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Abstract

A spectral method is described for solving coupled ellipticproblems on an interior and
an exterior domain. The method is formulated and tested on the two-dimensional interior
Poisson and exterior Laplace problems, whose solutions andtheir normal derivatives are
required to be continuous across the interface. A complete basis of homogeneous solutions
for the interior and exterior regions, corresponding to allpossible Dirichlet boundary val-
ues at the interface, are calculated in a preprocessing step. This basis is used to construct
the influence matrix which serves to transform the coupled boundary conditions into con-
ditions on the interior problem. Chebyshev approximationsare used to represent both the
interior solutions and the boundary values. A standard Chebyshev spectral method is used
to calculate the interior solutions. The exterior harmonicsolutions are calculated as the
convolution of the free-space Green’s function with a surface density; this surface density
is itself the solution to an integral equation which has an analytic solution when the bound-
ary values are given as a Chebyshev expansion. Properties ofChebyshev approximations
insure that the basis of exterior harmonic functions represents the external near-boundary
solutions uniformly. The method is tested by calculating the electrostatic potential resulting
from charge distributions in a rectangle. The resulting influence matrix is well-conditioned
and solutions converge exponentially as the resolution is increased. The generalization of
this approach to three-dimensional problems is discussed,in particular the magnetohydro-
dynamic equations in a finite cylindrical domain surroundedby a vacuum.

Key words: influence matrix, spectral method, Chebyshev polynomials,boundary integral
method, magnetohydrodynamics, Green’s functions, harmonic functions, Laplace’s
equation, exterior problem

1 Motivation

The search for a self-sustaining magnetohydrodyamic dynamo has taken on great
momentum in recent years, as researchers have sought to produce dynamos in the
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laboratory [1,2,3,4,5] and in simulations [6,7,8,9,10,11,12,13,15,16]. One of the
fundamental problems in numerical magnetohydrodynamics is the formulation of
boundary conditions. The governing equations describe thevelocity and magnetic
field in in a finite container of electrically conducting fluid. At the container bound-
aries, the velocity is specified, but the magnetic field is not. Instead, the magnetic
field is required to satisfy continuity conditions with the exterior magnetic field in
the domain surrounding the fluid. The nature of these conditions depends on the
properties of the surrounding medium; a complete discussion can be found in [17].

Under the quasi-static approximation [17], for a given velocity fieldu and magnetic
Reynolds numberRm, the equations describing the interior magnetic field are

∂tB=∇× (u×B) +
1

Rm
∆B (1a)

∇ ·B=0 (1b)

The case of a fluid of finite electric conductivity restrictedto a finite volume and
surrounded by vacuum is of special importance because it models a number of ex-
perimental, geophysical, and astrophysical configurations. Since there are no elec-
trical currents in a vacuum,Bvac is curl-free, and is therefore the gradient of a
potential if the exterior domain is simply connected. The exterior magnetic field
then obeys:

B
vac = ∇φvac (2a)

∆φvac = 0 (2b)
B

vac → 0 |x| → ∞ (2c)

but is otherwise not fixed. The magnetic field is required to becontinuous at the
boundary:

B−B
vac = 0 x ∈ ∂Ω (3)

In this case, continuity of all three components of the magnetic field are sufficient
to uniquely determine both the interior and exterior fields.Our ultimate goal is
to transform (2)-(3) into boundary conditions that can be applied to (1) without
calculatingBvac. The general principle we will employ is to construct a complete
basis of exterior solutionsBvac of (2) in a preprocessing step, and to calculateB|∂Ω
for each member of the basis. The matching conditions (3) will then yield boundary
conditions forB.

To explore this approach, we will apply it to the simpler analogous scalar prob-
lem of the Poisson problem in an interior domain. We will require the solution to
match continuously to an exterior solution satisfying Laplace’s equation. In this
case, both Dirichlet and Neumann matching conditions are necessary to specify a
unique solution. Formally, we wish to solve the following problem:

2



∆Φ = ρ in Ω (4a)
∆φ = 0 outsideΩ (4b)

with boundary conditions:

Φ(x)− φ(x) = 0 x ∈ ∂Ω (5a)
∂nΦ(x)− ∂nφ(x) = 0 x ∈ ∂Ω (5b)

∇φ(x)→ 0 |x| → ∞ (5c)

whereΩ is a bounded domain with boundary∂Ω. A physical interpretation of (4)-
(5) is that of an electrostatic potentialΦ of a field generated by charges distributed
in space with the density−ρ, where the electrical permeability of the vacuum is
taken to be one by the choice of units. We wish to calculate theinterior solutionΦ
without explicitly constructingφ.

There exists a vast literature on the numerical solution of the fundamental physical
problems (4)–(5) and (1)-(3). We will briefly survey a small portion of this literature
here, and postpone a more detailed comparison between our method and others to
a later section.

The main tool by which exterior domains can be eliminated is Green’s theorem,
which replaces elliptic differential equations over a domain with integrals over the
bounding surfaces. The use of methods based on boundary integrals has grown ex-
plosively since the 1970s-1980s to solve engineering problems from fields such as
acoustics, elasticity, electromagnetism and fluid mechanics [18,19,20,21,22,23,24,25,26].
Hybrid methods, coupling a differential equation formulation in a domain and a
boundary integral formulation at the boundary via an influence matrix, were also
developed at the same time to solve (4)–(5) and similar problems. The majority
of these approaches have been based on finite elements and arehence applicable
to complicated real-world geometries. The boundary integrals are discretized with
techniques derived from finite element theory, leading to the term boundary ele-
ment method, and the hybrid methods use finite elements to solve the equations in
the domain.

This situation contrasts with magnetohydrodynamics, which has been dominated
by spectral methods. Spherical domains are standard, for geophysical and astro-
physical reasons. Spectral methods can then be based on spherical harmonics and
the poloidal-toroidal decomposition [7,8,9,10]. The solution to Laplace’s equation
on the exterior is immediate and, moreover, solutions and associated boundary con-
ditions for each spherical harmonic and toroidal or poloidal component are decou-
pled. Boundary conditions at the interface can then be formulated for each mode
without the use of an influence matrix.

The technique which we will describe is based on spectral methods, but the geome-
try is assumed to be somewhat more complicated. Our technique occupies the niche
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which spectral methods staked out in the 1970s-1980s when the use of Chebyshev
polynomials became commonplace [27,28] to represent domains with one or more
non-periodic directions. In keeping with this tradition, we expect its main applica-
tion to be to tensor-product domains whose boundaries consist of a small number
of piecewise-smooth surfaces, such as the finite three-dimensional cylinder which
is our eventual goal.

We also mention here some other recent approaches to solvingthe magnetohy-
drodynamic equations [12,13,14,15,16], with a view to generalizing the geometry
and/or increasing parallelization. In [13,14], a finite volume method is used to dis-
cretize the solution in the interior, which is matched to that in the exterior vacuum
via a boundary element method. [15] describes an integral equation formulation for
the entire domain, and [16] uses finite elements with a penalty method to apply
boundary conditions.

2 Influence matrix formulation

We formulate a two-stage method for solving (4)–(5), consisting of an initial pre-
processing step which depends only on the geometry, followed by a step whereby
solutions for many different distributionsρ can be generated at little incremental
cost. This is the usual description of the decomposition ofΦ into homogeneous and
particular solutions, with the additional proviso that solutions in the exterior do-
main are to be taken into account in the preparation of the homogeneous solutions.
We will construct the homogeneous solutions by generating harmonic bases{Φh

j }
and{φj} of interior and exterior solutions, corresponding to Dirichlet boundary
data{fj} to be specified later. We decompose (4)–(5) into the Poisson and Laplace
problems:

∆Φp = ρ in Ω ∆Φh
j = 0 in Ω ∆φj = 0 outsideΩ

Φp|∂Ω = 0 Φh
j |∂Ω = fj φj |∂Ω = fj

∇φj |∞ = 0

(6)

and then construct the linear superpositions:

Φ = Φp + Φh Φh =
∑

j cjΦ
h
j φ =

∑

j cjφj (7)

Then
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∆Φ = ∆Φp +
∑

j

cj∆Φh
j = ρ in Ω (8)

∆φ =
∑

j

cj∆φj = 0 outsideΩ (9)

(Φ− φ)|∂Ω =Φp|∂Ω +
∑

j

cj (Φ
h
j − φj)

∣

∣

∣

∂Ω
= 0 (10)

∇φ|∞ =
∑

j

cj ∇φj|∞ = 0 (11)

are already satisfied by construction, while

∂n(Φ− φ)|∂Ω = ∂nΦ
p|∂Ω +

∑

j

cj ∂n(Φ
h
j − φj)

∣

∣

∣

∂Ω
= 0 (12)

constitutes a system of equations to be solved forcj, where the derivative with
respect to the normal is taken in the direction from the interior to the exterior region
for bothΦ andφ. Φ is then set equal to the sum in (7). If the interior harmonic
functions are not stored,Φ can be obtained by solving:

∆Φ= ρ in Ω (13)

Φ|∂Ω =
∑

j

cjfj (14)

Usingxi to index points on the boundary, (12) can be discretized as:

∑

j

[

∂n(φj − Φh
j )(xi)

]

cj = ∂nΦ
p(xi) (15)

Equation (15) shows that the goal of the preprocessing step is the construction and
inversion of the influence or capacitance matrix:

Cij ≡
[

∂n
(

φj − Φh
j

)

(xi)
]

(16)

The functions{fj} are required to constitute a complete set for values along the
discretized boundary∂Ω. Another way to describe the influence matrix is as a dis-
crete representation of the difference between the Dirichlet-to-Neumann mappings
in the exterior and in the interior regions.

Equivalently,∂n(φj − Φh
j )|∂Ω can be represented as coefficients of a basis set{gi}

(which may be identical with the set of boundary value functions{fi}) along each
boundary. Equation (12) is then discretized as:

∑

j

〈∂n(φj − Φh
j ), gi〉 cj = 〈∂nΦp, gi〉 (17)

Although we will usexi and the notation in (15) in what follows, the method is
easily reformulated using (17).
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3 Solution of Poisson and Laplace problems

3.1 Interior domain

We now turn to the solution of (6). For the interior problems listed in the first two
columns, we assume that we dispose of a solver able to computesolutions to Pois-
son’s equation inΩ with any specified boundary values. In principle, any numerical
method can be used. In our particular case, we use a spectral discretization [28]

Φ(x, y) =
K,L
∑

k,l=0

Tk(x/H)Tl(y) (18)

for the rectangle[−H,H ] × [−1, 1]. The spectral basis functions are the Cheby-
shev polynomialsTk(x) = cos(k arccos(x)). TakingH ≥ 1, we setK ≥ L. We
use a standard method [28] to solve the Poisson equation withDirichlet boundary
conditions, diagonalizing the discretized second derivative operator iny, and using
recursion relations to treat the second derivative inx.

3.2 Exterior harmonic functions

Our main focus is on the construction of the exterior harmonic solutions, specified
in the third column of (6). In order to avoid truncating or spatially discretizing
the exterior domain, we will construct{φj} using the fundamental solution of the
Laplace equation: the Green’s function satisfying

∆
x
′G(x;x′) = δ(x− x

′) (19)
∇G(x;x′) = 0 for x′ → ∞ (20)

For a specified boundary value distributionf(x), we first calculate an appropriate
source distributionσ(x) on the boundary by solving the integral equation:

∫

∂Ω
G(x;x′)σ(x′) = f(x) for x ∈ ∂Ω (21)

The exterior harmonic functionφ(x) required is then:

φ(x) ≡
∫

∂Ω
G(x;x′)σ(x′) (22)

wherex takes values either on or off∂Ω.

We now apply (21)-(22) to our particular test problem of a rectangle. We divide the
set of boundary distributions into four sets, each taking non-zero values on only one
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side of the rectangle. In two dimensions, the fundamental Green’s function solving
(20) is

−1

2π
ln |x− x

′| (23)

Equation (21) thus reduces to:

∫ b

a

−1

2π
ln |x− x′|σ(x′) dx′ = f(x) (24)

Equation (24) is known as Symm’s or Carleman’s equation and has the following
solution [29,30]:

σ(x) =
−2

π
√

(x− a)(b− x)





∫ b

a

√

(x′ − a)(b− x′)f ′(x′) dx′

x′ − x

+
1

ln((b− a)/4)

∫ b

a

f(x′) dx′

√

(x′ − a)(b− x′)



 (25)

if b − a 6= 4. (If b − a = 4 then the second integral in (25) can be replaced by an
arbitrary constant if

∫ b
a f(t) [(t− a)(b− t)]−

1

2 dt = 0.)

Up to now, we have not specified the Dirichlet boundary valuesf . The choice of
boundary value distributions is restricted only by the requirement, stated in section
2, that the set of distributions form a basis for functions defined on the boundary
∂Ω. Because we use Chebyshev polynomials to represent the interior solutions, it is
convenient to take as boundary valuesfk(x) each of the functionsTk(x/H) on the
interval [−H,H ]. The corresponding solutionsσk(x;H) obtained from evaluating
(25) are:

σk(x;H) = Ak
Tk(x/H)

πH

√

1−
(

x
H

)2
; Ak =











2πk k > 0

−2π [ln(H/2)]−1 k = 0
(26)

This remarkable property – the fact that that weighted Chebyshev polynomials are
also obtained as the source distributionsσk(x) when the boundary valuesfk(x)
are Chebyshev polynomials – is related to the very reason that Chebyshev poly-
nomials are optimal in approximating polynomials on the interval. The function
1/π

√
1− x2 in (26) (for H = 1) is the weight with respect to which Chebyshev

polynomials are orthogonal on the interval and is the asymptotic density of the
Chebyshev interpolation pointscos(πj/J), the extrema of the Chebyshev polyno-
mials. See [31,32] for further details. Note also that the orthogonality of the Cheby-
shev polynomials with respect to this weight causes the second integral in (25) to
vanish except forT0.
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The corresponding harmonic functionsφx
k are constructed via

φx
k(x) =

∫ H

−H

−1

2π
ln |x− x′

êx| σk(x
′;H) dx′ (27)

and are illustrated in figure 1. Specifying values along along the segment[−1, 1] in
they direction, we obtain:

φy
l (x) =

∫ 1

−1

−1

2π
ln |x− y′êy| σl(y

′; 1) dy′ (28)

Note thatσk(x;H) = σk(x/H ; 1)/H for k > 0 andσ0(x;H) = ln(1/2)
H ln(H/2)

σ0(x/H ; 1).

The harmonic functions corresponding to specified values along the lower or upper
boundaries (y = ±1, |x| < H) areφx

k (x∓ 1êy); those corresponding to the left
or right boundaries (x = ±H, |y| < 1) areφy

l (x∓H êx). We do not require the
functionsφx

k, φy
l either inside or outsideΩ, but only the values and normal deriva-

tives on the boundary. Although, for example, the values ofφx
k (x + 1êy) on the

lower boundary are merely the specified valuesfk(x), its values on the other three
boundaries must be calculated via (27). When evaluating thenormal derivatives,
the kernelG(x; x′) is differentiated before integration:

∂yφ
x
k(x, y)= ∂y

∫ H

−H

−1

2π
ln
√

(x− x′)2 + y2 σk(x
′;H) dx′

=
∫ H

−H

−1

2π

y

(x− x′)2 + y2
σk(x

′;H) dx′ (29)

and similarly for∂xφ
y
l .

Any exterior harmonic function can be approximated by the truncated series:

φK,L(x) =
K−1
∑

k=0

[

cx,−k φx
k (x+H êx) + cx,+k φx

k (x−H êx)
]

+
L−1
∑

l=0

[

cy,−l φy
l (x+ 1êy) + cy,+l φy

l (x− 1êy)
]

(30)

The potentialφ(x) of (30) is defined by the2(K+L) coefficients{cx,−k , cx,+k , cy,−l , cy,+l }.
A very important property of the harmonic basis{φx

k(x), φ
y
l (x)} is that it repre-

sents a near-boundary field uniformly. This means that the truncated series (30)
converges uniformly for any smooth boundary data and for alllocationsx near
the boundary. This is a direct consequence of the excellent convergence properties
of Chebyshev approximation applied to (24); a proof can be found in [33]. This
property does not necessarily hold for other harmonic bases, in particular spherical
harmonics, for which near-boundary convergence cannot be achieved, leading to a
strong Gibbs effect.
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In the taxonomy of boundary integral methods, equations (21) and (22) constitute
an indirect method, in that the intermediate surface chargedensityσ is constructed;
this is done by solving the Fredholm integral equation of thefirst kind (24). The
surface charge density is a single-layer rather than a double-layer (dipole) poten-
tial; equivalentlyG, rather than∂G/∂n, is used in the representation. Because the
method determines only the boundary values and normal derivatives of the exte-
rior solution, it is not the preferred approach when the exterior potential is itself
required at each time step: although the exterior solution can be sampled at any lo-
cation, this is computationally expensive, as is often the case for boundary integral
methods.
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Fig. 1. Potentialsφx
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the potentials on the line segmentx ∈ [−1, 1] correspond to the Chebyshev polynomials
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4 Electrostatic example

We apply our method to a simple problem from electrostatics,the distribution of
electric charges−ρm confined in a rectangular domain but localized around the
origin:

ρm(r, θ) =











rme−r2/δ2 cos(mθ) for |x| ≤ 1 and|y| ≤ 1

0 for |x| > 1 or |y| > 1
(31)

Therm factor in (31) ensures regularity ofρm at r = 0. The potential̃Φm due to
unbounded sources (not restricted to the interior domain) can be foundanalytically:

Φ̃m=0(r, θ) =
δ2

4

[

Ei

(

1,
r2

δ2

)

+ 2 log(r)

]

(32a)

Φ̃m=1(r, θ) =
δ4

4r

[

e−
r
2

δ2 − 1
]

cos θ (32b)

Φ̃m=2(r, θ) =
δ4

4r2

[

(

δ2 + r2
)

e−
r
2

δ2 − δ2
]

cos 2θ (32c)

whereEi(a, λ) is the error functionEi(a, λ) ≡ ∫

∞

1 e−λrr−a dr andΦ̃m are chosen
to be finite atr = 0.

We seek the corresponding electric potential. The parameter δ is chosen to makeρm
very small near the boundaries. We expect the solution to be almost unaffected by
the presence of boundaries. The source distributionρm=0(r, θ) should therefore lead
to a potential which is almost axisymmetric. Figure 2 shows the potential obtained
numerically forδ2 = 0.15 using the spectral resolutionN = 8 in both directions.
The domain boundary is represented by a bold square. The contours are almost
perfectly circular, as should be the case forδ small, showing that the presence of
the boundaries has minimal effect.

To evaluate the error convergence of the method we computed the relative error
Em(N) defined as

Em(N) = sup
r,θ

|Φ̃m(r, θ)− ΦN
m(r, θ)|

|Φm(r, θ)|
(33)

whereΦN
m(r, θ) is the solution computed numerically with spectral resolution N

in both spatial directions of the bounding square andΦ̃m(r, θ) is the analytic so-
lution (32) in the absence of the bounding square. Figure 3 proves the exponential
convergence of the method.

Figures 4–5 show the electric potentialsΦN=16
m=1 andΦN=16

m=2 for δ = 0.1. Figure
6 showsΦN=16

m=1 with δ = 2. In figure 7, the dipole source distribution has been
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rotated by45◦ about the origin. For this large value ofδ, charges are located near
the boundary. In each case withδ ≪ 1, we observed exponential convergence
toward solution (32). Convergence can only be confirmed up toa limited precision
since the analytic solution (32) does not correspond exactly to the problem we are
solving numerically, in which sources are confined to the interior square. The best
agreement can be achieved for small values ofδ. If the numerical solution with
highest spectral resolution (hereN = 64) is instead taken as a reference, then the
method converges to this solution spectrally up to machine precision for any value
of δ.

5 Implementation

5.1 Summary and computation cost

We describe the implementation of the method for our illustrative example (18) of
the rectangle[−H,H ] × [−1, 1] with double Chebyshev discretization(K + 1)×
(L+ 1).

The total preprocessing step consists of:
• Evaluation of the values and the normal derivatives of the exterior harmonic so-
lutions on the boundary.
• Calculation of the interior harmonic solutions.
• Inversion or LU decomposition of the influence matrix,

For each particular right-hand-sideρ, the operations consist of:

11



−0.004
−0.003

−0.002

−0.002

−0.001

−
0.

00
1

−0.001

−0.0005

−
0.

00
05

0
0

0

0.0
00

5

0.
00

05

0.0005

0.001

0.001

0.001

0.002

0.002

0.003
0.004

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 4. PotentialΦN=16
m=1 for δ = 0.1.

−0.0002

−0.0002 −0.0002

−0.0002

−5e−005

−5
e−

00
5

−5e−005

−5e−005

−5
e−

00
5

−5e−005

0

0

0

0

0

0

0

0

5e
−0

05

5e−005

5e−005

5e−005

5e−005

5e
−0

05

0.0002

0.0002

0.0002

0.0002

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 5. PotentialΦN=16
m=2 for δ = 0.1.

−0.1

−0.1

−0.075
−0.075−0

.0
75

−0.05

−0
.0

5

−0.05
−0.025

−
0.

02
5

0

0

0

0.
02

5

0.025

0.025

0.05

0.
05

0.05

0.
07

5

0.075

0.075

0.
1

0.
1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 6. PotentialΦN=16
m=1 for δ = 2.
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4 ) for δ = 2.

• Solving for a single particular solution.
• Acting with the inverse of the influence matrix.
• Using the corrected Dirichlet boundary conditions to calculate the final solution.

The total numberJ of boundary points is2(K+L). The inversion or LU-decomposition
of the influence matrixC in the preprocessing stage requires a time proportional to
J3, while each solution of the linear system (15) determining the coefficients of the
homogeneous solutions requires a time proportional toJ2. Each interior solution is
calculated at a cost proportional toKL2.

Symmetry can be used to reduce the cost of each step. The symmetry of the rect-
angle divides all the independent harmonic solutions into four mutually orthogonal
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Calculation Result Cost

Preprocessing

Exterior harmonic solutions φj|∂Ω, ∂nφj |∂Ω
K × (Intx + Int′x)

+L× (Inty + Int′y)

Interior harmonic solutions ∂nΦ
h
j (K + L)KL2/4

Influence matrix inversion/decompositionC−1 (K + L)3/2

For each right-hand-side

Particular solution Φp KL2/2

Action with influence matrix cj (K + L)2

Corrected solution Φ KL2/2

Table 1
Operation count of each preprocessing and right-hand-side-dependent step for a rectangle
discretized with(K + 1) × (L + 1) Chebyshev polynomials and points. Intx and Int′x are
the costs of performing the singular integrals overx in (27) and (29), and Inty and Int′y are
those of the analogous integrals overy.

classes. Decoupling the Laplacian operator according to parity in x andy leads to
four Poisson problems, each with resolutionK/2×L/2, thus reducing the time by
a factor of two. Decoupling by parity also reduces the influence matrixC to four
matrices, the dimensions of which are one fourth of that of the original matrix.

Table 5.1 gives the operation count of each step, taking intoaccount the reductions
permitted by symmetry.

5.2 Singular integrals

The integrations in (27)-(29) are performed numerically. Special attention must be
paid in doing so since both the kernelG(x; x′) and the densityσ(x′) have integrable
singularities within the domain of integration. The singular points arex′

êx = x and
x′ = ±H for φx

k andy′êy = x andy′ = ±1 for φy
l . Dedicated adaptive quadratures

(see [34]) can be used to compute these integrals accurately.

It is also possible to evaluate the singular part of the integral analytically, reduc-
ing the numerical problem to the evaluation of integrals with non-singular inte-
grands. The remaining integrand is piecewiseC∞ and can be integrated with spec-
tral precision over each of the regular subdomains. Singularity subtraction greatly
decreases the variation in grid density needed to sample theintegrand homoge-
neously, thereby significantly accelerating the numericalintegrations in (27)-(29).
Specifically, an adaptive method requires a smaller number of iterations, or, alter-
natively, a non-adaptive method requires a coarser resolution. However, the con-
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Fig. 8. Quadratic fit of the condition numberC(N) of the influence matrix defined in (16).

vergence of our approximation withK,L is exponential (spectral), regardless of
whether the singular part of the integral is subtracted or included in the numerical
evaluation.

5.3 Conditioning of matrices

The influence matrix (16) is not immediately invertible. Because of the redundancy
of information at the corners, this matrix has exactly four zero singular values or
eigenvalues. The corresponding linear system can be solvedafter arbitrarily cor-
recting singular values or eigenvalues of the influence matrix; see [35,36] for more
details.

The condition numberC of the corrected matrix depends on the spatial resolution
N and the maximal order of derivatives used to express the boundary conditions. In
our case of a Neumann boundary condition and a resolutionN in each direction, the
condition number scales asC = O (N2). Fitting the condition numbers computed
for N ∈ [2, 32] with a parabola (see fig. 5.3) yields a formula for predictingthe
condition number for an arbitrary resolution:

C(N) = 3.58N2 − 18.16N + 59 (34)

It can then be deduced from (34) that a reasonably conditioned matrix withC < 107

is obtained for a spatial resolution as high asO(1000). The method can therefore
be applied to problems where small-scale field features require use of high spatial
resolution.
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6 Generalizations

We now discuss the applicability of this method to other geometries, problems,
and spatial discretizations. The decomposition into interior particular and homoge-
neous functions and exterior homogeneous functions described in section 2 is, of
course, completely general and not related to any particular spatial discretization.
The method described in section 3.1 for constructing the exterior harmonic func-
tions relies on the Chebyshev-Chebyshev discretization ofthe rectangle which is
widely used since the Chebyshev polynomials are optimal approximants of smooth
functions. This property, as well as the straightfoward correspondence between in-
terior and exterior solutions, make the Chebyshev discretization especially suitable
for the construction of the exterior harmonic solutions as well. However, the method
is easily generalizable to other basis functionsfk(x) for the potential values, which
can be substituted into (25) in order to calculate the corresponding charge densi-
tiesσk(x), if dictated by the geometry or numerical method used for theinterior
problem.

In fact, since our real interest is in generating the complete set ofσk(x) necessary
to generate the complete set ofφk(x), rather than in calculating the specificσk(x)
corresponding to each particularfk(x), the only information really required in (26)
is the singularity1/π

√
1− x2. One may then allow the set ofσk’s to be the prod-

ucts of this singularity with the members of any appropriatebasis set of analytic
functions on the boundary in question.

In three dimensions, the fundamental Green’s function is

G(x,x′) =
1

4π

1

|x− x′| (35)

In an axisymmetric geometry with a Fourier representation of the azimuthal direc-
tion, all of the problems to be solved decouple according to Fourier mode. The
operation count would then scale linearly with the number ofazimuthal points or
Fourier modes. The elliptic problems in (6) would remain two-dimensional, and the
integral equations equivalent to (24) would remain one-dimensional.

This method can also be applied to other elliptic problems orto parabolic problems.
As stated in section 1, our motivation for developing this method is to apply it to
the magnetohydrodynamic equations (1)-(3), in which (1) isa parabolic equation.
A general parabolic problem may be written as:

∂tΦ = ∆Φ + F(Φ, ρ) (36)

whereF may include nonlinear and/or time-dependent source terms.First-order
implicit temporal discretization of (36) results in the inhomogeneous Helmholtz
equation:

(I − δt∆)Φ(t + δt) = F (37)
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whereF may depend on previous values ofΦ. This Helmholtz operator(I −
δt∆) can replace the Laplacian in (4) and (6). It is known that replacement of
the Helmholtz equation by a boundary integral equation can lead to singulari-
ties for certain values of the wavenumber (herei/

√
δt); a large body of work,

e.g. [37,38,39,40,41], addresses this problem. However, in the magnetohydrody-
namic case of a conducting fluid surrounded by an exterior vacuum, no such dif-
ficulties would be introduced, since the exterior problem remains governed by
Laplace’s equation. More complicated vectorial operatorsmay appear, as occur in
the Navier-Stokes or magnetohydrodynamic equations.

7 Comparison with other approaches

We mention here some other techniques that have been used to solve exterior prob-
lems or to match interior and exterior domains. Spectral methods can be combined
with various transformations and mappings. The inner region can be surrounded by
a sphere, and the outer domain decomposed into the region inside and outside the
sphere. The exterior domain can be mapped into an interior domain via a1/r map-
ping [6,42,43]; spectral methods can then be used to treat either or both domains.
The region exterior to one or more spheres has been mapped to the interior of a
rectangle [44] or a pentangular [45] region rotated about anaxis, and Chebyshev-
Fourier expansions used to solve elliptic equations arising in the study of black
holes in general relativity. A smooth boundary can be parameterized by angle, and
the boundary values represented as a series of trigonometric functions or spherical
harmonics [22,39,40,41,42,43,46,47,48]. Our method differs from these in that a
Chebyshev approximation is used to represent the boundary values on each seg-
ment of a non-smooth boundary, and an analytic formula is used to calculate the
surface density which exactly yields this Chebyshev approximation.

Conformal mapping is another technique which can be used to calculate interior or
exterior harmonic functions. The Riemann mapping theorem guarantees the exis-
tence of a conformal transformation from the interior or exterior of a simply con-
nected domain into the interior or exterior of a unit disk; its proof is, however,
non-constructive, and does not explicitly derive the transformation. For some ge-
ometries, including the exterior of a rectangle, an analytical formula can be derived
[49]. For polygon-bounded regions with piecewise-constant boundary conditions,
the Schwarz-Christoffel [50] mapping has proved to be a veryrobust tool, applied
to problems arising in magneto- and electro- statics, potential flows, inverse prob-
lems and many other fields.

Our influence matrix approach relies on calculating harmonic functions with ar-
bitrary boundary data, for which conformal mapping is much more problematic.
More general conformal mappings are often computed by solving Symm’s or Car-
leman’s equation (24) numerically on the domain boundary, making this approach
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similar in terms of numerical cost and precision to boundaryintegral equation meth-
ods. It is interesting to note that, for domains including corners, the Chebyshev ap-
proximation is especially well suited, guaranteeing superconvergence of the map-
ping function [33].

8 Conclusion

As a test case for the magnetohydrodynamic equations, we have developed a method
for solving the two-dimensional Poisson equation in a bounded domain, where the
solution satisfies matching conditions with a harmonic potential outside the do-
main. The method solves only the interior problem and determines the boundary
conditions ensuring smooth matching with the exterior solution. The essential ele-
ment of this approach is construction of a basis of harmonic functions which repre-
sent the near-boundary exterior solutions uniformly. Thisbasis is used to construct
the influence matrix which serves to impose the coupled boundary conditions be-
tween the interior and exterior solutions. The method is numerically reasonably
well conditioned and can be used for quite high spatial resolutions. For a spectral
solver, this method guarantees exponential convergence.

Instead of corresponding to point sources on the boundary, each exterior harmonic
solution corresponds to a spectral basis function. The mostcostly process – the
construction of a basis of exterior harmonic functions – depends only on geometry
and spatial resolution. Once the basis is computed it can be stored and used for any
computation using the same resolution and domain shape. When used as a prepro-
cessing step for time-dependent simulations, the cost of constructing the exterior
harmonic basis is negligible compared to that of thousands of time steps.

Since cylindrical coordinates have one periodic direction, it should be possible to
apply this method separately to each of the Fourier modes, treated individually as
two-dimensional problems. The extension of this method to the MHD equations in
a finite cylindrical geometry is currently under investigation.
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[3] M. B OURGOIN, L. MARIÉ, F. PETRELIS, C. GASQUET, A. GUIGON, J.B. LUCIANI ,
M. M ULIN , F. NAMER, J. BURGETE, A. CHIFFAUDEL, F. DAVIAUD , S. FAUVE,

17



P. ODIER & J.F. PINTON Magnetohydrodynamics measurements in the von Kármán
sodium experiment, Phys. Fluids14, 3046 (2002).

[4] C.B. FOREST, R.A. BAYLISS, R.D. KENDRICK, M.D. NORNBERG,
R. O’CONNELL & E.J. SPENCE, Hydrodynamic and numerical modeling of a
spherical homogeneous dynamo experiment, Magnetohydrodynamics38, 107 (2002).

[5] W.L. SHEW, D.R. SISAN, & D.P. LATHROP, Mechanically forced and thermally
driven flows in liquid sodium, Magnetohydrodynamics38, 121 (2002).

[6] S.A. JEPPS, Numerical models of hydromagnetic dynamos, J. Fluid Mech.67, 625
(1967).

[7] M. D UDLEY & R. JAMES, Time-dependent kinematic dynamos with stationary flows,
Proc. Roy. Soc. London A425, 407–429 (1989).

[8] G. A. GLATZMAIER AND P. H. ROBERTS A three-dimensional self-consistent
computer simulation of a geomagnetic field reversal, Nature337, 203 (1995).

[9] A. T ILGNER, A kinematic dynamo with a small scale velocity field, Phys. Rev.A 226,
75–79 (1997).

[10] R. HOLLERBACH, A spectral solution of the magneto-convection equations in
spherical geometry, Int. J. for Num. Meth. in Fluids32, 773–797 (2000).

[11] A. P. WILLIS & C.F. BARENGHI, A Taylor-Couette Dynamo, Astronomy &
Astrophysics393, 339–343 (2002).

[12] H. MATSUI & H. OKUDA , Development of a simulation code for MHD dynamo
processes using the GeoFEM platform, Intl. J. of Comp. FluidDyn. 18, 323–332
(2004).

[13] A. B. ISKAKOV, S. DESCOMBES& E. DORMY, An integro-differential formulation
for magnetic induction in bounded domains: boundary element-finite volume method,
J. Comput. Phys.7, 540–554 (2004).

[14] A. B. ISKAKOV & E. DORMY, On magnetic boundary conditions for non-spectral
dynamo simulations, Geophys. Astrophys. Fluid Dyn.99, 481–492 (2005).

[15] M. X U, F. STEFANI & G. GERBETH, The integral equation method for a steady
kinematic dynamo problem, J. Comput. Phys.196, 102–125 (2004).

[16] J.L. GUERMOND, R. LAGUERRE, J. LÉORAT & C. NORE, An interior penalty
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Kármán Flow in a Finite Cylinder Geometry, Ph.D. Thesis, Ecole Polytechnique, 2005.

[37] S. AMINI & S.M. K IRKUP, Solution of Helmholtz equation in the exterior domain by
elementary boundary integral methods, J. Comput. Phys.118, 208–221 (1995).

19

http://www.boundary-element-method.com


[38] D. GIVOLI & I. H ARARI, eds., Special Issue on Exterior Problems of Wave
Propagation, Comput. Methods Appl. Mech. Engrg.164, 1-266 (1998).

[39] K. GERDES & L. D EMKOWICZ, Solution of 3D-Laplace and Helmholtz
equations in exterior domains using hp-infinite elements, Comput. Methods
Appl. Mech. Engrg.137, 239–272 (1996).

[40] W.S. HWANG, A boundary spectral method for solving exterior acoustical problems
with hypersingular integrals, Int. J. Numer. Meth. Engng.44, 1775–1783 (1999).

[41] T.-C. LIN & Y. WARNAPALA -YEHIYA , The numerical solution of exterior
Neumann problem for Helmholtz’s equation via modified Green’s functions approach,
Computers and Mathematics with Applications47, 593–609 (2004).

[42] P. GRANDCLEMENT, S. BONAZZOLA , E. GOURGOULHON & J.-A. MARCK,
A multidomain spectral method for scalar and vectorial Poisson equations with
noncompact sources, J. Comput. Phys.170, 231–260 (2001).

[43] M.-C. LAI , Z. LI & X. L IN, Fast solvers for 3D Poisson equations involving
interfaces in a finite or the infinite domain, J. Comput. Appl.Math. 181, 106–125
(2006).
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