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Abstract

Large—scale molecular dynamics simulations dfla = 4.3 shock in dense argom (=
532 kgm3, T = 300 K) and aMs = 3.6 shock in dense nitrogem (= 371 kgm?,

T = 300 K) have been performed. Results for moments (up to ordepflthe velocity
distribution function are shown. The excess even momentieoshock—normal velocity
component (i.e., in the direction of shock propagation) @usitive for most parts of the
shock wave, but become negative towards the hot side of tiek $tefore reverting back to
zero. The even excess moments of the shock—parallel vemaid the odd moments of the
shock—normal velocity do not change signs within the shdble magnitude of the excess
moments increases with the order of the moment, i.e., tHeehigjoments correspond less
and less to those of a Maxwell-Boltzmann distribution.
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Nomenclature

amu

€L

speed of sound

atomic mass unit

molecular velocity ire—direction
Lennard—Jones well depth

spatial resolution inx—direction

inertia tensor

Boltzmann constant

extent of computational domain in-direction
shock thickness

mass of molecule

shock Mach number

ith central momengg. .. tensor component
number of particles in interrogation region
location of particle

pressure

normalized quantity:d — q1)/(02 — 01)
pre—shock value

post—shock value

rotational degrees of freedom

density

Lennard—Jones radius

shock speed

macroscopic flow velocity i—direction
temperature

directional @—direction) translational temperature
rotational temperature

direction along shock—normal (flow direction)

rotation rate vector



1 Introduction

All common macroscopic governing equations of fluid mecbsare derived from
the Boltzmann equation. The Euler and the Navier—Stokeatams, for example,
are the zeroth and first order series expansions with respéice Knudsen num-
ber (Chapman—Enskog expansion). The closure problemstsrdiexpressing the
heat flux and the stress tensor as a function of the other itjganthis implicitly
results in making certain assumptions about the momentseofelocity distribu-
tion function above some order. The Euler equations, fomgie, follow from the
Boltzmann equation in the high collision rate limit. In thi®it, the molecular ve-
locities follow an equilibrium, i.e., Maxwell-Boltzmannstribution, for which all
odd moments are zero. The Navier—Stokes equations acamundh—zero skew-
ness, but similar assumption for the moments of order fodruignare required in
their derivation from the Boltzmann equation. Higher—oteéems of the Chapman—
Enskog series are the Burnett and super—Burnett equatanshich the closure
problem is shifted to moments of order 5 and 6, respectivdly [

The errors due to these assumptions are usually small, betae higher moments
predominantly &ect the tails of the distribution function, i.e., only a siraso-
lute number of molecules. Heat conduction and the viscaess#s, for example,
can usually be modeled by the Fourier law and Newtonian behawn certain
applications, however, a small number of particles withyuagh kinetic energy
can significantly influence the overall behavior of the flowchemically reacting
flows, for example, few very fast particles are responsitérfitiating the reaction
chain by creating radicals through high—energy collisions

Errors are also more significant in the presence of very gtgmadients and if
the characteristic length scales become comparable to #am rinee path (non—
zero Knudsen number). This is the case in shock waves, wheeas ibeen shown
that the Navier—Stokes equations do not yield the corremtlsktructure for Mach
numbers greater than 2 [2]. For dilute gases, the validityhe$e assumptions can
be verified by solving the Boltzmann equation directly eyy.borect Boltzmann
CFD or Direct Simulation Monte Carlo (DSMC) methods to thsided accuracy.
In this limit, the Boltzmann equation is the correct atomigbverning equation.

This is not the case for dense gases and liquids. This is bedaanly considers
uncorrelated binary collisions. At elevated densitiesnyagarticle collisions and
correlated collisions become increasingly important [@je verification is thus
more elaborate.



2 Scope and itinerary

Large—scale Molecular Dynamics (MD) simulations have bperformed of a
Ms = 4.28 shock in dense argon and ofMy = 3.56 shock in dense nitrogen.
MD does not require a priori knowledge of or assumptions abfwelequation of
state, transport céiécients, or the velocity distribution function. Its disadvage
is that the computational cost is significantly higher theanDSMC. MD has been
applied repeatedly for this fluid mechanical problem (e €fsR4—6). These works
focus on the steady—state profile. They reproduce the avetsiithe translational
temperature perpendicular to the plane of the shock wavehwias been pre-
dicted by Yen [7]. Holway [8] and Salwen at al. [9] even obsesavslight ¢ 2
% for high shock Mach numbers) overshoot of the overall taaipee. A setup
similar to the one used here, namely the creation of the shypan impulsively
accelerated piston, has been studied by MacPherson [1@wita et al. [11] and
Woo & Greber [12]. They obtain temporally resolved data far formation of the
steady state profile from an initially quiescent fluid. Alltbe above only consider
monatomic gases, i.e., do not consider rotational degrefesemlom. Steady—state
profiles for a shock in dilute nitrogen has been obtainedgusirtnybrid method
(MD + Direct Simulation Monte Carlo) by Tokumaso & Matsumoto [1B] the
present work, for the first time, the shock structure of aatrat dense fluid has
been determined solely by MD.

The results presented in this paper will aid to evaluate gpdicability of specific
atomistic and macroscopic governing equations to shoclewgpe flows in dense
fluids. Additionally, we report on a peculiar behavior of #gne&en moments, which
we find to have a sign reversal within the shock before retpkiack to zero. This
behavior is observed for both fluids. While we cannot extémiresult to dilute flu-
ids from our results alone, we do not expect this phenomembe &n intrinsically
dense—gasfkect. For dilute fluids, the existence of such a sign reversaldcbe
verified from existing numerical and even experimental egjodistribution func-
tions. Yet, to our knowledge, findings to thiffect (if indeed present) have not
been reported in the literature. There, the common macpisqgoantities (density,
mean velocity, temperature) or raw velocity distributiondtions are shown.

The next section will describe the numerical setup and Sexldéesses the data
analysis. Sec. 5 will show the behavior of the higher momantsss the shock
wave and will also briefly describe the overall shock streeetlh more detailed
discussion of the shock structure and of the shock formadimh reflection pro-
cesses will be reported elsewhere. Sec. 6 examines errameedtainty issues, to
which the higher moments are particularly susceptible,they are based on a
finite sample size. Sec. 7, finally, will summarize the keyifigd and draw some
conclusions from the results.



3 Setup

The molecular dynamics code used is a modified versidviatly [14]. The mod-
ifications are to allow moving walls ('frameworks’) and nantkic domains. The
computational domain is a cuboid with dimensidgsx< Ly x L, = 252x 237.9 x
2379 A3. Alayer of 1586 A thickness on either side of the domainirdirection)
is occupied by a piston and by a stationary wall. Both are rneaday a cubic—face—
centered lattice of argon atom such that the number denfttyeovall structures
matches that of the fluid. The details of the wall treatmeatraot relevant for the
purpose of this work, since data is only averaged over tirtegsssvhere the shock
wave is at least 50 A from either wall. During this period, 8feck moves at a
constant speed.

100,000 nitrogen molecules are randomly distributed within filoel portion of
the domain and given random initial velocities and rotatiates drawn from a
Maxwell-Boltzmann distribution. The rigid nitrogen molde is modeled by a
two—center Lennard—Jones (6,12) potential with = 3.318 A, ¢ ;/kg = 35.6 K,
and a bond length of.@98 A between the two Lennard—Jones centers. Each atom
has a mass of 14 amu. These parameters correspond to thesebgiwmurthy et

al. [15], but the five point—charges are omitted. This is fomputationally éi-
ciency reasons and to allow comparisons with alternatipeaaches for which the
incorporations of electrostatic forces is not straightwiard. Vibrations can be ne-
glected in the temperature range considered and the nogh&oergy levels can be
approximated as being continuous. The argon atom is mobtglad_ennard—Jones
potential witho_; = 3.3952 A ande_ ;/ks = 11679 K [16]. The mass of the argon
atom is 3948 amu. A cut—fi radius for the summation of the short-range forces
of 15.6 A has been used. Note that this value is significantly |atygem the cut—
radius commonly used.

The system is equilibrated during 2 ps, where the molecwdéocities and rota-
tion rates are rescaled periodically to correspond to tiseek initial temperature
of 300 K. This temperature is above the critical temperatdfioe argon (15® K)
and nitrogen (12@ K) such that all states encountered in the simulation atlean
supercritical phase. The proper equilibration is verified test run with stationary
walls. Over the simulation time (12 ps), the temperature increase for the argon
case was 0.1% (N,: 0.5%). The time steps are@2 ps and @002 ps for ar-
gon and nitrogen, respectively. The smaller time step fermitrogen simulations
is due to the requirement that the rotational motion has teebelved. The shock
wave is created by impulsively accelerating the left waist@n) to a velocity of
u, = 1,000 nys. The molecular positions, velocities, orientations (exped as
guaternions), and rotation rates are saved eveély Ps. 10 ensembles with per-
turbed initial conditions are simulated and all data is emnde averaged.

The argon simulations were performed on single—processshmes. Each time



step of a 100k fluid atoms simulation required £PU seconds on a7l GHz
AMD Athlon XP processor. Including equilibrations and ddpration verification
runs, the ten ensembles hence required approximately 10(hG&rs. The nitrogen
cases took approximately 10 CPU seconds per time step orastiogle-processor
machine. This would result in a total computational cost,&@® CPU hours.

Therefore, the nitrogen cases were computed on betweerd1¥er8 GHz Power4
processors on a single p690 node of Oak Ridge National Latbgim Cheetah fa-
cility. Unfortunately, the version of Moldy used does notgikelize very well, be-
cause all data is copied to each processor. The time reqiarete data transfer
between processors after each time step then becomeswaghidompared to the
computational cost. While no detailed studies were peréalimn Cheetah, based
on tests on other multi—-processor computers, we estimatété realized speedup
was only about 50% of the theoretically achievable speeDafa analysis also re-
quired significant computational resources mainly due éddihge amounts of data
(> 100 GB), which had to be loaded and processed several times.

4 Data analysis

Steady—state data is temporally averaged by mapping thecuoial locations onto a
shock—fixed coordinate system. The instantaneous locatitie shock wave is ob-
tained by a least—squares fit of a Mott—Smith profile [17] ®vdlensity field across
the domain. While the density profile is not perfectly ddsed by this functional,
this approach does provide a reliable method to locate thekslvave accurately.
Temporal averaging is only performed while the shock wa\at isast 50 A from
either end wall to rule out end walftects. 70 (N: 69) data sets meet this criterion.
Data is analyzed in slices ok = 0.25 A thickness such that each slice contains
between approximately 7600 and 155000 molecules.

In the shock—fixed frame of reference, flow is from left to tigte., the cold side
corresponds ta — —oo and the hot side is at —» +oo (the x—direction is reversed
from the lab—fixed frame of reference). The origin is chosgchghat the nondi-
mensional densityo(— p1)/ (02— p1) = 0.5 (where the subscripts 1 and 2 correspond
to the pre— and post—shock state, respectively)-atd. We do not nondimension-
alize the shock—normal coordinate by the mean—free patause the concept of
the mean—free path is not applicable to dense fluids, wheleraalecule interacts
(collides) continuously with several neighboring molesul

Let §‘ = (&7,0) andc be the location and the velocity vector of moleculia
the shock—fixed reference frame, respectively. We defined¢néral moments as



follows:
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Greek subscripts denote spatial components of vectorasote. Roman subscripts
indicate the order of the moment. All tensor components angoeited up tgis. For

ux (k > 4) only the diagonal elements & g = y = ...) are calculated. The sum is
over all molecules within a slide—¢'| < 6x/2. Note that the finite spatial resolution
would lead to a bias in the presence of velocity gradiergs, if.u changes across
a slice. To minimize this biasyis linearly interpolated to each molecule’s location
when calculating the third and higher moments.

The translational directional temperatures are relatédeé@second moment by

_ WZ,&&
T, = @

The translational temperatureliga,s = Tx + Ty + T, and the overall temperature is
T = (8TyanstrdofxT,q)/(3+rdof), whererdo f is the number of rotational degrees
of freedom of the molecule and whefg,; denotes the rotational temperature,

N
Trot = 2= ), @l (3)

| andw are the moment of inertia tensor and the rotation rate ve@spectively.

The third and higher moments are normalized by the resgeptiwer of the stan-
dard deviationr,,. Just as the temperature can be related to the second maneent,
heat flux vector can be related to the third central momerg.fdbrth and higher
even moments are expressed as excess moments, i.e., tkeofdhe moment
which a Maxwell-Boltzmann distribution would have is saloted f(i,ms = 3,
usme = 15, ugme = 105, u10ms = 945). An equilibrium distribution would thus
correspond to an excess moments of zero.



5 Results

Table 1 summarizes the property changes across the shoeswive pre—shock
densities correspond to the same number density=08.02 x 10°’ m=3. The pre—
shock density for argon corresponds to its liquid—vapdraat point density. The
pre—shock temperature, however, is approximately twieectiitical temperature
such that near—criticalféects are not present. The temperature range for nitrogen
is such that the rotational energy levels can be assumethaons [; > O, =
2.88 K [18]) and vibrations can be neglecteli (< 0, = 3,374 K [18]). The
assumptions of classical mechanics regarding the rottexcitation and of rigid
molecules are thus justified. The flow velocities given inl&dbare in the lab—fixed
frame of reference to show that the post—shock velocitiggteslightly from the
piston speed. This is due to fluid molecules leaking into tiseop. The leak rate
is lower for nitrogen because of the larger size of the n#grogiolecule and be-
cause of the lower post—shock temperature than for the arge®. The pressure
is included for indicative purposes only. The pressure &edspeed of sound do
not follow directly from our MD results, but are calculatedr reference—type
empirical equations of state suggested by the Nationaituitstof Standards and
Technology (NIST). Upstream and downstream of the sho&kflthd is in equi-
librium such that the macroscopic equations of state arkcae. Note that these
semi—empirical equations of state do not enter the sinalati any way. They are
only used to calculate the shock Mach number and the presurmdicative pur-
poses. In particular our nitrogen model might result in dggns from the behavior
of real nitrogen. Table 1 also gives a characteristic leisgtie closely related to
the mean—free path in dilute gases.

Fig. 1 shows the variation of the densify) and the temperature components)(
across the shock wave. The mean flow velocity) (s not shown for clarity. It
closely follows the line forT,. If desired, the velocity profile can be calculated
from the density profile and the continuity equation. Therditi@s shown undergo
a net change across the shock wave. It is thus convenientnidimensionalize
them by their pre— and post—shock quantitees, ( — d1)/(dz2 — g1). Tx shows the
familiar overshoot in the shock wave. Its peak magnitudei8&26 and 448% for
argon and nitrogen, respectively. It is due to the finite ¢tiogprates between the
translational degrees of freedom (and also due to finite-translational-rotational
mode coupling in the case of nitrogen). The overshoot foatlyen case is surpris-
ingly close to the value predicted for a shock of the same Machber in a dilute
fluid (23.6%) [7]. There is no observable overshoot of the overall erajure.

The shock—normal temperature change leads all other dgeantror argon, the
temperature changes upstream of the velocity, followed dyamge of the density.
This means that higher moments change upstream of lower mteni¥his can be
understood by considering that a small number of fast mtds@ntering the shock
wave are sflicient to change the higher moments, but they are negligdsi¢he



Table 1
Pre— and post shock conditions of the simulated shock wawvasgon and nitrogen. The
shock Mach numbers are based on a tabulated speeds of sound.

Argon Nitrogen
unit pre-shock post—shock pre—shock post—-shock

density 0 kygm® | 5321 1,086.7 3709 7410
nondim. density p/(nod ) - 3.19 157 342 171
number density n 10?'m3 8.0 163 8.0 160
mean molecular spacing n~/3 A 5.0 394 5.0 397
"mean—free path” 1/(no? ;) A 10.8 53 114 57
temperature T K 3010 17571 3001 9780
nondim. temperature  T/(kgej) - 2.57 150 8.43 275
velocity u m/s 0 967.2 0 9851
sound speed a m/s 440.7* ? 5567" 17224°
pressure P MPa 3412 ? 42.3f 6895"
shock speed Us my/s 1,885.0 1,976
shock Mach number Mg - 4.28 3.56
shock thickness A A 8.85 7.51

T Calculated from equation of state of Span et al. [19]

* Calculated from equation of state of Tegeler et al. [20] Thetgshock state is out of the range of
validity of the equation of state.

¥ Based on the maximum density gradieft= (02 — p1)/(0p/XImax)-

¥ This characteristic length scale is related to the meaafath and is given here for indicative purposes
only.

mean and their number is small compared to the absolute nuohlparticles. It
will be shown later that this trend does not continue indeflgifor the moments of
order 4 and higher. The location where these moments stahaioge approaches
a limit.

For nitrogen, the presence of rotational degrees of freeclzemges the behavior.
While the temperature profile initially lies upstream of tledocity profile, the order
is reversed fox > 2 A. This is because the energy transfer between the traosét
degrees of freedom is faster than between the translatamthtotational degrees
of freedom. Note how the rotational temperature lags everd#nsity profile on
the hot side of the shock wave.

The shock structures shown in Fig. 1 resemble qualitatittebyge for shocks in
dilute gases. There are some significaffiedences, however. The shock thickness
relative to the mean—free path is thicker in dense fluids fehack of the same
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Fig. 1. Shock structure in argon (a, left) and nitrogen (@ht). The velocity profile (not
shown for clarity) is similar tdly.

Mach number. We also observe deviations of the shape of th&tgerofile. The
asymmetry parameter as defined by Schmidt [21] is greater uh&y in dilute
gases at comparable Mach numbers, but it8sabd 072 for the argon and nitrogen
cases considered here, respectively

Fig. 2 shows the higher central moments of the velocity ithistion function across
the shock wave for the argon (a) & (b) and the nitrogen (c) &d@de. The even
moments are plotted in Fig. 2(a) & (c), the odd moments inEjg) & (d). Because
the behavior is qualitatively the same for both fluids, wel W#se the following
discussion on the nitrogen case. A discussion about tfereinces and noteworthy
commonalities between the argon and the nitrogen shockswaefollow.

Fig. 2(c) shows the excess moments for the nitrogen shoaksdhd lines are for
the direction along the direction of the main flow. The dotieds are for one of the
in—plane velocity components. Upstream and downstredraxe¢ss moments are
zero, consistent with a Maxwell-Boltzmann distributioneofluid in equilibrium.
The shock—normal moments of all orders simultaneously &tateviate from zero
atx ~ —12 A. This location coincides with the location where thetfingrease of
T« (Fig. 1(b)) can be observed. The excess kurtosis has a peak at5 A. This
is upstream of where the peak temperature overshoot isvaasér ~ 0 A). The
location of the peak moves upstream with increasing ordédreomoment. The data
for ugx anduigx €xhibits large fluctuations, which are strongly correlatgthin a
region on the cold side of the shock. The peak excess momantase with the
order of the moment. Note the scaling, which has been apigt plotted data in
Fig. 2. Positive excess central moments represent disiiimiwhich have fat tails
compared to the Maxwell-Boltzmann distribution.

The excess kurtosis in the shock normal directiofy) becomes negative at ~
—1.5 A and approaches zero very slowly thereafigy. andusg x also become nega-
tive, but to a lesser degree thay, — relative to the positive peak valyeqx might
also become negative, but not significantly above the uaiceyt
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The shock—parallel even moments are always non—negatiey. Start deviating
from zero further downstream & —8 A) and their peak amplitude is lower than for
the shock—normal direction. They also show the trend tlep#ak shifts upstream
with increasing order of the moment. The ratm@x; x)/maxy; ,) decreases with
increasingi, i.e., the deviations from a Maxwell-Boltzmann distrilmutibecome
less important for the shock—parallel velocities compaeetthe deviations for the
shock—normal velocities.

The odd moments are shown in Fig. 2(d). They are negativeatidg that the ve-
locity distribution function leans towards less positivedacities. The flux of trans-
lational kinetic energy is proportional j& . usx < O corresponds to a heat flux
from the hot side of the shock wave towards the cold side, against the flow
direction. As for the even moments, the peaks shift upstrmgdgimincreasing order.
The magnitudes also increase with increasing order, bubtnease is slower than
for the even moments. The scaling factors in Figs. 2(c) & (e)the same for a
given order. Note the dierent relative amplitudgs, «/ue.x VS. t3.x/ 5.

The df—diagonal elements @f anduz are not shown They exhibit the the expected
result, which can be summarized as follows.; = 0 for @ # 3, i.e., the diferent
components of the velocity vector are not correlated. Tasthe convenient result
that the velocity distribution function with respect to iegrical velocity compo-
nentsf (cy, (¢} + ¢5)*/?) contains the same information as the three—dimensiamal i
phase—space) distribution functid(c,, c,, c,).

The only non—zero f6—-diagonal elements qf; areus ., for any «. These terms
are related to the flux of kinetic energy stored in the molacuklocity fluctua-
tions along ther—direction in thex—direction. Since there cannot be a heat flux in
the shock—parallel directions and because tlfeint components of the velocity
vector are not correlated, the other components must be zero

The behavior for the argon shock wave is qualitatively samédnd we next dis-
cuss the dterences between the two cases. Note that the Mach numbertiseno
same for both cases such that the comparison should not bemeepreted. For
both shocks, the initial number density afd = u, — u; are the same. Also note
in Table 1 that the shock speeds are very similar. Likewise,molecular sizes
(oLaar ~ oLaN,) are comparable and the larger collision cross sectioneohitno-
gen molecule is largely due to the bond length. THeedent shock Mach numbers
can thus be traced back to théfdrent sound speeds in the pre—shock fluid state,
which itself can largely be explained by theffdrence in the molecular weight.
Despite the dferent Mach numbers, the density ratio across both shockprex
imately 2 (Ar: 204; N,: 2.00). The temperature ratio (Ar:&4; N,: 3.26) shows the
largest discrepancy of the macroscopic quantities. Bus#ime trend is observed
for shocks in perfect gases: for a given shock Mach numberteimperature ratio
increases with the ratio of specific heats, i.e., is highenfonatomic fluids than
for polyatomic fluids. It is due to the additional degreesreéfilom available for en-
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ergy deposition. The temperature is proportional to theaye energyer degree
of freedonrsuch that the overall temperature ratio is thus reduceceiptésence of
rotational degrees of freedom.

The diferences between Fig. 1(a) and Fig. 1(b) have been addrelssed. Ve
thus now turn to the dierences exhibited between Figs. 2(a) & (c) and Figs. 2(b)
& (d). First note the dierent absolute magnitudes of the moments. The peak excess
kurtosis for argon is approximately three times higher ttheat for nitrogen. This
discrepancy cannot be explained by th&eaitent temperature levels, because all
moments are normalized by the temperatdre-(u,). The trend is exaggerated for
the higher moments. The scaling factors in Fig. 2 for botldflare the same. While
the curves for the even moments in Fig. 2(a) have similati¢dgamplitudes, this is
not the case in Fig. 2(c). For nitrogen, the magnitude of tgledr moments relative

to lower—order moments is lower than for argon. The sameltieabserved for the
odd moments, but here the absolute magnitude of the skewmeb®ck—normal
direction is very similar.

Also note the blips arounat = —15 A andx = -10 A in Figs. 2(a) & (c), re-
spectively. Additional numerical experiments would haweconfirm if these are
physical or noise. A corresponding blip is observed in F{tp)20ne could inter-
pret these as evidence of the first collisions of moleculésrerg the shock; they
would correspond to unusually slow molecules. Yet it is ausiwhy the moments
would plateau on a low level for several angstroms beforelenly increasing in
magnitude.

The strong fluctuations of the higher moments are restrictéle cold side of the
shock waves. We hypothesize that the fluctuations are dbe few remaining fast
molecules, which have entered the shock from the left ané hat been slowed
down through interactions. On the cold side of the shock,mohibited molecules
have remained.

Two—dimensional (in phase space) velocity distributiamctions, f (c,, (¢7 +¢5)*?)
have also been evaluated, but the sample sizes were flictent to analyze them
with respect to higher statistical moments. Yet they alloe o calculate the col-
lision operators and to compare them witktelient approximations. These will be
presented in the context of a detailed discussion of theksstoacture.

6 Discussion

Previous DSMC simulations for dilute gases at moderate Marchbers [22] and
for infinite—Mach number shocks in a dense hard—sphere fA8pHave produced
overshoots of the overall temperature within the shock walather for argon
nor for nitrogen has an overshoot of the temperature beeeradxd, which was

12
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Fig. 2. Moments of the velocity distribution function for hack wave in dense argon (a,
top left) & (b, top right) and nitrogen (c, lower left) & (d,\eer right). The labels indicate

the order of the moment. The solid lines are for the molecudéocities in shock—normal

direction, the dotted lines for velocities within the shqikne. The odd moments for the
shock—parallel velocities are zero (within the measurdmecertainty) and are not shown.
The curves are scaled to fit in the same axes. The scalinggaetbich have been applied
for each order, are shown in each panel.

clearly discernible from the noise in the data, whereas @2} §nd Cercignani et
al. [23] observe overshoots of several percent. The repudtsented here put an
upper bound ok 0.5% on any possible temperature overshoot.

As pointed out in Sec. 4, the average velocity is linearlgiipolated to each molecule’s
position when calculating the moments. We also used highder interpolation
schemes and usedfidirent spatial resolutions. Neither of which changed the re-
sults shown in Sec. 5 significantly.

By calculating the higher moments based on a finite numbeealfzations from
a probability density function, errors are introduced. &@lerage value of the mo-
ments in the pre— and post—shock regions, which ar&ertad by the shock wave,
corresponds to the value of a Maxwell-Boltzmann distrinutwvithin the uncer-
tainty (Table 2). For the even moments, the average dewiasi@pproximately
5% from the Maxwell-Boltzmann value (averaging over the sagygions as in
Table 2). For the odd moments, the deviations lie betweesetlod the two neigh-
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Table 2

Estimates of the statistical noise in the data in the preslstamd the post—shock state.
Standard deviation of the excess moments over 20 sliceseapst-25 A < x < 20 A) and
downstream (20 A< x < 25 A) of the shock wave. Percentage values can be only given fo
guantities, which are not zero for a fluid in equilibrium.

Argon Nitrogen

guantity unit pre—shock post—shock pre-shock post—shock
0 [kg/m3] | 1.60 (030%) 235 (022%) | 1.25 (034%) 145 (020%)
u [m/s] | 0.71(004%) 178 (019%) | 0.93 (005%) 211 (021%)
T [K] | 045 (015%) 142 (008%) | 0.26 (009%) 120 (012%)
= [] |o001 001 0.01 001

-3 [] | o004 004 0.03 004

i [] |0.09 010 0.09 009

% -15 [-] 0.41 038 0.29 040

“ [] |094 122 118 099

ks - 105 [[] | 534 434 3.90 484

% [-] 138 186 206 156
M8-945 [] | 813 648 87.9 705

boring even moments. Table 2 gives estimates for the unertdt shows the

fluctuations of the moments in the pre— and post—shock regian, the standard
deviation of the moments. Because of the very similar nundeesities for both

cases in both regions, one expects comparably similar taictes. Table 2 shows
that this is the case.

The odd moments of the in—plane velocities were not plotteBig. 2. With the
scaling applied there, i.e., relative to the respective enn the shock—normal
direction, they are close to zero. In absolute terms, howyévey fluctuate around
zero much stronger than the values in Table 2 would suggéstir Thagnitude
is typically only one order of magnitude smaller than the samoment for the
shock—normal velocities. There cannot be a macroscopicdidweat flux in the in—
plane directions since there is no preferred directions Toes not apply at every
instance in time and on a microscopic level. The fluctuatmithie odd moments
around zero within the shock wave are not unphysical on thgtheand time scales
considered, but they would average out to zero for largepsasizes.

Also, the large correlation between the higher momemsafd ;o) have to be

noted. These are due to the fact that a decreasing numberlec¢ues in the tails

of the distribution function have an increasing impact anlilgher moments. This
hence constitutes another finite sample st¥ece.

14



7 Conclusions

It was shown that the even moments of order four and highdreob¢locity distri-
bution function across a shock wave exhibit a sign revef$ay are positive on the
cold side of the shock, but slightly negative on the hot side®shock. This means
that the velocity distribution function changes from hayfat tails to having slim
tails, at least with respect to the molecular velocitiesglthe shock—normal direc-
tion. The distribution function for the in—plane velocityraponents does not have a
sign reversal. We do not expect that this is a denseffiasteExperimental [24—26]
and numerical [27-35] data for dilute gases, from which igaér moments can be
extracted, is available in the literature, but to the aughkmowledge, the ffect has
not been reported previously. The location where the higberof plane moments
first deviate from zero does not depend on he order of the mpmen the trend
for the lower moments that the temperature (second momeatiges upstream of
the flow velocity (first moment) and the density (zeroth mothennot continued
or it approaches a limit asymptotically. We also observat the odd moments of
the in—plane velocity distribution function fluctuate stgty around zero within the
shock wave.

The magnitude of the higher moments does not decrease witbrtler of the mo-
ment. The opposite is observed. This is significant whenidernisag appropriate
closure relations for the atomistic governing equationsnvtteriving macroscopic
governing equations from them. The influence on the macpscpantities will,
for most practical purposes, be negligible because theshigloments are predom-
inantly afected by the (few) particles in the tails of the distributfanction. The
effect could, however, be large for flows in which high kinetiergy collisions
play a significant role, such as for chemically reacting flows
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