
ar
X

iv
:c

on
d-

m
at

/0
60

75
29

v2
  [

co
nd

-m
at

.s
ta

t-
m

ec
h]

  1
8 

D
ec

 2
00

6 Numerical implementation of the exact dynamics of

free rigid bodies

Ramses van Zon, Jeremy Schofield

Chemical Physics Theory Group, Department of Chemistry, University

of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada

December 15, 2006

Abstract

In this paper the exact analytical solution of the motion of a rigid body with arbitrary mass
distribution is derived in the absence of forces or torques. The resulting expressions are cast into
a form where the dependence of the motion on initial conditions is explicit and the equations
governing the orientation of the body involve only real numbers. Based on these results, an
efficient method to calculate the location and orientation of the rigid body at arbitrary times
is presented. This implementation can be used to verify the accuracy of numerical integration
schemes for rigid bodies, to serve as a building block for event-driven discontinuous molecular
dynamics simulations of general rigid bodies, and for constructing symplectic integrators for
rigid body dynamics.

1 Introduction

The importance of the dynamics of rigid bodies in physics and engineering has been recognized
since the early 19th century. The early work of Euler, Hermite, Poisson, Jacobi and many others
on exactly soluble systems lead to great advances in the field of applied mathematics as well as
in mechanics. More recently, rigid hard spheres served as the first prototypical model for fluids
treated by computer simulation [1]. Today, rigid bodies are used to model phenomena on a variety
of different length scales: On molecular length scales, rigid bodies are used in the modeling of the
microscopic dynamics of molecules in condensed phases [2–4], on a mesoscopic scale, they are used
to construct simple models of polymers and other complex systems [5], while on a macroscopic
level they play an important role in robotics. The dynamics of rigid bodies is also of relevance
to the computer game industry, where many improvements in simulating rigid bodies have been
developed [6]. Finally, on an even larger scale, many astrophysical objects such as planets, satellites
and space crafts can be regarded as rigid bodies on certain time scales [7, 8].

According to the laws of classical mechanics, the motion of a rigid body consists of translation of
the center of mass of the body and rotation of the orientation of the body about its center of mass.
In the most general case in which the body is subject to forces and torques, an analytical solution
of the dynamics is not possible and a numerical scheme is required to integrate the equations of
motion. With the advent of powerful computers, much work has been devoted to finding stable
and efficient integration schemes for rotating rigid bodies [9–12]. The use of numerical integrators
is now so widespread that they are frequently used even in cases where an analytical solution of the
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dynamics is available. This is unfortunate, since an exact solution can not only serve as a special
case against which numerical integration schemes may be tested, but can also be directly used in
so-called discontinuous molecular dynamics of rigid bodies, in which the bodies perform free motion
in between interaction events. A hard sphere gas is the prototypical example of such a system.
In these kinds of simulations, using an exact solution of the free dynamics yields an enormous
computational benefit compared to having to integrate the free dynamics numerically (see e.g.
Refs. 3 and 4). Furthermore, for molecular dynamics of systems with a continuous potential, an
exact solution is also often useful in constructing so-called symplectic integration schemes, and
typically leads to enhanced stability [12–15].

Perhaps the principal reason why the analytical solution of the motion of a free rigid body is
seldom used is that the general solution is simply not well-known. Many advanced textbooks in
mechanics avoid discussing the motion of general rigid bodies, and only consider certain symmetric
cases [16] in which the equations of motion are particularly simple. This probably is due to the
fact that the general solution — apparently first found by Rueb [17] in 1834 and later completed
by Jacobi in 1849 [18] — involves special functions, called elliptic and theta functions, which are
perhaps less familiar than other special functions. Furthermore, even when the case of a general
rotor is discussed [8,17–20], the treatment of its motion is often incomplete, in rather abstract form
(using complex-valued functions) and presented in a special inertial coordinate frame rather than
a general laboratory inertial frame.

The goal of this paper is to demonstrate that none of these issues needs to be an obstacle to
the use of the exact solution of the equations of motion of an asymmetric rigid body in numerical
work. It will first be shown that although the derivation of the general solution of the equations of
motion of a rigid body requires a bit of complex analysis, the final result can be expressed without
any reference to complex arithmetic. Secondly, the solution will be formulated in a general inertial
frame and for general initial conditions of the rigid body. Finally, it will be shown that the special
functions occurring in the solution can be numerically implemented in an efficient fashion. Based
on these considerations, the numerical implementation of the (admittedly non-trivial) motion of an
asymmetric rigid body in the absence of forces and torques is relatively straightforward.

The paper is organized as follows: In section 2, the motion of a rigid body is reviewed starting
in subsection 2.1 with a brief overview of the properties of rigid bodies. Subsequently, in subsection
2.2 the equations of motion are given, while in 2.3 these are specialized to the case of free motion.
The novel part of the paper starts in section 3, where a new derivation of the exact solution of the
time dependence of the orientation of the body is given, first in general and then explicitly for the
spherical top, the symmetric top and the asymmetric top (sections 3.1, 3.2 and 3.3, respectively).
In section 4, some further numerical issues are addressed. An example is given in section 5 and the
paper ends in section 6 with a discussion of the results and their possible applications.

2 Review of the motion of rigid bodies

2.1 Rigid bodies

The shape of a rigid body is specified by the set of all material points {r̃i} of the body. The points
r̃i = (x̃i, ỹi, z̃i) are three-dimensional vectors with respect to a reference coordinate frame called
the body frame, and constitute a reference orientation of the body [20]. Furthermore, a mass mi is
associated with each material point. The mass distribution of the body plays an important role in
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its dynamics.
Since any translation or rotation acting on all points r̃i leaves the shape of the body unchanged,

there is an arbitrariness in the choice of body frame which can be exploited. By a suitable trans-
lation, one may always set the center of mass to be in the origin, i.e.,

∑

i

mir̃i = 0. (2.1)

Furthermore, using a suitable rotation, the moment of inertia tensor Ĩ can be brought to its principal
form:

Ĩ =
∑

i

mi





ỹ2
i + z̃2

i −x̃iỹi −x̃iz̃i
−x̃iỹi x̃2

i + z̃2
i −ỹiz̃i

−x̃iz̃i −ỹiz̃i x̃2
i + ỹ2

i



 =





I1 0 0
0 I2 0
0 0 I3



 . (2.2)

For subsequent developments, it will be assumed that these transformations have been performed.

Because the body frame is fixed to the body, the material points r̃i are independent of time.
However since the body itself moves through physical space, the location of each point r̃i in the
physical coordinate system, or lab frame, must be determined as a function of time to describe its
motion. The position of mass point i in the lab frame will be denoted by ri(t) = (xi(t), yi(t), zi(t)).
Since the body is rigid, its motion is a time-dependent orientation-and-distance-preserving trans-
formation from the body frame to the lab frame. The most general such transformation is a
combination of a translation and a rotation:

ri(t) = R(t) + A
†(t) r̃i. (2.3)

Here and below, matrix-vector and matrix-matrix products such as A
†(t) r̃i will be denoted im-

plicitly, i.e, without a “·”, which will only be used for inner products. For notational simplicity,
the explicit time dependence will be omitted in most expressions, i.e., ri(t) will be denoted simply
by ri. Exceptions are if the time argument is equal to zero (e.g. ri(0)) or integrated over.

In Eq. (2.3), the vector R denotes the position of the center of mass at time t, while the
orthogonal matrix A

† represents the orientation of the body with respect to the center of mass at
that time and is often called the attitude matrix. Note that A transforms vectors from the lab to
the body frame, while its transpose A

† transforms vectors from the body to the lab frame.

The motions of the different material points of a rigid body are obviously closely related. Instead
of working with the (linear) velocities of all points, one can instead use a formulation of the dynamics
that utilizes the angular velocity vector ω = (ω1, ω2, ω3) of the body around its center of mass.
This angular velocity vector is defined such that its direction coincides with the rotation axis and
its magnitude coincides with the rate at which it rotates. As a consequence of this definition, the
velocity of any point of the rigid body satisfies the standard relation [16]

vi = V + ω × (ri − R) (2.4)

where V = Ṙ is the velocity of the center of mass. Defining the antisymmetric matrix

W(ω) =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 , (2.5)
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and using Eq. (2.3), Eq. (2.4) can also be written as

vi = V + W(ω)A†
r̃i. (2.6)

Taking the time derivative of Eq. (2.3) and using Eq. (2.6), one sees that ω and Ȧ are related via

Ȧ
†
A = W(ω), (2.7)

Given the central role of rotation matrices below, it is useful to establish some notation. A
rotation matrix U is a special orthogonal matrix that can be specified by a rotation axis n̂ =
(n1, n2, n3) and an angle ψ. Here n̂ is a unit vector, so that one may also say that any non-unit
vector ψn̂ can be used to specify a rotation, where its norm is equal to the angle ψ and its direction
is along the axis n̂. In fact, one can express this rotation matrix as U(ψn̂) = exp W(ψn̂). The
explicit form of this rotation matrix may be found using Rodrigues’ formula [16].

2.2 Dynamics

It is clear from Eq. (2.3) that the motion of a rigid body as a function of time is determined by
the time dependence of the center of mass vector R and the attitude matrix A. According to the
mechanics of rigid bodies, these follow from the equations of motion

F = Ṗ τ = L̇. (2.8)

Here, F is the sum of all forces acting on the body, P = MV (with M =
∑

imi) is the total
momentum, τ the total torque with respect to the center of mass of the body and L = Iω is the
angular momentum. One may equivalently write

F = M V̇ τ =
d

dt
(Iω). (2.9)

The latter equation is more conveniently written in the body frame using ω̃ = Aω, τ̃ = A τ and
Ĩ = AIA

†, which yields

τ̃ = AȦ
†
Ĩ ω̃ + Ĩ ˙̃ω

= AW(ω)A†
Ĩ ω̃ + Ĩ ˙̃ω

= W(ω̃) Ĩ ω̃ + Ĩ ˙̃ω, (2.10)

where Eq. (2.7) was used to obtain the second equality, and the third equality was obtained using

AW(ω)A† = W(Aω) = W(ω̃). (2.11)

Writing out Eq. (2.10) in its components gives the so-called Euler equations. Solving these equations
yields the time dependence of the angular velocities in the body frame. To consequently find the
attitude matrix A, one uses Eqs. (2.7) and (2.11) to find

Ȧ = −W(ω̃)A. (2.12)
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2.3 Force and torque-free case

In the special case where all external forces and torques are zero, i.e., F = 0 and τ = 0, the
equations of motion to solve simplify to

V̇ = 0 Ĩ ˙̃ω = −ω̃ × Ĩ ω̃ Ȧ = −W(ω̃)A. (2.13)

In the absence of forces and torques, the dynamics of the system is invariant under rotations
and under translations in time and space. As a consequence of these symmetries, the energy E,
momentum P and angular momentum L are conserved, where E is given by

E = ET + ER (2.14)

with the translational and rotational energies equal to

ET =
1

2M
|P |2 =

1

2
M |V |2

ER =
1

2
L · I−1

L =
1

2
ω · Iω =

1

2
ω̃ · Ĩ ω̃ =

1

2
(I1ω̃

2
1 + I2ω̃

2
2 + I3ω̃

2
3),

(2.15)

respectively.

The time dependence of the translational part of the motion follows from the equation of motion
V̇ = 0, which is easily solved to obtain

V = V (0)

R = R(0) + V (0)t.
(2.16)

Since V (t) = V (0), the translational energy ET is conserved in the dynamics, which, in turn,
implies that the rotational energy ER is also conserved.

To solve the rotational equations of motion is less trivial. One has to solve the middle equation
of (2.13), which, written out in components, reads

I1 ˙̃ω1 = ω̃2ω̃3(I2 − I3)

I2 ˙̃ω2 = ω̃3ω̃1(I3 − I1)

I3 ˙̃ω3 = ω̃1ω̃2(I1 − I2).

(2.17)

The general solution of this set of equations will be presented below. Given this solution, the
remaining task is to determine the attitude matrix A from Eq. (2.12).

Although the general solution for A is hard to find in any textbook, it can be found in Jacobi’s
treatise on rigid body motion from 1849 [18]. Unfortunately, for mathematical elegance, the attitude
matrix was only specified up to a rotation at a uniform speed which was not clearly identified, so that
its numerical implementation is not altogether clear. Furthermore, Jacobi’s derivation relies heavily
on geometric arguments and Euler angles, which often pose problems in numerical applications.
For this reason, the next section contains a novel derivation of the exact solution of A without
reference to Euler angles, leading to an expression which is more readily implemented.
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3 Exact solution of the attitude matrix in the absence of torques

While discussions of how to solve the Euler equations in the body frame are common, one rarely
sees any mention of how to go about integrating the equation for the attitude matrix. Therefore,
we have chosen to treat this derivation in a bit more detail than one would perhaps expect from a
computational paper. First the general form of the solution will be derived, after which the three
different case of rigid bodies are explicitly considered: spherical bodies (section 3.1), symmetric
tops (section 3.2), and asymmetric tops (section 3.3).

To obtain the general form of the attitude matrix A, we have to solve Eq. (2.12). Since this is
a linear equation, its solution can be written in the form

A = PA(0). (3.1)

Here, P is a time dependent matrix which also satisfies Eq. (2.12), but with initial condition
P(0) = 1. This corresponds to a case in which the body and lab frame initially coincide, i.e., in
which the body is in the “upright” position. In this upright lab frame, the angular momentum
vector is given by

L =





L1

L2

L3



 = L̃(0). (3.2)

It will prove to be more convenient to work in a different lab frame, called the invariant frame

(with vectors in this frame denoted by primed quantities), in which the angular momentum vector is
along the z-axis and is equal to L

′ = (0, 0, L)†. Such a frame can be found by performing a rotation

of the original frame through a rotation matrix T
′†
1 (0) (the reason for the peculiar notation will

become clear below). This rotation is not unique and can be chosen such that one first rotates
around the z-axis until the rotated angular momentum vector no longer has a y-component, and
then subsequently rotates around the y-axis to remove the x-component of the angular momentum
vector as well. Denoting L̃⊥ = [L̃2

1 + L̃2
2]

1/2, the combined rotation is easily shown to be1

T
′†
1 (0) =






L̃3(0)
L 0 − L̃⊥(0)

L
0 1 0

L̃⊥(0)
L 0 L̃3(0)

L






︸ ︷︷ ︸

rotation to get L′
x
(0) = 0







L̃1(0)

L̃⊥(0)

L̃2(0)

L̃⊥(0)
0

− L̃2(0)

L̃⊥(0)

L̃1(0)

L̃⊥(0)
0

0 0 1







︸ ︷︷ ︸

rotation to get L′
y
(0) = 0

=







L̃1(0)L̃3(0)

L̃⊥(0)L

L̃2(0)L̃3(0)

LL̃⊥(0)
− L̃⊥(0)

L

− L̃2(0)

L̃⊥(0)

L̃1(0)

L̃⊥(0)
0

L̃1(0)
L

L̃2(0)
L

L̃3(0)
L






. (3.3)

This rotation is defined such that if v is a vector in the original lab frame, then v
′ = T

′†
1 (0)v

is the corresponding vector in the invariant frame. To find the matrix corresponding to P in
this new frame, note that since P relates vectors to the body frame through ṽ = Pv, so that
ṽ = PT

′
1(0)v

′ = P
′
v
′, one can identify

P
′ = PT

′
1(0). (3.4)

1For the special case when L̃⊥(0) = 0 one may take T
′
1(0) = diag(±1, 1,±1) where the sign is chosen according

to L̃3(0)/L = ±1, i.e., depending on whether in the original lab frame L pointed in the positive or the negative
z-direction.
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Since T
′
1(0) is a constant matrix multiplying on the right, P

′ also satisfies Eq. (2.12) with initial
condition P

′(0) = T
′
1(0).

The convenience of this choice of frame becomes clear when P
′ is written in terms of its columns,

P
′ =

[

û1 û2 û3

]

(3.5)

and one notes that

û3 = P
′
(

0
0
1

)

=
P

′
L

′

L
=

L̃

L
, (3.6)

the components of which are known once the Euler equations are solved. Thus, by this choice of
frame, one is able to determine the third column of the matrix P

′.
The remaining elements of P

′ can all be expressed in terms of a single time-dependent angle ψ.
This is due to the orthogonality of P

′, which implies that the other two columns û1 and û2 must
lie in a plane orthogonal to û3 and must also be orthogonal to each other. Denoting ê1 and ê2 as
two chosen orthogonal unit vectors in this plane, one can therefore write

û1 = ê1 cosψ − ê2 sinψ (3.7)

û2 = ê1 sinψ + ê2 cosψ, (3.8)

where the unit-vectors ê1 and ê2 are chosen to be:2

ê2 =
êz × û3

|êz × û3|
=

êz × L̃

|êz × L̃|
=






− L̃2

L̃⊥

L̃1

L̃⊥

0




 (3.9)

ê1 = ê2 × û3 =







L̃1L̃3

LL̃⊥

L̃2L̃3

LL̃⊥

− L̃⊥

L ,







(3.10)

where êz = (0, 0, 1), and we have used the fact that |êz × L̃| = (L̃2
1 + L̃2

2)
1/2 = L̃⊥. Other choices of

orthogonal unit-vectors ê1 and ê2 change the as-of-yet undetermined time dependent angle ψ by a
time independent offset. The current choice has the advantage that the matrix [ê1(0) ê2(0) û3(0)]
is identical to T

′
1(0), so that P

′(0) = T
′
1(0), and hence

ψ(0) = 0. (3.11)

Using Eqs. (3.7) and (3.8), P
′ has effectively been written as a product of two rotation matrices,

P
′ = T

′
1 T

′
2, (3.12)

where

T
′
1 =

[

ê1 ê2 û3

]

=







L̃1L̃3

LL̃⊥
− L̃2

L̃⊥

L̃1

L

L̃2L̃3

LL̃⊥

L̃1

L̃⊥

L̃2

L

− L̃⊥

L 0 L̃3

L







(3.13)

2For the special case when L̃⊥ = 0 one may take ê2 = (0, 1, 0)† and ê1 = ê2 × û3.
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T
′
2 =





cosψ sinψ 0
− sinψ cosψ 0

0 0 1



 = U(−ψẑ). (3.14)

Note that T
′
1 in Eq. (3.13) is a rotation matrix because ê1, ê2 and û3 form an orthogonal set by

their construction in Eqs. (3.9) and (3.10). The matrix P can therefore be written as

P = T
′
1 T

′
2 T

′†
1 (0). (3.15)

For the special cases of the spherical top and symmetric top, it is more convenient to express P as
a product of two rotation matrices (implicitly also found in Ref. 8):

P = T1 T2, (3.16)

where

T1 = T
′
1 T

′†
1 (0) (3.17)

T2 = T
′
1(0)T

′
2 T

′†
1 (0). (3.18)

Note that T1 and T
′
1 are determined by the solution of the Euler equations and require no further

manipulations once the general solution of L̃ is known.
Turning next to the matrix T2, noting that for any rotation R and vector x, RU(x)R† =

U(Rx) and that T
′
1(0) ẑ = L̃(0)/L, the matrix T2 can written as a rotation by an angle of −ψ

around the axis L̃(0)/L, i.e., using Eqs. (3.14) and (3.18),

T2 = U(−ψL̃(0)/L). (3.19)

The final task to determine P consists of deriving a differential equation for the time dependent
angle ψ and solving it subject to the initial condition ψ(0) = 0 (cf. Eq. (3.11)). To obtain this
differential equation, note that from Eqs. (2.12), (2.7) and (3.5), it follows that

˙̂u1 = −ω̃ × û1,

and hence from Eq. (3.7) one finds

˙̂e1 cosψ − ê1ψ̇ sinψ − ˙̂e2 sinψ − ê2ψ̇ cosψ = −ω̃ × ê1 cosψ + ω̃ × ê2 sinψ.

Taking the inner product with ê2, using that ê2 · ˙̂e2 = (1/2)d|ê2|2/dt = 0 and dividing by cosψ3,
yields the differential equation for the angle, ψ̇ = Ω, where the time dependent frequency Ω can be
expressed as

Ω = −ê1
˙̂e2 + ê2 · (ω̃ × ê1) = −ê1 · ˙̂e2 + ω̃ · (ê1 × ê2) = −ê1 · ˙̂e2 + ω̃ · û3

= −ê1 · ˙̂e2 + ω̃ · L̃/L.

It follows from Eq. (3.9) and (3.10) that

ê1 · ˙̂e2 =
L̃3(L̃2

˙̃L1 − L̃1
˙̃L2)

LL̃2
⊥

.

3When cosψ = 0, one can instead take the inner product with ê1 and divide by sinψ, with the same result.
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Using Eq. (2.17) yields ˙̃L1 = ω̃3L̃2− ω̃2L̃3 and ˙̃L2 = ω̃1L̃3− ω̃3L̃1, whence Ω = L(L̃1ω̃1 + L̃2ω̃2)/L̃
2
⊥,

or, expressed in terms of conserved quantities and ω̃3 only,

Ω =
L(2ER − I3ω̃

2
3)

L2 − I2
3 ω̃

2
3

. (3.20)

The angle ψ is then given by

ψ =

∫ t

0
dt′ Ω(t′). (3.21)

The formal result for the matrix P, given by Eqs. (3.13)–(3.19), (3.20) and (3.21), still contains
a time integral for ψ whose integrand depends on the angular velocity component ω̃3. Hence the
time dependence of this component of the angular velocity must be specified to perform the integral
and obtain ψ. The solution of the components of the angular velocity in the body frame follows
from the Euler equations, which can be analyzed in three separate cases depending on the values
of the principal moments of inertia.

3.1 Spherical top

For a spherical top, all moments of inertia are the same: I1 = I2 = I3, and the Euler equations in
Eq. (2.17) become extremely simple, namely, ˙̃ωj = 0. For the spherical top system, all components
of the angular velocity in the body frame are therefore constant, and hence the components of the
angular momentum in the body frame are constant as well. It therefore follows that the matrix T

′
1

in Eq. (3.13) remains constant in time, so that

T1 = T
′
1 T

′†
1 (0) = 1. (3.22)

The frequency Ω can also easily be determined by noting that ω̃3 is constant and I1 = I2 = I3, so
that Eq. (3.20) gives

Ω =
L(I1ω̃

2
1 + I2ω̃

2
2)

I2
1 ω̃

2
1 + I2

2 ω̃
2
2

=
L

I1
= |ω|, (3.23)

leading to ψ = Ωt = |ω|t. Equation (3.19) then gives, with L(0)/L = ω/Ω,

T2 = U(−ωt), (3.24)

so that one recovers the well-known result that for a spherical rotor

P = T1 T2 = U(−ωt). (3.25)

The rotation matrix P corresponds to a rotation by an angle of −|ω|t around the axis ω/|ω|. Note
that the minus sign in the angle arises here from the fact that if the body rotates one way, the lab
frame, as seen from the body frame, rotates in the opposite way.
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3.2 Symmetric top

For the case of a symmetric top, I1 = I2 but I2 6= I3. In that case, one can solve the Euler equations
(2.17) in terms of well-known functions:

ω̃1 = ω̃1(0) cos ωpt+ ω̃2(0) sinωpt

ω̃2 = −ω̃1(0) sinωpt+ ω̃2(0) cos ωpt

ω̃3 = ω̃3(0).

(3.26)

Here, the precession frequency ωp is given by ωp = (1 − I3/I1) ω̃3(0). From these equations, it is
evident that L̃⊥ = I1[ω̃

2
1 + ω̃2

2]
1/2 is conserved for a symmetric top, which allows one to rewrite T1

in Eq. (3.17) as a rotation around the z-axis by an angle of −ωpt:

T1 =





cosωpt sinωpt 0
− sinωpt cosωpt 0

0 0 1



 = U(−ωptẑ). (3.27)

The final rotation angle ψ can be determined by noting that

Ω =
L(I1ω̃

2
1 + I2ω̃

2
2)

I2
1 ω̃

2
1 + I2

2 ω̃
2
2

=
L

I1
. (3.28)

Again this is a constant but, in contrast to the spherical case, no longer equal to |ω|, so

ψ = Ωt. (3.29)

The second rotation T2 in Eq. (3.16) is therefore given by Eq. (3.19) with ψ = Lt/I1, i.e.,

T2 = U(−L̃(0)t/I1). (3.30)

As a result, the rotation matrix P for a symmetric top is given by

P = T1 T2 = U(−ωptẑ)U(−L̃(0)t/I1). (3.31)

3.3 Asymmetric top

For a general asymmetric top, all moments of inertia are distinct: I1 6= I2 6= I3 6= I1. The moments
of inertia can be ordered in increasing order of magnitude, and we will choose to call the middle one
always I2, while either I1 or I3 is the largest one. In the absence of forces and torques, Eq. (2.17) is
integrable since the energy ER and the norm of the angular momentum L are conserved quantities
in the body frame. To ensure all quantities occurring in the solutions are real-valued (rather than
complex-valued), one needs to consider the quantities ER and L2/(2I2) and make sure that [18]

I1 > I2 > I3 if ER >
L2

2I2

I1 < I2 < I3 if ER <
L2

2I2
.

(3.32)

We will refer to this as the Jacobi ordering. Either situation can always be realized by choosing
which principal axis of the body to call the first, second or third.
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Once the Jacobi ordering is adopted, the solution of the Euler equations is given by [18–20]

ω̃1 = ω̃1m cn
(
ωpt+ ε|m

)
(3.33)

ω̃2 = ω̃2m sn
(
ωpt+ ε|m

)
(3.34)

ω̃3 = ω̃3m dn
(
ωpt+ ε|m

)
, (3.35)

where sn, cn and dn are Jacobi elliptic functions [21–23], and

ω̃1m = sgn(ω̃1(0))

√

L2 − 2I3ER

I1(I1 − I3)
(3.36)

ω̃2m = − sgn(ω̃1(0))

√

L2 − 2I3ER

I2(I2 − I3)
(3.37)

ω̃3m = sgn(ω̃3(0))

√

L2 − 2I1ER

I3(I3 − I1)
(3.38)

ωp = sgn(I2 − I3) sgn(ω̃3(0))

√

(L2 − 2I1ER)(I3 − I2)

I1I2I3
. (3.39)

m =
(L2 − 2I3ER)(I1 − I2)

(L2 − 2I1ER)(I3 − I2)
, (3.40)

ε = −ωpt0 = F (ω̃2(0)/ω̃2m|m), (3.41)

where in the last equation, F is the incomplete elliptic integral of the first kind [21], defined as4

F (x|m) =

∫ x

0

dt√
1 −mt2

√
1 − t2

. (3.42)

To give an idea of the behavior of elliptic functions, figure 1 shows a plot of the elliptic functions
for two values of the elliptic parameter, m = 0.81 and m = 0.998. It is evident from the plots that
the elliptic functions are periodic functions of their first argument, and resemble the sine, cosine and
the constant function 1 unless the value of m is close to one. In other words, the elliptic parameter
m determines how closely the elliptic functions resemble their trigonometric counterparts. For
m = 0, the functions cn, sn and dn reduce to cos, sin and 1, respectively. Note that the constant
function 1 is reminiscent of the conservation of ω̃3 (cf. Eq. (3.26)) in the case of the symmetric top.
Indeed, for I1 = I2, Eq. (3.40) shows that m = 0.

Three more numbers can be derived from the elliptic parameter m which play an important role
in the properties of elliptic functions. These are the quarter-period K = F (1|m), the complementary

quarter-period K ′ = F (1|1−m) and the nome q = exp(−πK ′/K), which is a parameter that appears
in various series expansions of elliptic functions. In fact, the period of the elliptic functions cn and
sn is equal to 4K, while that of dn is 2K.

Given the solution of the Euler equations in Eqs. (3.34)–(3.35), the matrix T
′
1 in Eq. (3.13)

is completely specified. On the other hand, to solve for the time dependence of T
′
2 in Eq. (3.14),

the integral in Eq. (3.21) must be performed. Unlike to previous two cases, the integrand Ω of
ψ, as given by Eq. (3.20), is not a constant. Despite this complication, the integral can still be

4We deviate here from the somewhat more usual notation F (α|m) = F (x|m) where x = sinα.
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(a) m = 0.81 (b) m = 0.998
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Figure 1: Examples of the elliptic functions cn (solid line), sn (bold dashed line), dn (dotted line)
for (a) m = 0.81 (K = 2.28 . . ., q = 0.10 . . .) and (b) m = 0.998 (K = 4.50 . . ., q = 0.33 . . .). Also
plotted are the cosine (short dashed line) and sine (thin short dashed line) with the same period,
for comparison.

performed explicitly using some properties of elliptic functions as we will now show. It will require
a bit of complex analysis to integrate Ω over time, so the reader may wish to skip this technical
part and move on to the answer in Eq. (3.54) on page 15 (where the function ϑ1 is the first Jacobi
function [21,22]).

By definition, an elliptic function is a complex function f (of a complex variable t) that is
doubly periodic in the sense that f(t+ τ) = f(t+ τ ′) = f(t), and whose singularities in the finite
complex plane consist only of poles. The doubly periodic function is completely specified by the
values it takes inside the fundamental parallelogram spanned by τ and τ ′ in the complex plane.
Moreover, it may be shown that an elliptic function is determined by the singularities inside that
parallelogram up to an additive constant [22,23]. In fact, for a elliptic function f(t) having n poles

of order one at t = t
(j)
pole (j = 1, . . . , n) in the fundamental parallelogram with residues rj , one may

write (Ref. 22, §21.5)

f(t) = A2 +
n∑

j=1

rj
d

dt
log ϑ1

(
π(t− t

(j)
pole)

τ

∣
∣
∣
∣
m

)

, (3.43)

where A2 is an additive constant and ϑ1(u|m) is the first Jacobi theta function [21,22].

In order to apply Eq. (3.43), the singularity structure of Ω must be examined. A little analysis
shows that the function dn appearing in ω̃3 in Eq. (3.35) has only two poles of order one with
opposite residues in its fundamental parallelogram, and its periods are ωpτ = 2K and ωpτ

′ = 4iK ′

(Ref. 21, §16.2). Since any rational function of elliptic functions is again an elliptic function, the
function Ω in Eq. (3.20) is also an elliptic function with the same periods. From the form of Ω
in Eq. (3.20), one easily sees that any pole tpole of Ω in the complex plane is due to a zero of the
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denominator, i.e.,

ω̃3(tpole) = ±L

I3
. (3.44)

Note that the poles of ω̃3 itself cancel in the numerator and the denominator in Eq. (3.20) leading
to a limit value of L/I3, and do not to lead to poles in Ω.

Using Eq. (3.35), Eq. (3.44) is solved by

ωptpole = ± dn−1

(

± L

I3ω̃3m

∣
∣
∣
∣
m

)

− ε+ 2Kn1 + 4K ′n2i, (3.45)

Here n1 and n2 are arbitrary integers and the two ± signs are independent, thus denoting four
possibilities. Since dn changes sign when its argument is shifted over a half-period 2K ′i [21], one
± sign in Eq. (3.45) can be eliminated by changing the term +4K ′n2i to +2K ′n2i:

ωptpole = ± dn−1

(
L

I3ω̃3m

∣
∣
∣
∣
m

)

− ε+ 2Kn1 + 2K ′n2i.

Using that

dn−1(x|m) = i
[
K ′ − F (x−1|1 −m)

]
,

(obtained by combining §16.3.3, §16.20.3 and §17.4.46 in Ref. 21), one finds

ωptpole = ±i
[

K ′ − F

(
I3ω̃3m

L

∣
∣
∣
∣
1 −m

)]

− ε+ 2Kn1 + 2K ′n2i.

Noting that for negative values of ω̃3m, one can write K ′ − F (I3ω̃3m/L|1 − m) = sgn(ω̃3m)K ′ −
F (I3ω̃3m/L|1 −m) + 2K ′, we can rewrite this as

ωptpole = ±iη − ε+ 2Kn1 + 2K ′n2i, (3.46)

where we have defined

η = sgn(ω̃3m)K ′ − F

(
I3ω̃3m

L

∣
∣
∣
∣
1 −m

)

. (3.47)

Note that −K ′ ≤ η ≤ K ′.
The periodic structure in Eq. (3.46) can be understood as follows. The function Ω depends

on t though dn2, and dn has periods 2K and 4K ′i. Note that even though dn changes sign when
its argument is shifted over 2K ′i, this sign change leaves dn2 and hence Ω unchanged. From these
considerations, it is evident that the actual periods of Ω are 2K/ωp and 2K ′i/ωp. Although the
size of the fundamental parallelogram is dictated by the function under consideration, the choice of
its origin is free. Choosing the fundamental parallelogram to be ([−K −K ′i]/ωp, [−K +K ′i]/ωp),
the two poles in the parallelogram are complex conjugates tpole and t∗pole, where

ωptpole = −ε+ iη. (3.48)

The pole structure of the function Ω(t) is illustrated in Fig. 2.

13



K’2i
−ε 0

K2

ηi

ηi−

K’i

iK’−

K −  K

Figure 2: Periodic pole structure in the complex plane of the function Ω(t) as a function of the
variable u = ωpt. The fundamental parallelogram is indicated by a bold dashed rectangle and the
crosses are poles.

It is straightforward to show that the residues of Ω at these poles are given by r = i
2 for the

pole at tpole and −r = − i
2 for the pole at t∗pole, so that, using Eq. (3.43) with τ = 2K/ωp, the

integrand Ω may be written as

Ω = A2 +
i

2

d

dt

[

log ϑ1

( π

2K
(ωpt+ ε− iη)

∣
∣
∣m

)

− log ϑ1

( π

2K
(ωpt+ ε+ iη)

∣
∣
∣m

)]

, (3.49)

and further manipulated to obtain a form that can be easily integrated,

Ω = A2 +
i

2

d

dt

[

log ϑ1

( π

2K
(ωpt+ ε− iη)

∣
∣
∣m

)

−
{

log ϑ1

( π

2K
(ωpt+ ε− iη)

∣
∣
∣m

)}∗ ]

= A2 −
d

dt
Im log ϑ1

( π

2K
(ωpt+ ε− iη)

∣
∣
∣m

)

= A2 −
d

dt
arg ϑ1

( π

2K
(ωpt+ ε− iη)

∣
∣
∣m

)

. (3.50)

The constant A2 appearing in Eq. (3.50) can be obtained using the point t = t0 = −ε/ωp, at which
time ω̃2 = 0 (cf. Eq. (3.34)) and Eq. (3.20) gives

Ω(t0) =
L

I1
. (3.51)

Examining the right hand side of Eq. (3.50), noting that

d

dt
log ϑ1

( π

2K
(ωpt+ ε− iη)

∣
∣
∣m

)

=
πωp

2K

d

du
log ϑ1

(

u =
π

2K
(ωpt+ ε− iη)

∣
∣
∣m

)

=
πωp

2K

ϑ′1

(
π

2K (ωpt+ ε− iη)
∣
∣
∣m

)

ϑ1

(
π

2K (ωpt+ ε− iη)
∣
∣
∣m

) ,
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and using ϑ1(−u|m) = −ϑ1(u|m), Eq. (3.49) gives

Ω(t0) = A2 −
πωp

2K

ϑ′1
( iπη

2K

∣
∣m

)

ϑ1

( iπη
2K

∣
∣m

) . (3.52)

Comparing Eqs. (3.51) and (3.52), we see that

A2 =
L

I1
+ i

πωp

2K

ϑ′1
( iπη

2K

∣
∣m

)

ϑ1

( iπη
2K

∣
∣m

) . (3.53)

Equation (3.50) is now readily integrated to express the angle ψ in terms of the theta function as:

ψ =

∫ t

0
dt′ Ω(t′)

= A1 +A2t− arg ϑ1

( π

2K
(ωpt+ ε− iη)

∣
∣
∣m

)

, (3.54)

where

A1 = arg ϑ1

(π(ε − iη)

2K

∣
∣
∣m

)

, (3.55)

and A2 is given by Eq. (3.53).

With this expression for ψ, the matrix P = T
′
1 T

′
2 T1′†(0) is now fully specified, with T1 and

T2 given in Eqs. (3.13) and (3.14), respectively. Unlike the special cases of spherical and symmetric
rotors, no further simplifications occur in the expressions for these matrices.

4 Numerical issues

In this section an efficient implementation of computing the exact solutions presented in the previous
section is outlined. Because the rotation matrices for spherical and symmetric tops in Eqs. (3.25)
and (3.31) are easily implemented using Rodrigues’ formula [16], we focus on the case of an asym-
metric rigid rotor. For this case, the attitude matrix was expressed in terms of complex theta
functions, which hinders a straightforward and efficient numerical implementation. First it will be
shown how all matrix elements in the attitude matrix may expressed in terms of real quantities
and implemented efficiently. At the end of the section, an algorithm to compute the motion of an
asymmetric rigid body will be presented.

4.1 Implementation

As discussed above, the matrix P can generally be written as a product of two rotation matrices
in the form T1 T2, or three rotations in the form T

′
1 T

′
2T

′†
1 (0). For the implementation of the free

motion of the asymmetric top, we prefer the latter because it does not require Rodrigues’ formula
to be applied twice and the matrix T

′
2 is sparse which allows an efficient matrix multiplication.

The extra matrix multiplication with T
′†
1 (0) can be circumvented by using B = T

′†
1 (0)A(0). The

matrix T
′
1 is given in Eq. (3.13) in terms of the components of the angular momentum in the body

frame, L̃j = Ijω̃j. The ω̃j are given by Eqs. (3.33)–(3.35), which involve the elliptic functions.
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Although the occurrence of elliptic functions may seem complicated, there are standard numer-
ical methods to calculate the elliptic functions sn, cn and dn [21,24,25] that are very efficient and
which makes them no more problematic to use than standard transcendental functions such as sin
or cos. The matrix T

′
1 can therefore be computed numerically in a straightforward way in terms

of the standard elliptic functions.
The matrix T

′
2 is given in Eq. (3.14) and is a rotation by an angle ψ around the z-axis, with ψ

given in (3.54). As is evident from Eq. (3.14), only sinψ and cosψ rather than the angle ψ itself
need to be evaluated to construct T

′
2. Using Eq. (3.54) and the addition formulas for cos and sin,

these may be expressed as

cosψ = cos(A1 +A2t) cos arg ϑ1 + sin(A1 +A2t) sin arg ϑ1

=
cos(A1 +A2t)Reϑ1 + sin(A1 +A2t) Imϑ1

√

(Reϑ1)2 + (Imϑ1)2
(4.1)

sinψ = sin(A1 +A2t) cos arg u− cos(A1 +A2t) sin arg u =

=
sin(A1 +A2t)Reϑ1 − cos(A1 +A2t) Imϑ1

√

(Reϑ1)2 + (Imϑ1)2
. (4.2)

where ϑ1 = ϑ1

(
π

2K (ωpt+ ε− iη)|m
)
. Clearly, to compute these expressions, the real and imaginary

parts of ϑ1 as well as the real constants A1 and A2 must be computed.
Noting that the function ϑ1 has the following series expansion in the nome q (Ref. 21, §16.27.1),

ϑ1(u|m) = 2q1/4
∞∑

n=0

(−1)nqn(n+1) sin[(2n + 1)u], (4.3)

the real and imaginary parts of ϑ1 in Eq. (4.3) for a complex argument u = π
2K (ωpt+ ε− iη), can

be written as

Reϑ1 = 2q1/4
∞∑

n=0

(−1)nqn(n+1) cosh
(2n + 1)πη

2K
sin

(2n+ 1)π(ωpt+ ε)

2K

Imϑ1 = −2q1/4
∞∑

n=0

(−1)nqn(n+1) sinh
(2n+ 1)πη

2K
cos

(2n + 1)π(ωpt+ ε)

2K
.

(4.4)

The convergence of these series is extremely rapid due to the appearance of the qn(n+1). In practice
one rarely needs more than three or four terms to get to machine precision.

Based on the series expansion of ϑ1, the constant A1 given in Eq. (3.55) can be evaluated as
follows:

A1 = nπ + arctan
Imϑ1(

π
2K (ε− iη)|m)

Reϑ1(
π

2K (ε− iη)|m)
, (4.5)

where n = 0 if Reϑ1 > 0, n = 1 if Reϑ1 < 0 and Imϑ > 0, and n = −1 if Reϑ1 < 0 and Imϑ1 < 0.
For the constant A2, an expansion of the logarithmic derivative of ϑ1 can be utilized(Ref. 21,

§16.29.1):

ϑ′1(u|m)

ϑ1(u|m)
= cot u+ 4

∞∑

n=1

q2n

1 − q2n
sin 2nu. (4.6)

16



Using the expression for A2 in Eq. (3.53), where u = iπη/(2K) is purely imaginary and noting that
cot iu = −i coth u = (e2u − 1)/(e2u + 1) and sin iu = i sinhu = (eu − e−u)/2, one can write

i
ϑ′1(iu|m)

ϑ1(iu|m)
=
e2u + 1

e2u − 1
− 2

∞∑

n=1

q2n

1 − q2n
(e2nu − e−2nu). (4.7)

Using the series expansion in Eq. (4.7), A2 can be evaluated from

A2 =
L

I1
+
πωp

2K

[

ξ + 1

ξ − 1
− 2

∞∑

n=1

q2n

1 − q2n
(ξn − ξ−n)

]

, (4.8)

where

ξ = eπη/K . (4.9)

The series in Eq. (4.8) converges if ξq2 < 1. Because −K < η < K ′ and q = exp(−πK ′/K), one
has ξq2 < q < 1 so this series converges, and, because q is typically small, usually quickly.

The above derivation assumed that the Jacobi ordering of Eq. (3.32) was satisfied. Although
this can always be realized by choosing which principal axis of the body to call the first, second
or third, as is evident from Eq. (3.32), the choice of principal axes depends on the initial values of
the angular velocities. Often, instead of choosing the axis depending on the initial conditions, it is
preferable to work with a fixed convention in which the principal axes are oriented in a particular
way with respect to the masses of the body. In that case, one can adopt the Jacobi ordering
convention by introducing internal variables which differ when necessary from the physical ones by
a rotation. For instance, if I1 > I2 > I3 but it should be I1 < I2 < I3 according to Eq. (3.32), one
can apply the rotation matrix

U
∗ ≡





0 0 1
0 −1 0
1 0 0



 , (4.10)

which transforms between the internal and physical choices of principal axes by exchanging the x
and z components and reversing the y component. If the order of the moments of inertia already
follows the Jacobi ordering, U

∗ is effectively the identity matrix.

4.2 Algorithm for the asymmetric top

Based on the above, the following algorithm can be set up to calculate the position of a rigid body
at any arbitrary time, given a set of initial conditions. For efficiency, the algorithm consists of
two steps: an initialization routine, in which some expressions are pre-calculated, and an evolution
routine that calculates ω̃ and A at time t.

In the algorithm below, the functions sn, cn, dn and F are assumed to be available, but not the
ϑ1 function. See Refs. 24,25 for implementations of sn, cn, dn and F .

The initialization routine takes an initial angular velocity vector in the body frame ω̃(0) =
(ωx0, ωy0, ωz0) and inertial moments Ix, Iy and Iz (where it is assumed that Iy is the middle one),
and pre-computes a few variables as follows (in pseudo-code, in order to facilitate implementations
in different programming languages):
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Initialization(Ix, Iy, Iz, ω̃x0, ω̃y0, ω̃z0, A(0))

COMPUTE L2 = I2
xω̃

2
x0 + I2

y ω̃
2
y0 + I2

z ω̃
2
z0

COMPUTE 2E = Ixω̃
2
x0 + Iyω̃

2
y0 + Izω̃

2
z0

IF (2E > L2/Iy AND Ix < Iz) OR (2E < L2/Iy AND Ix > Iz) THEN

SET orderflag

SET I1 = Iz, I2 = Iy and I3 = Ix
SET ω10 = ωz0, ω20 = −ωy0 and ω30 = ωx0

COMPUTE L⊥ =
√

I2
1ω

2
10 + I2

2ω
2
20

COMPUTE [T′†
1 (0)U∗] =






−L⊥

L − I2I3ω20ω30

LL⊥

I1I3ω10ω30

LL⊥

0 − I1ω10

L⊥
− I2ω20

L⊥
I3ω30

L − I2ω20

L
I1ω10

L






ELSE

UNSET orderflag

SET I1 = Ix, I2 = Iy and I3 = Iz
SET ω10 = ωx0, ω20 = ωy0 and ω30 = ωz0

COMPUTE L⊥ =
√

I2
1ω

2
10 + I2

2ω
2
20

COMPUTE [T′†
1 (0)U∗] =






I1I3ω10ω30

LL⊥

I2I3ω20ω30

LL⊥
−L⊥

L

− I2ω20

L⊥

I1ω10

L⊥
0

I1ω10

L
I2ω20

L
I3ω30

L






END IF

COMPUTE B = [T′†
1 (0)U∗]A(0)

COMPUTE ω1m = sgn(ω10)
√

(L2 − 2EI3)/(I1(I1 − I3))
COMPUTE ω2m = − sgn(ω10)

√

(L2 − 2EI3)/(I2(I2 − I3))
COMPUTE ω3m = sgn(ω30)

√

(L2 − 2EI1)/(I3(I3 − I1))
COMPUTE ωp = sgn(I2 − I3) sgn(ω30)

√

(L2 − 2EI1)(I3 − I2)/(I1I2I3)
COMPUTE m = (L2 − 2EI3)(I1 − I2)/((L

2 − 2EI1)(I3 − I2))
COMPUTE ε = F (ω20/ω2m|m)
COMPUTE K = F (1|m)
COMPUTE K ′ = F (1|1 −m)
COMPUTE q = exp(−πK ′/K)
COMPUTE η = sgn(ω30)K

′ − F (I3ω3m/L, 1 −m)
COMPUTE ξ = exp(πη/K)
SET A2 = L/I1 + πωp(ξ + 1)/(2K(ξ − 1))
SET n = 1
REPEAT

COMPUTE δA2 = −(πωp/K)(q2n/(1 − q2n))(ξn − ξ−n)
INCREMENT A2 by δA2

INCREMENT n by 1

UNTIL δA2 > machine precision

COMPUTE NT = log(machine precision)/ log q
SET r0 = 0 and i0 = 0
FOR n = 0 TO NT DO

COMPUTE cr[n] = (−1)n2qn(n+1)+1/4 cosh (2n+1)πη
2K

COMPUTE ci[n] = (−1)n+12qn(n+1)+1/4 sinh (2n+1)πη
2K
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INCREMENT r0 by cr[n] sin (2n+1)πε
2K

INCREMENT i0 by ci[n] cos (2n+1)πε
2K

END FOR

IF r0 > 0 THEN k = 0 ELSE k = sgn(i0)
COMPUTE A1 = arctan(i0/r0) + kπ
STORE orderflag, I1, I2, I3, ω1m, ω2m, ω3m,m, ωp, ε, A1, A2, NT, cr[ ], ci[ ] and B

END Initialization

The evolution routine can use the pre-computed expressions in the following way:

Evolution(t)

COMPUTE ω̃1 = ω1m cn(ωpt+ ε|m)
COMPUTE ω̃2 = ω2m sn(ωpt+ ε|m)
COMPUTE ω̃3 = ω3m dn(ωpt+ ε|m)
SET Reϑ1 = 0 and Imϑ1 = 0
FOR n = 0 TO NT DO

INCREMENT Reϑ1 by cr[n] sin((2n + 1)π(ωpt+ ε)/(2K))
INCREMENT Imϑ1 by ci[n] cos((2n + 1)π(ωpt+ ε)/(2K))

END FOR

COMPUTE C = cos(A1 +A2t), S = sin(A1 +A2t)
COMPUTE cosψ = (C Reϑ1 + S Imϑ1)/

√

Reϑ2
1 + Imϑ2

1

COMPUTE sinψ = (S Reϑ1 − C Imϑ1)/
√

Reϑ2
1 + Imϑ2

1

COMPUTE L⊥ =
√

I2
1ω

2
1 + I2

2ω
2
2

IF orderflag IS SET THEN

COMPUTE [U∗
T

′
1] =






−L⊥

L 0 I3ω3

L

− I2I3ω̃2ω̃3

LL⊥
− I1ω̃1

L⊥
− I2ω̃2

L
I1I3ω̃1ω̃3

LL⊥
− I2ω̃2

L⊥

I1ω̃1

L






SWAP ω̃1 and ω̃3

CHANGE SIGN of ω̃2

ELSE

COMPUTE [U∗
T

′
1] =






I1I3ω̃1ω̃3

LL⊥
− I2ω̃2

L⊥

I1ω̃1

L
I2I3ω̃2ω̃3

LL⊥

I1ω̃1

L⊥

I2ω̃2

L

−L⊥

L 0 I3ω3

L






END IF

COMPUTE A = [U∗
T

′
1]





cosψ sinψ 0
− sinψ cosψ 0

0 0 1



B

RETURN ω̃1, ω̃2, ω̃3 and A

END Evolution

Some remarks about this pseudo-code:

• The orderflag indicates whether the Jacobi ordering convention Eq. (3.32) is satisfied. If
not, U

∗ in Eq. (4.10) is used. If Eq. (3.32) is satisfied, U
∗ is set equal to the identity matrix.

• With these definitions, P is replaced by U
∗
PU

∗. This is accomplished simply by T
′
1 →

U
∗
T

′
1.

• As a consequence, U
∗ in Eq. (4.10) is only implicitly used in the combination [U∗

T
′
1]
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Figure 3: Example of the exact solution. (a) ω̃(t), (b) position of the ‘axes’. For details see text.

• The initial value of A(0) occurs as A(t) = U
∗
T

′
1 T

′
2 T

′†
1 (0)U∗

A(0), so in the initialization

routine, we only need to store the combination B = T
′†
1 (0)U∗

A(0).

• The machine precision depends on the floating point precision used in the calculation; for
64 bit double precision, this is of the order of 10−15–10−16.

• For clarity of the algorithm, matrix products have not been explicitly written out, and effi-
ciency improvements such as computing intermediate expressions and using a recursive eval-
uation for the sin’s and cos’s have not been shown here.

• An implementation of this code in C, which includes these improvements, can be found
on the internet at http://www.chem.utoronto.ca/staff/JMS/rigidrotor.html and in the
appendix.

5 Example

As an example, consider an object composed of six point masses which are arranged, in the body
frame, at the points (a, 0, 0), (−a, 0, 0), (0, b, 0), (0,−b, 0), (0, 0, c) and (0, 0,−c). All points are
assumed to have unit mass, so that the inertial moments are given by I1 = 2(b2+c2), I2 = 2(a2+c2)
and I3 = 2(a2 + b2). Choosing a > b > c ensures I1 < I2 < I3.

In particular we will consider a = 3, b = 2 and c = 1, yielding I1 = 10, I2 = 20 and I3 = 26.
As initial conditions we will take A(0) = 1 and ω(0) = (1, 15, 1). Because of the large value of
the y-component of the angular velocity, one may expect motion to consist primarily of rotation
around the y-axis. In figure 3a the components of the angular velocity in the body frame have
been plotted as a function of time, while in figure 3b the projection on the x− z plane of the point
masses that in the body frame are located at (a, 0, 0) (the ‘long axis’), (0, b, 0) (the ‘middle’ axis’)
and (0, 0, c) (the ‘short axis’) are plotted. It is clear that the rotational motion does not consist
of small perturbations to a rotation around the y-axis. We stress once more that, up to machine
precision, the results in figure 3 are exact.
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6 Discussion

In this paper, the general solution of the rotational motion of a rigid body in the absence of
external torques and forces was derived. Explicit expressions for the angular velocities and the
attitude matrix were obtained in terms of real quantities to facilitate numerical evaluation. Note
that even though the solution of rotational motion for bodies without a simple mass distribution
contains generalizations of the familiar sine and cosine functions, the motion typically appears quite
complex and notably different from that of a spherical top.

The general solution of the equations governing rigid body dynamics in the absence of forces
and torques presented here is potentially useful in several important applications. The primary
advantage of having in hand analytical solutions of the equations of motion of a system lies in
the fact that all relevant properties of a soluble system can be determined at arbitrarily many
and arbitrarily distant moments in time. Applications in which knowing exactly the position and
orientation of a body at specific moments in time is paramount may benefit from the results
presented here. Such applications are abundant in a wide variety of contexts. For example, in
astrophysics, many objects such as space crafts, asteroids, certain planets and moons, behave
on short time scales as rigid bodies. These bodies are not free since they feel typically weak
gravitational fields. However, if their dimensions are small enough compared to the gradients of
the gravitational field, gravitational forces effectively influence motion only of the center of mass,
while the rotational motion is that of a free rotor described here.

Another obvious application of the solution detailed in this paper is as a diagnostic tool for nu-
merical integration techniques designed for rotating bodies with external torques. Such techniques
are of considerable interest, but to establish their accuracy, one needs to be able to compare results
of approximate integration schemes with exact results. To date most comparisons are carried out
for free systems with a high degree of symmetry and simple rotational motion [10]. Given the
relative complexity of motion in the asymmetric case compared with that of a spherical rotor, such
comparisons do not appear to be very stringent.

The exact solution is also of practical use in symplectic integrators for use in continuous molec-
ular dynamics [15]. There are already various symplectic integrators using the exact solution of
some part of the dynamics [12–14], which generally seems to improve stability and accuracy over
simple splitting methods [9–11, 26]. However, these do not use the exact solution of the attitude
matrix. The integrator of Celledoni and Säfström, for example, uses the exact solution of the Euler
equations but uses an approximate expression for the attitude matrix [12]. Using the exact solution
of the attitude matrix further improves the stability and accuracy of this integrator [15].

Perhaps the most direct application of the implementation of the exact solution is in simu-
lating complex rigid molecular systems using discontinuous molecular dynamics methods. In this
approach, various components of the system interact via discontinuous potentials, leading to im-
pulsive forces and torques that act on molecules at specific moments in time [1, 2, 5, 27, 28]. As
a result, the motion of all bodies in the system is free between impulsive events that alter the
trajectory of the body via discontinuous jumps in the momenta or angular velocities at discrete
“collision” times. In order to determine the time at which molecules in the simulation interact, the
exact location and orientation of all bodies in the system must be computable at arbitrary times.
If the configurations of the system are computed through numerical integration (using e.g. one
of the integrators in Refs. 9–12), such simulations would become inefficient. For this reason, to
date, most simulations of rigid bodies interacting via discontinuous potentials have been restricted
to systems in which rotational motion is governed by the equations of a spherical rotor (see Refs.
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2). Armed with the results of this paper, the technique of discontinuous molecular dynamics can
now be applied to any rigid model—symmetric or asymmetric—with discontinuous interactions of
step-potential form. Examples of such studies can be found in Refs. 4.
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Appendix: Implementation in C

#define MACHPREC 3.E-16

#define MY_PI_2 1.57079632679489661923

/* The following macro performs an in-situ matrix multiplication: */

#define RIGHTMULTMATRIX(M1, M2, x, y)\

x = M1[0][0]; y = M1[0][1];\

M1[0][0] *= M2[0][0]; M1[0][0] += y*M2[1][0]+M1[0][2]*M2[2][0];\

M1[0][1] *= M2[1][1]; M1[0][1] += x*M2[0][1]+M1[0][2]*M2[2][1];\

M2[2][2]; M1[0][2] += x*M2[0][2]+y*M2[1][2];\

x = M1[1][0]; y = M1[1][1];\

M1[1][0] *= M2[0][0]; M1[1][0] += y*M2[1][0]+M1[1][2]*M2[2][0];\

M1[1][1] *= M2[1][1]; M1[1][1] += r*M2[0][1]+M1[1][2]*M2[2][1];\

M1[1][2] *= M2[2][2]; M1[1][2] += r*M2[0][2]+y*M2[1][2];\

x = M1[2][0]; y = M1[2][1];\

M1[2][0] *= M2[0][0]; M1[2][0] += y*M2[1][0]+M1[2][2]*M2[2][0];\

M1[2][1] *= M2[1][1]; M1[2][1] += x*M2[0][1]+M1[2][2]*M2[2][1];\

M1[2][2] *= M2[2][2]; M1[2][2] += x*M2[0][2]+y*M2[1][2];

/* A number of precomputed expressions are taken together in the

following structure: */

typedef struct {

int orderFlag, NT;

double I1, I2, I3, omega1m, omega2m, omega3m, omegap, freq, epsilon,

A1, A2, L, m, *cr, *ci, B[3][3];

} Top;

/* The following function performs some pre-calculations. Input: Ix, *

* Iy and Iz are the three principal inertial moments (it is assumed *

* that Ix<Iy<Iz or Ix>Iy>Iz), omegax, omegay and omegaz are the *

* angular velocities in the principal axis (i.e. body) frame, and A *

* is the initial attitude matrix. Returns a Top structure containing *

* all necessary precomputed parameters to efficiently calculate the *

* omega’s and A’s at later times (see the Evolution function below): */

Top Initialization(double Ix, double Iy, double Iz,
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double omegax, double omegay, double omegaz, double A[3][3])

{

double

a = Ix*omegax, /* L1, angular momentum in x-direction */

b = Iy*omegay, /* L2, angular momentum in y-direction */

c = Iz*omegaz, /* L3, angular momentum in z-direction */

d = a*a+b*b+c*c, /* L.L, norm squared of angular momentum */

e = a*omegax+b*omegay+c*omegaz, /* 2 E */

f, omega1, omega2, omega3, Kp, q, r, i, s, g, h;

int n;

Top R; /* will contain the precomputed numbers */

R.L = sqrt(d); /* |L| */

if ( (e>d/Iy && Ix<Iz) || (e<d/Iy && Ix>Iz) ) {

/* Check if Jacobi-ordering is obeyed: */

R.orderFlag = 1;/* Jacobi ordering ensured by swapping the order of x and z */

R.I1 = Iz; /* directions and reversing the y direction */

R.I2 = Iy;

R.I3 = Ix;

omega1 = omegaz;

omega2 = -omegay;

omega3 = omegax;

f = hypot(b, c);

/* Fill the matrix R.B with transpose of T1(0), using ordering: */

R.B[0][0] = -f/R.L; R.B[0][1] = b*a/R.L/f; R.B[0][2] = a*c/R.L/f;

R.B[1][0] = 0; R.B[1][1] = -c/f; R.B[1][2] = b/f;

R.B[2][0] = a/R.L; R.B[2][1] = b/R.L; R.B[2][2] = c/R.L;

} else {

R.orderFlag = 0; /* Jacobi ordering correct */

R.I1 = Ix;

R.I2 = Iy;

R.I3 = Iz;

omega1 = omegax;

omega2 = omegay;

omega3 = omegaz;

f = hypot(a, b);

/* Fill the matrix R.B with the transpose of T1(0): */

R.B[0][0] = a*c/R.L/f; R.B[0][1] = b*c/R.L/f; R.B[0][2] = -f/R.L;

R.B[1][0] = -b/f; R.B[1][1] = a/f; R.B[1][2] = 0;

R.B[2][0] = a/R.L; R.B[2][1] = b/R.L; R.B[2][2] = c/R.L;

}

RIGHTMULTMATRIX(R.B, A, r, i); /* calculate B */

a = d-e*R.I3; /* compute four subexpressions */

b = d-e*R.I1;

c = R.I1-R.I3;
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d = R.I2-R.I3;

R.omega1m = copysign(sqrt(a/R.I1/c), omega1);

R.omega2m = -copysign(sqrt(a/R.I2/d), omega1);

R.omega3m = copysign(sqrt(-b/R.I3/c), omega3);

R.omegap = d*copysign(sqrt(b/(-d)/R.I1/R.I2/R.I3), omega3); /* prec. freq */

R.m = a*(R.I2-R.I1)/(b*d); /* ellipic parameter m */

R.epsilon = F(omega2/R.omega2m, R.m); /* initial phase */

R.freq = MY_PI_2/F(1.0, R.m); /* frequency relative to precession */

Kp = F(1.0, 1.0-R.m); /* K’, complementary quarter period */

q = exp(-2.0*R.freq*Kp); /* elliptic nome */

e = exp(R.freq*(copysign(Kp, omega3)-F(R.I3*R.omega3m/R.L, 1.0-R.m)));

/* = exp
[

π(sgn(ω3)K ′−F (I3ω3m/L|m)
2K

]

*/

f = e*e; /* this f is equal to xi */

R.A2 = R.L/R.I1+R.freq*R.omegap*(f+1)/(f-1); /* first term in A2 series */

a = 1.0; /* a will be the 2n-th power of q */

b = 1.0; /* b will be the nth power of xi */

n = 1;

do {

a *= q*q; /* update a and b recursively */

b *= f;

c = -2.0*R.freq*R.omegap*a/(1-a)*(b-1/b); /* the next term in A2 */

R.A2 += c; /* add a term of the series */

n++;

} while (fabs(c/R.A2)>MACHPREC && n<10000);/* stop if converged or n too big */

/* determine upper bound on number of terms needed in theta function series: */

R.NT = (int)(log(MACHPREC)/log(q)+0.5);

R.cr = (double *)malloc(sizeof(double)*(R.NT+1)); /* allocate memory */

R.ci = (double *)malloc(sizeof(double)*(R.NT+1));

a = 1.0; /* a will be the 2n-th power of q */

b = 1.0; /* b will be (-1)^n q^{n(n+1)} */

R.cr[0] = (e+1/e); /* zeroth term in the series for real and imag part */

R.ci[0] = -(e-1/e);

s = sin(R.freq*R.epsilon); /* s = sin((2n+1)x), c = cos((2n+1)x) */

c = cos(R.freq*R.epsilon);

g = 2.0*c*s; /* sin(2x) */

h = 2.0*c*c-1.0; /* cos(2x) */

r = R.cr[0]*s; /* real part of the theta function, zeroth term */

i = R.ci[0]*c; /* imaginary part of the theta function, zeroth term */

for (n = 1; n <= R.NT; n++) {

e *= f; /* e = xi^{n+1/2} */

a *= q*q; /* update a and b recursively */

b *= -a;

R.cr[n] = b*(e+1/e); /* compute next coefficient of theta series */

R.ci[n] = -b*(e-1/e);
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d = s; /* compute sin and cos recursively */

s = h*s+g*c;

c = h*c-g*d;

r += R.cr[n]*s; /* add next terms */

i += R.ci[n]*c;

if ( (fabs(R.cr[n]) < MACHPREC) && (fabs(R.ci[n]) < MACHPREC) )

R.NT = n-1; /* if converged, adjust NT */

}

R.A1 = atan2(i, r); /* compute arg(r, i) */

return R; /* done, return all precomputed values */

}

/* The following function calculates the angular velocities and attitude *

* matrix at a time t. Input: R is a pointer to a Top structure containing *

* all necessary precomputed parameters to efficiently calculate the omega’s *

* and A’s, and t is a time. R should be generated by Initialize function. *

* Output: *omegax, *omegay and *omegaz are filled with the angular *

* velocities in the principal axis (i.e. body) frame at time t and A is *

* filled with the attitude matrix at time t. */

void Evolution(Top *R, double t, double *omegax, double *omegay, double *omegaz,

double A[3][3])

{

int n;

double omega1, omega2, omega3, r, i, u, s, c, g, h, f;

u = R->omegap*t+R->epsilon; /* compute argument of elliptic functions */

SNCNDN(u, R->m, &omega2, &omega1, &omega3); /* compute sn, cn, dn */

omega1 *= R->omega1m; /* multiply by the amplitudes */

omega2 *= R->omega2m; /* of the respective ang. vel. */

omega3 *= R->omega3m;

if (R->orderFlag == 1) { /* check for Jacobi ordering */

*omegax = omega3; /* if adjusted, invert x and z and reverse y */

*omegay = -omega2;

*omegaz = omega1;

omega1 *= R->I1;

omega2 *= R->I2;

omega3 *= R->I3;

f = hypot(omega1, omega2);

/* compute T1(t), taking into account the ordering: */

A[0][0] = -f/R->L; A[0][1] = 0; A[0][2] = omega3/R->L;

A[1][0] = -omega2*omega3/R->L/f; A[1][1] = -omega1/f; A[1][2] = -omega2/R->L;

A[2][0] = omega1*omega3/R->L/f; A[2][1] = -omega2/f; A[2][2] = omega1/R->L;

} else {

*omegax = omega1; /* no adjustment necessary */
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*omegay = omega2;

*omegaz = omega3;

omega1 *= R->I1;

omega2 *= R->I2;

omega3 *= R->I3;

f = hypot(omega1, omega2);

/* compute T1(t): */

A[0][0] = omega1*omega3/R->L/f; A[0][1] = -omega2/f; A[0][2] = omega1/R->L;

A[1][0] = omega2*omega3/R->L/f; A[1][1] = omega1/f; A[1][2] = omega2/R->L;

A[2][0] = -f/R->L; A[2][1] = 0; A[2][2] = omega3/R->L;

}

s = sin(R->freq*u); /* s = sin((2n+1)x), c = cos((2n+1)x) with x = freq*u */

c = cos(R->freq*u);

g = 2.0*c*s; /* g = sin 2x, h = cos 2x, used in recursion */

h = 2.0*c*c-1.0;

r = R->cr[0]*s; /* zeroth term in series for the theta function */

i = R->ci[0]*c;

for (n = 1; n <= R->NT; n++) { /* compute series */

u = s;

s = h*s+g*c; /* computes sin((2n+1)x) and cos((2n+1)x recursively */

c = h*c-g*u;

r += R->cr[n]*s; /* next term in series for theta function */

i += R->ci[n]*c;

}

s = sin(R->A1+R->A2*t); /* s = sin(A_1+A_2 t) */

c = cos(R->A1+R->A2*t); /* c = cos(A_1+A_2 t) */

u = s; /* use addition formula to compute s = sin psi and c = cos psi */

s = s*r-c*i; /* where psi = A_1+A_2 t+arg(r, i) */

c = c*r+u*i;

u = hypot(r, i);

s /= u;

c /= u;

for (n = 0; n<3; n++) { /* perform multiplication with T2’ */

u = A[n][0];

A[n][0] = A[n][0]*c-A[n][1]*s;

A[n][1] = A[n][1]*c+u*s;

}

RIGHTMULTMATRIX(A, R->B, r, i); /* gives the final attitude matrix */

}

Let us briefly mention a few accessible implementations of elliptic functions and elliptic integrals:

• Using the GNU Scientific Library [24]:

double F(double x, double m)

{ return x*gsl_sf_ellint_RF(1.0-x*x, 1.0-m*x*x, 1.0, GSL_PREC_DOUBLE); }

void SNCNDN(double x, double m, double *s, double *c, double *d)
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{ (void)gsl_sf_elljac_e(x, m, s, c, d); }

• Using Numerical Recipes [25]:

double F(double x, double m)

{ return x*rf(1.0-x*x, 1.0-m*x*x, 1.0); }

void SNCNDN(double x, double m, double *s, double *c, double *d)

{ sncndn(x, 1.0-m, s, c, d); }

To truly work in double precision, compared to Ref. 25, each float should be replaced by
double and the following constants in the source code would have to be changed:

#define ERRTOL 0.0025

#define CA 1e-8

in rf and sncndn, respectively.
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