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Abstract

A spectral method is described for solving coupled elligtoblems on an interior and
an exterior domain. The method is formulated and tested etvib-dimensional interior
Poisson and exterior Laplace problems, whose solutiongreidnormal derivatives are
required to be continuous across the interface. A compkeslof homogeneous solutions
for the interior and exterior regions, corresponding tgpaksible Dirichlet boundary val-
ues at the interface, are calculated in a preprocessing Bhépbasis is used to construct
the influence matrix which serves to transform the coupledhdary conditions into con-
ditions on the interior problem. Chebyshev approximatiare used to represent both the
interior solutions and the boundary values. A standard ¢$ted spectral method is used
to calculate the interior solutions. The exterior harmasntutions are calculated as the
convolution of the free-space Green’s function with a stefdensity; this surface density
is itself the solution to an integral equation which has aalydit solution when the bound-
ary values are given as a Chebyshev expansion. Propertiékalfyshev approximations
insure that the basis of exterior harmonic functions regresthe external near-boundary
solutions uniformly. The method is tested by calculatingelectrostatic potential resulting
from charge distributions in a rectangle. The resultinguierfice matrix is well-conditioned
and solutions converge exponentially as the resolutiondseased. The generalization of
this approach to three-dimensional problems is discussemgrticular the magnetohydro-
dynamic equations in a finite cylindrical domain surrountigch vacuum.

Key words. influence matrix, spectral method, Chebyshev polynomimdsndary integral
method, magnetohydrodynamics, Green'’s functions, haigrfanctions, Laplace’s
equation, exterior problem

1 Motivation

The search for a self-sustaining magnetohydrodyamic dgniaas taken on great
momentum in recent years, as researchers have sought tacprdgnamos in the
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laboratory [1,2,8,4)5] and in simulationis[[6,7)8,9,101P113,15,16]. One of the
fundamental problems in numerical magnetohydrodynarsitise formulation of
boundary conditions. The governing equations describedloxity and magnetic
field in in a finite container of electrically conducting fluigit the container bound-
aries, the velocity is specified, but the magnetic field is hdtead, the magnetic
field is required to satisfy continuity conditions with thee&rior magnetic field in
the domain surrounding the fluid. The nature of these canttidepends on the
properties of the surrounding medium; a complete discassan be found in [17].

Under the quasi-static approximation[17], for a given eélofield u and magnetic
Reynolds numbeRm, the equations describing the interior magnetic field are

1
0B=V x (uxB)+ R—mAB (1a)

V.-B=0 (1b)

The case of a fluid of finite electric conductivity restricteda finite volume and
surrounded by vacuum is of special importance because ielmachumber of ex-
perimental, geophysical, and astrophysical configurati®mce there are no elec-
trical currents in a vacuunB* is curl-free, and is therefore the gradient of a
potential if the exterior domain is simply connected. Théegrr magnetic field
then obeys:

BV&C — VQSVaC (2a)
AP =0 (2b)
B —0 |x| = o0 (2¢c)

but is otherwise not fixed. The magnetic field is required tcdttinuous at the
boundary:

B-B™=0 x¢caQ 3)

In this case, continuity of all three components of the mégrield are sufficient
to uniquely determine both the interior and exterior fiel@swr ultimate goal is
to transform [(R){(B) into boundary conditions that can bpliad to {1) without
calculatingB"¥#“. The general principle we will employ is to construct a coetel
basis of exterior solutionB"* of (2) in a preprocessing step, and to calcuBtg,
for each member of the basis. The matching conditions (3}héh yield boundary
conditions forB.

To explore this approach, we will apply it to the simpler agalus scalar prob-
lem of the Poisson problem in an interior domain. We will reguhe solution to
match continuously to an exterior solution satisfying leeggl's equation. In this
case, both Dirichlet and Neumann matching conditions acessary to specify a
unique solution. Formally, we wish to solve the followingpplem:



Ad=p inQ (4a)
A¢p =0 outsidef (4b)

with boundary conditions:

d(x) —p(x) =0 x € 00} (5a)
0, ®(x) — Opp(x) =0 x € 0N (5b)
Vo(x)—0 |x| = oo (5¢)

where(? is a bounded domain with bounda®y2. A physical interpretation of {4)-
@®) is that of an electrostatic potentihlof a field generated by charges distributed
in space with the density-p, where the electrical permeability of the vacuum is
taken to be one by the choice of units. We wish to calculatentiegior solution®
without explicitly constructingp.

There exists a vast literature on the numerical solutiohefitndamental physical
problems[(#)+£(5) and{1)4(3). We will briefly survey a smaitton of this literature
here, and postpone a more detailed comparison between dhoodnend others to
a later section.

The main tool by which exterior domains can be eliminated riee@’s theorem,
which replaces elliptic differential equations over a domwith integrals over the
bounding surfaces. The use of methods based on boundagyatgdas grown ex-
plosively since the 1970s-1980s to solve engineering problfrom fields such as
acoustics, elasticity, electromagnetism and fluid measdt,19,20,21,22,23,24 |25 26].
Hybrid methods, coupling a differential equation formidatin a domain and a
boundary integral formulation at the boundary via an infeeematrix, were also
developed at the same time to sol& (4)—(5) and similar probl The majority
of these approaches have been based on finite elements anenarapplicable
to complicated real-world geometries. The boundary irgisgare discretized with
techniques derived from finite element theory, leading ®térm boundary ele-
ment method, and the hybrid methods use finite elements e g equations in
the domain.

This situation contrasts with magnetohydrodynamics, tviinas been dominated
by spectral methods. Spherical domains are standard, fiphysical and astro-
physical reasons. Spectral methods can then be based aicapharmonics and
the poloidal-toroidal decomposition/[7,8,9,10]. The s$mn to Laplace’s equation
on the exterior is immediate and, moreover, solutions asda@ated boundary con-
ditions for each spherical harmonic and toroidal or polbadenponent are decou-
pled. Boundary conditions at the interface can then be ftated for each mode
without the use of an influence matrix.

The technique which we will describe is based on spectrahaus, but the geome-
try is assumed to be somewhat more complicated. Our tec@oicgupies the niche



which spectral methods staked out in the 1970s-1980s wheensi of Chebyshev
polynomials became commonplacel[27,28] to represent dwweih one or more

non-periodic directions. In keeping with this traditione wxpect its main applica-
tion to be to tensor-product domains whose boundaries soofsa small number
of piecewise-smooth surfaces, such as the finite threerdiimeal cylinder which

is our eventual goal.

We also mention here some other recent approaches to sahenmagnetohy-
drodynamic equations$ [12,13)14]15,16], with a view to galieing the geometry
and/or increasing parallelization. In [13]14], a finitewwle method is used to dis-
cretize the solution in the interior, which is matched ta thahe exterior vacuum
via a boundary element method. [15] describes an integteltesn formulation for
the entire domain, and [16] uses finite elements with a pgmaéthod to apply
boundary conditions.

2 Influence matrix formulation

We formulate a two-stage method for solving (4)—(5), cairgisof an initial pre-
processing step which depends only on the geometry, fotldwyea step whereby
solutions for many different distributionscan be generated at little incremental
cost. This is the usual description of the decompositioh wito homogeneous and
particular solutions, with the additional proviso thatwa@ns in the exterior do-
main are to be taken into account in the preparation of thedg@meous solutions.
We will construct the homogeneous solutions by generatarghbnic base$<1>§?}
and{¢,} of interior and exterior solutions, corresponding to Chf&t boundary
data{ f;} to be specified later. We decomposke (@)—(5) into the Poissdh.aplace
problems:

AP =p inQ AP =0 inQ Ag¢; =0 outside
PPloq =0 Do = f; bjlaa = f; (6)
Voiloo =0

and then construct the linear superpositions:
(I) = (I)p + (I)h (I)h = Zj qu);-l (b = Zj Cj¢j (7)

Then



AP = ADP 4+ 3" ¢;AD" = p inQ (8)

A¢p = > ciAg; =0 outside) 9)
J
(B~ B)lon =Ploa + D ¢; (B) — )], =0 (10)
Voo = ch v¢j|oo =0 (11)
J

are already satisfied by construction, while

o =0 (12)

(P = 9)|gg = 0n D[y + ch 811((1)? - ¢j)‘
j

constitutes a system of equations to be solvedcfpwhere the derivative with
respect to the normal is taken in the direction from the iotéo the exterior region
for both ® and¢. ® is then set equal to the sum i (7). If the interior harmonic
functions are not store@ can be obtained by solving:

AD=p inQ (13)
q’|aQ=Zijj (14)

Usingx; to index points on the boundarf, (12) can be discretized as:

> [0u(@s = @) (xi)] ¢ = 9, 27(x) (15)

Equation[(15) shows that the goal of the preprocessing sté@iconstruction and
inversion of the influence or capacitance matrix:

Cij = 00 (67 — @) (x1)] (16)

The functions{ f;} are required to constitute a complete set for values aloag th
discretized boundar§$2. Another way to describe the influence matrix is as a dis-
crete representation of the difference between the Detefd-Neumann mappings
in the exterior and in the interior regions.

Equivalently,0,,(¢; — <I>§»’)|ag can be represented as coefficients of a basi§sét
(which may be identical with the set of boundary value fumasi{ f;}) along each
boundary. Equatiori(12) is then discretized as:

Z<an(¢j - (b;l)vgz> ¢ = <anq>pagz> (17)

J

Although we will usex; and the notation i (15) in what follows, the method is
easily reformulated using (1L7).



3 Solution of Poisson and Laplace problems
3.1 Interior domain

We now turn to the solution oE{6). For the interior problenssdd in the first two
columns, we assume that we dispose of a solver able to coraplutigons to Pois-
son’s equation i) with any specified boundary values. In principle, any nuosri
method can be used. In our particular case, we use a spestedtization|[23]

O(r,y) = 3 Tilw/H)Ti(y) (18)

k,1=0

for the rectanglé—H, H] x [—1, 1]. The spectral basis functions are the Cheby-
shev polynomialg/,(z) = cos(k arccos(x)). TakingH > 1, we setK’ > L. We
use a standard methdd [28] to solve the Poisson equatiorDaiithlet boundary
conditions, diagonalizing the discretized second dexigaiperator iry, and using
recursion relations to treat the second derivative.in

3.2 Exterior harmonic functions

Our main focus is on the construction of the exterior harm@oiutions, specified
in the third column of [(6). In order to avoid truncating or spby discretizing
the exterior domain, we will constru¢t; } using the fundamental solution of the
Laplace equation: the Green'’s function satisfying

AvG(x;x) =6(x — X) (19)
VG (x;x) 0 for x' — oo (20)

For a specified boundary value distributiffx), we first calculate an appropriate
source distributiom (x) on the boundary by solving the integral equation:

/8 Gx:X)o(x) = f(x)  forx € o9 (1)
9]
The exterior harmonic functiop(x) required is then:
= X )o(x' 22
o) = | Gsx)a(x) (22)
wherex takes values either on or a#f.

We now apply[(211)E(22) to our particular test problem of aaagle. We divide the
set of boundary distributions into four sets, each taking-pero values on only one



side of the rectangle. In two dimensions, the fundamentaé@s function solving

20) is
1

—In|x — x| (23)
2T
Equation[(21l) thus reduces to:
oL da’ 24
S lnfe —a'lo(@) da’ = f(x) (24)

Equation [(24) is known as Symm'’s or Carleman’s equation adthe following
solution [29,30]:

{/\/x—a ) f'(x") dx’

1 b f(@')dz
(b—a)/4)/a \/(l’/—a)(b—x/)] (25)

if b —a # 4. (If b — a = 4 then the second integral in (25) can be replaced by an
arbitrary constant if” () [(t — a)(b—t)] "% dt = 0.)

Up to now, we have not specified the Dirichlet boundary valfie§he choice of
boundary value distributions is restricted only by the iegaent, stated in section
[2, that the set of distributions form a basis for functionfrd=l on the boundary
092. Because we use Chebyshev polynomials to represent thioirgelutions, it is
convenient to take as boundary valygér) each of the function$,(xz/H) on the
interval [— H, H]. The corresponding solutiomrs (z; H) obtained from evaluating

(28) are:

Ti(z/H) .
TH/1— (%)2

This remarkable property — the fact that that weighted Chleby polynomials are
also obtained as the source distributiengxz) when the boundary value(x)
are Chebyshev polynomials — is related to the very reasdnGhebyshev poly-
nomials are optimal in approximating polynomials on thesimal. The function
1/7mv/1 — 22 in 26) (for H = 1) is the weight with respect to which Chebyshev
polynomials are orthogonal on the interval and is the asgtigptensity of the
Chebyshev interpolation pointss(wj/.J), the extrema of the Chebyshev polyno-
mials. See [31,32] for further details. Note also that thbagonality of the Cheby-
shev polynomials with respect to this weight causes thergbgdegral in[(25) to
vanish except foff,.

2wk k>0
—2r [In(H/2)]" k=0



The corresponding harmonic functiop are constructed via

67 (x) = /H L x — o6y ol H) da 27)

H27r

and are illustrated in figuié 1. Specifying values along glihve segmerit-1, 1] in
they direction, we obtain:

1 1 A / /
o] (x) = 2—1n Ix —y'é,| oi(y'; 1) dy (28)

Note that(«; H) = o(x/ H; 1)/H for k > 0 andoo(z; H) = 7itisoo(x/H; 1).
The harmonic functions corresponding to specified valuasgihe lower or upper
boundariesy = +1, |z| < H) are¢} (x F 1¢,); those corresponding to the left
or right boundariesa( = +H, |y| < 1) are¢} (x F Heé,). We do not require the
functions¢i, ¢¢ either inside or outsid®, but only the values and normal deriva-
tives on the boundary. Although, for example, the valuesjofx + 1e,) on the
lower boundary are merely the specified valyigs:), its values on the other three
boundaries must be calculated Vial(27). When evaluatinghtinmal derivatives,
the kernelG(x; 2’) is differentiated before integration:

H o1
0y (x,y) :8/ —ln (x —2')? + y? o (a'; H) da’

= ""H)dx' 29
/H 21 (x — ') +y20k(x’ ) (29)

and similarly ford, ¢V

Any exterior harmonic function can be approximated by thedated series:

K-1
Pfl(x b7k (x + Hey) + 7o (x — He,)|
k=0
L—1
+ 0 [ (x+18,) + ¢ o] (x — 18,)] (30)
l

i
o

The potentiab(x) of (30) is defined by the( K + L) coefficients{c}' ™, i ", ¢/, ¢ 1.
A very important property of the harmonic bagis; (x), ¢/ (x)} is that it repre-
sents a near-boundary field uniformly. This means that tinecated series (30)
converges uniformly for any smooth boundary data and fotoattionsx near
the boundary. This is a direct consequence of the exceltenmsrgence properties
of Chebyshev approximation applied f0{24); a proof can hmdoin [33]. This
property does not necessarily hold for other harmonic has@articular spherical
harmonics, for which near-boundary convergence cannothiewzed, leading to a
strong Gibbs effect.



In the taxonomy of boundary integral methods, equatibnk #2dl [22) constitute
an indirect method, in that the intermediate surface chaegsityo is constructed;
this is done by solving the Fredholm integral equation offtrst kind (24). The
surface charge density is a single-layer rather than a ddaler (dipole) poten-
tial; equivalentlyG, rather thardG/on, is used in the representation. Because the
method determines only the boundary values and normalatams of the exte-
rior solution, it is not the preferred approach when the rotegpotential is itself
required at each time step: although the exterior soluteanbe sampled at any lo-
cation, this is computationally expensive, as is often #eedor boundary integral
methods.

0.5
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Fig. 1. Potentialspf,(x) generated by line source distributioag(x; H = 2). Values of
the potentials on the line segmente [—1, 1] correspond to the Chebyshev polynomials
Ti(x). From top to bottomo(z), o1(z), o4(z).



4 Electrostatic example

We apply our method to a simple problem from electrostathos,distribution of

electric charges-p,, confined in a rectangular domain but localized around the
origin:
e~/ cos(mb) for x| < 1and|y| < 1
Pm(r,0) = (32)
0 for|z| > 1or|y| > 1

Ther™ factor in [31) ensures regularity of, atr = 0. The potentiatp,, due to
unbounded sources (not restricted to the interior domain) can be fanadytically:

. 52 2

(I)m:(] (7’, 9) = Z [E’L (1, ﬁ) + 2 10g(7‘)] (32a)

- o4 2

Dy (1, 0) = " [6_5_2 - 1] cos 6 (32b)
r

§ 4 -

D, o(r,0) = % [(52 + 7’2) e % — 52} cos 20 (32¢)
r

whereFEi(a, \) is the error functiori(a, \) = [ e r~*dr and®,, are chosen
to be finite atr = 0.

We seek the corresponding electric potential. The paranigehosen to make,,
very small near the boundaries. We expect the solution tdrbesi unaffected by
the presence of boundaries. The source distribution (r, ) should therefore lead
to a potential which is almost axisymmetric. Fighie 2 shdwesgiotential obtained
numerically for§? = 0.15 using the spectral resolutioi = 8 in both directions.
The domain boundary is represented by a bold square. Thewsnare almost
perfectly circular, as should be the case d@mall, showing that the presence of
the boundaries has minimal effect.

To evaluate the error convergence of the method we compbtedetative error
E,,(N) defined as

. |(i)m(7', 8) - (I)rNrL(T? 9)|
En(N) = sup =05 09)

(33)

where®) (r, 0) is the solution computed numerically with spectral resoutV
in both spatial directions of the bounding square éndr, 0) is the analytic so-
lution (32) in the absence of the bounding square. Figureo@gsthe exponential

convergence of the method.
FiguresC4Eb show the electric potentid@§ ={® and ®=1 for § = 0.1. Figure
shows®V=16 with § = 2. In figure[7, the dipole source distribution has been

10



Fig. 2. Potential ®Y=5 for Fig. 3. Convergence test: Conver-
d = 0.15. Maximal relative error is  gence testlog;, E,,—o(/N) plotted for
Epm—o(N = 8) ~ 0.03. N =6,...,16], 6% = 0.1.

rotated by45° about the origin. For this large value &f charges are located near
the boundary. In each case with< 1, we observed exponential convergence
toward solution[(32). Convergence can only be confirmed wplimited precision
since the analytic solutioh (82) does not correspond exéatthe problem we are
solving numerically, in which sources are confined to thenot square. The best
agreement can be achieved for small valueg.df the numerical solution with
highest spectral resolution (heie = 64) is instead taken as a reference, then the
method converges to this solution spectrally up to machieeigion for any value

of J.

5 Implementation

5.1 Summary and computation cost

We describe the implementation of the method for our iltste example(18) of
the rectanglé—H, H| x [—1, 1] with double Chebyshev discretizatiof” + 1) x
(L+1).

The total preprocessing step consists of:

e Evaluation of the values and the normal derivatives of therér harmonic so-
lutions on the boundary.

e Calculation of the interior harmonic solutions.

e Inversion or LU decomposition of the influence matrix,

For each particular right-hand-sigethe operations consist of:

11
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Fig. 6. Potentiatb¥ =16 for § = 2. Fig. 7.@N={%(r,0 + Z) for § = 2.

¢ Solving for a single particular solution.
e Acting with the inverse of the influence matrix.
e Using the corrected Dirichlet boundary conditions to ckdtaithe final solution.

The total numbey of boundary points i8( K+ L). The inversion or LU-decomposition
of the influence matrix” in the preprocessing stage requires a time proportional to

J3, while each solution of the linear systeml(15) determiniydoefficients of the
homogeneous solutions requires a time proportiondftdcach interior solution is
calculated at a cost proportional 6.2

Symmetry can be used to reduce the cost of each step. The sgnohehe rect-
angle divides all the independent harmonic solutions iatw mutually orthogonal

12



Calculation Result Cost

Preprocessing

K x (Int; + Int))

Exterior harmonic solutions bjloq, Ondjlon

+L x (Int, + Int})
Interior harmonic solutions 0, ®" (K + L)KL?/4
Influence matrix inversion/decompositignC—! (K +L)3/2

For each right-hand-side

Particular solution P KIL?/2

Action with influence matrix ¢j (K + L)*

Corrected solution ) KL%/2
Table 1

Operation count of each preprocessing and right-handeggendent step for a rectangle
discretized with(K + 1) x (L + 1) Chebyshev polynomials and points. Jréind Int, are
the costs of performing the singular integrals oven (27) and[(29), and Iptand Im; are
those of the analogous integrals oyer

classes. Decoupling the Laplacian operator accordingritypa = andy leads to
four Poisson problems, each with resoluti@n2 x L /2, thus reducing the time by
a factor of two. Decoupling by parity also reduces the infagematrixC' to four
matrices, the dimensions of which are one fourth of that efatiginal matrix.

Table[5.1 gives the operation count of each step, takingaotount the reductions
permitted by symmetry.

5.2 Sngular integrals

The integrations i (27)-(29) are performed numericalje&al attention must be
paid in doing so since both the kerrié{x; z') and the density (z’) have integrable
singularities within the domain of integration. The sirgypoints are’e, = x and

t’' = +£H for ¢f andy’é, = x andy’ = +1 for ¢/. Dedicated adaptive quadratures
(seel[34]) can be used to compute these integrals accurately

It is also possible to evaluate the singular part of the iralegnalytically, reduc-
ing the numerical problem to the evaluation of integralshwibn-singular inte-
grands. The remaining integrand is piecewise and can be integrated with spec-
tral precision over each of the regular subdomains. Simgylsubtraction greatly
decreases the variation in grid density needed to samplentégrand homoge-
neously, thereby significantly accelerating the numeiitagrations in[(27)E(29).
Specifically, an adaptive method requires a smaller numbigerations, or, alter-
natively, a non-adaptive method requires a coarser regnlutowever, the con-

13
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Fig. 8. Quadratic fit of the condition numbé(N) of the influence matrix defined in (1L6).

vergence of our approximation witiR', L is exponential (spectral), regardless of
whether the singular part of the integral is subtracted dugted in the numerical
evaluation.

5.3 Conditioning of matrices

The influence matriX(16) is not immediately invertible. Base of the redundancy
of information at the corners, this matrix has exactly foerazsingular values or
eigenvalues. The corresponding linear system can be saledarbitrarily cor-
recting singular values or eigenvalues of the influenceimatee [3%,36] for more
details.

The condition numbef of the corrected matrix depends on the spatial resolution
N and the maximal order of derivatives used to express thedayyrconditions. In
our case of a Neumann boundary condition and a resoliXioneach direction, the
condition number scales &= O (N?). Fitting the condition numbers computed
for N € [2,32] with a parabola (see fif. 5.3) yields a formula for predicting
condition number for an arbitrary resolution:

C(N) = 3.58N? — 18.16N + 59 (34)

It can then be deduced frof {34) that a reasonably conddioragrix withC < 107

is obtained for a spatial resolution as high&000). The method can therefore
be applied to problems where small-scale field featuresineqgse of high spatial
resolution.

14



6 Generalizations

We now discuss the applicability of this method to other getries, problems,
and spatial discretizations. The decomposition into iatgrarticular and homoge-
neous functions and exterior homogeneous functions destin sectiof |2 is, of
course, completely general and not related to any partisglatial discretization.
The method described in section]3.1 for constructing therettharmonic func-
tions relies on the Chebyshev-Chebyshev discretizatidhefectangle which is
widely used since the Chebyshev polynomials are optimaieqpants of smooth
functions. This property, as well as the straightfowardespondence between in-
terior and exterior solutions, make the Chebyshev disattin especially suitable
for the construction of the exterior harmonic solutions afl MMowever, the method
is easily generalizable to other basis functigps:) for the potential values, which
can be substituted int@_(R5) in order to calculate the cpoeding charge densi-
ties o (z), if dictated by the geometry or numerical method used foriniterior
problem.

In fact, since our real interest is in generating the conepdet ofo. () necessary
to generate the complete set®f(x), rather than in calculating the specifig(z)
corresponding to each particulfr(x), the only information really required i (R6)
is the singularityl /7v/1 — z2. One may then allow the set of’s to be the prod-
ucts of this singularity with the members of any approprizdsis set of analytic
functions on the boundary in question.

In three dimensions, the fundamental Green’s function is

1
47 x — X

G(x,x) (35)
In an axisymmetric geometry with a Fourier representaticih® azimuthal direc-
tion, all of the problems to be solved decouple accordingdorier mode. The
operation count would then scale linearly with the numbeazimuthal points or
Fourier modes. The elliptic problems [d (6) would remain{hmensional, and the
integral equations equivalent {o {24) would remain oneetisional.

This method can also be applied to other elliptic problents parabolic problems.
As stated in sectionl 1, our motivation for developing thighmoed is to apply it to

the magnetohydrodynamic equatiohk (1)-(3), in whidh (B arabolic equation.
A general parabolic problem may be written as:

0P = AD + F (D, p) (36)

where F may include nonlinear and/or time-dependent source teffinst-order
implicit temporal discretization of (36) results in the athogeneous Helmholtz
equation:

(I — 6tA)D(t + 6t) = F (37)

15



where 7 may depend on previous values &f This Helmholtz operatof/ —
dtA) can replace the Laplacian inl (4) and (6). It is known thataepment of
the Helmholtz equation by a boundary integral equation esd lto singulari-
ties for certain values of the wavenumber (héfe/dt); a large body of work,
e.g. [37,38,39,40,41], addresses this problem. Howendha magnetohydrody-
namic case of a conducting fluid surrounded by an exterionwa; no such dif-
ficulties would be introduced, since the exterior problemnais governed by
Laplace’s equation. More complicated vectorial operatoay appear, as occur in
the Navier-Stokes or magnetohydrodynamic equations.

7 Comparison with other approaches

We mention here some other techniques that have been usalddesterior prob-
lems or to match interior and exterior domains. Spectrahowst can be combined
with various transformations and mappings. The inner regam be surrounded by
a sphere, and the outer domain decomposed into the regiole iaisd outside the
sphere. The exterior domain can be mapped into an interimagovia al /r map-
ping [6,42,43]; spectral methods can then be used to trderadsr both domains.
The region exterior to one or more spheres has been mappéé toterior of a
rectangle([44] or a pentangular |45] region rotated abouxas, and Chebyshev-
Fourier expansions used to solve elliptic equations ayiginthe study of black
holes in general relativity. A smooth boundary can be patarized by angle, and
the boundary values represented as a series of trigon@rgtitions or spherical
harmonics|[22,39,40,41,42,43/46/47,48]. Our methocdiffrom these in that a
Chebyshev approximation is used to represent the boun@dugwy on each seg-
ment of a non-smooth boundary, and an analytic formula il tsealculate the
surface density which exactly yields this Chebyshev apgprakon.

Conformal mapping is another technique which can be usedltolate interior or

exterior harmonic functions. The Riemann mapping theoraarantees the exis-
tence of a conformal transformation from the interior oregxdr of a simply con-

nected domain into the interior or exterior of a unit disls, firoof is, however,

non-constructive, and does not explicitly derive the tfamsation. For some ge-
ometries, including the exterior of a rectangle, an anedyfiormula can be derived
[49]. For polygon-bounded regions with piecewise-conskemundary conditions,

the Schwarz-Christoffel [50] mapping has proved to be a vebyst tool, applied

to problems arising in magneto- and electro- statics, piateftows, inverse prob-

lems and many other fields.

Our influence matrix approach relies on calculating harmdumnctions with ar-
bitrary boundary data, for which conformal mapping is muaobrenproblematic.
More general conformal mappings are often computed by sgI8ymm’s or Car-
leman’s equatiori (24) numerically on the domain boundagking this approach
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similar in terms of numerical cost and precision to boundatggral equation meth-
ods. Itis interesting to note that, for domains includingess, the Chebyshev ap-
proximation is especially well suited, guaranteeing sopevergence of the map-
ping function [33].

8 Conclusion

As atest case for the magnetohydrodynamic equations, veedeaeloped a method
for solving the two-dimensional Poisson equation in a begihdomain, where the
solution satisfies matching conditions with a harmonic pt# outside the do-
main. The method solves only the interior problem and dateemithe boundary
conditions ensuring smooth matching with the exterior sotu The essential ele-
ment of this approach is construction of a basis of harmamctions which repre-
sent the near-boundary exterior solutions uniformly. Hasis is used to construct
the influence matrix which serves to impose the coupled bayncbnditions be-
tween the interior and exterior solutions. The method is enically reasonably
well conditioned and can be used for quite high spatial tegnis. For a spectral
solver, this method guarantees exponential convergence.

Instead of corresponding to point sources on the boundaci, exterior harmonic
solution corresponds to a spectral basis function. The mmsly process — the
construction of a basis of exterior harmonic functions —eshels only on geometry
and spatial resolution. Once the basis is computed it catobedsand used for any
computation using the same resolution and domain shapen\Wexl as a prepro-
cessing step for time-dependent simulations, the cost mdtoacting the exterior
harmonic basis is negligible compared to that of thousahtme steps.

Since cylindrical coordinates have one periodic direcgtibehould be possible to
apply this method separately to each of the Fourier modestetd individually as
two-dimensional problems. The extension of this methotiéoMHD equations in
a finite cylindrical geometry is currently under investigat
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