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Université Bordeaux I, 351 cours de la Libération , 33 405 Talence Cedex

Abstract

The Residual Distribution (RD) schemes are an alternative to standard high order accurate finite

volume schemes. They have several advantages : a better accuracy, a much more compact stencil, easy

parallelization. However, they face several problems, at least for steady problems which are the only

cases considered here. The solution is obtained via an iterative method. The iterative convergence must

be good in order to get spatially accurate solutions, as suggested by the few theoretical results available

for the RD schemes. In many cases, especially for systems, the iterative convergence is not sufficient

to guaranty the theoretical accuracy. In fact, up to our knowledge, the iterative convergence is correct

in only two cases : for first order monotone schemes and the (scalar) Struij’s PSI scheme which is a

multidimensional upwind scheme. Up to our knowledge, the iterative convergence is poor for systems,

except for the blended scheme of Deconinck et al. [1] which is also a genuinely multidimensional upwind

scheme.

A second drawback is that their construction relies, up to now, on a single first order scheme : the

N scheme. However, it is known that standard first order finite volume schemes can be rephrased into a

Residual Distribution framework. Unfortunately, the standard way of upgrading the order of accuracy

to second order leads to very unsatisfactory results but clearly the construction of good schemes based

on a wider class of first order schemes would be interesting.

In this paper, we analyze these two problems, and show they are linked. We propose a fix and

demonstrate its efficiency on several test cases that cover a wide range of applications. Our solution

extends considerably the number of working RD schemes.
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1 Introduction

We are interested in the numerical solution of hyperbolic problems (scalar or system) on unstructured meshes,

with a particular emphasis on the Euler equations for fluid mechanics. Many type of methods are available

in the literature, such as the high resolution finite volume schemes or the stabilized finite element methods.

Here, we are interested in a particular class of schemes that share similarities with the high resolution finite

volume schemes and the stabilized FEM : they possess a non–linear and non–oscillatory mechanism that is

inspired in part by what is done for high resolution finite volume schemes. They can also be interpreted as

continuous finite element methods in which the test functions depend on the solution. Hence a variational

formulation exist, and thanks to this interpretation, they share the residual property : the exact solution,

if smooth enough, satisfies this variational formulation. Thanks to this, they are very accurate. Their

implementation can also be done in a very compact way, hence the parallelization is simple.

The non–oscillatory property of the RD schemes are obtained in two steps. First, a low order monotone

non–oscillatory scheme is written. Second, a high order scheme is constructed from it by enforcing the

non–oscillatory property by comparison with the low order scheme. This is done thanks to a trick that uses

in deep the structure of PDE. We review in some details the construction of RD schemes in section 2. High

order extensions also exist, see [2] as well as extensions for unsteady problems [3, 4].

However, these schemes suffer two major drawbacks. One of them is that, for steady problems, the

numerical solution is obtained via an iterative scheme that, in general, does not converge. More precisely,

the iterative procedure has a nice convergence behavior in only two cases : the case of dissipative first

order schemes such as the N scheme and a Lax–Friedrichs type scheme that we recall later in the text,

and the case of multidimensional upwind schemes such as the N scheme. In the case of systems and up

to our knowledge, the iterative behavior is good in the case of blended schemes such as those described in

[5, 1] ; but these schemes are not robust enough to serve as all–purpose solvers. In the case of the second

order schemes of [3], as mentioned in this reference, the iterative convergence is bad. If one looks at the

spatial structure of the local residuals, relatively high values are obtained at apparently randomly distributed

locations. In the unsteady case, the solution at each time step is also obtained by an iterative method that

has no good converge properties. In these two cases, the formal theoretical accuracy of the RD scheme

becomes problematic, because the accuracy is guaranteed at convergence only or if the spurious residual is

small enough. The results are good in practice.

Another drawback is the relative lack of flexibility of the technique. Up to now, the only first order

scheme that produces successful high order schemes is the so–called N scheme [6]. Since it is easy to see that

any finite volume scheme can be rephrased as a RD scheme, it is very tempting to consider any first order

finite volume scheme and apply the construction on it. This would provide an elegant way of “exporting”

the properties of the FV schemes to this setting such as the positivity preserving properties of some of these
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schemes. However, the result is very disappointing, as we see in section 3 !

The purpose of this paper is to analyze these phenomena that seem to be linked, and to propose effective

solutions. This analysis is carried out in section 4. In order to solve the two problems (iterative convergence

and flexibility of the method), it seems that we need to loose the rigorous non oscillatory property of the

RD schemes. However, even if the schemes are not anymore strictly non–oscillatory, the schemes seem to

work extremely well in practice. We demonstrate this on several examples for scalar and system cases (Euler

equations of fluid mechanics).

The paper is organized as follows. First, we introduce the Residual Distribution schemes, provide the

design principles and several examples. In the second section, we illustrate by several experiments the

problems of the second order schemes : lack of convergence, wiggly behavior. Part 3 is an attempt to

analyze these difficulties, and provide a fix. The last section is devoted to the intensive evaluation of our

solution. A conclusion ends the text.

2 The residual distribution formalism

2.1 General considerations

We consider the following hyperbolic problem

div f(u) = 0 x ∈ Ω

u = g weakly x ∈ ∂Ω
(1)

where Ω ⊂ Rd, u : Ω→ Rm and f is a regular function defined on an open subset of Rm. The function g is

regular enough for the boundary condition to have a meaning. The set ∂Ω− is the inflow part of ∂Ω.

For the sake of simplicity, we assume that Ω is polygonal, and we consider Th a shape regular conformal

triangulation of Ω. For the sake of simplicity, we also assume d = 2, the discussion can easily be adapted to

d = 3.

We denote by V = {Mj}j=1,...ns the vertices of Th, and {Tj}j=1,...,nt the set of triangles of Th. The

vertices of T are Mj1 , Mj2 and Mj3 . Most of the time, we denote them by their index in the list V, and

when there is no ambiguity, they are simply denoted by 1, 2 and 3. Last, V(i) denotes the set of vertices

that are connected to Mi by one edge of Th. The parameter h denotes the supremum over the triangles of

Th of
√

|T |.

In the RD schemes, the solution of (1) is approximated at the vertices : the numerical approximation is

represented by (uj)j=1,...,ns . From this we construct a continuous interpolant uh : the function is linear on

each triangle T and uh(Mj) = uj .

In each triangle T , we assume to have in hand residuals (ΦT
j )Mj vertex of T , ΦT

j := ΦT
j (uh), such that the
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following conservation relation holds :

∑

j∈T

ΦT
j =

∫

∂T

f(uh(x)) d∂T := ΦT . (2)

The quantity ΦT is called the total residual over T . We show latter several examples of such decompositions.

Once this is done, the RD scheme writes

for all Mj ,
∑

T such that Mj∈T

ΦT
j (uh) = 0. (3)

In order to simplify the text, we skip the general problem of setting up boundary condition. This point is

addressed later in section 2.4.

The relation (3) raises three questions

1. How to define the residuals ΦT
j ?

2. Which design principles should be applied, in particular how to get accurate and non oscillatory results ?

3. How to solve (3) ?

2.2 Design principles

Until the end of the paper, we drop the superscript T in the writing of residuals when there is no ambiguity,

and when it is unnecessary, thanks to the form (3) of the RD schemes.

2.2.1 Consistency with (1).

Consider a sequence of shape regular meshes {Th} with h → 0. We assume that we can solve (3) exactly,

the solution is denoted by uh = {uhj }j=1,...,ns . In [7], we show that provided the solution satisfies

1. The exists a constant C such that for all h, maxj ||uhj || ≤ C,

2. There exists a function u in L2
loc(Rm)d and a subsequence of {uh} such that uh → u in L2

loc,

3. The conservation relation (2) holds true for any uh,

then u is a weak solution of (1).

This is the analog of the classical Lax Wendroff theorem. A slightly more general result is shown in [8].
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2.2.2 Solution scheme for (3)

Equation (3) is generally solved by an iterative scheme. In most of the present paper (i.e. except for system

cases), we consider the simplest one, namely

for all j















un+1
j = unj − ωj

(

∑

T such that Mj∈T

ΦT
j (un)

)

u0
j given.

(4)

The parameters ωj are chosen so that the stability of the scheme is ensured. If (4) converges, this defines

a solution of (3). The remaining question is its uniqueness. This is a very difficult problem that is at the

core of the present paper.

2.2.3 Monotonicity preserving schemes

The monotonicity preserving nature of a scheme can be formalized in the case of a scalar problem (1) and

is more intuition–based in the system case.

In the case of a scalar problem, if one assumes that the residuals have the form

ΦT
j =

∑

j∈T

cTij(ui − uj) (5)

then the scheme (3) writes

aii uj =
∑

j∈V(i)

aijuj (6)

with
aii =

∑

T3Mj

∑

j∈T

cTij ,

aij =
∑

T,Mi∈T and Mj∈T

cTij .
(7)

All the known examples of RD scheme write in the form (5). In the case of a system problem (1), the cTij

are matrices and (6)–(7) still hold.

If the coefficients cTij are all positive, it is clear that (6) defines a scheme with a maximum principle

provided there exists a solution. Note that a necessary condition for the existence of a solution is aii > 0 for

all i = 1, . . . , ns. This condition is translated for (4) by

aiiωi ≤ 1.

A local condition is

ωi ≤
{

max
T3i

[

∑

j∈T

cTij

]}−1

.

This is the one that is used in practice.
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2.2.4 Accuracy : the linearity preserving (LP) condition.

Under which condition can the solution of (2) be a second order accurate solution of (1) ? We briefly recall

the analysis of [5]. It is shown that a converged RD scheme (3) produces a formally second order accurate

solution of the steady problem (1) under the following three requirements

1. The mesh is regular,

2. The approximation uh is second order accurate on smooth solutions,

3. For any smooth solution of (1), ΦT
i = O(h3) for any vertex Mi and any triangle T such that Mi ∈ T .

For this reason, it is essential that the equation (3) is exact or approximately exact with an error at most

O(h3) otherwise accuracy is lost.

In most cases, the third condition is met by imposing that there exists a family of uniformly bounded

coefficients (or matrices for system problems) βTi such that

ΦT
i = βTi ΦT . (8)

Indeed, it is easy to show that
∫

∂T

f(uh) · ~n d∂T = O(h3)

when f(uh) is a second order approximation corresponding to a smooth solution and ~n is the outward unit

vector of ∂T . The condition (8) is the Linearity Preservation (LP) condition introduced in [6].

It is known that it is not possible to have a linear scheme that is both monotonicity preserving and

linearity preserving : this is Godunov theorem [9]. The schemes that satisfy both requirements must be non

linear. The construction of such schemes is the topic of the next sub–section.

2.2.5 Systematic construction of second order LP schemes.

The problem is the following. Considering a triangle T , assume we are given residuals that define a first

order1 monotone scheme, (Φ1,Φ2,Φ3). We want to construct a second order scheme defined by its residuals

(Φ?
1,Φ

?
2,Φ

?
3) such that the resulting scheme is

1. conservative
3
∑

i=1

Φi =
3
∑

i=1

Φ?i = Φ,

2. monotonicity preserving,

3. linearity preserving.
1i.e. for which we only have Φi = O(h2).
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We first focus on scalar problems, then sketch a method for systems.

The first remark is that if one defines xi = Φi/Φ, we notice that

3
∑

i=1

xi = 1.

Then we define βi = Φ?i /Φ, the problem can be reformulated as finding a mapping (x1, x2, x3) 7→ (β1, β2, β3)

such that the scheme is

1. conservative :
3
∑

i=1

βi = 1.

2. monotonicity preserving : for all i = 1, 2, 3, xiβi ≥ 0. This condition comes from the fact that

Φ?i =
Φ?i
Φ

Φ
Φi

Φi

=
βi
xi

∑

j 6=i

cij(ui − uj)

=
∑

j 6=i

c?ij(ui − uj)

with c?ij = βi
xi
cij . Since cij ≥ 0, the positivity of c?ij is equivalent to xiβi ≥ 0.

3. linearity preserving : we want βi bounded for any i.

In [2], we provide a geometrical interpretation of these conditions, and several solutions to this problem. We

repeat the argument. The key remark is that since
∑

j xj =
∑

j βj = 1, we can interpret the coordinates

(x1, x2, x3) and (β1, β2, β3) as the barycentric coordinates of points L and H with respect to an abstract

reference triangle (A1, A2, A3) that we choose to be equilateral for symmetry. The points L and H are

defined by

L = x1A1 + x2A2 + x3A3 or equivalently
−−→
A1L = x2

−−−→
A1A2 + x3

−−−→
A1A3

H = β1A1 + β2A2 + β3A3 or equivalently
−−→
A1H = β2

−−−→
A1A2 + β3

−−−→
A1A3

In Figure 1–(a), we have defined seven sub–domains : the triangle (A1, A2, A3) and the six domains Di. The

problem is to find a mapping that project the point L onto a bounded subdomain so that L and H belongs

to the same sub–domain. A geometrical representation of a possible projection is given in Figure 1–(b). Note

that here, the projection leaves invariant the triangle (A1, A2, A3) : we project onto this triangle. What is

important is that the coefficients βj be bounded, so any bounded region can play the role of invariant region

onto which the projection is carried out, for example the disk D of Figure 1–(b). In the next examples, the

invariant region is the triangle (A1, A2, A3).

One of these possible projections is the PSI “limiter” first introduced by R. Struijs in his PhD thesis [10],

in a different form.

βi =
x+
i

∑

j

x+
j

, (9)
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so that

Φ?i = βiΦ. (10)

We note that there is no difficulty in the definition of βi (except the fact that Φ may vanish, in which case

we set Φ?i = 0) because
∑

j

x+
j =

∑

j

xj −
∑

j

x−j ≥
∑

j

xj = 1.

This construction can be applied to any monotone scheme. However, to be valid, one needs to be able

to solve the problem (3). A necessary condition is that the coefficient aii associated to the coefficients c?ij by

(7) be > 0. We come back later to this key point.

We can extend this construction in the system case. This has been done in [11]. We start from (1), and

assume to have in hand a first order non–oscillatory scheme. Examples are given in the next section. If

(rj)j=1,...,d is a basis of Rd, we can decompose the residuals Φi as

Φi =
d
∑

j=1

ϕjirj . (11)

The total residual also admits such a decomposition,

Φ =
d
∑

j=1

ϕjrj . (12)

From the conservation relation (2), we have, for any j = 1, . . . , d,
m
∑

i=1

ϕji = ϕj . (13)

Thus we can apply the scalar construction to each set of scalar residuals {ϕji}i=1,m for j = 1, . . . , d. We

denote by (ϕji )
? the result of the construction.

This enable to define uniformly bounded matrices Bi such that the LP residuals are

Φ?
i =

m
∑

j=1

(ϕji )
?rj := BiΦ. (14)

This scheme, with characteristic variables ϕji has been studied in [11] and shown non oscillatory. The choice

of (rj)j=1,...,d is discussed in the next section.

2.3 Examples

Many schemes are in fact Residual Distribution schemes. Among the most known, we mention the streamline

diffusion method of Johnson and coworkers [12, 13], the streamline upwind Petrov-Galerkin (SUPG) and

Galerkin least-squares finite element methods of Hughes and coworkers [14, 15] and the cell vertex finite

volume methods of Ni [16] and Morton et al. [17, 18]. Here, we are interested in the construction of

oscillation free schemes, we only describe in detail some first order RD schemes.
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2.3.1 Some genuinely multidimensional schemes

A genuinely multidimensional upwind scheme. To begin with, we consider the scalar problem (1)

with a linear flux,

λλλ · ∇u = 0 (15)

with inflow boundary conditions. For a piecewise linear interpolation of u, we get

Φ =
∫

T

λλλ · ∇udx =
3
∑

j=1

kjuj

where, if ~nj represents the scaled inward normal to T opposite to the vertex Mj (see Figure 2), kj = 1
2λλλ ·~nj .

Roe’s N scheme is then defined as

Φi = k+
i

(

ui − ũ
)

(16a)

where k+
i = max(ki, 0) and ũ is defined so that the conservation property holds. A simple algebra shows

that

ũ := n

(

Φ−
∑

j

k+
j uj

)

= n
∑

j

k−j uj (16b)

with n =
(

∑

j

k−j

)−1

and k−j = min(kj , 0). Since
3
∑

j=1

kj = 0, there are two possible cases,

• The one target case : only one kj is positive, say k1. We get

Φ1 = Φ, Φ2 = Φ3 = 0.

• The two target case : only one kj is negative, say k3. In that case, we have ũ = u3 and

Φ1 = k1(u1 − u3), Φ2 = k2(u2 − u3), Φ3 = 0.

This scheme is upwind : if kj ≤ 0 then Φj = 0. It has an important property : for any interior vertex Mi,

one (and only one) of the triangles surrounding Mi is upwind. This is also true for any vertex of the outflow

boundary. Thanks to this, the coefficient aii of (7) is > 0, and (3) leads to a linear system that always has

a unique solution. One way of seeing this is there exist a numbering of the nodes by level sets such that the

linear system is almost lower triangular. A more rigorous way of seeing that is that the N scheme satisfies

an energy inequality, see [19].

In the case of the true non linear problem (1), the previous construction can be extended provided a

suitable averaged speed λλλ can be defined. The N scheme writes as in (16) with λλλ replaced by λλλ. Thanks to

the results recalled in the paragraph 2.2.1, we get easily one constraint on λλλ, namely that

∫

∂T

f(uh)d∂T =
3
∑

j=1

Φj =
∫

∂T

λλλ · ~nuh d∂T.
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which is nothing more than the extension of Roe’s linearisation to the problem (1). Since the interpolant uh

is linear, we have the equivalent characterization

λλλ :=

∫

T

∇uf(uh) dx

|T |
. (17)

Note that the numbering of the level sets, as in the constant velocity case, can be done similarly as long as

||λλλ|| > 0. The second order extension of the N scheme is Struijs’ PSI scheme [10] that we denote by N–PSI

in this paper. It uses (9).

The N scheme has a system version, that was introduced by [20] and analyzed in [19]. In the case of an

hyperbolic linear problem

A
∂u
∂x

+ B
∂u
∂y

= 0, (18)

given any direction ~n, we can define the positive and negative parts of the matrix K~n, defined by

K~n := Anx + Bny.

This matrix is also sometimes denoted as K~n = (A,B) · ~n. Using the fact that the three scaled inward

normals to T , ~n1, ~n2, ~n3, sum up to 0, we can define the system N–scheme as

Φi = K+
i

(

ui − ũ
)

(19a)

with

ũ := N
(

Φ−
3
∑

j=1

K+
j uj

)

= N
( 3
∑

j=1

K−j uj

)

(19b)

and

N :=
( 3
∑

j=1

K−j

)−1

. (19c)

Here we have simplified the notation K~nj into Kj . In [19], we show that if (18) is symetrizable, the matrices

NK−j can be defined even if
3
∑

j=1

K−j is not invertible.

The scheme can be generalized to non linear problems by a simple extension of (17), see for example [21]

in the case of the Euler equation with the equation of state of a perfect gaz and γ constant. The difficult

question is to know whether or not the linearized system is hyperbolic. In the case of the Euler equation

and Roe–Struijs–Deconinck linearisation, this is true, but no answer can be given in the general case. See

however [19] for a different approach, and [1] for a very interesting approximate linearisation leading to a

conservative system.
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The high order extension is carried out as in section 2.2.5. The basis used in (11), (12), (13) and (14) are

in practical applications of two types. Either we chose a direction ~n, say the velocity direction, and define

the basis as the eigenvectors of K~n. Or we simply choose the canonical basis of Rm, i.e. we proceed the high

order construction component by component. We refer to [3] for the discussion. Starting from the system

N scheme, with the characteristic decomposition based on the velocity and the PSI limiter (9), we get the

so–called PSI system N scheme, see [3], still denoted by N–PSI in this paper.

A Lax–Friedrich type scheme. The one dimensional version of the Lax–Friedrich scheme, for the one

dimensional version of (1) writes

f̂i+1/2 − f̂i−1/2 = 0

u = g on the inflow boundary
(20)

with

f̂i+1/2 =
1
2

(

f(ui+1) + f(ui)−αi+1/2(ui+1 − ui)
)

and α ≥ 0 suitably chosen.

The first relation of (20) can be rewritten as

1
2

(

f(ui+1)− f(ui)−αi+1/2(ui+1 − ui)
)

+
1
2

(

f(ui)− f(ui−1)+αi−1/2(ui − ui−1)
)

= 0,

that is

φ
i+1/2
i + φ

i−1/2
i = 0

with, for any j,

φ
j+1/2
j =

1
2

(

f(uj+1)− f(uj)+αi+1/2(uj − uj+1)
)

φ
j+1/2
j+1 =

1
2

(

f(uj+1)− f(uj)+αj+1/2(uj+1 − uj)
)

.

The natural two dimensional generalization of this is

ΦTj =
1
3

(

ΦT + αT

[

∑

k∈T

(uj − uk)
])

. (21)

Clearly, the conservation property (2) holds. The scalar version is monotone provided

αT ≥ max
j=1,3

|kj |

for scalar problems and α = maxj=1,3 ρ(Kj) for systems. Here ρ(A) denotes the spectral radius of the matrix

A, the matrices Ki are evaluated from the Jacobian matrices of the Euler flux evaluated at the Roe average

[21]. In this case, γ, the ratio of specific heats, is constant.
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Last, when f(u) = λλλu, the scheme has the following local energy structure

∑

j∈T

ujΦTj =
1
2

∫

∂T

λλλ · nu d∂T +
αT
2

∑

i,j∈T

(ui − uj)2.

This can easily be extended to more general scalar fluxes as well to symetrizable hyperbolic systems.

2.3.2 Some non genuinely multidimensional schemes

In contrast to the previous examples where the directions needed to construct the residual could not be

associated to the geometry of some control volume, here, we consider examples where the construction is

done by considering a control volume and the associated directions. Two set of examples are described. In

the first one, that we denote by some abuse of language “finite volume schemes”, the construction starts

from a standard one dimensional flux. In the second example, a generalization of Roe’s one dimensional

scheme is considered.

Finite volume schemes. Any finite volume type scheme can be rephrased as a RD scheme. The interest of

this remark is to considerably extend, in theory, the number of RD schemes, and in particular new high order

schemes can be constructed using the technique of section 2.2.5. For example, starting from a positivity

preserving scheme, and doing the high order extension component by component, it becomes possible to

construct, for the Euler equations in fluid mechanics, a LP density–positivity preserving scheme. This may

be interesting because it is not clear at all that the system N–PSI is density–positivity preserving, even

though this scheme has been shown very robust experimentally.

For any vertex Mi of Th, we consider the dual control volume Ci which is constructed by connecting, for

each triangle surrounding Mi, its centroid and the mid–points of the edges containing Mi, see Figure 3.

Now, let us consider a consistent flux F . The finite volume approximation of (1) writes

∑

j∈V(i)

(

F(ui,uj , ~n
Tup
ij ) + F(ui,uj , ~nTdown

ij )
)

= 0 (22)

where the triangles Tup and Tdown, for the edge [i, j], are defined in Figure 3. Here we consider a first order

scheme for the sake of simplicity, but also because it is the only interesting case for our purpose in this paper.

Instead of summing up over the edges in (22), we can sum up over the triangles around Mi,

∑

T,Mi∈T

(

F(ui,uj , ~nTij) + F(ui,uk, ~nTik)
)

= 0 (23)

with the notations of Figure 3. Since the boundary of Ci is closed,

∑

T,Mi∈T

(

f(ui) · ~nTij + f(ui) · ~nTik
)

= 0,
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and then
∑

T,Mi∈T

(

F(ui,uj , ~nTij) + F(ui,uk, ~nTik)− f(ui) · ~nTij − f(ui) · ~nTik
)

= 0 (24)

We set

ΦT
i := F(ui,uj , ~nTij) + F(ui,uk, ~nTik)− f(ui) · ~nij − f(ui) · ~nik

= F(ui,uj , ~nTij) + F(ui,uk, ~nTik) + f(ui) ·
~ni
2

(25)

and because of the construction of Ci, we see that

∑

Mj∈T

ΦT
j =

1
2

∑

Mj∈T

f(ui) · ~ni. (26)

Here, we slightly extend the definition (2) by

∑

j

ΦT
j =

∫

∂T

(

f(u)
)h · ~ni d∂T = ΦT , (27)

i.e. make a piecewise linear interpolation of the flux f(u). The results of section 2.2.1 can be extended to

this case, see [5].

In this paper, we use the finite volume scheme with Roe’s flux [22].

A multidimensional version of Roe’ scheme for the Euler equations. This version has been first

presented in [20]. Using once more the Roe average of [21], we do the same construction as in the finite

volume case with

F(U1, U2, ~n) =
(

(A,B) · ~n
)+
U1 +

(

(A,B) · ~n
)−
U2. (28)

The conservation property is not guarantied by edge but on the triangle since the sum of the residuals

constructed from (28) is
∫

∂T

f(uh) · ~n d∂T

where uh is obtained by interpolating the Roe parameter vector

Z =
√
ρ(1, ~u,H)T

which is linearly interpolated in T . An exact linearisation is obtained, as in the one dimensional case, because

u as well as f are quadratic in Z. Thus, in (28), (A,B) are the Jacobian matrices evaluated at the average

state defined by Z̄ = (Z1 + Z2 + Z3)/3. See [20] for more details.

2.4 Treatment of inflow boundary conditions

We consider the simplified problem

λλλ · ∇u = 0 in Ω

u = g on Γ−
(29)
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Assuming that g is the restriction of a sufficiently regular function, still denoted by g, and defined on Ω, it

is known that (29) has a unique solution.

We consider the linear preserving scheme of section (2.2.5) : we have

ΦTi = βTi

∫

T

λλλ · ∇u dx

with βTi uniformly bounded. If ϕi is the piecewise linear hat function for which ϕi(Mj) = δji , we can write

ΦTi =
∫

T

ωiλλλ · ∇u dx

with ωi defined on any triangle by (ωi)|T = ϕi + (βTi − 1
3 ). We introduce the spaces

Vh = {v continuous , v linear on each triangle, vΓ− = g},

Wh = span(ω1, · · · , ωns).

The scheme (3) can be rewritten in an abstract form : find uh ∈ Vh such that for any wh ∈Wh,
∫

Ω

whλλλ · ∇uhdx = 0. (30)

Using (30), the interpretation of the boundary conditions becomes clear : If M is any vertex that belongs

to a triangle which intersect Γ−, for example the points i or j in Figure 4, we have

∑

T3M

∫

T

ωMλλλ · ∇uhdx = 0

If T 3M and T intersects Γ− (examples are the triangles T1 and T2 of Figure 4), we have the three equivalent

formulations
∫

T

ωMλλλ · ∇uhdx =βTM

∫

T

λλλ · ∇uhdx

=βTM

(

∑

N∈T∩Γ−

k+
Ng(N) +

∑

N∈T,N 6∈Γ−

k+
NuM

)

=γTMΦTi

(31)

The first line is the Linearity Preserving formulation. This is detailed in the second line so that we see how

to implement the boundary conditions. The last line is a rephrasing of the first one taking into account the

fact that the LP scheme is constructed from a monotone first order scheme.

Hence, the inflow boundary conditions are simply implemented by setting u = g at the vertices on Γ−.

Even though this is very simple, the scheme is still second order accurate. Note that (31) is generalized in

a straightforward manner in the system case.

Still in the system case, in the Euler case more precisely, we still have to define the no–slip boundary

conditions. This is done by imposing weakly the condition ~u · ~n = 0 on solid boundaries. As in [11] and
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several other references, we simply set ~u ·~n = 0 in the continuous flux, then linearly interpolate the pressure :

this defines a numerical flux on the boundary. The residual interpretation of this flux is defined following

the method of section 2.3.2.

3 Numerical experiments

In this section, we present some numerical results obtained with the scheme (4) for two sets of problems : two

scalar problems and two fluid mechanics ones. We particularly focus on the iterative convergence history.

3.1 Scalar problems

We first start with the two problems

−y ∂u
∂x

+ x
∂u

∂y
= 0 (x, y) ∈ [0, 1]2

u(x, 0) =











− sin
(

π
x− 0.7

0.6

)

if x ∈ [0.1, 0.7]

0 else

(32)

and
1
2
∂u2

∂x
+
∂u

∂y
= 0

u(x, 0) = 1.5− x

u(0, y) = 1.5 u(1, y) = −0.5

(33)

with a CFL number of 0.5. Two schemes are evaluated : the scalar N–PSI scheme and the scheme constructed

on the Lax–Friedrich scheme referred as the LxF–PSI scheme.

The L2 convergence history is displayed on Figure 5. Clearly, the convergence history of the LxF–PSI,

after a good startup, becomes erratic. This is not the case of the N–PSI scheme, which has a very good

behavior. These behaviors are characteristic of the schemes, whatever the CFL number.

If we look at the solution, see Figure 6 we can observe wiggles in the solutions obtained by the Lax–

Friedrich PSI scheme. These wiggles are not the manifestation of an instability : the scheme is perfectly

stable in L∞. In Figure 7, we plot one cross–section for the rotation problem : there is no oscillation at all,

but kinds of plateau develop. If we increase the resolution, this phenomena is amplified.

3.2 System problems

Consider the example of the Euler equations. The schemes are the system N–PSI scheme of [11] and the

system LxF–PSI. These schemes are described in section 2.3.We have done the same simulations for the Roe

schemes (the standard one of [22] and the multidimensional one of section 2.3.2), and we observe the same
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wiggly behavior and the same difficulties for the iterative convergence. Hence, all the results of this section

are given for the N–PSI and LxF–PSI schemes.

To illustrate the erratic behaviors of the schemes, three test cases are considered which illustrate three

flow regimes : subsonic, transonic and supersonic. The first example is a supersonic jet in a box [0, 1]× [0, 1].

The inflow conditions are (γ = 1.4)

(ρ, u, v, p) =







(γ, 2.4, 0, 1) if x > 0.5

(γ, 4.4, 0, 1) else
(34)

The solution is everywhere supersonic and consists, from top to bottom, in a shock, followed by a contact

line and then a fan. Since the flow is supersonic, there is no boundary condition problem : the iterative

residuals (in the max norm and the L2 norm) are not spoiled by any unclear effect of the boundary conditions

implementation. They are displayed in Figure 8.

These results show an erratic and very poor behavior of the residuals. If one looks at the Mach number

isolines, displayed on Figure 9, one can see some “wiggles” in each of the waves. Since the problem is

self–similar with respect to (0, 0.5), the isolines should be straight lines focusing at (0, 0.5). The focusing

is only approximate, and the isolines are far from straight lines. This behavior is independent of the CFL

number. We have also noticed that the quality of results strongly depend on the variables that are in use

for the second order construction (see section 2.2.5). Here, the variables are the characteristic variables. If

the conservative variables where used, the results would be even more wiggly.

A second case is considered. It is a fully subsonic flow over a sphere. The Mach number at infinity is

M∞ = 0.35. This case is difficult and well documented, see for example [23]. The flow is steady and should

be symmetric with respect to the vertical axis. Using the LxF–PSI scheme, we get the results displayed in

Figure 10.

The flow is oscillatory. The convergence history is displayed on Figure 11. As it can be seen, the

convergence is very erratic too.

The last example is the NACA0012 case where the Mach number at infinity is M = 0.85, with 1◦ of

incidence. The convergence history is similar to what happen in the previous case and is displayed on Figure

12. Last, we display the Mach number isolines on Figure 13. As before, the solution is wiggly on the smooth

parts of the flow. However, the two shocks are very clean as it can be seen on the right of Figure 13 : there

is no oscillation, and the shocks are resolved in one cell only.

3.3 Comments.

The examples of this section shows that

• In the scalar case, the N–PSI behaves very well. In the case of the first order schemes, it is possible

to exhibit analytically the dissipative mechanisms. In the case of the N–PSI scheme, this is much less
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clear. The main property of this scheme is its upwind nature. We conjecture that it is because of this

upwind character that the N–PSI scheme has such a nice behavior. We provide argument in favor of

this in the next section. We have also run the same cases with the scheme constructed from the first

order (finite volume) Roe scheme where the PSI limiter of (9). The behavior of the scheme (quality

of solutions, iterative convergence) is almost as good as for the N–PSI even though this scheme is not

strictly speaking multidimensional upwind, see [24] for a discussion. It seems that starting from an

upwind (or quasi upwind) scheme is a good point.

• However, in the system case, the PSI extension of the first order schemes, whatever they are, suffer

from a degradation of the iterative convergence. The solution may look good (as for the N–PSI), but

not the iterative convergence. Once more we observe that starting from an upwind scheme (the system

N scheme here) is a good point, but this is not enough. We recall that the blended scheme (constructed

from upwind schemes) presented in [5] or [1] have a very nice iterative convergence, but they are not

robust enough.2

• All these example show that the problem is not a consequence of a wrong handling of discontinuities.

In fact, the wiggles always occur in the smooth part of the flow. The discontinuities are always well

handled.

In the next section, we provide some explanations of these strange behaviors and propose some modifi-

cations that do not destroy the non oscillatory behavior of the schemes as well as their compactness.

4 How to remedy to convergence problems ?

4.1 Analysis

We start again from the scalar version of (1) with f(u) = λλλu,

λλλ · ∇u = 0 in Ω

u = g on Γ−
(35)

From (6) and using section 2.4, the schemes we consider write

for any vertex not on Γ−, aiiui −
∑

j∈V(i)

aijuj = fi (36)

with, see Figure 14,

fi =











0 if Mi is not connected to Γ−
∑

T3Mi

(

βTi
)

[

∑

`∈Γ−∩T

(kT` )+g(M`)
]

.
(37)

2 In particular, their extension to unsteady problems is not satisfactory, this has motivated in [3] the introduction of the

PSI extension of the system schemes.
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The coefficients βTi are defined as in section 2.2.5. The coefficients aii and aij will depend on the solution,

and we have
aij ≥ 0

aii =
∑

j∈V(i)

aij

where V(i) denotes the set of nodes that are connected to Mi by an edge. For the ease of notations, (36) is

written as

Auh = f, (38)

note that A may depend on uh, and we denote by D the diagonal matrix D = diag(aii).

The question is to see

1. whether the solution of (36) exists and is unique,

2. and whether there exists a norm and a constant independent of the mesh resolution such that ||u|| ≤

C||u0||,

as in the continuous case.

The answer to these questions is a difficult problem for which we can only provide qualitative answers.

Existence of a solution. The matrix A(v) is homogeneous of degree 0 in v, as it can be seen from section

2.2.5. Denoting by h the function v 7→ v − ω(A(v).v − f), the scheme (4) writes u = h(u). The sequence

un+1 = h(un) converges if h admits a Lipschitz constant < 1. Here, we have

h′(v) = Id− ω(A(v) +A′(v) · v).

Since v 7→ A(v) is homogeneous of degree 03, we have A′(v)·v = 0. Hence a necessary and sufficient condition

for the convergence of the scheme is that ω satisfies ρ
(

Id− ωA(v)
)

< 1. This condition is equivalent to the

invertibility of A(v), whatever v.

Let w such that A(v)w ≡ Aw = 0. For any i, we have

aiiwi =
∑

j 6=i

aijwj .

If i0 is the index such that max |wi| = |wi0 |. We get

aii|wi0 | ≤
∑

j

aij |wj | ≤ aii max
j 6=i0
|wj |.

3here we assume unduly that the mappings (x1, x2, x3) 7→ (β1, β2, β3) introduced in section 2.2.5 are smooth which is not

completely true
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If for any i, aii > 0, we get that |wj | = |wi0 | for all j. This corresponds to a check–board like mode : we can

assume wi = ±1. Then, by the Cauchy–Schwartz inequality, we have (since aij ≥ 0)

a2
ii = a2

iiw
2
i =

(

∑

j 6=i

aijwj

)2

≤
(

∑

j 6=i

aij

) (

∑

j 6=i

aijw
2
j

)

≤ aii
(

∑

j 6=i

aij

)

≤ a2
ii.

In other words,
(

∑

j 6=i

aijwj

)2

=
(

∑

j 6=i

aij

) (

∑

j 6=i

aijw
2
j

)

and then, by the Cauchy–Schwartz inequality again, there exists µ such that

for any j 6= i,

√

aij
aij

= µwj > 0

we can assume that wj > 0, so wj = 1 and then wi = 1 : the only spurious mode is (1, 1, · · · , 1). This

provides information on the structure of the matrix when it is not invertible : A is not invertible if and only

if one of the two conditions hold :

1. there exists on index for which aii = 0 in which case aij = 0 whatever j,

2. whatever i, aii =
∑

j 6=i

aij .

For any vertex i that has no common edge with the inflow boundary, we know that aii =
∑

j 6=i

aij because the

stencil of the scheme at i is the set of its immediate neighbors. Hence the necessary and sufficient conditions

for the invertibility of A are

1. for any i, aii > 0,

2. whatever i that has a common edge with the inflow boundary, aii >
∑

j 6=i

aij .

In the case of an upwind scheme, such as the N scheme and the N–PSI scheme, we can check that these

conditions are verified. The structure of the matrix A := (aij)i,j , after a suitable numbering of the vertices4,

4 the vertices are ordered by lines of increasing arrival times from the inflow boundary, see Figure 15
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is

A =























A11 0 0 · · · 0

A21 A22 · · · 0

0 A23 A33 · · · 0
...

. . . . . . . . .
...

0 0 0 An−1 n Ann























. (39)

The matrices Alp are block matrices, and the indices ξ and ν correspond to line indices. Greek indices are

used to denote line indices and Latin symbols for vertices : for A = (aij)i,j , the indices i and j correspond

to vertex indices.

For a regular mesh of ns vertices, there is O(
√
ns) lines : the matrix A is ns × ns, while there is only

O(
√
ns) non zero blocks in (39). If D is the diagonal matrix where dii = aii, we notice that D(v) is invertible

whatever v and dii = aii = O(h).

In fact, for any vertex Mi, there is one triangle for which the N scheme is one target : the case of internal

vertices is clear, the case of boundary vertices also hold true because of the very definition of the inflow

boundary condition. Denote by T iup this triangle. From sections 2.3.1 and 2.2.5, and relations (6)–(7), since

cTij ≥ 0, we first have

aii ≥
∑

j∈T iup

c
T iup
ij . (40)

This is independent of v (which plays a role in the evaluation of βi, but in the case of a one target triangle,

βi = 1.) Then,

• for the N scheme, since Φ
T iup
i = ΦT

i
up (this is the one target property), we have c

T iup
ij = ki. Then ki > 0 :

this is the one target property once more, and then, aii = O(h).

• for the N–PSI scheme, we have Φ
T iup
i = ΦT

i
up thanks to the one target property, once more.

This proves that D is invertible.

Next, we consider D−1A. This matrix has negative off diagonal coefficients, and clearly we can write the

block diagonal matrix D−1Aii as D−1Aii = Id−Bii, where Bii is strictly diagonal dominant. Thus D−1Aii

is invertible. This shows that A(v) is invertible whatever v.

Continuous dependence with respect to the data. The sequence un+1 = h(un) writes for any mesh

point Mi

(un+1)i = (un)i − ω

{

∑

j∈V(i)

aij

(

(un)i − (un)j

)

− fi

}
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where aij ≥ 0. Thus, from the definition of fi in (2.2.3) (in particular the scheme is constructed from a

monotone first order scheme) and under the condition aiiω < 1, we have

max
i
|(un+1)i| ≤ max

Mi∈∂Γ−
|gi|.

If the sequence converges, we have the stability inequality

max
i
|ui| ≤ max

Mi∈∂Γ−
|gi|.

This result is well known.

The second remark is that under the same assumptions, we can get an error estimate. If πhu is an

interpolant of the true solution of (35) and if πhg is a piecewise linear interpolant of g on Γ−, since the

scheme is LP, we have, setting eh = uh − πhu,

aiiei −
∑

j

aijej = f ′i

where f ′ is defined as f in (37) with g replaced by g − πhg. This result can be seen from (30). Since

maxMi∈Γ− |f ′i | = O(h2) (this is an interpolant), we get

max
i 6∈Γ−

|ei| ≤ Ch2 (41)

with the constant C independent of g.

Comments. We consider a family of regular triangulations and the problem

λλλ · ∇u = f x ∈ Ω

u = g x ∈ ∂Γ−

Since λλλ is non zero, we can order the vertices as we have done for the N scheme. This defines, for any vertex,

the downwind nodes.

Our conjecture for the convergence of the iterative method is that this method converges if the following

two conditions are true :

1. there exists α > 0 independent of the considered triangulation in the family such that whatever i,

aii ≥ αh,

2. for any i, aii >
∑

j∈V(i),non downwind nodes aij as in (40)

The second condition enables a coupling between the vertex Mi and its downwind nodes, so that information

can propagate.
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Geometrical interpretation. It may be interesting to visualize the way the PSI versions of a first order

scheme behaves. Consider Figure 16. The arrows represent the non vanishing distribution coefficients, i.e.

they indicate the vertices of T where “something” is sent : xi = Φi/ΦT 6= 0. In the case of the N scheme,

these vertices are always downwind, this is no longer true in the case of the LxF scheme where a priori non

zero residual are sent at each vertex.

Then we apply the mapping (x1, x2, x3) 7→ (β1, β2, β3) as in section 2.2.3. In the case of the PSI limiter,

if one of the xis is outside of [0, 1], necessarily one of the βj is set to zero. This is done according the signs

of the distribution coefficients xi, and not using any consideration about the upwind or downwind nature of

the triangle vertices. In other word, as on Figure 16, “something” can be sent to a downwind node. This has

a destabilizing effect which is corrected by the fact that the βis are defined in order to guaranty the local

L∞ bounds. We have no control on the coefficient aii and it may be that all downwind coefficients are set

to zero. This is precisely this destabilizing character that has to be corrected.

4.2 Two solutions

From the previous analysis, we conjecture that the wiggles are consequence of a bad structure of the A

matrix. We conjecture that the diagonal coefficients must satisfy aii ≥ δh for δ > 0 uniform, and that the

matrix A must be uniformly invertible in some norm. In the previous paragraph, we have stressed on the

maximum norm. In this section, we propose two methods to enforce these two properties.

4.2.1 First solution

This solution has been imagined by M. Mezine in his thesis [25]. It works only for scalar problems. Once

more we consider the problem

λλλ · ∇u = f x ∈ Ω

u = g x ∈ ∂Γ−

He starts from a monotone scheme to which we apply the limitation technique of section 2.2.5. Any any

vertex Mi (including the boundaries provided they are non characteristic) has a single upwind triangle for

which ki > 0 and kj < 0 for the two other vertices. For this triangle T up, we modify the limited residual by

setting

ΦT
up

i = ΦT
up

,ΦT
up

j = 0 for the other vertices.

Clearly, aii ≥ ki ≥ αh and the second condition of our conjecture also holds.

In the case of a nonlinear problem, the same properties about aii and the inequality (40) holds except

maybe when ∇uf ' 0 around Mi.
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4.2.2 Second solution

The main problem of the previous correction is that it can apply only to scalar problems because it deeply

relies on the study of the signs of the inflow parameters kj . Because of that, we present now a second solution

that apply to systems. The price to pay is to lose the maximum norm property. Here, we work with the

energy norm which is more tractable for systems.

We start again by a scheme of the type

un+1 = un − ω
(

Aun − f
)

The scheme satisfies r = ||Id− ωA||L2 < 1 with ω > 0 if for any v ∈ Rn, we have

||
(

Id− ωA
)

v||2 = ||v||2 − 2ω〈Av, v〉+ ω2||Av||2 ≤ r||v||2

Since ω > 0, there must exist a positive root to

−2〈Av, v〉+ ω||Av||2 ≤ 0.

This is possible only if

〈Av, v〉 > 0;

this is the well known dissipation condition.

In the present case, the iterative scheme is

un+1
i = uni −

∆t
|Ci|

∑

T3i

ΦTi

and we assume ΦTi = βTi ΦT with βTi bounded.

The natural scalar product is

〈u, v〉 :=
∑

i

|Ci|uivi

and then

〈un+1, un+1〉 = 〈un, un〉 −∆t
∑

i

uni

(

∑

T3i

ΦTi

)

+ ∆t2
∑

i

(

∑

T3i

ΦTi

)2

|Ci|
.

The dissipation condition writes
∑

i

uni

(

∑

T3i

ΦTi

)

> 0,

that is (forgetting the temporal superscript)

∑

T

(

∑

j∈T

βTj uj

)∫

T

λλλ · ∇udx > 0
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or equivalently
∫

Ω

`(u)λλλ · ∇udx ≥ 0

with

`(u)|T =
∑

j∈T

βTj uj .

Assume now that the scheme writes as

ΦTi = βTi ΦT + α

∫

T

λλλ · ∇ϕi λλλ · ∇udx

where α is a real parameter and ϕi is the linear basis function associated to the vertex Mi. The scheme is

dissipative if
∫

Ω

`(u)λλλ · ∇udx + α

∫

Ω

(

λλλ · ∇u
)2

dx ≥ 0

and we look for α to have this property.

First, we rewrite the original scheme as

ΦTi =
Φ
3

+ h

∫

T

(

~ξT · ∇ϕi
) (

λλλ · ∇u
)

dx

with

~ξT =
∑

j

(βj −
1
3

)
−−−→
GMj ,

where G is the centroid of T . Here, we look for α = θ h such that

∫

Ω

(

~ξ · ∇u

) (

λλλ · ∇u

)

dx + θ

∫

Ω

(

λλλ · ∇u
)2

dx ≥ 0. (42)

It is known that u 7→

√

∫

Ω

(

λλλ · ∇u
)2

dx defines a norm on the functions that vanish on the inflow boundary.

Since the space of linear functions that vanish on Γ− is finite dimensional, there exists θ0
h such that (42) is

true. We take θh > θ0
h.

Thus we modify the original residual (8) into

Φi = βiΦ + hθh

∫

T

(

λλλ · ∇ϕi
) (

λλλ · ∇u
)

dx

= βiΦ +
θh
h
kiΦ

(43)

In that case, it is clear that the coefficients aii as in (6)–(7) satisfies

aii ≥ δh

for δ > 0 independent of h. The uniform invertibility comes from the fact that
∫

Γ−

u2

2
λλλ · ~nd∂Ω + (θh − θ0

h)h
∫

Ω

(

λλλ · ∇u
)2

dx
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defines a norm, as for the standard streamline diffusion method.

Several choices of θ will be considered in the next section. A priori, we let θh depends on the solution

itself, θh ≡ θ(uh). Unfortunately, the monotonicity preserving property is formally lost. In the numerical

applications, we see that the convergence properties of the scheme are good. The monotonicity properties

of the original scheme are quasi preserved. This can be improved by better choices of θ as we see later. In

particular, we look for θ(uh) such that θ(uh) ≡ 0 in discontinuities.

In the system case, the relation (14) is modified into

Φi = BiΦ + Θ(uh)h−1KiΘ(uh)Φ. (44)

to respect symmetry. Here Θ is chosen to be a diagonal matrix, several choices will be discussed in the next

section which are all proportional to the identity matrix. Better choices could certainly be investigated.

5 Numerical experiments revisited

We rerun the cases of section 3 with the schemes (43) and (44). In addition and for scalar problems, we

display the results of the scheme constructed from the Lax–Friedrich–PSI scheme with the modification due

to M. Mezine.

5.1 Scalar case

Different choices of θ are considered namely θ = θj defined by

• θ1 = 1,

• For the Burgers equation we let

θ2 =







1 if the y –component of centroid of T is > 0.5

0 else.

By doing so, we want to check whether the convergence problem is really located in the smooth part

of the flow, since we know that the discontinuity is located at y ≥ 0.5.

• Here the idea is identify the discontinuities. We know that for a smooth function, λλλ · ∇uh = O(1) and

when ∇u is not discontinuous, ∇u/u = O(h−1), so we choose

θ4 = min
(

1,
1
|ΦT |
ū h2

)

.

In that case we see that

if λλλ · ∇uh/uh = O(1) θ4 = min
(

1,
h

O(h) + h

)

≡ 1,

if λλλ · ∇uh/u = O(h−1) θ4 = min
(

1,
h

O(h−2) + h

)

= O(h)
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In practical implementations, we have chosen

θ4 = min
(

1,
1

|ΦT |
ū h2 + ε

)

with ε = 10−10.

In the following, we add the suffix –D to the name of the scheme to indicate that the term (8) with a

choice of θ that is also indicated. For example, the N–PSI scheme extends to N–PSI–D scheme.

Comparing Figures 6 and 17, we see that the wiggles problem is cured whatever the choice of θ. We also

see that Mezine’s trick also permits to solve it : this is an indication of our conjecture about the origin of

the problem (diagonal coefficients too small) has some content. We also see that there is no undershoot and

overshoot problem, and last that the choice θ = θ4 leads to slightly more dissipative results than θ = θ1 : the

isolines are good approximations of circles and if one looks at the farthest from the origin, the approximation

is better in the case θ = θ1 (and in the case of Mezine’s trick) than for θ = θ4. The new schemes are not

strictly positivity preserving : the minimum should be 0, it is in fact 0 for the LxF-PSI, N-PSI and LxF-PSI

with Mezine’s trick, it is −0.001312 for the choice θ = θ1 and −0.00057 if θ = θ4. This also confirm the

fact that θ = θ4 leads to a more dissipative (or more “positive”) scheme. Figure 18 gives the convergence

histories for the various schemes. In each case, the convergence is smooth, this has to be compared with

Figure 5. On Figure 19 we have displayed the L2 error obtained by the LxF–PSI and LxF–PSI–D schemes

for successive meshes and for the rotation problem. The meshes are obtained from an initial coarse one and

successfully refined by adding the mid–edge points. The LxF–PSI is only first order while the LxF–PSI–D

is clearly second order accurate.

In the case of the Burgers problem, compare now Figures 6 and 20. The same conclusions hold : no more

wiggle, a clean behavior in the discontinuity. The LxF–PSI with Mezine’s trick is monotone, the LxF–PSI

with θ = θ1 or θ = θ4 are not exactly monotone, since the solution belongs to [−0.5, 1.5] when θ = θ1

and [−0.5052, 1.5] in the second case. The shock is slightly enlarged in the case θ = θ1 compared to the

other cases. In Figure 21, we see that the choice θ = θ2, though non smooth, does not prevent the iterative

convergence to be excellent. This fact might be surprising at first glance, but in a shock one can see from

(9) that in fact Φ∗i /Φi = O(1) : the properties of the matrix A in (38) are not modified by the limiter.

The best compromise between accuracy and stability seems to be the choice θ = θ4. It is surprising

to see that there is no major difference between the N–PSI scheme (which provides the best results) and

the LxF–PSI–D schemes whatever the choice of θ, and one has to remember that the LxF scheme is very

dissipative ! In the rest of the text, we choose the parameter θ = θ4 and its generalization for the system

cases.
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5.2 System case

We test our technique on several test cases. We start from several first order schemes

• A Lax–Friedrich type scheme,

ΦTi =
1
3

(∫

T

div f(uh)dx + αT
∑

j 6=i

(ui − uj)
)

where uh is evaluated via the Roe’Z–parameter vector

Z =
√
ρ(1,u, H)T

which is linearly interpolated in T and αT = max(ρ(K1), ρ(K2), ρ(K3)) where ρ(A) represents the

spectral radius of the matrix A.

• The system N scheme of van der Weide and Deconinck[20],

Φi = K+
i

(

ui − ũ
)

and

ũ =
( 3
∑

j=1

K+
j

)−1( 3
∑

j=1

K+
j uj −

∫

T

div f(uh)dx
)

.

In [26], we show that
3
∑

j=1

K+
j is invertible except at stagnation points. However, the matrices

( 3
∑

j=1

K+
j

)−1

K±l

always have a meaning, see this reference for more details.

• The Roe’s finite volume scheme denoted by Roe.

• Roe’s multi D denoted by Roe2. It is defined in section 2.3.2.

For each first order scheme, we construct the Linearity Preserving scheme as in [26] : we consider

~n = ~u/||~u|| and the average Jacobian matrices evaluated at the average state ū defined by the Roe average.

This choice is not essential since other average states can be used. Then, we introduce the right eigenvectors

(rp)p=1,4 of ∇uf(ū) and the corresponding left eigenvectors (`p)p=1,4. In this choice, the first eigenvector is

associated to the entropy field : if (ū, v̄) is the velocity field defined by ū, we set

r1 =

















1

ū

v̄

ū2+v̄2

2

















.
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If c̄ is the average sound speed defined by ū, the corresponding left eigenvector is defined by its action on a

state (A,B,C,D) by

`0
[

(A,B,C,D)
]

= A− γ − 1
c̄2

(

D − ūB − v̄C +
ū2 + v̄2

2
A

)

. (45)

The first term of the right hand side of (45) corresponds to the density, the term D − ūB − v̄C + ū2+v̄2

2 A

corresponds to the pressure variation.

This leads to the LxF-PSI, N-PSI, Roe-PSI and Roe2-PSI schemes. Last, we add the additional dissipation

θh

∫

T

Ki

(

A
∂uh

∂x
+ B

∂uh

∂y

)

dx

where we chose

θ = min
(

1,
1

|ϕT |
|T |

+ ε

)

.

Here ε = 10−10 and

ϕT = `0(ΦT )

The idea is that ϕT is an approximation of S = ρ(ū
∂s

∂x
+ v̄

∂s

∂y
) : when the flow is smooth, S ' 0 while when

a discontinuity exists, S/(ρ
√
ū2 + v̄2s) ' 1. Thus, it the first case, θ ' 1 and in the second one, θ ' 0. We

are interested in steady problems in this paper. In order to improve the efficiency, the schemes are implicit.

Formally, instead of solving

Fi(u) = 0, i = 1, . . . ns

we would solve

un+1
i = uni − ωiFi(un+1), i = 1, . . . ns

which is too complex. Instead, we adopt a standard linearized procedure
[(

Id + ωF ′u(un)
)

(un+1 − un)
]

i

= uni − ωFi(un).

The evaluation of the Jacobian F ′u(un) is too complex. Following a standard procedure, F ′(un) is approxi-

mated by the Jacobian of the first order scheme.

In each case, we present the solution of the original PSI schemes and the PSI-D ones. We also display

the convergence histories.

5.2.1 NACA012 airfoil

This problem is the same as in section 3.2 : the inflow Mach number isM∞ = 0.85 and the angle of incidence

is 1◦. We compare the N–PSI, LxF–PSI, N–PSI–D and LxF–PSI–D schemes. We have tested the different

Roe schemes on this case, the results are similar and are not displayed here.
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The Figure 22 displays the density isolines. The shock waves are clearly non oscillatory in all cases

while, as expected, the LxF–PSI schemes density isolines behave badly in the smooth part of the flow. With

the new correction, these problems are cured. This result is obtained without sacrificing the quality of the

discontinuities. This is also confirmed by the inspection of the other flow variables such as the pressure

coefficient, the Mach number and the entropy deviation (s− s∞)/s∞.

Last, the convergence history, to be compared with , is plotted on Figure 23. The maximum CFL number

for the N–PSI–D is set to 100 and only 10 for the LxF–PSI–D scheme. We have experimented that the second

scheme is less robust in this case and the other we have run. However, we do not claim that our version of

an implicit scheme is the best suited for the LxF scheme.

5.2.2 Subsonic flow

The inflow Mach number is set to M∞ = 0.35. The flow is subsonic everywhere. The pressure coefficient

and the Mach number for the LxF–PSI and N–PSI schemes on Figure 24 and 25 on the symmetric mesh

plotted on Figure 26-(c). The results looks quite similar, but a close inspection of the isolines reveals some

wiggles for the LxF–PSI scheme. The examination of the pressure coefficient contours for the LxF-PSI-D

and N-PSI-D schemes, see 24, also show that they are more symmetric with respect to the y–axis compared

to their non dissipated counterparts. If we plot he pressure and Mach number on the sphere (not plotted),

we see that the results of the LxF-PSI and N-PSI are not symmetrical. This is due to the poor convergence

of the solution (the linear systems of the implicit phase are solved with a relative tolerance of 10−3), see

Figure 27.

More interestingly, Figure 26 show that the results of the LxF–PSI scheme is very dependent on the mesh

quality. The mesh (a) is not symmetrical, and the results are extremely wiggly. These wiggles are completely

cured for the LxF-PSI-D scheme (not shown). Note however that the mesh resolutions are similar.

The convergence histories are provided in Figure 27. The maximum CFL here is set to 10. We see that

the N–PSI–D has a better behavior than the LxF–PSI–D. The minimum residual is in between 10−5 and

10−6 and then stagnates. An examination of the residual isolines (not provided here) shows that this is likely

due to the behavior of our implementation of the no–slip boundary conditions.

5.2.3 Scramjet

Here, the inflow Mach number is M = 3.6. Because of the internal geometry, a very complex system of shock

waves and slip lines occur, see Figure 28. This make this example interesting since it permits to show the

non–oscillatory behavior of the scheme in a rather complex configuration.

A zoom of the density isolines for each scheme is displayed in Figures 29 and 30. This illustrates the

perfect non–oscillatory behavior of the schemes even in rather complex configurations. In each case, the
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discontinuities are resolved within 2 cells.

Last, the convergence history is shown on Figure 31 for two of the schemes. In this case, we had first to

run the first order version of the schemes, and then the second order version with a maximum CFL of 10.

Other cases have been run, for example the flow over a sphere at MachM∞ = 8 with good success. The

results are not displayed here.

6 Conclusions

This paper deals with the iterative convergence problem that is common to most monotonicity preserving

residual distribution schemes for steady problems. This problem has been reported in several papers espe-

cially for systems, for example among others [5, 4]. Since a good level of iterative convergence cannot be

reached in general, the formal second order accuracy cannot be guarantied, since second order accuracy can

only be obtained if and only if the residual equation (4) is solved exactly or with a tolerance of the order of

the truncation error, provided the residuals ΦTi are defined by (8). A good convergence level is essential.

We first analyze the problem and connect it to the possible existence of spurious modes. Then we propose

a solution, the price to pay is that the formal monotonicity of the scheme is lost. The technique is tested

for several problems scalar and systems. Our results show that the fix we propose does not degrade the

structure of discontinuities, a good convergence level is reached, in most case it also improves the quality of

the solution in smooth parts (because of the better convergence of the iterative scheme).

This technique is extended with success to RD schemes for Cartesian meshes in [27]. Future work will

consider the case of the unsteady problems following [3, 28] and high order schemes too where similar

difficulties are encountered.
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Figure 1: Geometrical representation of the mapping (x1, x2, x3) 7→ (β1, β2, β3).
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Figure 2: Illustration of ~nj .
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Figure 4: Geometry near the inflow boundary Γ−.
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Figure 5: Convergence history of the PSI and LxF–PSI schemes for (32) and (33) on the solid rotation and

Burgers problems.
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Figure 6: Solutions for the N–PSI scheme–column (a)– and the Lxf–PSI scheme–column (b). Top : problem

(33), bottom problem (32).
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Figure 7: Cross–section for the rotation problem (32). The PSI solution is plotted with plain lines, the

LxF–PSI solution with circles.

37



0 2000 4000 6000 8000
iteration

0.1

1

re
si

du
al

LxF-PSI, max norm
LxF-PSI, L2 norm

Figure 8: Iterative residual (for density) in the max norm and the L2 norm on the initial conditions (34).
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Figure 9: Isolines of the Mach number for the problem (34) with the LxF–PSI scheme.
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Figure 10: Isolines of the pressure coefficient with the LxF–PSI scheme
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Figure 11: Convergence history for the sphere problem, L2 and max norm.
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Figure 12: Convergence history for the NACA0012 case, L2 and max norm.
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Figure 13: Isolines of the Mach number. On the right, we zoom the solution near the upper shock. The

mesh is also represented.
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Figure 14: Illustration of the relations (37). We have set F =
∑

T=T1,T2

βT`1
(

kT`1
)+
g(M`1) +

∑

T=T2,T3

βT`2
(

kT`2
)+
g(M`2).
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Figure 15: Example of numbering of the mesh by arrival time.
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Figure 16: Geometrical illustration of the non vanishing distribution coefficients.
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LxF–PSI LxF–PSI+ Mezine’s trick

LxF–PSI–D (choice θ1) LxF–PSI–D (choice θ4)

Figure 17: Rotation problem. The baseline–first order scheme is the LxF scheme. The solution without

dissipation, with Mezine’s trick and the choices θ1 and θ4 are displayed. These results have to be compared

to the N–PSI scheme displayed on Figure 6.
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Figure 18: Convergence history (L2 norm) for the LxF-PSI with dissipation in the solid rotation problem :

choices θ = θ1, θ = θ4.
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Figure 19: Error plot (exact solution vs computed solution) in the L2 norm. This is done for the LxF–PSI

and LxF–PSI–D scheme. The slopes −1 and −2 are also represented.
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LxF-PSI LxF–PSI+ Mezine’s trick

LxF-PSI-D (choice θ1) LxF-PSI-D (choice θ4)

Figure 20: Burgers problem. The baseline–first order scheme is the LxF scheme. The solution without

dissipation, with Mezine’s trick and the choices θ1 and θ4 are displayed. These results have to be compared

to the N–PSI scheme displayed on Figure 6.
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Figure 21: Convergence history (L2 norm) for the LxF-PSI with dissipation for the Burgers equation :

choices θ = θ1, θ = θ4, θ = θ2 and Mezine’s trick.
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Figure 22: NACA012 problem. Isolines of the density for the second order versions of the N and LxF

schemes, without (left) and with (right) additional dissipation.
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Figure 23: Convergence history, CFL=100 for the N-PSI-D scheme, CFL=10 for the LxF-PSI-D scheme.
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Figure 24: Cp isolines for the sphere problem.
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Figure 25: Mach number isolines for the sphere problem.
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Figure 26: Pressure coefficients for the LxF-PSI scheme on different meshes.
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Figure 27: Convergence history for the sphere problem.
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Figure 28: Mach number isolines of the density for the N–PSI–D and the LxF–PSI–D schemes.
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Figure 29: Scramjet problem, zoom. Isolines of the density for the second order versions of the N, LxF

schemes, without (left) and with (right) additional dissipation.
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Figure 30: Scramjet problem, zoom. Isolines of the density for the second order versions of the Roe and

Roe2 schemes, without (left) and with (right) additional dissipation.
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Figure 31: Convergence history for the LxF and N-PSI type schemes for the scramjet problem.
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