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Abstract

We present a high-order particle-in-cell (PIC) algorithm for the simulation of ki-
netic plasmas dynamics. The core of the algorithm utilizes an unstructured grid dis-
continuous Galerkin Maxwell field solver combining high order accuracy with geometric
flexibility. We introduce algorithms in the Lagrangian framework that preserve the fa-
vorable properties of the field solver in the PIC solver. Fast full-order interpolation and
effective search algorithms are used for tracking individual particles on the general grid
and smooth particle shape functions are introduced to ensure low noise in the charge
and current density. A pre-computed levelset distance function is employed to represent
the geometry and facilitates complex particle-boundary interaction. To ensure charge
conservation we consider two different techniques, one based on a projection approach
and one on hyperbolic cleaning. Both are found to work well, although the latter is
found be too expensive when used with explicit time integration. Examples of simple
plasma phenomena, e.g., plasma waves, instabilities, and Landau damping are shown
to agree well with theoretical predictions and/or results found by other computational
methods. We also discuss generic well known problems such as numerical Cherenkov
radiation and grid heating before presenting a few two-dimensional tests, showing the
potential of the current method to handle fully relativistic plasma dynamics in complex
geometries.
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1 Introduction

The reliable, accurate, and efficient computational modeling of plasma dynamics remains a
challenge of very significant proportions. Not only due to the inherent nature of the problem,
involving phenomena spanning the smallest (atomistic particle-particle dynamics) to the
largest scales, e.g., solar flares and galaxy dynamics, but also because the very significant
interactions between the many scales and the long range electromagnetic forces. However, the
very broad range of applications, e.g., fusion energy, both by means of magnetic confinement
and laser ignited devices; high-power microwave generation; large scale particle accelerators;
and a variety of plasma based technology, warrant that significant resources be spend on the
development of accurate, robust, and efficient tools for the modeling of such problems.

The direct solution of many such problems could in principle be accomplished by solving the
Vlasov equation in a fully adaptive fashion. However, due to its 6+1 dimensional nature,
such direct modeling remains out of reach for problems in complex geometries and of realistic
complexity in general.

In the last few decades particle-in-cell (PIC) methods have proved valuable as an alternative
to the Vlasov equation for the modeling of a variety of problems, e.g., microwave and fusion
devises, and astrophysical problems. Typically, in this approach one solves the Maxwell
equations and/or a Poisson equation on a Cartesian grid with a second order finite difference
method or a Fourier spectral method[1]. The particles are forced by the fields and tracked
in a Lagrangian framework. Subsequently, the particles are coupled with the field solver by
weighing the sum of Coulomb forces onto the grid.

Over the last two decades, an number of methods, based on similar ideas, has been developed,
mainly with the aim of improving on the computational efficiency and flexibility of PIC. In
particular the exact charge conserving scheme proposed in [3] is used widely due to its
elimination of the need to directly impose Gauss’ Law to ensure charge conservation. In [4]
this technique is extended to include a multi-block body-fitted finite element method with the
aim of increasing geometric flexibility. Umeda et al. [5] suggest a zigzag particle trajectory
to improve upon the computational efficiency in [3], while in [6] the time step restriction of
explicit methods is tackled with an implicit Maxwell solver. All of these methods are second
order accurate in space and, due to splitting, in time and are, in most cases, restricted to
simple Cartesian or block structured geometries.

However, the limitations of these techniques, as powerful as they are, are beginning to emerge
as essential bottlenecks in the modeling of large scale phenomena and devises, e.g., high
frequency, high power microwave generation and propagation, and high frequency particle
accelerator modeling[2]. In particular, the reliance on a simple staggered Cartesian grid
in the finite-difference time-domain solver severely limits the geometric flexibility as well
as the accuracy of the method, which is limited to second order. This latter issue causes
considerable problems when large scale problems are being considered, since the limited
accuracy results in significant dispersion errors unless prohibitively fine grids are being used.

Furthermore, the classic finite difference based methods suffer from a number of pathological



problems, intimately linked to the properties of the overall scheme. As discussed in [1] the use
of simple particle shape functions causes a numerical grid heating effect due to aliasing. The
only reasonable way to overcome this is through the use of smoother particle shapes which,
however, would destroy many of the desirable properties of the original scheme, e.g., exact
charge conservation, and is, thus, not used. Furthermore, the inherent dispersion properties
of the finite-difference approximation results in an artificial numerical Cherenkov radiation
when modeling highly relativistic problems [7]. This is caused by the concave nature of the
numerical dispersion relation of the field solver, causing fast waves to propagate slower than
is physically meaningful, i.e., fast particles will create Cherenkov radiation, purely due to
the shortcomings of the numerical approach. The only way to address this in a systematic
way is to choose a scheme with a strictly convex dispersion relation.

This paper presents the first step in the development of a PIC method which has the poten-
tial to effectively address all of the shortcomings of the existing methods. The computational
kernel for the field solver in the PIC method is the discontinuous Galerkin field solver devel-
oped [9] for the time-domain Maxwell equations. This method secures geometric flexibility
through a fully unstructured body-fitted grid, arbitrary order of accuracy , inherent but
controllable high frequency dissipation through fluxes, and excellent stability properties.
Furthermore, the dispersion relation of the discontinuous Galerkin method is strictly convex
[8], effectively eliminating the source of numerical Cherenkov radiation as discussed above.
The scheme has been tested extensively for pure 2D and 3D electromagnetic problems and
shown itself to be highly efficient, accurate, and robust.

The particle mover relies on high-order interpolation, efficient local search algorithms to lo-
cate the particles, and a level set approach to represent geometries, enabling elastic/inelastic
particle interactions with complex geometrical boundaries. Charge and current redistribu-
tion computations use smooth weight functions, which enables a significant decrease in the
number of particles needed in a computational cell and reduces the finite grid instability as
compared to the simple redistribution schemes typically used. Divergence cleaning is done
either through an advective approach, maintaining a very high parallel efficiency, or through
a classical projection scheme leading to the solution of a Poisson equation. Particles as well
as fields are all being advanced in time with a high-order explicit Runge-Kutta method. As
we shall illustrate through a number of computational experiments and benchmarks, this
initial stage of the development suggests that the general algorithm has the potential to be
a successful and powerful tool for the modeling of general plasma kinetics.

The remainder of this paper is organized as follows. In Sec. 2 we recall the basic governing
equations while Sec. 3 contains a detailed discussion of the many elements of the algorithm,
both for the field advancement and the particle dynamics. In this section we also discuss
particle shape functions and charge conservation schemes. This sets the stage in Sec. 4 for
a number of numerical experiments, both of a simple nature as well as a few more complex
two-dimensional examples. This section also contains a discussion of the finite grid instability
and its behavior and control in the current algorithm. Section 5 contains a few concluding
remarks as well as a number of suggestions for future work alone the lines initiated here.



2 The Physical Model

For description of the fields, we consider the two-dimensional Maxwell equations in normal-
ized vacuum TE form written in conservation from,
oq

5tV F=J, (1)

V-E=p (2)

where g = [Em,Ey,BZ]T, F = [F,,F,), F, = [0,—-B,,—E,|", F, = [B,,0,E,]", and J =
[Tz, Jy,O]T. Throughout E, B, J and p represent the electric field, the magnetic field, the
current, and the charge density, respectively, while the subscripts identify the direction of the
vector field variable. Vacuum permittivity, permeability and the speed of light, ¢, are used
for normalization of Eq.(1). A reference length, Ly, normalizes space and time as @ = /Ly
and t =1/(L;/c), respectively.

Particles are described in a purely Lagrangian sense using

dx
d—tp - vpa (3)
dmuv
dtp = ¢(E+wv,x B), (4)

where @, and mwv, denote the non-dimensional particle coordinate and momentum, respec-
tively, with ¢ and m representing the particle charge and mass, respectively. For high-speed

plasma the relativistic correction applies to m as m = mg/,/(1 — |v,|?) where my is the mass
at rest.

The particles, represented by ¢, «,, and mwv,, couple to the fields through the space charge,
p, and the induced current density, J, as

ple) = Zqz (lzp —2))/V, (5)

J(x) = Zq,v, (lzp — )/ V. (6)

Here 4 is particle index and N, is the total number of particles in an infinitesimal volume V.
S(|lz, — |) is a particle assignment function, the exact meaning and form of which we shall
discuss in more detail later.

3 The Numerical Approach

As simple as the problem description given above may appear, its formulation as a numerical
scheme is far from trivial. The main complication is found in the simple observation that



the fields are described in an Eulerian frame while the charge dynamics more naturally is
discussed in a purely Lagrangian setting. A computational approach will need to effectively
connect these two essentially different pictures. In the following we shall discuss in some
detail the individual components of the algorithm

3.1 The Field Solver

To advance Maxwell’s equations, Eq.(1), in time we shall use a nodal high-order discontinuous
Galerkin method, described in detail in [9]. In this approach, the computational domain,
2, is subdivided into non-overlapping triangular elements, D, to ensure geometric flexibility.
On each element, we shall assume that the local solution can be represented as an n’th order
polynomial of the form

N N
ay(@,t) =) q(z; t)L;(x) = > q;(t) (=) | (7)
j=1 j=1
where L; is the genuine multi-dimensional Lagrange interpolant associated with the N grid
points, &;, given on the triangular element. In this work we use the nodes given in [10]. For
an n’th order polynomial, we have

(n+1)(n+2)

N= ,
2

as the number of local grid points or degrees of freedom on each element for each variable.

To seek equations for these N local unknowns, we require the local approximate solution,
gy, to Maxwell’s equations to satisfy

/ (aq—N YV Fy - JN> Li(z)dz = 75 Li(z)n - [Fy — F*]dz. (8)
D\ Ot oD

Here, F* signifies a numerical flux and n is an outward pointing unit vector defined at
the boundary of the element. The role of the numerical flux is to connect the elements
and ensure stability of the computational scheme. If the numerical flux is consistent, the
scheme is clearly consistent. On the other hand, boundary/interface conditions are not
imposed exactly but rather weakly through the penalizing surface integral. Within this
multi-element context, the formulation is inherently discontinuous and yields, through its
very construction, a highly parallel local scheme.

With the operators,
M, = /D LiLjdz, S = /D VI;Lide, Fy= 7{8 LiLjda, (9)
we recover from Eq.(8) the fully explicit local scheme,

cdG e e et
Md—(tlJrS-F—MJ:Fﬁ-[F—F], (10)
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where g represents the 3 N-vector of nodal values, q,, at D. Similarly, ﬁ’, j, and F denote
nodal values for the flux, the current density, and the numerical flux, respectively.

To finalize the formulation of the scheme, we must specify the numerical flux F*, which
is responsible for passing information between the elements and imposing the boundary
conditions. Given the linearity of Maxwell’s equations, we use a flux like

. .« | mx(an x[E]—[B])

n[F_F]_{nx(anx[B]—l—[E]) ’ (11)
where [Q] = Q@ — Q7 measures the jump in the values across an interface. Superscript
'+’ refers to the values from the neighbor element while superscript ’—’ refers to field values

local to the element. Note that taking o = 1, one recovers the classic, dissipative, upwind
flux[11], while & = 0 leads to a purely dispersive central flux. Clearly one is free to take
values in between these two extremes with « controlling the amount of dissipation added.
A complete analysis in terms of accuracy and stability of the scheme above can be found in
[9] with further details in [8].

The set of linear ODE’s in (10) is integrated with the low storage, fourth order Runge-Kutta
scheme (RK4) from Carpenter and Kennedy[12],

Vi-1 7t 12
g = g ¥ Baw;, (12)

w; = qqw;_y + AtF(t;_y, q"), } i=1,2,..,s,
where oy = 0 for the algorithm to be self-starting, ¢© = ¢" ™', ¢©®) = ¢", and t; = t" ' +¢;At.
This is a 2N storage scheme, since only g and w need storage, thus reducing to half the
memory usage over a classic 4th order Runge-Kutta method. The current scheme is a five
stage method with the coefficients [12] are given by,

a; = 0.0 B1 = 0.1496590219993 cp=0.0
g = —0.4178904745 B2 = 0.3792103129999 co = 0.1496590219993
ag = —1.192151694643 B3 = 0.8229550293869 c; = 0.3704009573644 .  (13)

ay = —1.697784692471 Bs = 0.6994504559488 ¢y = 0.6222557631345
as = —1.514183444257 (35 = 0.1530572479681 cs = 0.9582821306748

3.2 Tracking the Particles

Lagrangian tracking of the particles consists of three stages per particle, including searching
the element a particle is located in, interpolating the field variables to the particle location,
and pushing the particle forward with a time integration method.

In [13] a tracking algorithm is discussed in a system that only couples the field equations
to the particles in one direction, e.g., passive advection. It was shown that interpolation
and time integration may, in most cases, be of a lower order than the approximation order
of the spatial and time discretization of the field equations. From numerous tests, however,
it has become clear that only full order interpolation using Eq.(7) suffices in a system that
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fully couples particles and field equations in both directions. In full order interpolation the
interpolating polynomial order is equal to the order of the polynomial used to represent the
fields.

A fast full-order interpolation technique is discussed in the Appendix. Lower order inter-
polation severely influences the accuracy of the total scheme and may lead to instability in
many situations. Similarly the time scheme for integration of Eq.(4) has to be the same as
the time scheme that integrates the field equations, i.e., Eq.(12).

The particle localization scheme follows [13], where the particle’s element is found by com-
paring the mapped particle coordinate to the coordinates of the standard element for each
element on the grid. The mapping takes advantage of the simple inverse of the linear blend-
ing formula for triangles. For the smooth mapping of a straightsided triangle the inverse is
straightforward and is given as,

€, = Ciz, + Oy, (14)

where £, is the mapped coordinate. Matrix C; and vector Cy contain constants that are
functions of the triangles’ vertex coordinates. Even though the elements are typically large,
scanning all elements in a large grid is prohibitive. We reduce the cost dramatically by
storing information about the elements connected to one node, and scan only these elements
if a particle leaves the element close to this node. Since high-order elements are typically
large and we are considering purely explicit time stepping here, particles do in general not
leave the bounds of this cloud of elements.

3.3 Weighing of the Particles to the Grid

To connect the fields and the particles, we must translate the actions of the particles to the
Eulerian grid using Eq.(6). Computational efficiency and accuracy suggest that the particles
be treated as clouds rather than points [1]. Thus the shape function S in Eq.(6) is not chosen
as a Coulomb distribution, but commonly as a compact distribution spanning approximately
the area of a grid cell.

Classic particle-in-cell (PIC) methods[1] usually weigh with a zero or first order function,
which is not suitable for a high-order method as the lack of smoothness of the particle shape
results in Gibbs type phenomena that severely influences accuracy and introduces noise in
p and J. The non-smooth shape is also more likely to enhance the well-known finite grid
heating and instability[1]. Thus, an unstructured grid high-order method requires a different
approach, in which smoothness is desirable.

In the volume weighing approach [1] the interpolation function is different from the shape
function. Assigning a particle according to this approach to a high-order element is difficult
unless we use linear weighing. Rather, we choose to assign a smooth shape function to the
grid directly. Thus, in the approach developed here, the shape function is the interpolation
function.

We compare four potential smooth shape functions. These include a raised cut-off cosine



function,

Seos = m [cos (%) + 1] , (15)

where r = | —x,| is the Eulerian distance from the center of the particle cloud, and R is the
influence radius of the cloud. (15) is normalized such that that integral ;" [, Seosrdrde = 1,
where ¢ is the azimuthal coordinate. However, the odd derivatives are not zero at r=R,
leading to unfavorable behavior as we shall see shortly.

Secondly, we consider a Gaussian shape function,

1 —r2
Sgauss = ﬁez’“z (16)

where € is the well-known variance. The spatial unboundedness of the Gaussian function
does not suit the finite nature of a particle cloud, but in practice the Gaussian is zero to
machine precision at a radius of five to seven times the variance and can be cut off. The
integral of Syq,ss 1S again unity, the Gaussian is analytic and, unlike the cosine, its derivative
is approximately zero at the cutoff radius.

Thirdly, we consider the polynomial function,

Spot = ﬁ 1—(2p+1)!/(p)? /OT/R[T(I — T)]pdT] r=0---R, (17)

This function is p differentiable and has a finite radius, R. The parameter, A, ensures that
the integral over its surface to unity (for example for p=4, A = 3R?/22). The first p/2
derivatives of Sy, are zero at r = R. If p (mostly p=4) is set, the seemingly expensive
evaluation of S, is relatively inexpensive, as the integral reduces to a few multiplications.

Finally, we consider the polynomial function,

[0}

a+1 r\2
Spollzm ll— (E) ] r=0---R, (18)

which is likewise smooth and has a unit integral. The evaluation of this function is the least
expensive of the above functions. Note that all functions are isotropic as opposed to the
rectangular cloud shape commonly used in standard PIC codes.

Figure 1 plots the three distribution functions versus the radial coordinate. Syq,4s is plotted
for a cut-off at R = 5e and R = Te. S,y is plotted for p=4 and 6. Sy, is plotted for a=10
and 20. The Gaussian and Sy, show similar trends. Note that Sy, does not require a cut-
off, whereas the Gaussian does. Syuyss and Spen have larger maxima (at r=0) than the cosine
and Sy, as they decay to zero faster when r goes to R. The cosine and polynomial function
distribute their weight more evenly over the cloud influence area. The non-zero value of
the cosine higher order derivatives is evident from the large slope the cosine has toward
r=R compared to the polynomial function. If p increases, the weight of the polynomial
concentrates at 0 < r < R/2 and the function goes to zero more rapidly for r > R/2 to
ensure higher order derivatives to vanish.



An accurate representation of S(r) requires multiple interpolation points. In fact, approxi-
mating a single particle shape to order O(1073) is found to require a number of grid points
per particle that varies from 150 to 500 depending on the approximation order. This number
is high, i.e., computationally expensive to to an apparent need for a very fine grid, for PIC
simulations in plasmas that generally require a particle number that varies from a couple of
hundred into the millions. In plasma simulations, however, the accurate representation of
one particle is secondary to the accurate representation of the charge and current density by
many particles.

To obtain an indication of the accuracy of the charge density, p, we consider particles being
positioned equidistantly on a square domain with 148 elements. This particle distribution
yields a constant charge density over the domain, which should be pezact = Npq/Area, where
Area is the domain area. The deviation of the computed value from pg...; indicates the
accuracy. Figure 2 plots this deviation for the shape functions against the number of particles
per element at various R/dz, the values of which are considerably smaller (fewer points per
particles) than mentioned above. Indeed, all shape functions exhibit greater accuracy than
what the individual particle approximation suggests. The accuracy of the Gaussian (Fig.
2b) is more dependent on N, /element and R/dx than the accuracy of Sy, (Fig.2b) and the
cosine (Fig.2c). The dependency of the accuracy of S,y is influenced by «. For large values
of a, Spo1 behaves more like the Gaussian and for small o the function behaves like the
cosine and Sp;.

For R/dx > 1 and N, /element> 5 the Gaussian and Sy, with large a are by far the most
accurate. The polynomial is more accurate than the cosine for all R/dx and N,/element
plotted.

The cosine function, Eq.(15) generally performs poorly, both for the approximation of a
single particle and of p and should not be considered. The choice between S, with large
a (or Gaussian) or Sy, with small a (or S,y) is less obvious and depends on simulation
parameters. If there are many elements that contain less than five particles and if R/dx ~
1 (computational efficient, but not very accurate), then S,,; with small « is favorable.
However, if the objective is to minimize noise in p at the cost of computational efficiency a
larger « is preferred. The ability of S,e1, Eq.(18), to behave like a Gaussian as well as Sy,
depending on « in addition to its computational efficiency, makes it the preferred particle
distribution function, and we shall use this subsequently.

We weigh particles throughout the domain with a constant particle cloud size, R, independent,
of the element size. Particles are weighed only to the elements that are influenced by the
particle’s distribution function, i.e., the elements for which » < R. These elements are
identified for all vertices in a pre-processing stage. The closest vertex to a particle then
provides the lookup table for the elements for the weighing. This weighing procedure may
lead to a larger number of elements to be weighed per particle than established methods.
However, a varying R may have an impact on the accuracy of p and introduces a compressible
particle that violates charge conservation. With constant R these problems are not present
and the computational overhead is minimized by having local lookup tables to identify
element regions. Nevertheless, for highly non-uniform grids, a range of particle cloud sizes is



clearly desirable and we are currently exploring this important next stage of the development.

3.4 Charge Conservation Techniques

Gauss’s law, Eq.(2), is generally not satisfied with the weighing technique described in the
previous Section and a correction to the electric field is required. To this end we consider two
techniques, comprising a projection method[1] and a hyperbolic cleaning technique proposed
in [14].

3.4.1 Global Poisson correction

In the classic projection, one expresses the computed field, E*, as

E'=E+Vé ,

where V- E = p, i.e., it is simply a Helmholtz decomposition of E* into a charge conserving
component and a gradient, V¢.

This immediately yields
Vp=V-E*—p with ¢=0 on 09, (19)

where the boundary conditions come from n x E =n x V¢ = 0, i.e., ¢ = constant along
the boundary. As this constant has no importance, we are free to choose homogeneous
conditions.

Once ¢ is found, the electric field is corrected as
E=FE"—-V¢, (20)
where E now is the corrected electric field.

Consistent with the Maxwell solver the Poisson equation is solved with a local discontinuous
element scheme at every Runge-Kutta stage. We rewrite the Poisson equation into a system
of two first-order equations,

Veg = f
q = Vo (21)

This is discretized exactly as Maxwell’s equations themselves, leading to

S.qg = Mf+Fn-[qg-q]
Mg = S¢—Fnp— ¢



Note that g is a purely local variable. Using a standard approach [15] we use the stabilized
central fluxes

~

G=5 (6 +d) =g (a ra) -l

where 7 o< n?/h is the stabilization parameters, scaling with the order, n, and grid size,
h. Note that other choices of the numerical fluxes are possible and may lead to improved
behavior[15]. It should also be noted that this approach may lead to a reduced accuracy in
E as ¢ is computed to O(h"*!) and, thus, V¢ to O(h") [15]. Using low order elements this
may adversely affect the overall accuracy of the scheme.

The Poisson solver has the additional advantage that it can be used to solve low speed
plasma physics. In such a case the Maxwell equations are not solved, and only the Poisson
solver is used for updating the fields. However, for high speed problems, the introduction of
the Poisson solver leads to unphysical instantaneous effects which may impact the physics
of the problem.

3.4.2 Hyperbolic Cleaning — The y-method

As an alternative we consider divergence control by the hyperbolic cleaning method (we shall
also refer to it as the y-method) described in [14]. In this approach a correction potential
is introduced into the Maxwell equation (1) as a Lagrangian multiplier. In the strictly
hyperbolic formulation[14], Maxwell’s equations, Eq.(1), are altered to,

oq ~

e § CF =

6t+v J

0

I A ) (22)

with the modified fluxes of F' = [E}, ], Fy = [x$, —B., —E,|", F, = [B., x¢, E,]*. Here ¢
is a damping constant. Equation (22) is a strictly hyperbolic system of equations, with four
characteristic velocities, A\; 4 = x, —x and A2 3 = —¢, ¢, where the speed of light, ¢ =1 due to
normalization. Compared to the uncorrected Maxwell equations, two characteristics which
propagate information at speed, y, are added, and one characteristic with zero velocity is
omitted, hence eliminating the DC component of the system.

The x characteristics effectively reduce the divergence error by propagating it away at ve-
locity x. Clearly, taking y > ¢ implies that the divergence error be swept out of the domain
very rapidly, effectively imposing Gauss’ law. As y approaches infinity, one recovers the
original Eq.(1).

The fully explicit formulation of Eq.(22) allows for the space discretization to be unaltered
from Eq.(10) with the understanding that g, F' and J are adjusted for Eq.(22). The only
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significant change is the numerical flux of Eq.(11) which changes to

n x (an x [E] = [B]) + xn (n - [E] - [¢])
n-[F—F]= n X (an x [B] + [E]) : (23)
X (n - [E] - [9])

3.4.3 Comparison of Poisson correction and Lagrangian multiplier techniques

The Poisson projection correction requires a global solve, which appears expensive at first.
In contrast, the y-method is local and seemingly cheaper, although the explicit time step
in the xy-method is proportional to 1/y making the equations stiffer and more expensive for
an increased x. Increasing x, however, improves the physical significance of the modified
equations (22).

Simple operation counts will show that the y-method require 1/3 extra work per time step
as compared to the simple Maxwell’s equations, originating from the need to differentiate
¢. On the other hand, a Maxwell’s time step with the Poisson correction applied at every
Runge-Kutta stage is ~3-4 times slower than the y-method, when using a sparse direct
solver for the Poisson solve. Thus, even with a relatively small (physically inaccurate) value
of x >3-4, the y-method may be slower than the Poisson correction approach. On the other
hand, the loss of accuracy in the latter method may become a problem when computing at
low order and/or in an hp-environment.

The ease by which the y-method can be parallelized is highly attractive and clearly advan-
tageous over the Poisson solver. However, to make the y-method sufficiently robust and
physically correct, we find that high values of x are needed, e.g., x > 10. In this case an
implicit field solver will be needed, reintroducing the need for global solves. Furthermore, in
the case of PIC, the computationally expensive two-way particle weighing may well dominate
all other elements — yet this component is highly parallel. The point is that it is not at all
clear which method is to be chosen and we find that having both at the disposal is perhaps
the best approach and we shall continue to consider both techniques.

3.5 Particles and Boundary Conditions

Particle boundary conditions are needed for the tracking of the particles and the weighing
of the particles to the grid. This section discusses these boundary conditions separately.

3.5.1 Boundary conditions for particle tracking

A particle can react inelastic, fully elastic, and partially elastic with a boundary. The
inelastic boundary condition simply removes the particle from the computational domain.
The elastic boundary conditions, however, require knowledge of the angle of the particle path
with the wall and the distance of the particle from the wall so that the reflected path can
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be determined. We use a levelset [16, 17] to represent the distance normal to the boundaries
and its accompanying direction from which the particle’s angle and distance to the wall can
be deduced.

To compute the levelset, v, we seek the steady state solution to

dvy
5y T W V.= sgn(y) + pAy. (24)
Here 7 represents a distance function and w = sgn(%)‘g—z' signifies the signed normal. 7

is an artificial time and sgn(z) is the classic sign-function. In this case, 7, i.e., the known
geometrical boundary, specifies the initial condition for 7. p is a diffusion coefficient that
is ideally zero. The left side of Eq.(24) is a Hamilton-Jacobi equation whose characteristics
point outward, in the normal direction, from the boundary with speed one. The right hand
side introduces a minor diffusion.

The numerical solution of (24) follows the method outlined above. Spatial derivatives are
determined as X X
Vi =87 Pl -4, (25)

where S and F are defined in (9). As the numerical flux, 4* we use a simple central flux.
Applying Eq.(25) twice gives second derivatives. The levelset equation is integrated with a
Runge-Kutta scheme until steady state is reached. This is done in a preprocessing stage and
values for v and w are stored at every grid point.

The elastic boundary condition uses the two last particle coordinates, :cz(,l) and :c§,2>, where at
stage (1) the particle is still within the computational bounds and at stage (2) the particle
has crossed the boundary. With the local interpolation of v and w to a:l(,l) the direction
and distance of the particle relative to the wall is known. The reflected particle coordinate,
x()), may be determined as sketched in Fig. 3. Stage (1) and (2) determine the distance
and direction of the particle track as s = [2{") — 2| and n, = (2{!) — 2{?)/s, respectively.
From n, = [n, ., n,,]" and w = [w,, w,]” we obtain a normal vector, m = [m,, m,|", with
the components

My = NpyWy — Np Wy 5 My = NpaWe + NpyWy

that can be used to extract the angle, a. The distance s3 follows from s, = |y/my|, s2 = s—s;
and s3 = sym,. The reflected particle coordinate is computed with a:z(f) = a:]f) — (wss.
Here, ¢ determines the elasticity of the reflection. If ¢ = 2 the reflection is fully elastic.
Determination of the particle velocity at stage (3) follows a similar procedure.

With the explicit Runge-Kutta time integration, Eq.(12), only the particle coordinate at
stage (2) is known. To obtain the particle coordinate at stage (1) we linearly track the
particle back with the approximate local time step of a Runge-Kutta stage assuming constant
particle velocity. If the RK4 stage is larger than one, s > 1, the residuals w; and ¢ ) in
Eq.(12) are recomputed assuming constant particle velocity and a linear path from stage
(2) to (3). Using different time steps, like the simulation time step, or not recomputing the
residuals may lead to instability.
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3.5.2 Boundary conditions for particle weighing

We assign particle clouds to the grid using a constant radius assignment function. If a
particle cloud is near a boundary its weighing area crosses the boundary and part of the
assignment function will not be projected to the grid which affects p and J. Depending on
the type of boundary encountered, a correction is required to model the physical boundary
condition. For example, a conducting wall places a mirror particle with opposite charge,
g = —q on the other side of the wall. The mirror distance is readily determined from the
levelset v and w.

3.6 Filtering

Filtering is used to reduce noise in fields and enhance robustness of the algorithm. Low
diffusion spectral methods can benefit from it to the point where filtering stabilizes the
simulation. We apply filtering in two instances. If the influence area of the particle R/dx < 1,
p and J are filtered for noise reduction. Secondly, we enhance the Poisson solver in geometries
with sharp corners. The filtering is applied on the right side of Gauss’s law Eq.(2).

We have used a standard exponential filter, adding a little dissipation to the scheme as
possible. The details of the filter, its impact and implementation as a matrix operator is
discussed in [18].

4 Numerical Examples

In the following we shall present a number of tests, first of a simple character to simply
validate several components of the scheme and, subsequently, to model a variety of basic,
yet essential plasma phenomena.

4.1 Tests of the scheme components

We shall begin by validating the particle tracking, the reflecting boundary condition, and
the charge conservation methods.

Computation of the Larmor radius and E x B drift confirm the fourth order convergence
rate of the scheme (not shown here). We take unity fields, ¢/m=1 and initialize with unity
particle velocity. Comparison of the computed and exact particle velocity for the Larmor
radius in Fig. 4a shows that the RK4 scheme is slightly dissipative. The E x B drift (Fig.
4b) shows a slight growth in error over time as can be expected [9].

We validate the fully elastic particle boundary condition by releasing a circular array of
particles in a circular geometry with an outward velocity normal to the wall. The grid
consist of straight sided elements. Figure 5 shows the initial circular particle array and
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accompanying velocity vector before and after interaction with the wall. Ideally, the particle
array after reflection should be a circular array, but, as can be seen from the figure, the
straight elements reflect the particle not exactly normal to a circle. Near the corners there
is coagulation of particles and the velocity vector does not point to the center of the circle.
A finer grid or a high-order boundary-fitted grid would reduce this effect.

The dipole simulation presented in [14] is reproduced to assess the accuracy of the Poisson
and hyperbolic divergence cleaning techniques. The simulation is performed on a 16 by 16
square domain with 572 elements. A hundred particles are released in a circular array with
radius 1.28 in the center of the domain. A constant magnetic field, B,=1, drives the particles
with ¢/m=-0.195, ¢ = —3.86 - 10~ ° in a circle with velocity, |v,|=0.25. The influence radius
of the particle cloud is, R=0.90. Figure 6 confirms that the the hyperbolic cleaning removes
excess divergence from the domain faster in time for larger x. The Poisson projection method
(which has no time dependency on the divergence cleaning for this case) is affected by noise
in the charge density more severely than the hyperbolic cleaning, resulting in the slightly
larger divergence at steady state (¢ < 100 for xy=20). A comparison of the contour lines
of the electric field in the z-direction, E, (Fig. 7) shows that the projection method (Fig.
7c) smears E, most. Increasing x, the results from the hyperbolic cleaning compares better
with those obtained by the projection method which can be expected to be less robust for
marginally resolved problems.

A further test is to consider the issue of self-forcing, i.e., whether a particle is being pushed
by its own field. In temporal splitting schemes used in classical FDTD PIC this self force
is averaged away. The scheme presented here has no splitting and should theoretically not
suffer from a self force. We test this hypothesis by releasing one particle with zero velocity,
g=1 and ¢/m=1 in the center of a unit square domain with 228 4th order elements and
periodic boundary conditions. The particle cloud has radius R=0.5 and a=10. The fields
are initially zero. Figure 8 shows that the particle is initially marginally displaced resulting
from errors in the initial particle assignment. At later times the particle remains at it position
with a slight oscillation confirming the absence of any essential self force.

4.2 Finite grid instability

The finite grid heating and resulting instability manifests itself if the Debye length Ap
is underresolved and is caused by aliasing errors in the determination of the non-linear
current, density. The result is an unphysical total energy increase, which has been known to
trouble classic particle-in-cell methods, in particular for problems with high density plasmas,
i.e., laser-matter interactions. Theoretically, a smoother weighing function and high-order
schemes should suffer less from such errors and thus exhibit a reduced grid heating.

We will test the finite grid instability by simulating a isotropic plasma in a periodic domain
with an underresolved Debye length. The severity of the finite grid instability is characterized
by modeling for at a fixed time and monitor the total energy increase. A comparison is made
with OOPIC[19], a second-order structured finite difference electromagnetic PIC code.
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We take the electron number density n, = 10*'em™ and the electron temperature T, =
90eV. The resulting Debye length is, A\p = 2.23nm. The thermal velocity of the electrons
is, vgpe = 3.97 - 105m/s. The side of the computational square has a reference length of
Ly= 10~ "m. The simulations are run for a time of Ttina=3.3e-4s.

The OOPIC simulations use equidistant grids with 25x25, 50x50, and 100x100 cells and 8
particles per cell. For the coarsest grid the cell size is 18 times the Debye length for which
one can expect a significant grid heating. The increase of the total energy in time in Fig.
13 confirms the significant (exponential) growth as well as the reduced grid heating with
improved resolution. At the final time the total energy has increased with a factor of 17, 3.7
and 1.5 for the 25x25, the 50x50, and the 100x100 grid, respectively.

For the high-order PIC method we study the effect of various resolution parameters. As a
base we choose a grid with 200 triangles and a fifth order approximation. The grid has 50
grid points on the side of the computational domain. 70x70 particles are released in the
domain with a non-dimensional radius R = 0.1, which is equal to L;/10 in dimensional
units. The power in (18) is v = 10. This base case has comparable resolution to the 50x50
OOPIC case presented above.

Figure 14 summarizes the effect of various resolution parameters. All cases show a small
(< 5%) initial drop in total energy, a result from particles randomizing their coordinates from
the initial equidistant release positions. At later times the finite grid instability increases the
total energy. For the base case the total energy has increased with a mere 2%. Figure 14a
shows that the Poisson divergence cleaner introduces more grid heating than the hyperbolic
cleaning approach, possibly due to its global nature and more sensitivity to noise.

Changing the value of x does not have a significant effect on the grid heating, because the
constant E for this isotropic plasma simulation is not affected much by the x correction.
Moreover, the finite grid instability is driven by J, which is also barely affected by x in this
isotropic case.

Grid (h) refinement(Fig. 14b) improves the grid heating by one order with a halved h due
to an improved Debye length resolution. Doubling the number of particles in x and y
direction(Fig. 14c) reduces the grid heating by 50%, i.e., a linear effect. It is also observed
that with fewer particles the initial total energy reduction is larger. Increasing R (Fig. 14d)
reduces aliasing and thus grid heating. Changing R from 0.05 to 0.075 and 0.1 reduces grid
heating by 1 and 2 orders of magnitude respectively. Smoothening the particles shape (Fig.
14e) by reducing « from 10 to 5 decreases grid heating slightly. Reducing « further to 1,
yields a non-smooth linear shape function, doubles the grid heating.

From the above we can conclude that the high-order method can achieve a significant smaller
grid heating (in the order of a few percentiles) compared to OOPIC (a minimum of 50%) for
similar resolution. The high order method is quite sensitive to A and R refinement. These
parameters can be varied independently of each other making the high order PIC flexible,
as opposed to OOPIC which couples the two and has a more predictable and moderate grid
heating dependency on h refinement. As a final note we should mention that the absence of
a total energy increase does not mean that the results are accurate. For example, capturing
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particle dynamics may require a smaller R or more particles than required to control grid
heating.

This flexibility is a strength which should be explored in modeling of complex phenomena,
although it remains a challenge to estimate when to choose the parameters, i.e., particle size
and form, in an optimal manner.

4.3 One-dimensional Plasma Tests

As a first dynamic test, we simulate essentially 1D plasma cases, including a plasma wave, a
2-stream instability, and linear Landau damping. The results are compared with the XES1
code[1] which is a 1D electrostatic solver that solves a Poisson equation using a spectral
Fourier method to obtain the electric field. To compare with our method, we solve only for
the electric field and set the current densities to zero.

For all three cases, the computational domain has a length of 27 in the z-direction of the
plasma wave propagation. In the y-direction the grid has length 1.5 and is meshed with
approximately two triangles so as to simulate a 1D setting, i.e., a full two-dimensional solver
is used in this case. The total number of elements is 62. In the y-direction 25 particle
are distributed equidistantly to emulate a 1D setting. We set N=64 for the XES1 Fourier
spectral method.

4.3.1 Plasma wave

320 particles are equidistantly distributed with a superimposed one-dimensional sine devia-
tion
T = Ty + Asin(kz.,), (26)

where the amplitude of the deviation is A=0.001 and the wavenumber k=2. The cloud
influence area is R=0.5. Physical parameters for the particle are ¢g=0.001177 and ¢/m=1.0.
Figure 9 shows that the total energy (a), the kinetic energy(b) and the potential energy
of the plasma wave computed with the DG Poisson solver are in excellent agreement with
XES1. XES1 predicts a lesser total energy, but both methods preserve energy equally well.

Figure 10 shows that using the hyperbolic cleaning approach with the field solver conserves
energy equally well as the spectral Poisson solver for x = 20. For y = 5 the total energy
fluctuation (which should theoretically be zero) increases dramatically as compared to y = 20
and we observe a dispersive effect on the plasma wave when y is too small. The improved
agreement for increasing x is expected as this changes the x-method linearly towards the
more realistic governing Maxwell’s equations. The kinetic and potential energy results show
equal dependencies on x.
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4.3.2 2-stream instability

256 particles with R=0.5 are released according to (26) with A=0.0001, £ =2 and a unity
velocity. Another 256 are released with A=-0.0001 and unity velocity in opposite direction.
Figure 11 confirms that the computed results (using n=4 elements) and XES1 predict the
appearance of the instability following from the sudden drop of the kinetic energy at equal
time. Excellent comparison up to ¢ ~35 is found after which (¢ >35) 2D effects lead to a
different particle heating and different quantitative kinetic energy. Both methods show a
total energy fluctuation of less than 1% indicating equally accurate energy conservation.

4.3.3 Landau damping

We simulate Landau damping with 1k and 10k particles with R=0.4 released according to
(26) with A=0.1. The initial velocity is Maxwellian with a thermal velocity of vy,=0.4.

Figure 12a shows that both XES1 and the current method are unable to predict the Lan-
dau damping for more than 3 periods. However, the current method seems to deteriorate
less. For 10k particles (Fig. 12) no substantial deterioration of the wave is observed for
t <15. The current methods’ minima are, however, closer to zero indicating a more accurate
approximation of the wave.

4.4 Two dimensional plasma tests

In the following we shall also present a few genuinely two-dimensional tests to confirm that
the general approach also works in such cases

4.4.1 Weibel instability

This section presents results of PIC simulations of the Weibel instability presented in Morse
and Nielson[20]. We compare the finite difference time domain (FDTD) method[1], and the
high order PIC method.

The Weibel instability simulations are performed on a unit square with periodic boundary
conditions. We consider a quasi-neutral plasma with a thermal velocity ratio of 5 of the
velocity in z, ue = 0.25 and y, v = 0.05 direction. The plasma frequency is fifteen times
the length of the square, i.e., w,, = 15 resulting in £ = —(715)? with the electron charge
density set to p = —1.

With these settings, magnetic waves develop with a dominant frequency in the y-direction.
The wave number decreases in time as the thermal velocities approach the equilibrium state.

A study with the FDTD method indicates that a 256x256 grid with 36 particles per cell
yields a converged solution. The results of this simulation are used in the remainder of this
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section for comparison.

The high order simulations are performed on a grid with 200 triangles using a fifth order
scheme. We track N, x N, particles in this domain for two time units. In Figure 15 and 16
we compare various plasma energy components of simulations, using Poisson and hyperbolic
divergence (y=10) cleaning, with the results of the FDTD simulations. It is observed that
the results using hyperbolic cleaning conserves total energy better (less than 3% deviation)
as compared to the results using a global cleaning (10-50% increase) for similar resolutions.
The poor energy conservation in the latter approach translates into a poor comparison to
FDTD method of the other energy components.

On the other hand the FDTD based method requires significantly more grid points to ob-
tain total energy conservation comparable to those obtained with the hyperbolic cleaning
technique. This shows comparable kinetic energy trends to the results from FDTD, i.e., first
a decrease followed by a slow increase. The results with the hyperbolic cleaning predicts a
slightly smaller peak value in the magnetic energy trend than the FDTD method, but the
trend is comparable. The hyperbolic cleaning approach appears superior to PIC with global
Poisson based cleaning as well as FDTD in reducing noise as witnessed by the electrical
energy trend.

Surprisingly, we observe that decreasing « for the hyperbolic cleaning approach (Fig. 15 )
has a minimal effect on the energy trends. Note that for a=1 we take R half the value as
compared to a=10. The reason is that at =10 most of the deposition function is located
within the half radius near the origin. For a=1 the deposition in this region is approximated
with a linear function. The simplified function and reduced influence region lead to a factor
three speed up.

Figure 16 shows that decreasing o with the Poisson based divergence cleaning leads to poorer
energy conservation as one would expect ( larger aliasing error ) resulting in worsened energy
trends. This is not the case for the x cleaning. It is not clear why this difference is so obvious.
Applying a weak filtering on the Poisson equation source term reduces grid heating, however
it doesn’t necessarily improve the results as witnessed in the H, energy trend. Increasing
the number of particles improves the result as expected, i.e., reduction of grid heating and
improved comparison to the FDTD result.

Figure 17 and 18 compare the H, and E, energy spectra at t=2. We see that most of the
energy is stored in the region 0 < |k| < 7. At larger |k| the H, energy spectrum of the
FDTD simulation shows an increase caused by the inability of the finite difference method
to capture high wave numbers effectively as well as enforcing energy conservation exactly,
leading to a pileup of high-frequency energy. The high order simulations show a drop in
the spectrum caused by the diffusion of the upwind numerical flux (11). The E, energy
spectrum shows no decrease with |k| for FDTD, but drop off for high order simulations
for the same reason. The H, spectra are not affected much by « and a moderate filter.
Increasing the number of particles increases the drop off at high wave numbers. Decreasing
a and decreasing N, introduces more energy in the low wavenumber part of the £, spectrum.
The filter has little effect on the E, spectrum as well. The E, spectrum of the high order
method with hyperbolic divergence cleaning compares better to the FDTD result than the
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results obtained with the projection based divergence cleaner.

The thermal u and v velocity at time t=2, tabulated in Table 1, shows that the results
obtained with both divergence cleaning techniques converge towards the FDTD result with
increased resolution. From this table one concludes that the results for y=10 compare best
to the FDTD result. Increasing y from 2 to 10 has quite an effect on the velocities indicating
that the less physical xy=2 simulations should not be considered, consistent with the results
in Sec. 4.3.1.

4.4.2 GEM challenge

In a more challenging problem we simulate the benchmark Geospace Environmental Modeling
(GEM) magnetic reconnection challenge[21]. Collisionless magnetic reconnection is a process
in which energy stored in the magnetic fields is rapidly converted into kinetic energy in a
plasma. In this fundamental process, field lines of opposite polarity are brought together
and fused into a new magnetic topology involving the full non-linearity and coupling of the
system of equations.

The simulation is performed on a square with periodic boundary conditions in one direction
and conducting boundary conditions on the non-periodic sides. We use a grid with 1146
triangles and a fifth order approximation. 250x192 particles are released in z and y direction
respectively. This low resolution simulation is performed to illustrate the algorithms ability
to handle complex plasma phenomena. For further initialization details we refer to Ref. [21].

Figure 19 shows that indeed reconnection takes place, i.e., the out-of-plane current has
evolved starting from an initially uniform sheet. Figure 20 shows that the reconnection flux

compares reasonably for this low resolution simulation. The reference solution is found using
CELESTES3D [22], which is a fully implicit finite-difference based PIC scheme.

4.4.3 A6-magnetron

As a final illustration we perform simulations on the A6-magnetron geometry of Palevsky
and Bekefi[23] to show the potential of PIC with the unstructured spectral element method.

For detailed dimensions of the computational domain we refer to the computational simula-
tions in Lemke et al.[24]. Figure 21 shows the grid. We initialize the flow with a thin layer
of electrons around the inner cathode. The particle parameters are set as ¢g=2e-4, ¢/m=0.5,
and R=0.09. The total number of particles is 6167.

After initial effects have disappeared the A6 magnetron settles down in a 2r-mode, its normal
operative mode, as shown in the particle snapshot of Fig. 22.
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5 Concluding Remarks and Future Directions

We present the first stage in the development of a new high-order particle-in-cell algorithm.
The core of the algorithm is based on a high-order discontinuous Galerkin Maxwell field
solver on unstructured grids. The main advantages of the method lie in the higher efficiency
of high-order methods to deal with high-frequency physics and the geometric flexibility of the
boundary-fitted unstructured grid. Furthermore, the DG formulation has inherent proper-
ties, e.g. natural dissipation control and dispersion properties to avoid numerical Cherenkov
radiation, which suggests it is well suited as a core component of a PIC method.

The algorithm requires full order interpolation to determine the field at the particle position.
A monomial polynomial basis ensures the interpolation is fast. The cell-location algorithm
takes advantage of the inverse of the isoparametric mapping of physical coordinates to a
master element.

The coupling of the particle grid to the Eulerian field grid use simple smooth functions. This
is shown to reduce noise and effectively enable control of finite-grid instabilities. A constant
influence area for each particle avoids compressible particles and reduces noise in the charge
and current density at the possible cost of an increased number of weighing elements per
particle. For problems with large scale separation in the geometry, one should, however,
consider an approach to enable particles of different sizes, e.g., an h-type particle adaptivity.
We are currently exploring ways of achieving this without impacting charge conservation.

With the pre-computation of a levelset distance function, particles can interact elastically
with complex geometric boundaries.

Divergence control is performed either through a classic projection scheme or a purely hy-
perbolic cleaning approach. The former requires the solution of a Poisson equation which is
implemented with a discontinuous Galerkin method consistent with the field solver. The hy-
perbolic cleaning method is local, fully hyperbolic, and easily implemented in the framework
of the Maxwell field solver. However, the equations become increasingly stiff when improving
the physical representation making the method less effective. The computations show that
values of y exceeding 10 is needed to ensure a robust approach, making this technique more
expensive than the projection method for comparable accuracy as long an an explicit time
stepping approach is used.

The computational results for a number of different plasma physics benchmarks and test
cases confirms the ability to model these very basic phenomena while offering full geometric
flexibility and the potential for hp-type adaptivity.

That said, however, many issues remains to be addressed in a satisfactory manner. In
particular, the use of advanced implicit-explicit time-stepping methods to enable the use of
the hyperbolic cleaning method efficiently at high values of x seems a natural extension.
Furthermore, guidelines for the trade offs between particle size and smoothness must be
developed, e.g., for problems dominated by kinetic effects one should clearly be careful with
using only a few large particles.
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The development of particle clouds that are able to scale according to the size of the under-
lying grid as well as the fundamental physics will open for a true hp-adaptive particle-in-cell
method for the modeling of large scale plasma dynamic problems in complex geometries. We
hope to be able to continue to report on such progress in the near future.
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Appendix: Fast Interpolation for Particle Mover

Interpolation that is consistent with the scheme in this paper use nodal points, £, from
Hesthaven[10] on the master element, I (rather than a general D). In this approach the
smooth function ¢(&), i.e., the electromagnetic field, is represented as

08 =3 0, L,(6) @)

where L;(&) is the genuine two-dimensional multivariate Lagrange interpolation polynomial,
L;(&) € P2, where o

P} = span{€'n’;i, j > 0;i +j < n}, (28)
based on N2 = N nodal points, £, given in the interior as well as on the boundary of I. For
the interpolation to be complete, we must require

(n+1)(n+2)
5 :

N =

For the actual construction of the interpolation polynomials, let us introduce the complete
polynomial basis, p;(€) € P?, and express the interpolation property as

N
Viif(&) =Y fpj&)=VF=F (29)
j=0
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where f = [fo, - fN]T is the vector of expansion coefficients, f = [f(&,),.., f(€x)]" is the
grid vector and V;; = p;(§;) is the multidimensional Vandermonde matrix. Clearly, for
the interpolation to exist V' must be nonsingular. Under the assumption of existence and
uniqueness of the interpolation polynomial, we can express (29) as,

i f() = Y TE)L(E) (30
Combining (29) and (30) implies that,
L=(V") 'p. (31)

The properties of V', .e.g. its conditioning depends exclusively on the structure of the nodal
set, £;, and on the way in which we choose to represent the basis, i.e., p;(§). While the
former is chosen to ensure well-behaved Lagrange interpolation polynomials, we have signifi-
cant freedom in the specification p;. This freedom of choice in p; makes it possible to choose
between interpolation accuracy and speed. For creation of the interpolation and differenti-
ation of the matrix, an orthonormal Jacobi polynomial basis results in a well conditioned
Vandermonde matrix for an acceptable polynomial order range and provides good accuracy.

For particle interpolation where p in the RHS of (31) changes for every particle and every
time step, the evaluation of p with an orthonormal Jacobi polynomial basis is too expensive.
A faster alternative is the multivariate monomial basis, i.e., p;(¢;,) = £77. For moderate
polynomials order (n < 4 — 6) this basis conditions V acceptably and the computational
efficiency is significantly improved as compared to the Jacobi basis. For higher polynomial
order the condition number of grows exponentially with n for the monomial basis making it
unsuitable for large n.
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Captions

Table 1 Comparison of thermal velocities for high order and FDTD order PIC at t=2.

Figure 1 Gaussian, cosine and polynomial (p=4,6) shape functions, S(r), plotted versus the
radial coordinate, r.

Figure 2 The L, approximation error of p for a (a) raised cosine , (b) Gaussian, (c) poly-
nomial (p=4), and (d) polynomiall with («=3 and 10) shape function plotted versus the
number of particles, N,, per element with approximation order N=4 at various ratios of the
distribution radius, R, to a typical grid spacing, dz.

Figure 3 Schematic for determination of the particle coordinate after a fully elastic collision
with the wall.

Figure 4 Comparison of the computed particle velocity, |v,_comp|, With the exact particle
velocity, |Up_egact|, versus time for (a) the Larmor radius and (b) E x B drift.

Figure 5 Particles plotted with their velocity vector before and after interaction with the
outer boundary of a circular unstructured grid (first quadrant is shown).

Figure 6 Comparison of divergence for a dipole computation with the Poisson correction
and the Lagrangian multiplier method with y=>5 and 20.

Figure 7 Comparison of the electrical field, F,, for a dipole computation with the Poisson
correction and the Lagrangian multiplier method with x=5 and 20.

Figure 8 Particle coordinate in z direction, X,, plotted versus time for a particle initially
at rest in a zero electromagnetic field.

Figure 9 A comparison of the total energy, te, kinetic energy, ke, and potential energy, pe,
plotted versus time of electrostatic PIC simulations with the current method and XES1 for
a plasma wave.

Figure 10 A comparison of the total energy, te, kinetic energy, ke, and potential energy,
pe, plotted versus time of electrostatic PIC simulations with a spectral method and XES1
for a plasma wave.

Figure 11 A comparison of the kinetic energy, ke, plotted versus time of electrostatic PIC
simulations with the current method and XES1 for a 2-stream instability.

Figure 12 A comparison of the potential energy, pe, plotted versus time of electrostatic PIC
simulations with the current method and XES1 for Landau damping with (a) 1k particles
and (b) 10k particles.

Figure 13 Comparison of total energy trend for OOPIC simulations of a homogeneous
plasma with a 25x25, 50x50, and 100x100 cell grids.

Figure 14 Total energy plotted versus time for several grid resolution parameters for high
order PIC simulations of a homogeneous plasma. The solid lines signify the base case.
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Figures a, b, ¢, d and e plot the effect of the divergence cleaning method, grid spacing
h, number of particles N,xN,, particle cloud radius R, and power « of the particle shape
function (18), respectively.

Figure 15 Comparison of various plasma energy components for high order simulations with
LMM divergence cleaning at x=10 with a=1 and 10 and N,=300 and 768 to FDTD PIC.
For a=10 and 1, the particle cloud radius R=0.075 and 0.038 respectively.

Figure 16 Comparison of various plasma energy components for high order simulations with
Boris divergence cleaning with a=1 and 10, N,=300 and 768 and with filtering to FDTD
PIC. For =10 and 1, the particle cloud radius R=0.075 and 0.038 respectively.

Figure 17 Comparison of H, and E, energy spectra for for high order simulations with
LMM divergence cleaning at x=10 with a=1 and 10 and N,=300 and 768 to FDTD PIC.
For a=10 and 1, the particle cloud radius R=0.075 and 0.038 respectively.

Figure 18 Comparison of H, and F, energy spectra for high order simulations with Boris
divergence cleaning with a=1 and 10, N,=300 and 768 and with filtering to FDTD PIC. For
a=10 and 1, the particle cloud radius R=0.075 and 0.038 respectively.

Figure 19 Contours of out-of plane current and magnetic field lines.

Figure 20 The reconnected flux plotted versus time, compared with the results from CE-
LESTE3D.

Figure 21 Unstructured grid and dimensions used for the A6-magnetron flow simulation.

Figure 22 Particle snapshot showing the 2r-mode in the A6-magnetron flow simulation.
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Scheme a R Np Uthe Uthe Uthe — Uthe

X=2 10 0.075 300 0.198 0.151 0.047
X=2 1 0.038 300 0.202 0.148 0.054
X=2 1 0.038 768 0.204 0.137 0.067
x=10 10 0.075 300 0.208 0.145 0.062
x=10 1 0.038 300 0.207 0.147 0.060
x=10 1 0.038 768 0.205 0.138 0.067
Poisson 10 0.075 300 0.227 0.187 0.040
Poisson 1 0.038 300 0.237 0.194 0.043
Poisson 1 0.038 768 0.212 0.154 0.058
FDTD (N=256) 0.206 0.140 0.066

Table 1: Comparison of thermal velocities for high order and FDTD order PIC at t=2.
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Figure 1: Gaussian, cosine and polynomial (p=4,6) shape functions, S(r), plotted versus the
radial coordinate, r.
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Figure 2: The L, approximation error of p for a (a) raised cosine , (b) Gaussian, (c) poly-
nomial (p=4), and (d) polynomiall with («=3 and 10 (with filled circle)) shape function
plotted versus the number of particles, N,, per element with approximation order N=4 at
various ratios of the distribution radius, R, to a typical grid spacing, dzx.
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Figure 3: Schematic for determination of the particle coordinate after a fully elastic collision
with the wall.
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Figure 4: Comparison of the computed particle velocity, |v,_comp|, With the exact particle
velocity, |Up_egact|, versus time for (a) the Larmor radius and (b) E x B drift.
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Figure 5: Particles plotted with their velocity vector before and after interaction with the
outer boundary of a circular unstructured grid (first quadrant is shown).
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Figure 6: Comparison of divergence for a dipole computation with the Poisson correction
and the Lagrangian multiplier method with y=>5 and 20.
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Figure 7: Comparison of the electrical field, F,, for a dipole computation with the Poisson
correction and the Lagrangian multiplier method with xy=5 and 20.
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Figure 8: Particle coordinate in x direction, X, plotted versus time for a particle initially
at rest in a zero electromagnetic field.
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Figure 9: A comparison of the total energy, te, kinetic energy, ke, and potential energy, pe,
plotted versus time of electrostatic PIC simulations with the current method and XES1 for
a plasma wave.
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Figure 10: A comparison of the total energy, te, kinetic energy, ke, and potential energy, pe,
plotted versus time of electrostatic PIC simulations with the current method and XES1 for
a plasma wave.
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Figure 11: A comparison of the kinetic energy, ke, plotted versus time of electrostatic PIC

simulations with the current method and XES1 for a 2-stream instability.
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Figure 12: A comparison of the potential energy, pe, plotted versus time of electrostatic PIC
simulations with the current method and XES1 for Landau damping with (a) 1k particles
and (b) 10k particles.
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Figure 13: Comparison of total energy trend for OOPIC simulations of a homogeneous
plasma with a 25x25, 50x50, and 100x100 cell grids.
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Figure 14: Total energy plotted versus time for several grid resolution parameters for high

order PIC simulations of a homogeneous plasma. The solid lines signify the base case.
Figures a, b, ¢, d and e plot the effect of the divergence cleaning method, grid spacing
h, number of particles N,xN,, particle cloud radius R, and power « of the particle shape

function (18), respectively.
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Figure 15: Comparison of various plasma energy components for high order simulations with
LMM divergence cleaning at x=10 with a=1 and 10 and N,=300 and 768 to FDTD PIC.
For a=10 and 1, the particle cloud radius R=0.075 and 0.038 respectively.
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Figure 16: Comparison of various plasma energy components for high order simulations with
Boris divergence cleaning with a=1 and 10, N,=300 and 768 and with filtering to FDTD
PIC. For =10 and 1, the particle cloud radius R=0.075 and 0.038 respectively.
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Figure 17: Comparison of H, and E, energy spectra for for high order simulations with
LMM divergence cleaning at x=10 with a=1 and 10 and N,=300 and 768 to FDTD PIC.
For a=10 and 1, the particle cloud radius R=0.075 and 0.038 respectively.
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Figure 18: Comparison of H, and FE, energy spectra for high order simulations with Boris
divergence cleaning with a=1 and 10, N,=300 and 768 and with filtering to FDTD PIC. For
a=10 and 1, the particle cloud radius R=0.075 and 0.038 respectively.
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Figure 19: Contours of out-of plane current and magnetic field lines.
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Figure 20: The reconnected flux plotted versus time, compared with results obtained with
CELESTE3D.
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Figure 21: Unstructured grid and dimensions used for the A6-magnetron flow simulation.
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Figure 22: Particle snapshot showing the 27-mode in the A6-magnetron flow simulation.
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