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Abstract

A numerical method for computation of heteroepitaxial growth in the presence of
strain is presented. The model used is based on a solid-on-solid model with a cubic
lattice. Elastic effects are incorporated using a ball and spring type model. The
growing film is evolved using Kinetic Monte Carlo (KMC) and it is assumed that the
film is in mechanical equilibrium. The strain field in the substrate is computed by
an exact solution which is efficiently evaluated using the fast Fourier transform. The
strain field in the growing film is computed directly. The resulting coupled system is
solved iteratively using the conjugate gradient method. Finally we introduce various
approximations in the implementation of KMC to improve the computation speed.
Numerical results show that layer-by-layer growth is unstable if the misfit is large
enough resulting in the formation of three dimensional islands.

1 Introduction

Epitaxial growth is the process where crystals are grown by the deposition of atoms
in a vacuum. Typically the deposition rate is small and the crystal is grown, loosely
speaking, one layer at a time. In this paper, we consider the computation of strained
epitaxial growth when the strain arises because the natural lattice spacing of the sub-
strate and the deposited material are different. This difference is called the mismatch.
Heteroepitaxial growth is experimentally observed to grow in the following growth
modes:

1. Frank-Van der Meer growth: crystal surface remains fairly flat, growth occurs in
the layer-by-layer fashion.

2. Volmer-Weber growth: three dimensional islands form on the substrate without
a wetting layer.

3. Stranski-Krastanov growth: the film grows in a layer-by- layer fashion for a few
layers, and then Volmer-Weber growth begins. This results in three dimensional
islands on top of a wetting layer.
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†Department of Mathematics, University of Michigan and the Michigan Center for Theoretical Physics,

Ann Arbor, MI 48109-1109

1

http://arxiv.org/abs/cond-mat/0501651v1


Figure 1: Germanium on Silicon– Due to elastic interaction. The bottom configuration has
less energy than the top one

The type of growth mode depends on many parameters, an important one is the
mismatch. In many cases, when the mismatch is high, one finds Volmer-Weber growth
and when the mismatch is small layer-by-layer growth is observed. For intermediate
values of the mismatch Stranski-Krastanov growth is often seen. For an overview see,
for example, Ref. [21, 14].

In homoepitaxy, the effects of strain are usually very small and quite often ignored
in the many models. In general, the morphology of a growing film by homoepitaxy is
reasonably well understood. It is known that in some cases a homoepitaxially grown
film can undergo an instability resulting in mound formation. Typically these phenom-
ena are due to kinetic effects, for example a step-edge barrier [2, 6, 7] or enhanced edge
diffusion [15] can cause mound formation.

However, when a species of atoms grows on a substrate of a different species, for-
mation of 3D islands is observed in many situations. It is generally believed in many
cases (for example for the growth of Germanium on Silicon) that this is a thermody-
namical effect. In particular, the elastic energy stored in a strained flat interface is
greater than when there are three dimensional islands. This is due to the fact that
in the latter case the atoms have more opportunity to relax (see Figure 1). However,
the surface energy of three dimensional islands is greater than that of a flat interface.
This implies that the morphology of heteroepitaxially grown films is determined by the
interplay between elastic energy which is a bulk effect and surface energy which arises
from broken bonds.

1.1 Modeling Elastic Effects

Elastic effects in thin films can be studied with fully continuum models or Burton-
Cabrera-Frank [5] type models that consider elastic effects between steps. In this paper,
we shall consider a fully discrete model which is evolved in time using a kinetic Monte
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Carlo method. Naturally, such an approach has the disadvantage of not being able to
simulate on large length scales. However, it offers the advantage that nanoscale physical
effects such as island shape fluctuations and nucleation are naturally incorporated.
One of the first, if not the first, model in this direction is due to Orr et al. [13]. They
accounted for the elastic interactions using a ball and spring model, which takes into
account nearest neighbor and next nearest neighbor interactions. This was combined
with a solid-on-solid type model which was then used with KMC to simulate a growing
heteroepitaxial film in 1+1 dimensions. If the misfit was below a critical value, the
film grew in a layer-by-layer fashion. On the other hand, if the misfit was above the
same critical value, then the film was observed to grow in the Volmer-Weber fashion.
Later Lam, Lee and Sander [8] provided a more efficient implementation of this model,
which allowed them to perform simulations using parameter values that were more
physically reasonable and compute for larger domains. This work has been recently
been extended to three dimensions [9].

Ratsch et al. [18] studied three dimensional heteroepitaxy, however they did not
take explicitly into account the harmonic forces between atoms, but rather they used
an approximate treatment [17] based on the Frenkel-Kontorova model. The model was
used to investigate the island size distribution in heteroepitaxial growth [16].

Off lattice KMC simulations of heteroepitaxial growth in 1+1 dimensions where pre-
sented in a series of papers [10, 3, 11]. In these computations the forces between atoms
were modelled using Lennard-Jones interactions. The misfit is easily incorporated by
changing parameters in the potential. One advantage of this approach is that dislo-
cations are naturally included, which is not the case with the ball and spring model.
These simulations also demonstrate that if the misfit is sufficiently large, layer-by-layer
growth is unstable and mounds form.

A more sophisticated discrete elastic model was introduced by Schindler et al. [20].
This model is based on a discrete form of the continuum elasticity equations. The
approach presented here could be used to solve their model as well.

2 Model description and Kinetic Monte Carlo

The model we shall use is a three dimensional version of the model proposed in Refs.
[13, 8]. For the convenience of the reader we shall now describe this model. To fix
ideas we shall assume that the deposited atoms are Germanium and the substrate is
composed of Silicon. The atoms occupy sites arranged on a simple cubic lattice with
no over hanging atoms allowed. This means that the height of the surface is a function
of the substrate location. We assume that atoms bond with their nearest and next
nearest neighbors. Each atom can be linked to its six nearest neighbors located at a
distance a, and to its twelve next neighbors located at a distance a

√
2. For example,

an atom on a flat plane surface orthogonal to one of the coordinate axis will have five
bonds with nearest neighbors, and eight bonds with next nearest neighbors, while an
atom sitting on top of that same flat surface will have five bonds (one with a nearest
neighbor and four with next near neighbors). We shall assume the chemical energy
associated to all these bonds is the same. The total chemical bond energy associated
to each atom is therefore Eb = −γNb, where Nb is the number of bonds of each atom,
and γ the energy associated to each bond.

The elastic effects in this model are taken into account by assuming that the bonds
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will act like a spring between the atoms. We will use as and ag to denote the lat-
tice spacing between Silicon and Germanium atoms respectively. We shall denote
respectively by kL and kD the spring constants corresponding to longitudinal (near-
est neighbor) and diagonal (next nearest neighbor) bonds. For ease of exposition, we
shall assume that both Silicon and Germanium have the same spring constants. Since
ag 6= as mechanical, force will arises (the calculation of which is described in detail be-
low). In many systems, the time taken for sound waves to propagate across the sample
is much smaller than the time scales associated to any growth process. Therefore we
assume that our mass-spring system is always in mechanical equilibrium.

Each atom, p, of the system will hop with a rate Γm [8] given by

Γm = R0 exp

(−∆E

kBT

)

(1)

where
∆E = E(without atom p)− E(with atom p) (2)

is the change in energy of the entire system when atom p is completely removed. R0 is
the attempt frequency, kB is the Boltzmann factor, and T is the lattice temperature.
Since the chemical bonds are purely local, then we can write (2) as

∆E = nbγ −∆Eelas

where nb is the number of chemical bonds of the atom, γ is the energy associated to
the chemical bond, and

∆Eelas = Eelas(with atom p)− Eelas(without atom p) (3)

We note that ∆Eelas is always nonnegative and when combined with (2) implies that
elastic effects will always increase the hopping rate.

We shall evolve the model in time by the use of kinetic Monte Carlo (KMC). The
basic KMC method can be described as follows.

1. Pick an atom at random on the surface, uniformly among all surface atoms

2. Compute its number of bonds

3. Compute the contribution of the elastic energy associated to the atom

4. Pick a random number, r, uniformly distributed in [0, 1].

5. If r < exp(−(nbγ−∆Eelas−K)/kBT ) then move the atom, according to a random
direction, chosen uniformly among all possible directions

The constant K is computed in such a way that the numerator nbγ −∆Eelas −K
that appears in the exponential is always non negative. This sets the fastest rate in
the problem to unity. The method described is based on rejection. It is well known
that if the number of possible event types is small (as is the case for this model when
there are no elastic effects) then rejection-free Kinetic Monte Carlo can provide a much
more efficient algorithm.

While this model is idealized, it nevertheless captures the essential physicals effects
of heteroepitaxial growth, such as adatom diffusion, nucleation, surface diffusion, long
range elastic interaction. In addition, since the model is evolved in time using kinetic
Monte Carlo, it naturally captures effects associated with fluctuations.
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← Germanium Atoms

← Silicon Atoms

Figure 2: The reference configuration is obtained by compressing the Germanium atoms to
have the same horizontal spacing as the Silicon atoms. The vertical spacing is chosen so that
Germanium atoms are in equilibrium.

3 Elastic computations

The main difficulty in the implementation of this model is the computation of the
strain field. In this section we shall outline our approach for solving this problem. For
the basic set up we follow Lam et al. [8], as is described in next section. However, our
numerical implementation is different from the one used in [8]. One important feature
of our work is that we provide an exact solution for the elastic displacement in the
substrate which is efficiently evaluated using fast Fourier transforms.

3.1 The reference configuration

The reference configuration we choose consists of a periodic array of complete layers
of Germanium atoms on top of a periodic array of Silicon. The Germanium atoms are
compressed so that their horizontal lattice spacing matches that of the Silicon atoms,
see Figure 3. The vertical lattice spacing, aL, is chosen so that the resulting system
is in mechanical equilibrium. We will now describe the computation of aL in two
dimensions. It is useful to introduce the following dimensionless quantity

ǫ =
ag − as

ag
.

which is denoted as the mismatch. Typical values of ǫ range from -0.05 to 0.05. For
example the mismatch for Germanium on a Silicon substrate is 0.04. In order to
deduce the atom displacement with respect to the reference configuration we need to
compute the forces experienced by an atom due to each of its neighbors. Elementary
considerations allow to compute that, to first order in the ratio ǫ, one has

~F1 = FH

(

1
0

)

, ~F2 = FDV

(

1
1

)

, ~F3 = FV

(

0
−1

)

, ~F4 = FDV

(

−1
1

)

, ~F5 = −~F1,

where FV = kL(aL − as), FH = kL(ag − as), and FDV = kD(2ag − aL − as)/2.
The value of aL is determined by requiring that these five forces sum to zero for

atoms in the reference configuration. By symmetry, the forces in the x direction sum to
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F1

F2 F4

F5

F3aL

as

ag

Figure 3: The reference configuration is obtained by compressing the Germanium atoms to
have the same horizontal spacing as the Silicon atoms. The vertical spacing is chosen so that
complete layers of Germanium are in equilibrium. ~b is the net force on an atom due to the
compression. In principle ~b can be nonzero for any Germanium or Silicon atoms in the top
row, if the top layer is not complete

zero. On the other hand balancing the z components of the force one has 2FDV = FV

which implies
kD(2ag − aL − as) + kL(ag − aL) = 0,

which gives the following expression for aL

aL = ag

(

1 + ǫ
kD

kL + kD

)

.

A similar argument can be applied to the three dimensional lattice. In this case
each atom can interact with six nearest neighbors, located at a distance a, and twelve
diagonal next to nearest neighbors, located at distance a

√
2. The interaction with the

8 corner neighbors, located at a distance a
√
3, are neglected.

As in the two dimensional case, we shall denote by kL and kD the two spring
constants corresponding to the interaction between nearest neighbors and diagonal
neighbors. Each bulk atom is surrounded by 18 neighbors, (six longitudinal and twelve
diagonal). We denote by ~Fijk the contribution of the force on a given atom due to the
presence of its neighbor in the direction (i, j, k). For example, the 3D equivalent of
force ~F3 of Figure 3 would be ~F0,0,−1.

The six forces aligned along the coordinate axis have the expression

~Fijk =





−iFH

−jFH

kFV



 , with i, j, k ∈ {−1, 0, 1}, where |i|+ |j| + |k| = 1. (4)
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FV and FH are given above. The twelve diagonal forces are given by

~Fi0k = −





iFDV

0
kFDV



 , with i, k ∈ {−1, 1}, (5)

~F0jk = −





0
jFDV

kFDV



 , with i, k ∈ {−1, 1}, (6)

and

~Fij0 = −





iFDH

jFDH

0



 , with i, j ∈ {−1, 1}, (7)

FDV is given above and FDH = kD(ag − as). It is convenient to set ~Fijk = 0 if
|i|+ |j|+ |k| = 3.

As in the two dimensional case these forces must sum to zero in the reference
configuration. The x and y components will vanish by symmetry. The forces in the z
direction vanish if

FV + 4FDV = 0,

which implies
2kD(2ag − aL − as) + kL(ag − aL) = 0.

This gives the following expression for aL,

aL = ag

(

1 + ǫ
2kD

kL + 2kD

)

. (8)

3.2 Computation of the interaction

Let us denote the displacement, with respect to the reference configuration, of an atom
at site (ℓ, j, k) by the vector (uℓjk, vℓjk, wℓjk) and the force experienced by this atom as
(fℓjk, gℓjk, hℓjk). This force will arise from the interaction of the atom with its nearest
neighbors and next nearest neighbors. For example the x component of the force is
given by

fℓjk = kL ([uℓ+1jk − uℓjk] + [uℓ−1jk − uℓjk])

+
kD
2

([uℓ+1jk+1 − uℓjk] + [uℓ−1jk+1 − uℓjk])

+
kD
2

([uℓ+1jk−1 − uℓjk] + [uℓ−1jk−1 − uℓjk])

+
kD
2

([uℓ+1j+1k − uℓjk] + [uℓ−1j+1k − uℓjk])

+
kD
2

([uℓ+1j−1k − uℓjk] + [uℓ−1j−1k − uℓjk])

+
kD
2

([vℓ+1j+1k − vℓjk] + [vℓ−1j−1k − vℓjk])

− kD
2

([vℓ+1j−1k − vℓjk] + [vℓ−1j+1k − vℓjk])
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+
kD
2

([wℓ+1jk+1 −wℓjk] + [wℓ−1jk−1 − wℓjk])

− kD
2

([wℓ+1jk−1 −wℓjk] + [wℓ−1jk+1 − uℓjk])

+
∑

(m,n,q)∈neigh(ℓ,j,k)

~Fmnq · ex (9)

where ~Fmnq are given by (4-7). Each term in square brackets and each ~Fmnq represents
the interaction of an atom at site (ℓ, j, k) with potential nearest and next nearest
neighbors. If no such neighbor exists then the term should not be included.

Suppose we have N atoms and we denote the relative displacement of the pth atom
by ~up and let ~Fp denote the force it experiences. We also let ~bp denote the sum of all
forces given by (4-7), acting on the atom when its position is the reference configuration.
Next we define the following vectors in R

3N , u = (~u1, . . . , ~uN )T , b and F are similarly
defined. Then we can write

F = Au+ b.

We remark that for atoms that are completely surrounded by other 18 atoms, or atoms
that are on a horizontal surface, the corresponding ~b is zero, since all the forces acting
on them sum up to zero, which is consistent to the fact that a rectangular box of atoms
in the reference configuration is in equilibrium. As a consequence, the vector b has
nonzero elements only for atoms at the surface. The matrix vector product, Au can
be deduced from (9) and similar relations for gℓjk and hℓjk.

The equilibrium position of atoms in a given configuration is obtained by setting
F = 0, i.e. by solving the large linear system

Au+ b = 0.

3.3 Contribution of the substrate

It is known that elastic interactions can be very long ranged. For example the elastic
interaction between two island behaves like d−2 where d is the distance between the
island centers [19]. This indicates that elastic interaction can penetrate deep into the
substrate. On the other hand, the interaction range is certainly much shorter than
the thickness of the substrate. For this reason it is prudent to consider the substrate
to be semi-infinite in the z-direction. To reduce boundary effects we consider periodic
boundary conditions in both the x and y directions. In this section we shall derive a
formula that expresses the force on the surface atoms of the substrate completely in
terms of their displacement.

The surface of the substrate corresponds to k = 0, and the atoms of the bulk
substrate will be indexed using negative k values. In the substrate (k ≤ −1) all atoms
have a complete set of neighbors, consequently we can write the force, in component
form, on the atom at site (ℓ, j, k), k ≤ −1, as

fℓjk = kL(uℓ+1jk − 2uℓjk + uℓ−1jk)

+
kD
2
(uℓ+1jk+1 + uℓ−1jk+1 + uℓ+1jk−1 + uℓ−1jk−1

+uℓ+1j+1k + uℓ−1j+1k + uℓ+1j−1k + uℓ−1j−1k − 8uℓjk)
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+
kD
2
(vℓ+1j+1k + vℓ−1j−1k − vℓ+1j−1k − vℓ−1j+1k)

+
kD
2
(wℓ+1jk+1 + wℓ−1jk−1 − wℓ+1jk−1 − wℓ−1jk+1), (10)

gℓjk = kL(vℓj+1k − 2vℓjk + vℓj−1k)

+
kD
2
(vℓj+1k+1 + vℓj−1k+1 + vℓj+1k−1 + vℓj−1k−1

+vℓ+1j+1k + vℓ−1j+1k + vℓ+1j−1k + vℓ−1j−1k − 8vℓjk)

+
kD
2
(uℓ+1j+1k + uℓ−1j−1k − uℓ+1j−1k − uℓ−1j+1k)

+
kD
2
(wℓj+1k+1 + wℓj−1k−1 − wℓj+1k−1 − wℓj−1k+1), (11)

hℓjk = kL(wℓjk+1 − 2wℓjk + wℓjk−1)

+
kD
2
(wℓj+1k+1 + wℓj+1k−1 + wℓj−1k+1 + wℓj−1k−1

+wℓ+1jk+1 + wℓ−1jk+1 + wℓ+1jk−1 + wℓ−1jk−1 − 8wℓjk)

+
kD
2
(uℓ+1jk+1 + uℓ−1jk−1 − uℓ+1jk−1 − uℓ−1jk+1)

+
kD
2
(vℓj+1k+1 + vℓj−1k−1 − vℓj+1k−1 − vℓj−1k+1). (12)

At the surface of the substrate (k = 0), one has a slightly different expression, because
there are no atoms on top, namely:

fℓj0 = kL(uℓ+1,j,0 − 2uℓ,j,0 + uℓ−1,j,0)

+
kD
2
(uℓ+1,j,−1 + uℓ−1,j,−1 + uℓ+1,j+1,0 + uℓ−1,j+1,0

+uℓ+1,j−1,0 + uℓ−1,j−1,0 − 6uℓ,j,0)

+
kD
2
(vℓ+1,j+1,0 + vℓ−1,j−1,0 − vℓ+1,j−1,0 − vℓ−1,j+1,0)

+
kD
2
(wℓ−1,j,−1 − wℓ+1,j,−1), (13)

gℓj0 = kL(vℓ,j+1,0 − 2vℓ,j,0 + vℓ,j−1,0)

+
kD
2
(vℓ+1,j+1,0 + vℓ−1,j+1,0 + vℓ+1,j−1,0 + vℓ−1,j−1,0

+vℓ,j+1,−1 + vℓ,j−1,−1 − 6vℓ,j,0)

+
kD
2
(uℓ+1,j+1,0 + uℓ−1,j−1,0 − uℓ+1,j−1,0 − uℓ−1,j+1,0)

+
kD
2
(wℓ,j−1,−1 −wℓ,j+1,−1), (14)

hℓj0 = kL(wℓ,j,−1 − wℓ,j,0)

+
kD
2
(wℓ+1,j,−1 + wℓ−1,j,−1 + wℓ,j+1,−1 + wℓ,j−1,−1 − 4wℓ,j,0)
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+
kD
2
(uℓ−1,j,−1 − uℓ+1,j,−1)

+
kD
2
(vℓ,j−1,−1 − vℓ,j+1,−1). (15)

Let us now consider a Fourier expansion of the displacement in the x and y direction.
The generic Fourier mode will take the form

uℓjk = ûk(ξ, η)e
i(ℓξ+jη),

vℓjk = v̂k(ξ, η)e
i(ℓξ+jη), (16)

wℓjk = ŵk(ξ, η)e
i(ℓξ+jη).

By inserting this Fourier expansion in the expression of the surface force (13-15) one
obtains the relations

f̂0 = 2kLû0(cos ξ − 1) + kD[û−1 cos ξ + û0(2 cos ξ cos η − 3)

−2v̂0 sin ξ sin η − iŵ−1 sin ξ],

ĝ0 = 2kLv̂0(cos η − 1) + kD[v̂−1 cos η + v̂0(2 cos ξ cos η − 3)

−2û0 sin ξ sin η − iŵ−1 sin η], (17)

ĥ0 = kL(ŵ−1 − ŵ0) + kD[ŵ−1(cos ξ + cos η)− 2ŵ0]

−i(û−1 sin ξ + v̂−1 sin η)].

In the relation above we have suppressed the dependence of all Fourier modes on (ξ, η).
Eq.(17) gives a relation between the Fourier modes of the force and the Fourier

modes of the displacement. However, our goal is to express (f̂0, ĝ0, ĥ0) in terms of
(û0, v̂0, ŵ0). Once this is done then the force field at the surface can be computed
from its Fourier modes by inverse discrete Fourier transform. In order to accomplish
our goal, we need to express û−1, v̂−1, ŵ−1 in terms of û0, v̂0, ŵ0, and substitute their
expression into (17). This can be done as follows. First, let us insert the Fourier
expansion (16) into (10–12) obtaining:

f̂k = 2kLûk(cos ξ − 1) + kD[(ûk+1 + ûk−1) cos ξ + ûk(2 cos η cos ξ − 4)]

+ikD(ŵk+1 − ŵk−1) sin ξ − 2kD v̂k sin ξ sin η

ĝk = 2kLv̂k(cos η − 1) + kD[(v̂k+1 + v̂k−1) cos η + v̂k(2 cos η cos ξ − 4)] (18)

+ikD(ŵk+1 − ŵk−1) sin η − 2kDûk sin ξ sin η

ĥk = kL(ŵk+1 − 2ŵk + ŵk−1)

+kD[(ŵk+1 + ŵk−1)(cos ξ + cos η)− 4ŵk]

+ikD[(ûk+1 − ûk−1) sin ξ + (v̂k+1 − v̂k−1) sin η]

The discrete equations given by (18) are solved using the following substitution

ûk = ûαk, v̂k = v̂αk, ŵk = ŵαk, (19)
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where we look for solutions with |α| > 1, since we expect the Fourier modes to decay
as k → −∞. Inserting this ansatz into the expression (18) of the Fourier modes of the
force acting on the inner points of the substrate, one obtains:





f̂
ĝ

ĥ



 = Ω(α)





û
v̂
ŵ



 , (20)

where the entries of the matrix Ω are given by

ω11 = 2kL(cos ξ − 1)α+ kD[cos ξ(1 + α2) + 2(cos η cos ξ − 2)α]

ω22 = 2kL(cos η − 1)α + kD[cos η(1 + α2) + 2(cos η cos ξ − 2)α]

ω33 = kL(α
2 − 2α + 1) + kD[(α

2 + 1)(cos ξ + cos η)− 4]

ω12 = ω21 = −2αkD sin ξ sin η

ω13 = ω31 = ikD(α
2 − 1) sin ξ

ω23 = ω32 = ikD(α
2 − 1) sin η

Note that matrix Ω is symmetric, but not self-adjoint.
Since all forces in the bulk have to be zero (all such atoms are in mechanical

equilibrium), then one has

Ω





û
v̂
ŵ



 = 0. (21)

This homogeneous system has nontrivial solutions only if

P (α) ≡ det(Ω) = 0. (22)

This relation results in an algebraic equation for the values of α. The polynomial P (α)
is a six degree polynomial, therefore it admits, in general, six roots. Note that, because
of the structure of the matrix Ω, matrix α2Ω(1/α) is equal to Ω(α) with ω13 = ω31 and
ω23 = ω32 of opposite sign. This does not change the expression of the determinant,
and therefore if α̃ 6= 0 is a root, then also 1/α̃ is a root. This means that the number
of roots α̃ such that |α̃| > 1 is equal to the number of (nonzero) roots α̃ such that
|α̃| < 1. The roots that are of interest for us are the ones that decay as k →∞, i.e. α̃
: |α̃| > 1.

3.3.1 Eigenvector computation

In this subsection we describe a general procedure for the computation of the eigenval-
ues and eigenvectors, that works also in the case of multiple eigenvalues.

The goal is to solve the problem given by (21), which we write as

Ωr = 0 (23)

where r is a three-component vector (we drop the arrow on top), and to find inde-
pendent eigenvectors even if some eigenvalues coincide. First compute the eigenvalues
by solving the algebraic equation (22). Consider the three eigenvalues αℓ such that
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|αℓ| > 1, ℓ = 1, . . . , 3. If they are all distinct, then the three eigenvectors correspond-
ing to them will be independent. If two of them are coincident, let us say α2 = α3,
then one has to find two independent eigenvectors corresponding to the coincident
eigenvalues.

A unified treatment of the problem is obtained by the use of the singular value
decomposition (SVD) of matrix Ω. The procedure works as follows. First compute
α1, α2, α3. If they are distinct, for each of them compute Ωℓ = Ω(αℓ), ℓ = 1, . . . , 3.
Perform the SVD of Ωℓ: Ωℓ = UΣV †, where U and V are unitary matrices (i.e.
UU † = I, V V † = I), and Σ is a diagonal matrix containing the singular values of Ωℓ.
Taking into account that U is non singular, problem (23) reads

ΣV †r = 0.

Since Ωℓ is singular, then Σ = diag(σ1, σ2, 0), therefore one has

σ1

(

V †r
)

1
= 0, σ2

(

V †r
)

2
= 0,

(

V †r
)

3
= arbitrary

Let us choose
(

V †r
)

3
= 1.

Assuming σ2 6= 0, i.e. that the matrix Σℓ has rank 2, then one has

V †r =





0
0
1



 ,

therefore

r = V





0
0
1





i.e. r is the third column of V .
If two roots are coincident, say α1, α2 = α3, then first compute the eigenvector r1

using the procedure above applied to matrix Ω(α1). For the computation of the other
eigenvectors there are two possibilities: either the rank of the matrix Ω2 = Ω3 is 1,
i.e. σ2 = 0, or the rank of the matrix is 2, i.e. σ2 6= 0. However, the latter case
never happened in all our computations, and we conjecture it can never happen for
our problem. Therefore we assume that σ2 = 0. Repeating the procedure above, one
finds that r2 and r3 can be computed, respectively, as the second and third column of
the matrix V .

3.3.2 Surface Force Formula

We denote by ~rℓ a solution of the system

Ω(αℓ)~r = 0,

with ℓ = 1, 2, 3. Then we can decompose the vector (û0, v̂0, ŵ0)
T on the basis of the

eigenvectors, i.e.




û0
v̂0
ŵ0



 = c1~r1 + c2~r2 + c3~r3.
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Once the constants c1, c2, c3 are computed, one can write




û−1

v̂−1

ŵ−1



 =
c1
α1

~r1 +
c2
α2

~r2 +
c3
α3

~r3.

The two relations allow to express û−1, v̂−1, ŵ−1 in terms of û0, v̂0, ŵ0. Once this is
done, one can substitute this expression into (17) and obtain the final relation between
(f̂0, ĝ0, ĥ0) and (û0, v̂0, ŵ0). This relation has to be computed for all Fourier modes
(ξ, η). Periodicity implies that ξ = 2πm/M , η = 2πn/M , m,n = 1, . . . ,M .

The complete algorithm for the computation of ~fℓj0 from ~uℓj0 can be summarized
as follows.

Computation of ~fℓj0 from ~uℓj0

0. Preprocessing. Given M , for each mode (m1,m2),m1,m2 = 1, . . . ,M , solve the
eigenvalue problem (21), and store the eigenvalues and eigenvectors.

1. Given ~uℓj0, perform the discrete Fourier transform in ℓ and j and compute all
Fourier modes û0, v̂0, ŵ0.

2. For each mode, compute û−1, v̂−1, ŵ−1 using pre-computed values of eigenvalues
and eigenvectors.

3. Compute the Fourier modes of the force f̂ , ĝ, ĥ, using Eq.(17)

4. Compute the force by inverse discrete Fourier transform

All discrete Fourier transforms can be efficiently computed by FFT algorithms in
O(M2 logM) operations. In all our calculations we used the FFTW package devel-
oped at MIT [1].

3.4 Elastic Displacement Computation

Let us assume that we have deposited N atoms on a substrate of size M ×M . Let
us use ug ∈ R

3N to denote the relative displacement of the Germanium atoms on the

substrate. We use us ∈ R
3M2

to denote the relative displacement of the top layer of
atoms on the substrate. Then the equilibrium position of the particles can be obtained
by solving the following linear system

F ≡
(

Fs

Fg

)

=

(

S B
BT A

)(

us

ug

)

+

(

bs

bg

)

= 0 (24)

The matrices appearing in the system have the following meaning. The forces acting
on the M2 Silicon atoms on the surface of the substrate are

Fs = Sus +Bug + bs.

Here Sus is the force on the atoms at the surface of the substrate due to all the (Silicon)
atoms in the substrate. This is efficiently computed using the results from the previous
section. Bug is the force on the substrate surface due to the Germanium atoms, and
bs is the sum of the forces given by (4-7). The force acting on the N Germanium
atoms on the substrate is given by

Fg = BTus +Aug + bg,

13



where Aug are the forces that arise from the interactions between the Germanium
atoms, BTus is the force on the Germanium atoms due to the top layer of Silicon
atoms, and bg is the sum of the forces given by (4-7).

We observe that the matrix
(

S B
BT A

)

(25)

is a symmetric negative semi-definite matrix; it has 3 zero eigenvalues, corresponding
to the free translation in the 3 directions of the coordinate axis. The system is clearly
invariant for translation along the directions parallel to the substrate. It is also invari-
ant along the direction orthogonal to the substrate, because the substrate is considered
semi-infinite. This can be understood by the following argument. For a substrate of a
finite thickness, let us say of NL layers, a unit displacement in the direction orthogonal
to the substrate will produce an elastic force per unit atom equal to

F =
1

NL
(kL + 2kD)

which vanishes as NL →∞. Therefore no resistance is opposed to any translation.
Notice that the matrix BT is the transpose of matrix B ∈ R

3M2×3N . A is a 3N×3N
matrix. A and B are sparse and the matrix vector products are efficiently evaluated
using expressions similar to (9). System (24) can be solved by an iterative scheme
for large, sparse linear systems, making use of the symmetry and definiteness of the
coefficient matrix. Here we shall use just a simple conjugate gradient method, leaving
the search for a more efficient method to future investigations.

4 Evaluation of the elastic energy

Once the strain field is determined, the elastic energy is computed as follows. The
energy associated to the bonds is given by

Eelas = EGe−Ge + EGe−Si + ESi−Si,

where ESi−Si is the energy due to the interaction between the Silicon atoms. The other
terms are analogously defined. One has

ESi−Si =
∑

Si−Si bonds

1

2
kbond(ℓbond)

2. (26)

where kbond is either kL or kD depending on whether the bond is longitudinal or
diagonal. ℓbond is the amount the bond has been stretched from the equilibrium con-
figuration. This can be written in terms of the displacement field as

ESi−Si = −
1

2
uT
SiASiuSi, (27)

where we denote by ASi the (infinite dimensional) matrix that provides the force on all
Silicon atoms as a function of the position of the Silicon atoms.

The energy due to the interaction of the Germanium atoms can be written as

EGe−Ge + EGe−Si =
∑

all Ge bonds

1

2
kbond(ℓbond)

2, (28)
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where kbond is as in (26) but here ℓbond represents the amount the Germanium bonds
have been stretched from their original equilibrium configuration (as opposed to the
reference configuration). This can be written as

EGe−Ge + EGe−Si =
1

2

∑

all atoms
bonded to
a Ge atom

eℓjk (29)

where eℓjk is the total elastic energy stored in all the bonds associated to the atom
located at site (ℓ, j, k). The factor 1

2 accounts for the double counting of the summation.
We can write

eℓjk = exℓjk + eyℓjk + ezℓjk

with

exℓjk =
kL
2

(

[uℓ+1jk − uℓjk + dx]
2 + [uℓ−1jk − uℓjk − dx]

2
)

+
kD
2

(

[uℓ+1jk+1 − uℓjk + dx]
2 + [uℓ−1jk+1 − uℓjk − dx]

2
)

+
kD
2

(

[uℓ+1jk−1 − uℓjk + dx]
2 + [uℓ−1jk−1 − uℓjk − dx]

2
)

+
kD
2

(

[uℓ+1j+1k − uℓjk + dx]
2 + [uℓ−1j+1k − uℓjk − dx]

2
)

+
kD
2

(

[uℓ+1j−1k − uℓjk + dx]
2 + [uℓ−1j−1k − uℓjk − dx]

2
)

where dx = as − ag. In the above expression, each term in square brackets represents
the contribution to the elastic energy by a pair of atoms. If no such pair exists then
the term is not included. One can derive analogous expressions for eyℓjk and ezℓjk where
dy = dx and dz = aL − ag.

To compute the total elastic energy, the sum in Eq.(28) is computed directly, while
the sum in Eq. (26), which contains infinitely many terms, can be computed by the
following argument. First, let us distinguish among the surface and the bulk atoms. Let
us denote by −FSi the force acting on Silicon due to the presence of the Germanium.
They take the form

FSi =

(

Fs

0

)

,

where the dimension of the vector Fs is equal to the dimension of the surface of the
substrate, while 0 represent the force acting on rest of all the infinite atoms of the bulk.

At equilibrium, the net force acting on all Silicon atoms is zero, therefore we may
write

−FSi +ASi

(

us

ubulk

)

= 0.

Using the above relations one obtains

ESi−Si = −
1

2

(

us

ubulk

)T (

Fs

0

)

= −1

2
uT
s Fs

We remark here that Fs is the same surface force computed in the previous section
using the discrete Fourier transform.
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5 Time stepping approximations

The method outlined in Section 2 is impractically slow for the following reasons

1. For each attempted hop, a complete elastic computation has to be performed.
Since most attempts are rejected, most of the time would be spent performing
elastic computations that are never used.

2. Even without elastic effects, the simple rejection-based KMC described here is
very slow. A more effective technique would be to use rejection-free KMC, in
which all possible events are sampled according to their probability [4, 12]. How-
ever, with the inclusion of elastic effects, the implementation of rejection-free
KMC is not so straightforward.

Here we shall outline various approximations of the model which lead to a much
faster code, without significantly compromising the physical fidelity.

As mentioned above, in order to know the rate at which an atom might hop we
must compute the change in elastic energy of the entire system with and without that
atom present. We make the following approximation, we assume that the change in
the elastic energy is due to the energy in the bonds that directly connect that atom.
Therefore we have

∆Eelas ≈
∑

bonds to
atom p

kbond
2

(ℓbond)
2 = eℓjk (30)

where (ℓ, j, k) is the site of the pth atom. The advantage of this approach is that
a new equilibrium configuration has to be computed only if the move is accepted.
Another approximation involves updating the displacement field after a given number
J of hops. Furthermore, one can verify that the change in elastic energy for atoms
which are lightly bonded (Nb ≤ 5) is very small and consequently we assume it to be
zero.

Finally, in order to reduce the number of rejections we separate the lightly bonded
(Nb ≤ 5) and the more strongly bonded (Nb > 5) atoms in our implementation of
kinetic Monte Carlo. This is done as follows. We take Q steps where we update the
lightly bonded atoms and then take one step where the strongly bonded atoms are
allowed to move. The accepted rate for the strongly bonded atoms is increased by a
factor Q.

The above discussion can be conveniently summarized as the following algorithm.

ALGORITHM

1. Choose a site at random among all M ×M sites (only atoms on the surface are
allowed to move)

2. If there is Germanium atom present compute Nb (number of bonds)

3. Let it hop without any elastic computation if Nb ≤ 5

4. If Nb > 5 ignore the atom

5. Repeat Steps 1 to 4 M2 times

6. Repeat Steps 1 to 5 Q times

7. Let the system come to mechanical equilibrium (perform an elastic solve).
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8. Choose a site at random

9. If there is Germanium atom present compute Nb

10. If Nb ≤ 5 do nothing

11. If Nb > 5 then compute a random number, r ∈ U [0, 1]

12. If r < Q exp (−γ(Nb − 5) + ∆Es) perform a hop

13. After J hops update the displacement field

14. Repeat Steps 9 to 13 M2 times.

15. We have now advanced Q steps

6 Numerical results

At the present time the algorithm is to too slow to perform computations for realistic
values for the parameter values and see effects due to elastic strain. For example,
quantum dots observed in experiments are on the order of 20 nm. This would suggest
that we should be computing on domains on the order of 1000 × 1000. At the present
time the largest domain for which we can simulate in a reasonable time is 64×64. Since
elastic phenomena are a bulk effect, then we must increase the spring constants to be
unphysically large in order to observe significant elastic interaction. In our simulations
we chose kL = 500 and kD = 250. These values are approximately 10 times larger
than physical values. In addition we chose F = 10−5. Since the hopping rate for an
adatom is unity then it follows that the diffusion coefficient is D = 1

4 . Therefore in
our simulations we have D/F = 2.5 × 104. From an experimental point of view this
is small. Realistic values for D/F are typically larger than 105. We have chosen high
deposition rate to reduce the simulation time. We have taken γ = 2. Finally we have
used Q = 5 and J = 8. Numerical experiments revealed taking smaller values for Q
and J did not change the answer appreciably.

In Figures 4, 5, and 6, we present computations using the parameter values discussed
above but we allow the misfit to vary. Figure 4 shows the growth for ǫ = 0.02. Here
one observes layer-by-layer growth. Figure 5 presents the results when ǫ = 0.04. One
observes that in the initial stages of growth the morophology is similar to layer-by-
layer growth but three dimensional islands form by nucleation type events and by the
formation of trenches [22]. The result for the case ǫ = 0.06 are shown in Figure 6. In
this situation three dimensional islands form very quickly by nucleation.

In both cases, ǫ = 0.04 and ǫ = 0.06 we observe Volmer-Weber growth. Sim-
ulations were performed over a wide range of parameter values and they always re-
vealed a sharp transition between layer-by-layer growth and Volmer-Weber growth;
Stranski-Krastanov growth was not observed. Our results are consistent with previous
simulations in this regard.

7 Summary

A numerical method for the computation of heteroepitaxial growth in the presence of
strain using kinetic Monte Carlo has been presented. A solid-on-solid model is used
and the elastic effects are incorporated using a linear ball and spring model. It is
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(a) (b)

(c) (d)

Figure 4: Heteroepitaxial simulations with ǫ = 0.02, all other parameter values are given in
the text. (a) 0.5 monolayers, (b) 1.5 monolayers, (c) 2.5 monolayers, and (d) 3.5 monolayers.
The number of gray levels is equal to the maximum height. Note: higer resolution versions
of the figures can be found at www.math.lsa.umich.edu/∼psmereka
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(a) (b)

(c) (d)

Figure 5: Heteroepitaxial simulations with ǫ = 0.04, all other parameter values are given in
the text. (a) 0.5 monolayers, (b) 1.5 monolayers, (c) 2.5 monolayers, and (d) 3.5 monolayers.
The number of gray levels is equal to the maximum height.
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(a) (b)

(c) (d)

Figure 6: Heteroepitaxial simulations with ǫ = 0.06, all other parameter values are given in
the text. (a) 0.5 monolayers, (b) 1.5 monolayers, (c) 2.5 monolayers, and (d) 3.5 monolayers.
The number of gray levels is equal to the maximum height.
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assumed that the film is mechanical equilibrium. The strain field in the substrate is
computed by an exact solution which is efficiently evaluated using the fast Fourier
transform. The strain field in the growing film is computed directly. The resulting
coupled system is solved iteratively using the conjugate gradient method. Finally we
introduce various approximations in the implementation of the KMC to improve the
computation speed. Numerical results show that layer-by-layer growth is unstable if
the misfit is large enough resulting in the formation of three dimensional islands. Our
results are in agreement with previous studies [3, 10, 11, 8, 13, 18].

Currently, we are in the process of solving the elastic equations for the deposited
atoms using multigrid and then coupling the multigrid solver to the exact solution in
the substrate. In addition we plan to extend the model to allow for the deposition of
several different atomistic species.
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