(ρ

n+ 1
2

j ,k )Ez|
n+1
j ,k

)

−ηyy
δt
2

(

Tyx(ρ
n+ 1

2
j ,k )Ex|

n
j ,k +Tyz(ρ

n+ 1
2

j ,k )Ez|
n
j ,k

)

(27)

+Ey|
n
j ,k +δtηyy(∂F

z Hx)
n+ 1

2
j ,k −δtηyyN tr(µyR(ρn+ 1

2
j ,k )).

The two remaining components are obtained using the same method:
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Ex|
n+1
j ,k =−ηxx

δt
2

(

Txy(ρ
n+ 1

2
j ,k )Ey|

n+1
j ,k +Txz(ρ

n+ 1
2

j ,k )Ez|
n+1
j ,k

)

−ηxz
δt
2

(

Tzx(ρ
n+ 1

2
j ,k )Ex|

n+1
j ,k +Tzy(ρ

n+ 1
2

j ,k )Ey|
n+1
j ,k

)

−ηxx
δt
2

(

Txy(ρ
n+ 1

2
j ,k )Ey|

n
j ,k +Txz(ρ

n+ 1
2

j ,k )Ez|
n
j ,k

)

−ηxz
δt
2

(

Tzx(ρ
n+ 1

2
j ,k )Ex|

n
j ,k +Tzy(ρ

n+ 1
2

j ,k )Ey|
n
j ,k

)

+Ex|
n
j ,k +δtηxx

[

(∂F
y Hz)

n+ 1
2

j ,k − (∂F
z Hy)

n+ 1
2

j ,k

]

−δt

(

ηxz(∂F
y Hx)

n+ 1
2

j ,k −ηxxN tr(µxR(ρn+ 1
2

j ,k ))−ηxzN tr(µzR(ρn+ 1
2

j ,k ))

)

,

and

Ez|
n+1
j ,k =−ηzx

δt
2

(

Txy(ρ
n+ 1

2
j ,k )Ey|

n+1
j ,k +Txz(ρ

n+ 1
2

j ,k )Ez|
n+1
j ,k

)

−ηzz
δt
2

(

Tzx(ρ
n+ 1

2
j ,k )Ex|

n+1
j ,k +Tzy(ρ

n+ 1
2

j ,k )Ey|
n+1
j ,k

)

−ηzx
δt
2

(

Txy(ρ
n+ 1

2
j ,k )Ey|

n
j ,k +Txz(ρ

n+ 1
2

j ,k )Ez|
n
j ,k

)

−ηzz
δt
2

(

Tzx(ρ
n+ 1

2
j ,k )Ex|

n
j ,k +Tzy(ρ

n+ 1
2

j ,k )Ey|
n
j ,k

)

+Ez|
n
j ,k +δtηzx

[

(∂F
y Hz)

n+ 1
2

j ,k − (∂F
z Hy)

n+ 1
2

j ,k

]

−δt

(

ηzz(∂F
y Hx)

n+ 1
2

j ,k −ηzxN tr(µxR(ρn+ 1
2

j ,k ))−ηzzN tr(µzR(ρn+ 1
2

j ,k ))

)

.

Collecting the above equations, we may rewrite the equations (22) as a single linear
system

A j ,kEn+1
j ,k = Fj ,k(E

n
j ,k,ρ

n+ 1
2

j ,k ,∂F
y H

n+ 1
2

j ,k ,∂F
z H

n+ 1
2

j ,k ), ∀( j,k), (28)
whereA j ,k is a 3×3 matrix andFj ,k a linear function.

Thus, the resolution of the Ampere equations on the whole domain, yields a bloc di-
agonal linear system (blocs are the 3×3 sub-matrices given by the equation (28) for
each point( j,k) of the domain). This system is easily solvable by a direct method.

3.2.2 Boundary conditions

The consequence of using a discrete Fourier transform (FFT)for the spatial deriva-
tives is to periodize the domain in both directions. The domain could be considered

13



z

y

t = nδt

t = (n+ 1
2)δt

Ex, Ey, Ez

Hx, Hy, Hz, ρ

Figure 3. Pseudospectral scheme for the electromagnetic wave (E,H) and the density ma-
trix ρ.

as a tore. The pulses, which, physically, should leave the domain, now reenters the
computational domain and may interfere with the pulses still in propagation. This
is called thewraparoundeffect.

To counter the wraparound effect due to the FFT, we use perfectly matched layers
(PML) boundary conditions [19]. We shall now describe the use of these conditions
in our particular case.

In the absorbing layers, the electric fieldE and magnetic fieldH in thex-direction
are decomposed as

Ex = Exy+Exz, (29)
Hx = Hxy+Hxz. (30)

Then the electric field is driven in the PML cells by

∂tExy+σyExy = −µ0c2∂yHz,

∂tExz+σzExz = µ0c2∂zHy,

∂tEy +σzEy = µ0c2∂zHx,

∂tEz+σyEz = −µ0c2∂yHx,

and the magnetic field by

∂tHxz+σ∗
zHxz= µ−1

0 ∂zEy,

∂tHxz+σ∗
yHxz= −µ−1

0 ∂yEz,

∂tHy +σ∗
zHy = −µ−1

0 ∂zEx,

∂tHzy+σ∗
yHzy= µ−1

0 ∂yEx.
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These equations are discretized using an exponential time step as shown in [7].

Whenσy = σz = σ∗
y = σ∗

z = 0, we get the Maxwell equations in a linear medium.
In the absorbing layers, we use a quadratic or cubic profile with 10 PML cells. In
Fig. 4, we have represented the areas where the PML coefficients σ andσ∗ are not
vanishing. For instance, we took at the entry of the domain

σz(k) = σmz(1−
k
nz

)3,

wherek is the z-coordinate of the point considered,nz the number of PML cells in
this direction andσmz= 114.9 c

nzδz. We obtainσz at the exit by periodicity. For the
PML cells in directiony, we use the same formula after replacingδz by δy, nz by
ny.

Physical domain

y

z

σzσz

σy

σy

σyz

σyz σyz

σyz

Figure 4. Non-vanishing PML coefficients in the absorbing layers around the physical do-
main.

In contrast with the previous scheme, the incoming wave-field can not be intro-
duced within the boundary conditions. So the incoming pulseshould be put in
the domain as initial datum. The linear medium before the crystal has to be large
enough to contain entirely this datum (this prevents the study of sinusoidal waves
for instance).

3.2.3 Parallelization

In the Bloch equations (3), the space variablesy andz act as parameters. These
equations do not involve any spatial derivatives. They can be solved at each point
in space independently from each other. The sharing of the resolution between sev-
eral processing units is straightforward. The computational domain is divided as
described in Fig. 5. In fact, as shown in [13], a quasi linear speed-up with the num-
ber of CPU could be observed.

The development of parallel algorithms for the Yee scheme isalso well known (see
[7]). In our case, the computation of the polarization term should also be shared

15



CPU 1

CPU 2

CPU 3

CPU 4

z

y

Figure 5. Load sharing between four processors.

between the CPU. With the first scheme of Sec. 3.1, this yieldsa severe decrease of
the efficiency of the parallel method [13].

With the pseudospectral scheme, the polarization term is computed on the same
points in space as the wave-field and the density matrix. Their computations are
purely local to a given CPU. The only process requiring exchanges between the
processing units is the computation of the spatial derivatives in they-direction.
With a parallel algorithm for the FFT, this scales well with the number of CPU.

3.2.4 Conclusion

In this scheme, we have used central differencing and central averaging in time.
The spatial derivatives are computed on the whole domain with a FFT algorithm.

Proposition 3 The PSTD scheme is of second order in time and space.

From [10], we could get the stability criterion for the linear scheme (i.e. without
the polarization term)

cδt

√

1
δz2 +

1
δy2 <

2
π
, (31)

wherec is the speed of light in the medium,δy andδz the two space steps.

Furthermore, in contrast with FDTD schemes, this scheme do not introduce numer-
ical dispersion through the approximation of the spatial derivatives. This is quite
interesting when studying the propagation of ultrashort pulses in media with dis-
persive nonlinearities.

3.3 Second FDTD scheme using a centered nonlinearity

The main drawback of the scheme 3.1 can also be alleviated without using a spectral
method. In this section, we shall present a new FDTD scheme. We will describe the
wave field with the pair(D,H) instead of the pair(E,H).
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3.3.1 Discretization of the Maxwell equations

In the bidimensional case, in the(D,H) formulation, the Maxwell equations be-
come























































∂tDx = ∂yHz−∂zHy,

∂tDy = ∂zHx,

∂tDz = −∂yHx,

µ0∂tHx = −∂yEz+∂zEy,

µ0∂tHy = −∂zEx,

µ0∂tHz = ∂yEx.

(32)

The Maxwell equations on(D,H) do not involve explicitly the polarizationP. How-
ever, the polarization is still necessary to computeD from E or E from D.

z

y

t = nδt

t = (n+ 1
2)δt

Dx
Dy
Dz

Hz
Hy
Hx, ρ, P

Figure 6. FDTD scheme with centered nonlinearity for the electromagnetic wave(D,H),
the polarizationP and the density matrixρ.

With the scheme of Fig. 6, we obtain the following set of equations

µ0(D
tHx)

n
j+ 1

2 ,k+ 1
2
= −(DyEz)

n
j+ 1

2 ,k+ 1
2
+(DzEy)

n
j+ 1

2 ,k+ 1
2
,

µ0(D
tHy)

n
j ,k+ 1

2
= −(DzEx)

n
j ,k+ 1

2
, (33)

µ0(D
tHz)

n
j+ 1

2 ,k
= (DyEx)

n
j+ 1

2 ,k
,

which allows us to evaluate the magnetic field at each time step provided the electric
field is known.
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Using the same scheme, we obtain the equations on the electric inductionD:

(DtDx)
n+ 1

2
j ,k =

[

(DyHz)
n+ 1

2
j ,k − (DzHy)

n+ 1
2

j ,k

]

− (DyHx)
n+ 1

2
j ,k

(DtDy)
n+ 1

2

j+ 1
2 ,k

= (DzHx)
n+ 1

2

j+ 1
2 ,k

,

(DtDz)
n+ 1

2

j ,k+ 1
2

= −(DyHx)
n+ 1

2

j ,k+ 1
2
,

(34)

where we compute(∂yHz)|
n+ 1

2

j ,k+ 1
2

and(∂zHy)|
n+ 1

2

j ,k+ 1
2

with equations (6) and (7).

First, let us treat the semi-discretization in time of the Maxwell-Bloch equations.
Let us assume that all the physical values are computed for timet ≤ tn = nδt. We use
the Faraday equations (33) to computeHn+ 1

2 on the whole domain. Thanks to the
Bloch equations (3), we get the density matrixρn+ 1

2 . With the Ampere equations
(34), we obtainDn+1.

To proceed, we need to estimate the electric fieldEn+1 to solve the Faraday equa-
tions (33) at timetn+ 3

2
. Four steps will be necessary to obtain its value. The electric

field is given by the equation

En+1 = η(Dn+1−Pn+1), (35)

so we have to approximate the polarizationP at timetn+1.

The polarizationPn+1 could be computed from

Pn+1 = N tr(µdρn+1),

or from the equation

(DtPd)
n+ 1

2 = N tr(µρn+ 1
2 )−

ıN
~

tr(µd[V
n+ 1

2 ,ρn+ 1
2 ]), d ∈ {x, y, z}.

As the density matrix is evaluated at timestn+ 1
2
, the first equation would yield an

implicit scheme, which we wish to avoid. We use the latter equation to compute the
polarization term, soVn+ 1

2 is to be estimated. If we use the centered approximation
Vn+ 1

2 = Vn+1+Vn

2 , we would encounter the same problem as with the first FDTD
scheme of Sec. 3.1.

Thus, we use two more steps to obtain the potentialVn+ 1
2 . In a first step, we com-

pute

Pn+ 1
2 = N tr(µρn+ 1

2),
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Figure 7. Algorithm of the FDTD scheme with centered nonlinearity.

then the electric fieldEn+ 1
2 is obtained through

En+ 1
2 = η

(

Dn+1+Dn

2
−Pn+ 1

2

)

, (36)

It is then straightforward to compute the potentialVn+ 1
2 and the polarizationPn+1.

Finally, we haveEn+1 from Eq. (35).

The algorithm is summarized in Fig. 7.

For describing the full discretization of the equations, weintroduce a notation: for
a functionu on the grid, we define the central averaging operatorA by

(Ayu) j ,. =
u j+ 1

2 ,. +u j− 1
2 ,.

2
,

using the same idea, we defineA
z, A

t .

The electric fieldE is discretized asD for timestn and asP for timestn+ 1
2
.
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To computeEn+ 1
2 from Dn, Dn+1 andPn+ 1

2 , we use

E
n+ 1

2

j+ 1
2 ,k+ 1

2
= η.













(Ay,z,tDx)
n+ 1

2

j+ 1
2 ,k+ 1

2
−Px|

n+ 1
2

j+ 1
2 ,k+ 1

2

(Az,tDy)
n+ 1

2

j+ 1
2 ,k+ 1

2
−Py|

n+ 1
2

j+ 1
2 ,k+ 1

2

(Ay,tDz)
n+ 1

2

j+ 1
2 ,k+ 1

2
−Pz|

n+ 1
2

j+ 1
2 ,k+ 1

2













. (37)

Finally, the electric fieldEn+1 is obtained fromDn+1 andPn+1 through the equa-
tions

Ex|
n+1
j ,k = ηxx

(

Dx|
n+1
j ,k − (Ay,zPx)

n+1
j ,k

)

+ηxz

(

(AzDz)
n+1
j ,k − (Ay,zPz)

n+1
j ,k

)

,

Ey|
n+1
j+ 1

2 ,k
= ηyy

(

Dy|
n+1
J+ 1

2 ,k
− (AzPy)|

n+1
j+ 1

2 ,k

)

, (38)

Ez|
n+1
j ,k+ 1

2
= ηzx

(

(AzDx)
n+1
j ,k+ 1

2
− (AyPx)

n+1
j ,k+ 1

2

)

+ηzz

(

Dz|
n+1
j ,k+ 1

2
− (AyPz)

n+1
j ,k+ 1

2

)

.

3.3.2 Discretization of the Bloch equations

At the wavelengths, we consider, a KDP crystal is transparent. The relaxation terms
in the Bloch equations [16] may be neglected. Thus, the Blochsplitting is no longer
necessary as the Bloch equations might be rewritten as

∂tρ jk = −
ı
~
[H0+V,ρ] jk, (39)

whereH0 = diag(~ωi)0≤i≤N is the matrix describing the free Hamiltonian operator.

The Bloch equations can be solved using their analytic solution written at Eq. (15),
where we replaceV byV +H0. The discretization is performed thanks to equations
(16) and (17).

3.3.3 Boundary conditions

In the directionz of propagation of the wave, we wish to consider the boundaries
as transparent for the wave. For this purpose, we shall use the Silver-Müller condi-
tions. Let us recall that these conditions are written in thelinear isotropic material
(see Fig. 1).

If (Di ,Hi) is the incident wave-field andn the outer normal vector to the domain,
these conditions are written as

(D−Di)×n−
1
c
(H−Hi)×n×n = 0, (40)
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at the entry of the domain (z= 0) and

D×n−
1
c

D×n×n = 0, (41)

at the exit.

In the bidimensional case, this yields

{

−Dy +Di
y + 1

c(Hx−H i
x) = 0,

Dx−Di
x + 1

c(Hy−H i
y) = 0;

(42)

and
{

Dy + 1
cHx = 0,

Dx−
1
cHy = 0.

(43)

These equations are written, using the scheme of Fig. 6, for every y, z= 1, z= Nz

and for timetn+1. The missing values of the magnetic fieldHn+ 3
2 are obtained with

the Faraday equations (33). This gives us the electric induction D at the boundaries,
which could not be recovered from the equations (34). The magnetic field H is
interior to the domain, and can be computed completely from equations (33).

In the transverse directiony, we use periodic conditions.

Remark 4 These boundary conditions do not require the entire pulse tobe in the
domain as an initial datum (as with the PSTD scheme).

3.3.4 Conclusion

In this scheme, we have only used central differencing and averaging. The overall
accuracy of the scheme is second-order:

Proposition 5 The FDTD scheme with centered nonlinearity is of second order in
space and time.

From the dispersion analysis of the FDTD scheme for the Maxwell equations, we
can derive the stability criterion of the linear scheme (i.e. when the polarization
term is vanishing) [7]

cδt

√

1
δz2 +

1
δy2 < 1, (44)

wherec is the speed of light in the medium,δy andδz the two space steps.

Obtaining a stability for the whole nonlinear scheme is a complex task and is still
an open question beyond the scope of this article.
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4 Experiments

A particular experiment will be of much importance in this section for highlight-
ing numerical problems as well as for studying the validity of the Maxwell Bloch
model. This experiment is a run of second harmonic generation. Second harmonic
generation is a physical phenomenon, where as the wave-fieldat the frequencyω
propagates in the crystal, the optical quadratic nonlinearity creates a wave-field at
the frequency 2ω. Each molecule of the crystal may generate a second harmonic
with its own phase. In order for this second harmonic to grow,these phases must
match. In a uniaxial crystal like the KDP, the angle of incidence can be chosen to
make these phases match, this angle is called thephase matching angle. Owing to
the expression of the quadratic susceptibility of a KDP crystal, we know that (see
page 44 of [11] for instance), if the wave is initially polarized in they-direction, the
second and even harmonics will appear in thex-direction.

The dipolar matrix for a KDP crystal is given in [1]. We believe that the method
exposed in [1] could be extended to treat a large class of crystals. For instance, in
[2], we perform several computations with an AgGaS2 crystal.

4.1 Numerical considerations

To compare the computational cost of the three schemes, we let a wave-field travel
through a KDP crystal.

We measure the computations times for the three schemes for various crystalline
lengths. In this experiment, we study the propagation of a (5fs, 200µm, 109 V/m)
Gaussian pulse at normal incidence. We tookδz= 10.6nm (100 points per wave-
length),δy = 5.6µm (100 points in the transverse direction),δt = 0.013fs.

We put the incoming wave-field as an initial datum in the linear material (see Fig.
1). Thus the crystal starts after 4µm of this medium.

As shown on Fig. 8, the two new schemes presented in this paperare more than
two times faster than the scheme of Sec. 3.1 ([4]). The FDTD scheme [4] is clearly
too expensive to be used for a physical experiment.

Remark 6 The scheme [4] is heavily optimized for the testing platform(mainly
through [14]). This optimization is still a work in progressfor the two other schemes
(for instance we could improve the efficiency of the FFT algorithm) and we hope to
improve the results shown in Fig. 8.
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Figure 8. Computation times for the three schemes (PSTD=pseudospectral scheme,
NLc=FDTD scheme of Sec. 3.3) for several crystalline lengths on an IntelR©

XeonTM2.2 GHz.

4.1.1 Space and time steps sizes

In the linear isotropic case, we know from [3,10] that the space step can be chosen
as small as 16 points per wavelength (FDTD) or 2 points per wavelength (PSTD).
For the one-dimensional Maxwell-Bloch equations in isotropic material, 30 points
per wavelength were sufficient [15]. It shall also be noted that this is relative to the
wave-length of the higher harmonic we have to study.

In this section, we show that for the nonlinear anisotropic case, space steps have
to be taken much smaller than expected. In Fig. 9, we have plotted the results of
a second harmonic generation experiment after 20µm of propagation in a crystal
of KDP. The incoming wave-field is a 20 fs Gaussian pulse of 108 V/m initially
polarized in the directiony. The even harmonics appear in thex-coordinate of the
electric field. This coordinate of the field is plotted for several sizes of the space
step ranging from 40 to 100 points per wavelength. TheEy component does not
change with the various step sizes, so we have not plotted it.We have used the
pseudospectral scheme for the computations.

From [10], we could expect that a space step of 40 points per wavelength in the
fundamental harmonic (that is to say 20 points per wave-length in the second har-
monic) would be sufficient to correctly describe the wave-matter interaction. As
seen in Fig. 9, this is far from being the case.

Grids coarser than 80 points per wavelength are clearly not adapted to study second
harmonic generation and nonlinear effects.
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Figure 9.Ex component and its Fourier transform in an experiment of second harmonic
generation using the pseudospectral (PSTD) scheme for several sizes of the space step. For
comparison, we have also plotted the result obtained by the scheme of Sec. 3.1 (FDTD).
The frequency is relative to the frequency of the incoming wave-field.

4.1.2 Bloch splitting

We could expect that using a Strang splitting method for solving the Bloch equa-
tions or not would make a difference only for coarser grids. We run a second har-
monic generation experiment at the phase matching angle in 10µm of KDP. The
incoming wave is a 20 fs Gaussian pulse of 108 V/m. The results are plotted on Fig.
10. We have used the one-dimensional PSTD scheme, where the wavelength of the
pulse is 1.06µm. The time stepδt is determined fromδz and the stability criterion
of Eq. (31) with a CFL condition of 0.75.
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Figure 10. Head of the main peak of theEx component in a second harmonic generation (as
in Fig. 9) for several numbers of points per wavelength with asplitting for Bloch equations
(dotted lines) or without (plain lines).

Using a splitting method for the Bloch equations, we underestimate the quadratic
nonlinearity. As the grid size decreases, the intensity ofEx increases. On the con-
trary, if the Bloch equations are solved directly without a splitting method, we tend
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to overestimate the quadratic nonlinearity. As the grid size decreases, the intensity
of Ex decreases.

4.2 Physical experiments

In the following experiments, instead of plotting the components of the electric
field E of the wave-field as usual, we use the energy flux in each polarization. The
energy flux is defined as

Fx(y,z)=
Z T

0
Ex(t,y,z)Hy(t,y,z)dt,

Fy(y,z)=
Z T

0
Ey(t,y,z)Hx(t,y,z)dt,

where we run the experiment fort ∈ [0,T].

4.2.1 Second Harmonic Generation with phase matching

We will perform a second harmonic generation experiment at the phase matching
angle. We inject a Gaussian (5 fs, 200µm wide, 108V/m) pulse in 10µm of KDP.
The pulse is initially polarized in they-direction.

In this run, we used the FDTD scheme of Sec. 3.3. The grid size is 100 points per
wavelength in thez-direction (δz= 10.6 nm). We took 100 points in the directiony
and a CFL condition of 0.8 in Eq. (31).

The results are shown in Fig. 11 and 12, where we have plotted two components
of the energy flux in the crystal. The coordinateFy contains the fundamental har-
monic and odd orders harmonics. The coordinateFx contains even harmonics and
in particular the second harmonic.

On Fig. 11, we observe that the fundamental harmonic does notseem to be much
affected by the travel through the crystal. The energy at theentry (y = 0µm) and at
the exit (y=10µm) is quite the same. Indeed, the crystal length is too short for the
SHG process to significantly decrease the intensity of the base harmonic.

On Fig. 12, we observe the evolution of theFx component of the energy flux. We
see that initially there is no energy in this polarization. As the pulse propagates, the
energy grows. The growth is bigger in the center of the beam, which is where most
intensity of the fundamental harmonic is located. We also observe that the beam is
thinner in this polarization.

We will now study the evolution of the electric field at the center of the beam. On
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Figure 11. Energy fluxFy in a SHG experiment at the phase matching angle after a propa-
gation in 10µm of KDP. We have used arbitrary units for the intensity.

Figure 12. Energy fluxFx in a SHG experiment at the phase matching angle after a propa-
gation in 10µm of KDP. We have used arbitrary units for the intensity as in Fig. 11.

Fig. 13, we have plotted the evolution of the coordinateEy of the electric field at
seven points in the crystal.

The intensity does not seem much affected by the propagation. The width of the
spectrum shall also be noted as we study the propagation of a short pulse. We have
plotted the evolution of theEx component on Fig. 14.

We can see the growth of the second harmonic in this polarization. There is also
optical rectification as shown on the lower frequencies of the spectrum as expected.
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Figure 13. TheEy component and its Fourier transform in an experiment of second har-
monic generation for seven points in the crystal. The amplitude of the Fourier transform is
plotted in arbitrary units, the frequency is relative to theone of the incoming beam.
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Figure 14. TheEx component and its Fourier transform in an experiment of second har-
monic generation for seven points in the crystal. The frequency units of the Fourier trans-
form is relative to the frequency of the incoming laser pulse. The amplitude of the spectrum
is shown in arbitrary units.

4.2.2 Second Harmonic Generation without phase matching

In this section, we study the effect of phase mismatch on the second harmonic
growth. In this run, we take an angle of incidence far from thephase matching. We
also choose to take a very thin beam in order to have an important diffraction effect.

The diffraction will bend the wavefront of the propagating wave-field. The phase
matching condition will then be fulfilled in another direction that the direction of
propagationz.

In this experiment, the laser beams impinges a KDP crystal of50µm at normal
incidence. We consider a 3fs Gaussian pulse, whose intensity is 1010 V/m and width
4µm.

We use the pseudospectral scheme and take 80 points per wavelength in the direc-
tion of propagation and 150 points in the transverse direction, which givesδz =

27



11.8 nm,δy = 149.3 nm andδt = 0.0014 fs.

The two components of the energy flux after 400 fs are shown on Fig. 15 and 16.

Figure 15. Energy fluxFy in a SHG experiment without phase matching after a propagation
in 50µm of KDP (268 fs). We have used the same arbitrary units for theintensity.

On Fig. 15, we can observe the effect of the diffraction on thelaser beam.

Figure 16. Energy fluxFx in a SHG experiment without phase matching after a propagation
in 50µm of KDP (268 fs). We have used the same arbitrary units for theintensity as in Fig.
15.

On Fig. 16, second harmonic generation is observable. The two second harmonic
pulses do not propagate in the direction of propagation of the fundamental har-
monic. After a few microns, the diffraction starts to attenuate the intensity of the
laser beam.
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4.2.3 Self-focusing effect

For intense laser beams, the optical Kerr effect can produceself-focusing. In this
run, we study this effect with our model.

We shall consider a 7.5 fs Gaussian pulse, whose strength is 1.5×1010 V/m and
width 12µm. We have taken a very intense laser beam to reduce the crystalline
depth needed to observe the self-focusing effect. The wave-field impinges a KDP
crystal of 90µm at normal incidence.

We use the pseudospectral scheme of Section 3.2. For this experiment, we took
100 points per wave-length in the directionz (δz = 10.6nm) and 150 points in
the transverse directiony (δy = 149.3nm). The CFL parameter is taken to be 0.8
(δt = 0.0014fs). To avoid the wraparound effect, we have added 5 PML cells in
each transverse boundary and 10 in the normal boundaries.

To speed-up the computations, we have used two CPU as described in paragraph
3.2.3.

On Fig. 17, we have plotted the energy fluxFy after 400 fs.

Figure 17. Energy flux after 400 fs of propagation in a KDP crystal. We have used arbitrary
units for the intensity of the energy flux.

The self-focusing effect is easily observable on Fig. 17. The Maxwell-Bloch model
renders the cubic nonlinearity of the crystal. Yet, we shallnote that for such inten-
sity, the crystal would have melt. To study such phenomenon,we should complexify
the model to treat the ionization of the material.

However, for practical applications, it is important to have a correct rendering of

29



the cubic nonlinearity in nonlinear crystals. Indeed, as shown in [20], the cubic
nonlinearity may decrease the efficiency of second harmonicgeneration.

5 Conclusion

In this paper, we have presented three numerical schemes forthe bidimensional
Maxwell-Bloch equations. The first scheme, which is a directextension of the uni-
dimensional scheme [9] is too computationally expensive tobe really useful for
distances longer than a few dozens of microns. The second oneuses a pseudospec-
tral method and yields a very simple scheme, which can be easily parallelized. The
last FDTD scheme is quite fast to solve compared to the first scheme. It is also
rather simple to write as the computation of the nonlinearity is separated from the
solving of the Maxwell equations.

For large distances of propagation and short pulses, one should use the PSTD
scheme as it is the fastest of the three exposed in this paper.To study longer pulses,
the last FDTD scheme is more efficient as the laser beam does not have to be en-
tirely contained in the computational domain as with the pseudospectral scheme.

We have also shown the high complexity of the nonlinearity rendered by the Maxwell-
Bloch model. As shown on paragraph 4.1.1, the grids used haveto be much finer
than with Schrödinger models for instance. This could be explained by the interplay
between the anisotropy of the material and the optical nonlinearities. The Maxwell-
Bloch model renders many physical effects (high-order dispersive nonlinearities,
saturation effect, Raman scattering as shown in [2]). Theirrelative contributions
are hard to fully understand.

The schemes presented in this paper could easily be extendedto treat three-dimensional
wave-fields. However, the amount of computations involved would probably be be-
yond the reach of common workstations.
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