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Abstract

Large–scale molecular dynamics simulations of aMs = 4.3 shock in dense argon (ρ =
532 kg/m3, T = 300 K) and aMs = 3.6 shock in dense nitrogen (ρ = 371 kg/m3,
T = 300 K) have been performed. Results for moments (up to order 10) of the velocity
distribution function are shown. The excess even moments ofthe shock–normal velocity
component (i.e., in the direction of shock propagation) arepositive for most parts of the
shock wave, but become negative towards the hot side of the shock before reverting back to
zero. The even excess moments of the shock–parallel velocities and the odd moments of the
shock–normal velocity do not change signs within the shock.The magnitude of the excess
moments increases with the order of the moment, i.e., the higher moments correspond less
and less to those of a Maxwell–Boltzmann distribution.
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Nomenclature

a speed of sound

amu atomic mass unit

c molecular velocity inα–direction

ǫLJ Lennard–Jones well depth

δx spatial resolution inx–direction

I inertia tensor

kB Boltzmann constant

Lα extent of computational domain inα–direction

Λ shock thickness

m mass of molecule

Ms shock Mach number

µi,αβ... ith central moment,αβ . . . tensor component

N number of particles in interrogation region

ξ location of particle

p pressure

q̃ normalized quantity: (q− q1)/(q2 − q1)

q1 pre–shock value

q2 post–shock value

rdo f rotational degrees of freedom

ρ density

σLJ Lennard–Jones radius

us shock speed

uα macroscopic flow velocity inα–direction

T temperature

Tα directional (α–direction) translational temperature

Trot rotational temperature

x direction along shock–normal (flow direction)

ω rotation rate vector
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1 Introduction

All common macroscopic governing equations of fluid mechanics are derived from
the Boltzmann equation. The Euler and the Navier–Stokes equations, for example,
are the zeroth and first order series expansions with respectto the Knudsen num-
ber (Chapman–Enskog expansion). The closure problem consists of expressing the
heat flux and the stress tensor as a function of the other quantities. This implicitly
results in making certain assumptions about the moments of the velocity distribu-
tion function above some order. The Euler equations, for example, follow from the
Boltzmann equation in the high collision rate limit. In thislimit, the molecular ve-
locities follow an equilibrium, i.e., Maxwell–Boltzmann distribution, for which all
odd moments are zero. The Navier–Stokes equations account for non–zero skew-
ness, but similar assumption for the moments of order four and up are required in
their derivation from the Boltzmann equation. Higher–order terms of the Chapman–
Enskog series are the Burnett and super–Burnett equations,for which the closure
problem is shifted to moments of order 5 and 6, respectively [1].

The errors due to these assumptions are usually small, because the higher moments
predominantly affect the tails of the distribution function, i.e., only a small abso-
lute number of molecules. Heat conduction and the viscous stresses, for example,
can usually be modeled by the Fourier law and Newtonian behavior. In certain
applications, however, a small number of particles with very high kinetic energy
can significantly influence the overall behavior of the flow. In chemically reacting
flows, for example, few very fast particles are responsible for initiating the reaction
chain by creating radicals through high–energy collisions.

Errors are also more significant in the presence of very strong gradients and if
the characteristic length scales become comparable to the mean free path (non–
zero Knudsen number). This is the case in shock waves, where it has been shown
that the Navier–Stokes equations do not yield the correct shock structure for Mach
numbers greater than 2 [2]. For dilute gases, the validity ofthese assumptions can
be verified by solving the Boltzmann equation directly e.g. by Direct Boltzmann
CFD or Direct Simulation Monte Carlo (DSMC) methods to the desired accuracy.
In this limit, the Boltzmann equation is the correct atomistic governing equation.

This is not the case for dense gases and liquids. This is because it only considers
uncorrelated binary collisions. At elevated densities, many–particle collisions and
correlated collisions become increasingly important [3].The verification is thus
more elaborate.
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2 Scope and itinerary

Large–scale Molecular Dynamics (MD) simulations have beenperformed of a
Ms = 4.28 shock in dense argon and of aMs = 3.56 shock in dense nitrogen.
MD does not require a priori knowledge of or assumptions about the equation of
state, transport coefficients, or the velocity distribution function. Its disadvantage
is that the computational cost is significantly higher than for DSMC. MD has been
applied repeatedly for this fluid mechanical problem (e.g. Refs. 4–6). These works
focus on the steady–state profile. They reproduce the overshoot of the translational
temperature perpendicular to the plane of the shock wave, which has been pre-
dicted by Yen [7]. Holway [8] and Salwen at al. [9] even observe a slight (∼ 2
% for high shock Mach numbers) overshoot of the overall temperature. A setup
similar to the one used here, namely the creation of the shockby an impulsively
accelerated piston, has been studied by MacPherson [10], Horowitz et al. [11] and
Woo & Greber [12]. They obtain temporally resolved data for the formation of the
steady state profile from an initially quiescent fluid. All ofthe above only consider
monatomic gases, i.e., do not consider rotational degrees of freedom. Steady–state
profiles for a shock in dilute nitrogen has been obtained using a hybrid method
(MD + Direct Simulation Monte Carlo) by Tokumaso & Matsumoto [13]. In the
present work, for the first time, the shock structure of a diatomic dense fluid has
been determined solely by MD.

The results presented in this paper will aid to evaluate the applicability of specific
atomistic and macroscopic governing equations to shock wave–type flows in dense
fluids. Additionally, we report on a peculiar behavior of theeven moments, which
we find to have a sign reversal within the shock before relaxing back to zero. This
behavior is observed for both fluids. While we cannot extend this result to dilute flu-
ids from our results alone, we do not expect this phenomenon to be an intrinsically
dense–gas effect. For dilute fluids, the existence of such a sign reversal could be
verified from existing numerical and even experimental velocity distribution func-
tions. Yet, to our knowledge, findings to this effect (if indeed present) have not
been reported in the literature. There, the common macroscopic quantities (density,
mean velocity, temperature) or raw velocity distribution functions are shown.

The next section will describe the numerical setup and Sec. 4addresses the data
analysis. Sec. 5 will show the behavior of the higher momentsacross the shock
wave and will also briefly describe the overall shock structure. A more detailed
discussion of the shock structure and of the shock formationand reflection pro-
cesses will be reported elsewhere. Sec. 6 examines error anduncertainty issues, to
which the higher moments are particularly susceptible, when they are based on a
finite sample size. Sec. 7, finally, will summarize the key findings and draw some
conclusions from the results.
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3 Setup

The molecular dynamics code used is a modified version ofMoldy [14]. The mod-
ifications are to allow moving walls (’frameworks’) and non–cubic domains. The
computational domain is a cuboid with dimensionsLx × Ly × Lz = 252× 237.9×
237.9 Å3. A layer of 15.86 Å thickness on either side of the domain (inx–direction)
is occupied by a piston and by a stationary wall. Both are modeled by a cubic–face–
centered lattice of argon atom such that the number density of the wall structures
matches that of the fluid. The details of the wall treatment are not relevant for the
purpose of this work, since data is only averaged over times steps where the shock
wave is at least 50 Å from either wall. During this period, theshock moves at a
constant speed.

100, 000 nitrogen molecules are randomly distributed within thefluid portion of
the domain and given random initial velocities and rotationrates drawn from a
Maxwell–Boltzmann distribution. The rigid nitrogen molecule is modeled by a
two–center Lennard–Jones (6,12) potential withσLJ = 3.318 Å, ǫLJ/kB = 35.6 K,
and a bond length of 1.098 Å between the two Lennard–Jones centers. Each atom
has a mass of 14 amu. These parameters correspond to those given by Murthy et
al. [15], but the five point–charges are omitted. This is for computationally effi-
ciency reasons and to allow comparisons with alternative approaches for which the
incorporations of electrostatic forces is not straight–forward. Vibrations can be ne-
glected in the temperature range considered and the rotational energy levels can be
approximated as being continuous. The argon atom is modeledby a Lennard–Jones
potential withσLJ = 3.3952 Å andǫLJ/kB = 116.79 K [16]. The mass of the argon
atom is 39.948 amu. A cut–off radius for the summation of the short–range forces
of 15.6 Å has been used. Note that this value is significantly largerthan the cut–off
radius commonly used.

The system is equilibrated during 2 ps, where the molecular velocities and rota-
tion rates are rescaled periodically to correspond to the desired initial temperature
of 300 K. This temperature is above the critical temperatures for argon (150.9 K)
and nitrogen (126.2 K) such that all states encountered in the simulation are inthe
supercritical phase. The proper equilibration is verified in a test run with stationary
walls. Over the simulation time (12.5 ps), the temperature increase for the argon
case was< 0.1% (N2: 0.5%). The time steps are 0.002 ps and 0.0002 ps for ar-
gon and nitrogen, respectively. The smaller time step for the nitrogen simulations
is due to the requirement that the rotational motion has to beresolved. The shock
wave is created by impulsively accelerating the left wall (piston) to a velocity of
up = 1, 000 m/s. The molecular positions, velocities, orientations (expressed as
quaternions), and rotation rates are saved every 0.05 ps. 10 ensembles with per-
turbed initial conditions are simulated and all data is ensemble averaged.

The argon simulations were performed on single–processor machines. Each time
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step of a 100k fluid atoms simulation required 5.5 CPU seconds on a 1.7 GHz
AMD Athlon XP processor. Including equilibrations and equilibration verification
runs, the ten ensembles hence required approximately 100 CPU hours. The nitrogen
cases took approximately 10 CPU seconds per time step on sucha single-processor
machine. This would result in a total computational cost of 2, 000 CPU hours.

Therefore, the nitrogen cases were computed on between 16 and 32 1.3 GHz Power4
processors on a single p690 node of Oak Ridge National Laboratory’s Cheetah fa-
cility. Unfortunately, the version of Moldy used does not parallelize very well, be-
cause all data is copied to each processor. The time requiredfor the data transfer
between processors after each time step then becomes significant compared to the
computational cost. While no detailed studies were performed on Cheetah, based
on tests on other multi–processor computers, we estimate that the realized speedup
was only about 50% of the theoretically achievable speedup.Data analysis also re-
quired significant computational resources mainly due to the large amounts of data
(> 100 GB), which had to be loaded and processed several times.

4 Data analysis

Steady–state data is temporally averaged by mapping the molecular locations onto a
shock–fixed coordinate system. The instantaneous locationof the shock wave is ob-
tained by a least–squares fit of a Mott–Smith profile [17] to the density field across
the domain. While the density profile is not perfectly described by this functional,
this approach does provide a reliable method to locate the shock wave accurately.
Temporal averaging is only performed while the shock wave isat least 50 Å from
either end wall to rule out end wall effects. 70 (N2: 69) data sets meet this criterion.
Data is analyzed in slices ofδx = 0.25 Å thickness such that each slice contains
between approximately 75, 000 and 155, 000 molecules.

In the shock–fixed frame of reference, flow is from left to right, i.e., the cold side
corresponds tox→ −∞ and the hot side is atx→ +∞ (thex–direction is reversed
from the lab–fixed frame of reference). The origin is chosen such that the nondi-
mensional density (ρ−ρ1)/(ρ2−ρ1) = 0.5 (where the subscripts 1 and 2 correspond
to the pre– and post–shock state, respectively) atx = 0. We do not nondimension-
alize the shock–normal coordinate by the mean–free path, because the concept of
the mean–free path is not applicable to dense fluids, where each molecule interacts
(collides) continuously with several neighboring molecules.

Let ξi = (ξ, η, ζ) andci be the location and the velocity vector of moleculei in
the shock–fixed reference frame, respectively. We define thecentral moments as
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follows:

µ0 = N =
N
∑

i=1

1 (1a)

µ1,α = u =
1
N

N
∑

i=1

ci
α (1b)

µ2,αβ = σ
2
αβ =

1
N

N
∑

i=1

(

ci
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i)
) (

ci
β − uβ(ξ

i)
)

(1c)

µ3,αβγ =
1
N

N
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(

ci
α − uα(ξ

i)
) (

ci
β − uβ(ξ

i)
) (

ci
γ − uγ(ξ

i)
)

(1d)

...

Greek subscripts denote spatial components of vectors or tensors. Roman subscripts
indicate the order of the moment. All tensor components are computed up toµ3. For
µk (k ≥ 4) only the diagonal elements (α = β = γ = . . .) are calculated. The sum is
over all molecules within a slice|x−ξi | ≤ δx/2. Note that the finite spatial resolution
would lead to a bias in the presence of velocity gradients, i.e., if u changes across
a slice. To minimize this bias,u is linearly interpolated to each molecule’s location
when calculating the third and higher moments.

The translational directional temperatures are related tothe second moment by

Tα =
mµ2,αα

3kB
(2)

The translational temperature isTtrans = Tx+ Ty+Tz and the overall temperature is
T = (3Ttrans+rdo f×Trot)/(3+rdo f), whererdo f is the number of rotational degrees
of freedom of the molecule and whereTrot denotes the rotational temperature,

Trot =
1

3NkB

N
∑

i=1

ωiT Iωi . (3)

I andω are the moment of inertia tensor and the rotation rate vector, respectively.

The third and higher moments are normalized by the respective power of the stan-
dard deviationσαα. Just as the temperature can be related to the second moment,the
heat flux vector can be related to the third central moment. The fourth and higher
even moments are expressed as excess moments, i.e., the value of the moment
which a Maxwell–Boltzmann distribution would have is subtracted (µ4,MB = 3,
µ6,MB = 15, µ8,MB = 105,µ10,MB = 945). An equilibrium distribution would thus
correspond to an excess moments of zero.
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5 Results

Table 1 summarizes the property changes across the shock waves. The pre–shock
densities correspond to the same number density ofn = 8.02× 1027 m−3. The pre–
shock density for argon corresponds to its liquid–vapor critical point density. The
pre–shock temperature, however, is approximately twice the critical temperature
such that near–critical effects are not present. The temperature range for nitrogen
is such that the rotational energy levels can be assumed continuous (T1 ≫ Θr =

2.88 K [18]) and vibrations can be neglected (T2 ≪ Θv = 3, 374 K [18]). The
assumptions of classical mechanics regarding the rotational excitation and of rigid
molecules are thus justified. The flow velocities given in Table 1 are in the lab–fixed
frame of reference to show that the post–shock velocities deviate slightly from the
piston speed. This is due to fluid molecules leaking into the piston. The leak rate
is lower for nitrogen because of the larger size of the nitrogen molecule and be-
cause of the lower post–shock temperature than for the argoncase. The pressure
is included for indicative purposes only. The pressure and the speed of sound do
not follow directly from our MD results, but are calculated from reference–type
empirical equations of state suggested by the National Institute of Standards and
Technology (NIST). Upstream and downstream of the shock, the fluid is in equi-
librium such that the macroscopic equations of state are applicable. Note that these
semi–empirical equations of state do not enter the simulation in any way. They are
only used to calculate the shock Mach number and the pressures for indicative pur-
poses. In particular our nitrogen model might result in deviations from the behavior
of real nitrogen. Table 1 also gives a characteristic lengthscale closely related to
the mean–free path in dilute gases.

Fig. 1 shows the variation of the density (µ0) and the temperature components (µ2)
across the shock wave. The mean flow velocity (µ1) is not shown for clarity. It
closely follows the line forTy. If desired, the velocity profile can be calculated
from the density profile and the continuity equation. The quantities shown undergo
a net change across the shock wave. It is thus convenient to nondimensionalize
them by their pre– and post–shock quantities, ˜q = (q− q1)/(q2 − q1). Tx shows the
familiar overshoot in the shock wave. Its peak magnitude is 23.96% and 44.3% for
argon and nitrogen, respectively. It is due to the finite coupling rates between the
translational degrees of freedom (and also due to finite–rate translational-rotational
mode coupling in the case of nitrogen). The overshoot for theargon case is surpris-
ingly close to the value predicted for a shock of the same Machnumber in a dilute
fluid (23.6%) [7]. There is no observable overshoot of the overall temperature.

The shock–normal temperature change leads all other quantities. For argon, the
temperature changes upstream of the velocity, followed by achange of the density.
This means that higher moments change upstream of lower moments. This can be
understood by considering that a small number of fast molecules entering the shock
wave are sufficient to change the higher moments, but they are negligible for the
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Table 1
Pre– and post shock conditions of the simulated shock waves in argon and nitrogen. The
shock Mach numbers are based on a tabulated speeds of sound.

Argon Nitrogen

unit pre–shock post–shock pre–shock post–shock

density ρ kg/m3 532.1 1, 086.7 370.9 741.0

nondim. density ρ/(nσ3
LJ) – 3.19 1.57 3.42 1.71

number density n 1027m−3 8.0 16.3 8.0 16.0

mean molecular spacing n−1/3 Å 5.0 3.94 5.0 3.97

”mean–free path”§ 1/(nσ2
LJ) Å 10.8 5.3 11.4 5.7

temperature T K 301.0 1, 757.1 300.1 978.0

nondim. temperature T/(kBǫLJ) – 2.57 15.0 8.43 27.5

velocity u m/s 0 967.2 0 985.1

sound speed a m/s 440.7∗ ? 556.7† 1722.4†

pressure p MPa 34.12∗ ? 42.3† 689.5†

shock speed us m/s 1,885.0 1,976

shock Mach number Ms - 4.28 3.56

shock thickness‡ Λ Å 8.85 7.51

† Calculated from equation of state of Span et al. [19]
∗ Calculated from equation of state of Tegeler et al. [20] The post–shock state is out of the range of

validity of the equation of state.
‡ Based on the maximum density gradient,Λ = (ρ2 − ρ1)/(∂ρ/∂x|max).
§ This characteristic length scale is related to the mean–free path and is given here for indicative purposes

only.

mean and their number is small compared to the absolute number of particles. It
will be shown later that this trend does not continue indefinitely for the moments of
order 4 and higher. The location where these moments start tochange approaches
a limit.

For nitrogen, the presence of rotational degrees of freedomchanges the behavior.
While the temperature profile initially lies upstream of thevelocity profile, the order
is reversed forx ≥ 2 Å. This is because the energy transfer between the translational
degrees of freedom is faster than between the translationaland rotational degrees
of freedom. Note how the rotational temperature lags even the density profile on
the hot side of the shock wave.

The shock structures shown in Fig. 1 resemble qualitativelythose for shocks in
dilute gases. There are some significant differences, however. The shock thickness
relative to the mean–free path is thicker in dense fluids for ashock of the same
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Fig. 1. Shock structure in argon (a, left) and nitrogen (b, right). The velocity profile (not
shown for clarity) is similar toTy.

Mach number. We also observe deviations of the shape of the density profile. The
asymmetry parameter as defined by Schmidt [21] is greater than unity in dilute
gases at comparable Mach numbers, but it is 0.8 and 0.72 for the argon and nitrogen
cases considered here, respectively

Fig. 2 shows the higher central moments of the velocity distribution function across
the shock wave for the argon (a) & (b) and the nitrogen (c) & (d)case. The even
moments are plotted in Fig. 2(a) & (c), the odd moments in Fig.2(b) & (d). Because
the behavior is qualitatively the same for both fluids, we will base the following
discussion on the nitrogen case. A discussion about the differences and noteworthy
commonalities between the argon and the nitrogen shock waves will follow.

Fig. 2(c) shows the excess moments for the nitrogen shock. The solid lines are for
the direction along the direction of the main flow. The dottedlines are for one of the
in–plane velocity components. Upstream and downstream, all excess moments are
zero, consistent with a Maxwell–Boltzmann distribution ofa fluid in equilibrium.
The shock–normal moments of all orders simultaneously start to deviate from zero
at x ≈ −12 Å. This location coincides with the location where the first increase of
Tx (Fig. 1(b)) can be observed. The excess kurtosis has a peak atx ≈ −5 Å. This
is upstream of where the peak temperature overshoot is observed (x ≈ 0 Å). The
location of the peak moves upstream with increasing order ofthe moment. The data
for µ8,x andµ10,x exhibits large fluctuations, which are strongly correlatedwithin a
region on the cold side of the shock. The peak excess moments increase with the
order of the moment. Note the scaling, which has been appliedto the plotted data in
Fig. 2. Positive excess central moments represent distributions which have fat tails
compared to the Maxwell–Boltzmann distribution.

The excess kurtosis in the shock normal direction (µ4,x) becomes negative atx ≈
−1.5 Å and approaches zero very slowly thereafter.µ6,x andµ8,x also become nega-
tive, but to a lesser degree thanµ4,x – relative to the positive peak value.µ10,x might
also become negative, but not significantly above the uncertainty.
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The shock–parallel even moments are always non–negative. They start deviating
from zero further downstream (x ≈ −8 Å) and their peak amplitude is lower than for
the shock–normal direction. They also show the trend that the peak shifts upstream
with increasing order of the moment. The ratiomax(µi,x)/max(µi,y) decreases with
increasingi, i.e., the deviations from a Maxwell–Boltzmann distribution become
less important for the shock–parallel velocities comparedto the deviations for the
shock–normal velocities.

The odd moments are shown in Fig. 2(d). They are negative indicating that the ve-
locity distribution function leans towards less positive velocities. The flux of trans-
lational kinetic energy is proportional toµ3,x. µ3,x < 0 corresponds to a heat flux
from the hot side of the shock wave towards the cold side, i.e., against the flow
direction. As for the even moments, the peaks shift upstreamwith increasing order.
The magnitudes also increase with increasing order, but theincrease is slower than
for the even moments. The scaling factors in Figs. 2(c) & (d) are the same for a
given order. Note the different relative amplitudesµ4,x/µ6,x vs.µ3,x/µ5,x.

The off–diagonal elements ofµ2 andµ3 are not shown They exhibit the the expected
result, which can be summarized as follows:µ2,αβ = 0 for α , β, i.e., the different
components of the velocity vector are not correlated. This has the convenient result
that the velocity distribution function with respect to cylindrical velocity compo-
nentsf (cx, (c2

y + c2
z)

1/2) contains the same information as the three–dimensional (in
phase–space) distribution functionf (cx, cy, cz).

The only non–zero off–diagonal elements ofµ3 areµ3,xαα for anyα. These terms
are related to the flux of kinetic energy stored in the molecular velocity fluctua-
tions along theα–direction in thex–direction. Since there cannot be a heat flux in
the shock–parallel directions and because the different components of the velocity
vector are not correlated, the other components must be zero.

The behavior for the argon shock wave is qualitatively similar and we next dis-
cuss the differences between the two cases. Note that the Mach number is not the
same for both cases such that the comparison should not be over–interpreted. For
both shocks, the initial number density and∆u = u2 − u1 are the same. Also note
in Table 1 that the shock speeds are very similar. Likewise, the molecular sizes
(σLJ,Ar ∼ σLJ,N2) are comparable and the larger collision cross section of the nitro-
gen molecule is largely due to the bond length. The different shock Mach numbers
can thus be traced back to the different sound speeds in the pre–shock fluid state,
which itself can largely be explained by the difference in the molecular weight.
Despite the different Mach numbers, the density ratio across both shocks is approx-
imately 2 (Ar: 2.04; N2: 2.00). The temperature ratio (Ar: 5.84; N2: 3.26) shows the
largest discrepancy of the macroscopic quantities. But thesame trend is observed
for shocks in perfect gases: for a given shock Mach number, the temperature ratio
increases with the ratio of specific heats, i.e., is higher for monatomic fluids than
for polyatomic fluids. It is due to the additional degrees of freedom available for en-
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ergy deposition. The temperature is proportional to the average energyper degree
of freedomsuch that the overall temperature ratio is thus reduced in the presence of
rotational degrees of freedom.

The differences between Fig. 1(a) and Fig. 1(b) have been addressed above. We
thus now turn to the differences exhibited between Figs. 2(a) & (c) and Figs. 2(b)
& (d). First note the different absolute magnitudes of the moments. The peak excess
kurtosis for argon is approximately three times higher thanthat for nitrogen. This
discrepancy cannot be explained by the different temperature levels, because all
moments are normalized by the temperature (T ∼ µ2). The trend is exaggerated for
the higher moments. The scaling factors in Fig. 2 for both fluids are the same. While
the curves for the even moments in Fig. 2(a) have similar (scaled) amplitudes, this is
not the case in Fig. 2(c). For nitrogen, the magnitude of the higher moments relative
to lower–order moments is lower than for argon. The same trend is observed for the
odd moments, but here the absolute magnitude of the skewnessin shock–normal
direction is very similar.

Also note the blips aroundx = −15 Å andx = −10 Å in Figs. 2(a) & (c), re-
spectively. Additional numerical experiments would have to confirm if these are
physical or noise. A corresponding blip is observed in Fig. 2(b). One could inter-
pret these as evidence of the first collisions of molecules entering the shock; they
would correspond to unusually slow molecules. Yet it is curious why the moments
would plateau on a low level for several angstroms before suddenly increasing in
magnitude.

The strong fluctuations of the higher moments are restrictedto the cold side of the
shock waves. We hypothesize that the fluctuations are due to the few remaining fast
molecules, which have entered the shock from the left and have not been slowed
down through interactions. On the cold side of the shock, no uninhibited molecules
have remained.

Two–dimensional (in phase space) velocity distribution functions,f (cx, (c2
y+c2

z)
1/2)

have also been evaluated, but the sample sizes were not sufficient to analyze them
with respect to higher statistical moments. Yet they allow one to calculate the col-
lision operators and to compare them with different approximations. These will be
presented in the context of a detailed discussion of the shock structure.

6 Discussion

Previous DSMC simulations for dilute gases at moderate Machnumbers [22] and
for infinite–Mach number shocks in a dense hard–sphere fluid [23] have produced
overshoots of the overall temperature within the shock wave. Neither for argon
nor for nitrogen has an overshoot of the temperature been observed, which was
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Fig. 2. Moments of the velocity distribution function for a shock wave in dense argon (a,
top left) & (b, top right) and nitrogen (c, lower left) & (d, lower right). The labels indicate
the order of the moment. The solid lines are for the molecularvelocities in shock–normal
direction, the dotted lines for velocities within the shockplane. The odd moments for the
shock–parallel velocities are zero (within the measurement uncertainty) and are not shown.
The curves are scaled to fit in the same axes. The scaling factors, which have been applied
for each order, are shown in each panel.

clearly discernible from the noise in the data, whereas Ohr [22] and Cercignani et
al. [23] observe overshoots of several percent. The resultspresented here put an
upper bound of< 0.5% on any possible temperature overshoot.

As pointed out in Sec. 4, the average velocity is linearly interpolated to each molecule’s
position when calculating the moments. We also used higher–order interpolation
schemes and used different spatial resolutions. Neither of which changed the re-
sults shown in Sec. 5 significantly.

By calculating the higher moments based on a finite number of realizations from
a probability density function, errors are introduced. Theaverage value of the mo-
ments in the pre– and post–shock regions, which are unaffected by the shock wave,
corresponds to the value of a Maxwell–Boltzmann distribution within the uncer-
tainty (Table 2). For the even moments, the average deviation is approximately
5% from the Maxwell–Boltzmann value (averaging over the same regions as in
Table 2). For the odd moments, the deviations lie between those of the two neigh-
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Table 2
Estimates of the statistical noise in the data in the pre–shock and the post–shock state.
Standard deviation of the excess moments over 20 slices upstream (−25 Å ≤ x ≤ 20 Å) and
downstream (20 Å≤ x ≤ 25 Å) of the shock wave. Percentage values can be only given for
quantities, which are not zero for a fluid in equilibrium.

Argon Nitrogen

quantity unit pre–shock post–shock pre–shock post–shock

ρ [kg/m3] 1.60 (0.30%) 2.35 (0.22%) 1.25 (0.34%) 1.45 (0.20%)

u [m/s] 0.71 (0.04%) 1.78 (0.19%) 0.93 (0.05%) 2.11 (0.21%)

T [K] 0.45 (0.15%) 1.42 (0.08%) 0.26 (0.09%) 1.20 (0.12%)
µ3

σ3 [-] 0.01 0.01 0.01 0.01
µ4

σ4 − 3 [-] 0.04 0.04 0.03 0.04
µ5

σ5 [-] 0.09 0.10 0.09 0.09
µ6

σ6 − 15 [-] 0.41 0.38 0.29 0.40
µ7

σ7 [-] 0.94 1.22 1.18 0.99
µ8

σ8 − 105 [-] 5.34 4.34 3.90 4.84
µ9

σ9 [-] 13.8 18.6 20.6 15.6
µ10

σ10 − 945 [-] 81.3 64.8 87.9 70.5

boring even moments. Table 2 gives estimates for the uncertainty. It shows the
fluctuations of the moments in the pre– and post–shock regions, i.e., the standard
deviation of the moments. Because of the very similar numberdensities for both
cases in both regions, one expects comparably similar uncertainties. Table 2 shows
that this is the case.

The odd moments of the in–plane velocities were not plotted in Fig. 2. With the
scaling applied there, i.e., relative to the respective moment in the shock–normal
direction, they are close to zero. In absolute terms, however, they fluctuate around
zero much stronger than the values in Table 2 would suggest. Their magnitude
is typically only one order of magnitude smaller than the same moment for the
shock–normal velocities. There cannot be a macroscopic flowor heat flux in the in–
plane directions since there is no preferred direction. This does not apply at every
instance in time and on a microscopic level. The fluctuationsof the odd moments
around zero within the shock wave are not unphysical on the length and time scales
considered, but they would average out to zero for larger sample sizes.

Also, the large correlation between the higher moments (µ8 andµ10) have to be
noted. These are due to the fact that a decreasing number of molecules in the tails
of the distribution function have an increasing impact on the higher moments. This
hence constitutes another finite sample size effect.
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7 Conclusions

It was shown that the even moments of order four and higher of the velocity distri-
bution function across a shock wave exhibit a sign reversal.They are positive on the
cold side of the shock, but slightly negative on the hot side of the shock. This means
that the velocity distribution function changes from having fat tails to having slim
tails, at least with respect to the molecular velocities along the shock–normal direc-
tion. The distribution function for the in–plane velocity components does not have a
sign reversal. We do not expect that this is a dense gas effect. Experimental [24–26]
and numerical [27–35] data for dilute gases, from which the higher moments can be
extracted, is available in the literature, but to the authors’ knowledge, the effect has
not been reported previously. The location where the higherout–of plane moments
first deviate from zero does not depend on he order of the moment, i.e., the trend
for the lower moments that the temperature (second moment) changes upstream of
the flow velocity (first moment) and the density (zeroth moment) is not continued
or it approaches a limit asymptotically. We also observe, that the odd moments of
the in–plane velocity distribution function fluctuate strongly around zero within the
shock wave.

The magnitude of the higher moments does not decrease with the order of the mo-
ment. The opposite is observed. This is significant when considering appropriate
closure relations for the atomistic governing equations when deriving macroscopic
governing equations from them. The influence on the macroscopic quantities will,
for most practical purposes, be negligible because the higher moments are predom-
inantly affected by the (few) particles in the tails of the distributionfunction. The
effect could, however, be large for flows in which high kinetic energy collisions
play a significant role, such as for chemically reacting flows.
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