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Abstra
t

We propose here some new sampling algorithms for Path Sampling in the 
ase when

sto
hasti
 dynami
s are used. In parti
ular, we present a new proposal fun
tion for equilibrium

sampling of paths with a Monte-Carlo dynami
s (the so-
alled �brownian tube� proposal).

This proposal is based on the 
ontinuity of the dynami
s with respe
t to the random for
ing,

and generalizes all previous approa
hes when sto
hasti
 dynami
s are used. The e�
ien
y of

this proposal is demonstrated using some measure of de
orrelation in path spa
e. We also

dis
uss a swit
hing strategy that allows to transform ensemble of paths at a �nite rate while

remaining at equilibrium, in 
ontrast with the usual Jarzynski like swit
hing. This swit
hing is

very interesting to sample 
onstrained paths starting from un
onstrained paths, or to perform

simulated annealing in a rigorous way.

1 Introdu
tion

The behavior of many systems in the �elds of physi
s, 
hemistry and biology, is di
tated by rare

but important transitions between metastable states. Usually, only some lo
al exploration of the

metastable sets 
an be performed, and it is very di�
ult to study the transitions by resorting to

straightforward simulations - using for example mole
ular dynami
s or kineti
 Monte-Carlo. The

Transition Path Sampling (TPS) formalism, �rst proposed in [23℄ and further developped in [11℄

(see also [5, 13℄ for extensive reviews), is a strategy to sample only those paths that lead to a

transition. It also gives some information on the transition kineti
s, su
h as the rate 
onstant as

a fun
tion of time or the a
tivation energies [10℄. Re
ent pra
ti
al and theoreti
al developments

(su
h as Transition Interfa
e Sampling [34, 33℄) are still aiming at in
reasing the power of the

method. State of the art appli
ations of path sampling, su
h as [3℄, now involve as mu
h as 15, 000
atoms with paths as long as 10 ns.

Re
ently, relying on the Jarzynski formula [18, 19℄ (roughly speaking, an exponential average

over the works performed during the swit
hing from an initial to a �nal state), path sampling

te
hniques have also been used to 
ompute free energy di�eren
es more e�
iently [30, 36, 22℄ by

pre
isely enhan
ing the paths that have the larger weights (whi
h 
orrespond to the unlikely lower

work values).

Many path sampling studies (espe
ially TPS studies) have used deterministi
 dynami
s (Path

sampling in the NVE ensemble has already been thoroughly studied, see [13℄ for a review). How-

ever, path sampling with sto
hasti
 dynami
s is of great interest for nonequilibrium simulations [9℄.

Besides, some models are sto
hasti
 by nature (see e.g [1℄ where the authors 
onsider a model sys-

tem of protein pulling in impli
it solvent, and a 
hemi
al rea
tion simulated with kineti
 Monte

Carlo). Finally, we believe that there is room for improvement in the path sampling te
hniques

for sto
hasti
 dynami
s. We therefore restri
t ourselves to the sto
hasti
 setting in this study.
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To this date, the usual equilibrium sampling of paths with sto
hasti
 dynami
s is done either

with the usual shooting dynami
s inspired from the 
orresponding algorithm for deterministi


paths [13℄; or with the so-
alled "noise history" algorithm introdu
ed in [9℄, whi
h relies on the

des
ription of paths as a starting point and the sequen
e of random numbers used to generate the

traje
tory. It is one of our aims here to relate both strategies and generalize them by introdu
ing

a new way to propose paths: namely by generating random numbers 
orrelated with the ones

used to generate the previous path. When the 
orrelation is zero, the usual shooting dynami
s is

re
overed. When the 
orrelation is one everywhere ex
ept for some index along the path where it is

zero, the noise-history algorithm is re
overed. This generalization may be useful for example when

the dynami
s are too di�usive (Langevin dynami
s in the high fri
tion limit) sin
e the shooting

dynami
s are ine�
ient in this limit; or to enhan
e the de
orrelation of the paths generated using

the noise history algorithm.

We also 
onsider nonequilibrium sampling of paths, using some swit
hing dynami
s on paths [15℄,

inspired from the now well-known Jarzynski out-of-equilibrium swit
hing in phase-spa
e [18, 19℄.

This swit
hing 
an be performed whatever the underlying dynami
s on paths. It 
an be used to

transform a sample of un
onstrained paths to rea
tive paths (ending up in some given region).

This approa
h was already followed in [15℄, and allows to 
ompute rate 
onstants. However, the

�nal sample of paths is very degenerate, and 
annot be used as a reliable equilibrium sample of

rea
tive paths. In the same vein, one 
ould imagine doing simulated annealing on paths (simulated

tempering on paths has already been investigated in [31℄), in order to obtain typi
al transition

paths at temperatures where dire
t sampling is not feasible. However, unless the annealing pro
ess

is very slow, the �nal sample is usually not 
orre
tly distributed. We therefore also present the

appli
ation to path sampling of a birth/death pro
ess, the so-
alled "Intera
ting Parti
le System"

(IPS), already used in [26℄ in the �eld of mole
ular dynami
s to 
ompute regular phase spa
e prop-

erties. This methodology is widely used in the �elds of Quantum Monte Carlo [4, 25℄ or Bayesian

Statisti
s, where it is referred to as Sequential Monte Carlo [14℄. It allows, through some sele
tion

of the paths during the nonequilibrium swit
hing at a �nite rate, to pre
isely reequilibrate the

paths distribution at all times. Su
h a reequilibration is of paramount importan
e for the end

sample to be distributed a

ording to the 
anoni
al measure on paths. Besides, sin
e the sample

of paths follows the 
anoni
al distribution at all times, the properties of interest 
an be 
omputed

in a single simulation for a whole range of values. For example, the rate 
onstant 
ould be obtained

for a whole range of temperatures, whi
h allows to 
ompute the a
tivation energy following the

method presented in [10℄.

The paper is organized as follows. We �rst present the path ensemble in se
tion 2, and turn

to equilibrium sampling of paths in se
tion 3. We introdu
e in parti
ular in se
tion 3.3 the

"brownian tube" proposal fun
tion whi
h generalizes the previous algorithms for path sampling

with sto
hasti
 dynami
s, and 
ompare this new proposal fun
tions to the previous ones using some

two-level sampling indi
ators (for the lo
al sampling, see se
tion 3.4 where an abstra
t measure

of di�usion in path spa
e is introdu
ed). Finally, we present in se
tion 4 the swit
hing dynami
s

on paths, with the IPS extension enabling a reequilibration of the paths distribution at all times,

even when the swit
hing is done at a �nite rate (see se
tion 4.2).

2 The path ensemble with sto
hasti
 dynami
s

2.1 The 
anoni
al measure on dis
retized paths

We 
onsider a system of N parti
les, with mass matrix M = Diag(m1, . . . ,mN ), des
ribed by a


on�guration variable q = (q1, . . . , qN ), and a momentum variable p = (p1, . . . , pN). The dimension

of the spa
e is denoted by d, so that qi, pi ∈ R
d
for all 1 ≤ i ≤ N . We 
onsider sto
hasti
 dynami
s

of the form

dXt = b(Xt) dt+ΣdWt, (1)

where the variable Xt represents either the 
on�gurational part qt, or the full phase spa
e variables
(qt, pt). The fun
tion b is the for
e �eld, the matrix Σ is the magnitude of the random for
ing,
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and Wt is a standard Brownian motion (the dimension of Wt depending on the dynami
s used).

We restri
t ourselves in this study to the most famous sto
hasti
 dynami
s used in pra
ti
e,

namely the Langevin dynami
s

{

dqt = M−1 pt dt,
dpt = −∇V (qt) dt− γM−1pt dt+ σ dWt,

(2)

whereWt denotes a standard dN -dimensional Brownian motion, and with the �u
tuation-dissipation

relation σ2 = 2γ/β. In this 
ase, the variable x = (q, p) des
ribes the system and the energy is

given by the Hamiltonian E(x) = H(q, p) = V (q)+ 1
2p

TM−1p. Some studies (see e.g. [36℄) however

resort to the overdamped Langevin dynami
s

dqt = −∇V (qt) dt+

√

2

β
dWt,

in whi
h 
ase x = q and E(x) = V (q). The ideas presented in the sequel 
an of 
ourse be

straightforwardly extended to this 
ase.

In pra
ti
e, the dynami
s have to be dis
retized. Considering a time step ∆t and a traje
tory

length T = L∆t, a dis
rete traje
tory is then de�ned through the sequen
e

x = (x0, . . . , xL).

Its weight is

π(x) = Z−1
L ρ(x0)

L−1
∏

i=0

p(xi, xi+1), (3)

where ρ(x0) = Z−1
0 e−βE(x0)

is the Boltzmann weight of the initial 
on�guration, p(xi, xi+1) is

the probability that the system is in the state xi+1 
onditionally that it starts from xi, and ZL

is a normalization 
onstant. This 
onditional probability depends on the dis
retization of the

dynami
s used.

Denoting by 1A(x),1B(x) the indi
ator fun
tions of some sets A,B de�ning respe
tively the

initial and the �nal states, the probability of a given rea
tive path between the sets A and B is

then

πAB(x) = Z−1
AB1A(x0)ρ(x0)

L−1
∏

i=0

p(xi, xi+1)1B(xL). (4)

Transition Path Sampling [11, 13℄ aims at sampling the measure

1 πAB, using in parti
ular Monte-

Carlo moves of Metropolis-Hastings type.

2.2 Dis
retization of the dynami
s

We present here a possible dis
retization of the Langevin dynami
s, and the 
orresponding tran-

sition probability p(xi, xi+1). This dis
retization, 
alled �Langevin Impulse� [27℄, relies on an

operator splitting te
hnique, and is more appealing from a theoreti
al viewpoint than previous

dis
retizations (su
h as the BBK algorithm [6℄, or s
hemes proposed in [2℄). For parti
les of equal

masses (up to a res
aling of time, M = Id; the extension to the general 
ase is straightforward),

the numeri
al s
heme we use here reads [27℄:















pi+1/2 = pi −
∆t

2
∇V (qi),

qi+1 = qi + c1 pi+1/2 + U1,i,

pi+1 = c0 pi+1/2 −
∆t

2
∇V (qi+1) + U2,i,

(5)

1

Noti
e that the measure πAB ≡ π
L,∆t
AB

depends in fa
t expli
itely on the length of the paths, and of the time

steps used in pra
ti
e.
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with

c0 = exp(−γ∆t), c1 =
1− exp(−γ∆t)

γ
.

The 
entered gaussian random variables (U1,i, U2,i) with Uk,i = (u1
k,i, . . . , u

dN
k,i ) are su
h that

E
[

(ul
1,i)

2
]

= σ2
1 , E

[

(ul
2,i)

2
]

= σ2
2 , E

[

ul
1,i · u

l
2,i

]

= c12σ1σ2,

with

σ2
1 =

∆t

βγ

(

2−
3− 4e−γ∆t + e−2γ∆t

γ∆t

)

, σ2
2 =

1

β

(

1− e−2γ∆t
)

, c12σ1σ2 =
1

βγ

(

1− e−γ∆t
)2

.

In pra
ti
e, the random ve
tors (U1,i, U2,i) are 
omputed from standard gaussian random numbers

(G1,i, G2,i) with Gk,i = (g1k,i, . . . , g
dN
k,i ):

ul
1,i = σ1 g

l
1,i, ul

2,i = σ2

(

√

1− c212 g
l
2,i + c12 g

l
1,i

)

. (6)

We will always denote by G standard gaussian random ve
tors in the sequel, whereas the notation

U refers to non-standard gaussian random ve
tors.

Denoting by

d1 ≡ d1((qi+1, pi+1), (qi, pi)) =

∣

∣

∣

∣

qi+1 − qi − c1 pi + c1
∆t

2
∇V (qi)

∣

∣

∣

∣

,

d2 = d2((qi+1, pi+1), (qi, pi)) =

∣

∣

∣

∣

pi+1 − c0 pi +
∆t

2
(c0∇V (qi) + V (qi+1))

∣

∣

∣

∣

,

the 
onditional probability p((qi+1, pi+1), (qi, pi)) to be in the state xi+1 = (qi+1, pi+1) starting
from xi = (qi, pi) reads

p(xi+1, xi) = Z−1 exp

[

−
1

2(1− c212)

(

(

d1
σ1

)2

+

(

d2
σ2

)2

− 2c12

(

d1
σ1

)(

d2
σ2

)

)]

(7)

where the normalization 
onstant is Z =
(

2πσ1σ2

√

1− c212

)−d

.

3 Equilibrium sampling of the path ensemble

The most popular way to sample paths is to resort to a Metropolis-Hastings s
heme [20, 16℄.

Other approa
hes may be 
onsidered in some 
ases , see [13℄ for a review of alternative approa
hes.

Those approa
hes however require some for
e evaluation (see e.g. [11℄ for a Langevin dynami
s

in phase spa
e in the 
ase of a toy two-dimensional problem). But the for
e exerted on a path is

proportional to ∇(lnπ), and is di�
ult to 
ompute in general sin
e it requires the evaluation of

se
ond derivatives of the potential in 
onventional phase spa
e.

We �rst re
all the general stru
ture of the Metropolis-Hastings algorithm, and pre
ise some

of its spe
i�ties, espe
ially when sampling rea
tive paths. We then re
all a usual te
hnique to

propose paths in se
tion 3.2, and generalize it in se
tion 3.3. We �nally propose some ben
hmarks

to 
ompare the e�
ien
ies of all these proposal fun
tions.

3.1 Metropolis-Hastings sampling te
hniques for path sampling

For a probability measure π on the dis
retized path ensemble (su
h as (3) or (4)), a Metropolis-

Hastings s
heme is de�ned as a Markov 
hain with transition probability kernel

P (x, dy) = r(x, y)P(x, y) dy +

(

1−

∫

r(x, y′)P(x, y′) dy′
)

δx, (8)
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where the density r(x, ·) is given by

r(x, y) = min

(

1,
π(y)P(y, x)

π(x)P(x, y)

)

. (9)

The fun
tion P is the proposal fun
tion (It is more 
ommonly 
alled 'generation probability' in

the �eld of mole
ular simulation). In words, the path y is proposed with probability P(x, y) from
x, and a

epted with probability r(x, y), reje
ted otherwise.

The measure π is by 
onstru
tion an invariant measure of the 
orresponding Markov 
hain,

and P is the transition kernel. For all n ≥ 0, Pn(x,A) is the probability to rea
h the set A in n
steps starting from x (re
all that Pn(x, ·) is a probability measure for all n ≥ 0). If for all x, y,
there exists n ≥ 1 su
h that Pn(x, y) > 0, and the 
hain is aperiodi
, then the Markov 
hain is

ergodi
 [21℄ (We refer to [7℄ for an introdu
tion to ergodi
ity issues for sampling s
hemes in the

�eld of Mole
ular Dynami
s).

The key point in all Metropolis-Hastings s
hemes is to �nd an e�
ient proposal fun
tion. In

parti
ular, there is always a trade-o� between the a

eptan
e and the de
orrelation rate of the

Markov 
hain. Indeed, if the a

eptan
e rate is low, the obtained sample is degenerate, and

not statisti
ally 
on�dent. On the other hand, to in
rease the a

eptan
e rate, more 
orrelated

iterations 
an be used. In this 
ase the method is more likely to remain trapped in lo
al minima,

and the numeri
al ergodi
ity rate may be slow. In many situations, the optimal a

eptan
e rate

is around 1/2. This heuristi
 rule 
an be made rigorous in some situations (see e.g. [24℄ where the

optimal a

eptan
e rate is shown to be 0.574 for a spe
i�
 Metropolis-Hastings s
heme based on a

Euler-Maruyama proposition, in the limit when the dimension of the phase-spa
e goes to in�nity).

In the 
ase of rea
tive paths, a study of the a

eptan
e rate asks to de
ompose the a

ep-

tan
e/reje
tion pro
edure in two su

essive steps: (i) the proposition of a path starting from A
and going to B; (ii) the a

eptan
e or reje
tion of su
h a path a

ording to the Metropolis-Hastings

s
heme. The di�
ult step is the �rst one, sin
e paths bridging A and B are only a (small) sub-

set of the whole path spa
e. In parti
ular, di�usive dynami
s su
h as the overdamped Langevin

dynami
s are often not 
onvenient to propose bridging paths; the situtation is however better for

dynami
s with some inertia, su
h as the Langevin dynami
s. When the paths are 
onstru
ted

using deterministi
 dynami
s (NVE 
ase), some studies have shown that the optimal a

eptan
e

rate is about 40 % for the 
ases under 
onsideration [13℄.

For path sampling with sto
hasti
 dynami
s, the "shooting" proposal fun
tion is 
lassi
ally

used [13℄. However, even for moderate values of the fri
tion 
oe�
ient γ in the Langevin dynami
s,

this proposal fun
tion may have low a

eptan
e rates, espe
ially if the dimension of the system is

high or/and the barriers to 
ross are large. An alternative way of proposing paths, relying on the

so-
alled �noise history� of the paths [9℄ (i.e. the sequen
e of random numbers used to generate

the traje
tory from a given starting point) is to 
hange only one of the random numbers used and

to keep the others. In this 
ase, a high a

eptan
e rate is expe
ted, but the paths generated may

be very 
orrelated.

A natural generalization of both approa
hes is to rely on the 
ontinuity of the dynami
s with

respe
t to the random noise for
ing, and to propose a new traje
tory by generating new random

numbers 
orrelated with the previous one. We 
all this approa
h the �brownian tube� proposal.

In this 
ase, an arbitrary a

eptan
e rate 
an be rea
hed, and there is room for optimizing the

parameters in order to really tune the e�
ien
y of the sampling.

3.2 The shooting proposal fun
tion

The shooting te
hnique des
ribed in [13, se
tion 3.1.5℄ 
onsists in the three following steps, starting

from a path xn
:

• sele
t an index 0 ≤ i ≤ L a

ording to dis
rete probabilities (wi)0≤i≤L (for example a

uniform probability distribution 
an be 
onsidered, unless one wants to in
rease trial moves

starting from 
ertain regions, for example the assumed transition region);
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• generate a new path (yi+1, . . . , yL) forward in time, using the sto
hasti
 dynami
s (2), with

a new set of independently and identi
ally distributed (i.i.d.) gaussian random numbers

(Un+1
j )i+1≤j≤L−1;

• generate a new path (yi−1, . . . , y0) ba
kward in time, using a dis
retized "ba
kward" sto
has-

ti
 dynami
s 
orreponding to (2), with a new set of i.i.d. gaussian random numbers (U
n+1

j )0≤j≤i−1;

• set xn+1 = y with probability r(xn, y), otherwise set xn+1 = xn
.

The �ba
kward� part of the traje
tory 
an be 
omputed using some ba
kward integration

(resorting to negative time steps), but the asso
iated s
hemes are often unstable [28℄. Therefore, a

more appropriate method is to resort to time reversal: The forward dynami
s are used to generate

the points yi from yi+1 in a time-reversed manner. This means that variables odd with respe
t

to time reversal (su
h as momenta) are inverted, and variables even with respe
t to time reversal

(su
h as positions) are kept 
onstant. Denoting by S the reversal operator, Syi = (qi,−pi) when
yi = (qi, pi) for Langevin dynami
s. The usual one-step integrator Φ∆t is then 
onsidered to

integrate the 
orresponding traje
tory:

yi = (S ◦ Φ∆t ◦ S)yi+1.

The time-reversed 
onditional probability p̄TR(yi+1, yi) to go from yi+1 to yi is

p̄(yi+1, yi) = p̄TR(yi+1, yi) = p(Syi+1,Syi).

We will always denote in the sequel the random numbers used in this pro
ess by Ū . The probability
of generating a path y = (y0, . . . , yL) from x, shooting forward and ba
kward from the i-th index,

is then

P(x, y) =

i−1
∏

j=0

p̄(yj+1, yj)

L
∏

j=i+1

p(yj−1, yj). (10)

Noti
e that the previous path x is present only through the term yi = xi. It then follows

r(x, y) = min (1,1A(y0)1B(yL)cexact(x, y)) ,

with

cexact(x, y) =
ρ(y0)

ρ(x0)

i−1
∏

j=0

p(yj , yj+1)

p̄(yj+1, yj)

p̄(xj+1, xj)

p(xj , xj+1)
. (11)

It is 
lear that, for reasonable dis
retizations, P 2(x, y) > 0 for all paths x, y of positive probabil-
ity (under mild assumptions on the potential) so that the 
orreponding Markov 
hain is irredu
ible.

Sin
e the measure (4) is left invariant by the dynami
s (this is a 
lassi
al property of Metropolis-

Hastings s
heme), the 
orresponding Markov 
hain is ergodi
 [21℄. Noti
e also that it is enough to


onsider only the forward or the ba
kward integration steps for the ergodi
ity to hold, as long as

both have a positive probability to o

ur (and that the possible asymmetry in the 
orresponding

probabilities is a

ounted for).

In some 
ases, the mi
ros
opi
 reversibility ratio

Rrev(yi, yi+1) =
ρ(yi) p(yi, yi+1)

ρ(yi+1) p̄(yi+1, yi)

is 
lose to 1, so that cexact(x, y) ≃ 1 and the a

eptan
e/reje
tion step is greatly simpli�ed.

However, this assumption should always be 
he
ked 
arefully using some preliminary runs sin
e it

is sometimes the 
ase that, even if the reversibility ratio Rrev is 
lose to 1 pointwise (with a good

approximation), it may be false that cexact(x, y) ≃ 1 along the path, espe
ially if the paths are

long (see [28℄ for a more systemati
 study of this point).
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3.3 The brownian tube proposal fun
tion

A path 
an also be 
hara
terized uniquely by the initial point x0 and the realization of the brownian

pro
ess Wt in (1). When dis
retized, the paths are then uniquely determined by the sequen
e of

standard gaussian random ve
tors U = (U0, . . . , UL−1) used to generate the traje
tories using (5)

(or any dis
retization of another SDE). This was already noted in [9℄, where a new traje
tory was

proposed sele
ting an index at random and 
hanging only the gaussian random number asso
iated

with this index.

Sin
e the traje
tory is 
ontinuous with respe
t to the realizations of the brownian motion, any


onvenient small perturbation of the sequen
e of random numbers is expe
ted to generate a path


lose to the initial path. Still denoting by p(xi, xi+1) the probability to generate a point xi+1 in

phase-spa
e starting from xi, using the gaussian random ve
tors Ui and Ūi obtained from standard

gaussian random ve
tors Gi and Ḡi, the transition probabilities for all 
lassi
al dis
retizations we


onsider 
an be writtten as

p(xi, xi+1) = Z−1 exp

(

−
1

2
GT

i ΓGi

)

, p̄TR(xi+1, xi) = Z−1 exp

(

−
1

2
ḠT

i ΓḠi

)

where Z is a normalization 
onstant. In the 
ase of the dis
retization (5) of the Langevin equation

for example, Γ = V TV where the matrix V allows to re
ast the 
orrelated gaussian random

ve
tors Ui = (U1,i, U2,i) (or Ūi) as standard and independent gaussian random numbers Gi (or

Ḡi) through the transformation Ui = V Gi (or Ūi = V Ḡi) with (see Eq. (7))

V =





σ−1
1 IddN 0
c12

σ1

√

1− c212
IddN

1

σ2

√

1− c212
IddN



 .

The idea is then to modify the standard gaussian ve
tors Gi by an amount 0 ≤ αi ≤ 1 as

G̃i = αiGi +
√

1− α2
iRi (12)

where Ri is a 2dN -dimensional standard gaussian random ve
tor. A fra
tion αi is asso
iated with

ea
h 
on�guration xi along the path. The usual shooting dynami
s is re
overed with αi = 0 for

all i (all the Brownian in
rements are un
orrelated with respe
t to the Brownian in
rements of

the modi�ed path), whereas the so-
alled 'noise history' algorithm proposed in [9℄ 
orresponds to

αi = 0 for all i but one i0 for whi
h αi0 = 1 (in this 
ase, all the Brownian in
rements but one are

re-used).

The dynami
s we propose looks like the shooting dynami
s: �rst, a position 0 ≤ k ≤ L along

the path is 
hosen at random; a 
oe�
ient αi is then asso
iated to ea
h 
on�guration along the

path, and a random gaussian ve
tor is proposed starting from the previous one using (12); �nally,

the 
orresponding traje
tory is integrated forward from the k-th 
on�guration to the L-th, and
time-reversed from the k-th to the �rst, and an a

eptan
e/reje
tion step is done a

ording to (9).

It only remains to pre
ise the proposition fun
tion P(x, y). Denoting by (Ḡx
i )0≤i≤k−1, (G

x
i )k≤i≤L−1

the standard random gaussian ve
tors asso
iated with the path x (the �rst ones arise from the

time reversed integration, the last ones from a usual foward integration), it follows

P(x, y) = wk

∏

0≤i≤k−1

pαi
(Ḡx

i , Ḡ
y
i )

∏

k≤i≤L−1

pαi
(Gx

i , G
y
i ),

where wk denotes the probability to 
hoose k as a shooting index, and

pα(G, G̃) =

(

1
√

2π(1− α2)

)d

exp

(

−
(G̃− αG)T (G̃− αG)

2(1− α2)

)

.

A tuning of the 
oe�
ients αi 
an then be performed in order to get the best trade-o� between

a

eptan
e (whi
h tends to 1 in the limit αi = 1 for all i) and de
orrelation (whi
h arises in the

7



limit αi → 0). An interesting idea 
ould be that α has to be 
lose to 1 in regions where the

generating moves have a 
haoti
 behavior (in the sense that even small perturbations to a path

lead to large 
hanges to this path), and 
ould be smaller in regions where the generating moves

have less impa
t on the paths (so as to in
rease the de
orrelation). From a more pra
ti
al point

of view, possible approa
hes to obtain su
h a trade-o� are to propose a fun
tional form for the


oe�
ients αi and to perform short 
omputations to optimize the parameters with respe
t to

some obje
tive fun
tion. Some simple 
hoi
es for the form of the 
oe�
ients αi, involving only

one parameter (so that the optimization is pro
edure is easier), are:

• 
onstant 
oe�
ients αi = α;

• set αi = 1 far from the shooting index, and αi 
lose to 0 near the shooting index. This 
an

be done by 
onsidering αi = min(1,K|i− k|) for some K ≥ 0.

From our experien
e, the e�
ien
y is robust enough with respe
t to the 
hoi
e of the de
orrelation


oe�
ients αi. Noti
e also that the se
ond fun
tional form allows to re
over both the usual

shooting and the noise-history algorithm, respe
tively in the regimes K → 0 and K ≥ 1. It is

therefore expe
ted that, optimizing the e�
ien
y with respe
t to K ∈ [0, 1], both the shooting

algorithm and the noise-history algorithm should be outperformed.

3.4 Intrinsi
 measure of e�
ien
y

Our aim here is to propose some abstra
t measure of de
orrelation between the paths, so as to

measure some di�usion in path spa
e. This approa
h 
omplements the 
onvergen
e tests based

on some observable of interest for the system. We refer to [13℄ for some examples of relevant

quantities to monitor (and appli
ations to path sampling with deterministi
 dynami
s), and to

se
tion 3.5 for some numeri
al results for sto
hasti
 dynami
s.

The intrinsi
 de
orrelation is related to the existen
e of some distan
e or norm on path spa
e.

Given a distan
e fun
tion d(x, y), the quantity

Dp(n) =

(∫ ∫

[d(y, x)]
p
Pn(x, dy) dπ(x)

)1/p

(with p ≥ 1) pre
ises the average amount of de
orrelation with respe
t to the distan
e d for the

measure π on the path ensemble. Noti
e that two averages are taken: one over the initial paths

x, and another over all the realizations of the Monte Carlo iterations starting from x (i.e. over all

the possible end paths y, weighted by the probability to end up in y starting from x). In pra
ti
e,

assuming ergodi
ity, Dp(n) is 
omputed as

Dp(n) = lim
N→+∞

(

1

N

N
∑

k=1

dp(xk+n, xk)

)1/p

.

Usual 
hoi
es for p are p = 1 or p = 2. This last 
ase is 
onsidered in [8℄ sin
e a di�usive behavior

over the spa
e is expe
ted with sto
hasti
 dynami
s, the most e�
ient algorithms having the

largest di�usion 
onstants limn→+∞

√

D2(n)/n.
It then only remains to pre
ise the distan
e d, whi
h depends on the system of interest. Some

simple 
hoi
es are to

• 
onsider a (weighted) norm || · || on the whole underlying phase-spa
e (for position or posi-

tion/momenta variables) and set

d(x, y) =

(

1

L

L
∑

i=0

ωi||xi − yi||
p′

)1/p′

with p′ ≥ 1;

8



• 
onsider only a proje
tion of the 
on�gurations onto some submanifold, su
h as the level sets

of a given (not ne
essarily 
ompletely relevant) rea
tion 
oordinate or order parameter ξ:

d(x, y) =

(

1

L

L
∑

i=0

ωi|ξ(xi)− ξ(yi)|
p′

)1/p′

,

with p′ ≥ 1.

• align the paths proje
ted onto some submanifold around a given value of the rea
tion 
oor-

dinate ξ:

d(x, y) =

(

1

2K + 1

K
∑

i=−K

ωi|ξ(xI+i)− ξ(yJ+i)|
p′

)1/p′

, (13)

with p′ ≥ 1, and I, J su
h that ξ(xI) = ξ(xJ ) = ξ∗ where ξ∗ is �xed in advan
e (for

example, if A is 
hara
terized by ξ = 0 and B by ξ = 1, then ξ∗ 
ould be 1/2). The integer

K represents some maximal window frame so that the distan
e is really restri
ted to a region

around the expe
ted or assumed transition point. In the 
ase when J − K, I − K < 0 or

J +K, I +K > L, the sum is a

ordingly restri
ted to less than 2K + 1 points.

The weights ωi should be non-negative in all 
ases.

A reasonable 
hoi
e for non-trivial systems is for example to use (13) with p′ = 1 and ωi = 1.
This approa
h ensures that the de
orrelations arising in the initial and �nal basins A and B are

dis
arded, and that only the de
orrelation arising near the transition region are important. In

this sense, we term this de
orrelation as 'lo
al de
orrelation' sin
e we measure how di�erent the

transition me
hanisms are. As a measure of 'global de
orrelation', we will 
onsider the transition

times. A numeri
al study based on those lines is presented in se
tion 3.5.

3.5 Numeri
al results

We test the di�erent proposal fun
tions on a model system of 
onformational 
hanges in�uen
ed

by solvation. We 
onsider a system 
omposed of N parti
les in a periodi
 box of side length l0,
intera
ting through the purely repulsive WCA pair potential [12, 29℄:

VWCA(r) =







4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

+ ǫ if r ≤ r0,

0 if r > r0,

where r denotes the distan
e between two parti
les, ǫ and σ are two positive parameters and

r0 = 21/6σ. Among these parti
les, two (labeled 1 and 2 in the following) are designated to form

a dimer while the remaining parti
les are solvent parti
les. Instead of the above WCA potential,

the intera
tion potential between the parti
les in the dimer is a double-well potential

VDW(r) = h

[

1−
(r − r0 − w)2

w2

]2

,

where h and w are two positive parameters. The potential VDW exhibits two energy minima, one


orresponding to the 
ompa
t state where the bond length of the solute dimer is r = r0, and one


orresponding to the stret
hed state where the bond length of the solute dimer is r(q) = r0 + 2w.
The energy barrier separating both states is h. Figure 1 presents a s
hemati
 view of the system.

We 
onsider the distan
e (13) for rea
tive paths (π ≡ πAB in this 
ase), using p = p′ = 1
and ωi = 1, ξ(q) = |q1 − q2|, ξ

∗ = r0 + w. We use the parameters L = 500∆t, β = 1, N = 16
parti
les of masses 1, l0 = 1.3, σ = 1, ǫ = 1, w = 0.5, ∆t = 0.0025, with the sets A = {ξ(q) ≤
r0 + 0.6w}, B = {ξ(q) ≥ rB = r0 + 1.4w} and averaging over a total of n = 5× 104 Monte Carlo

moves. We set K = 30 sin
e the typi
al length of the transitions is about 60 time steps with the

parameters used here.
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Figure 1: S
hemati
 views of the system, when the diatomi
 mole
ule is in the 
ompa
t state

(Left), and in the stret
hed state (Right). The intera
tion of the atoms forming the mole
ule is

des
ribed by a double well potential, all the other intera
tions are of WCA form.

h 5 10 15

Shooting 24.4 18.1 15.2

Noise history 96.7 85.7 81.2

Brownian tube (αi = 0.8) 47.2 48.1 33.0

Table 1: A

eption rate (%) as a fun
tion of h for the three proposal fun
tions 
onsidered.

We also 
onsider the 
orrelation in the transition times. We denote by τ(x) the transition

index of some path x. Here, those indexes τ are su
h that ξ(qτ∆t) = ξ∗. The 
orrelation fun
tion

for this observable is therefore, in the 
ase of rea
tive paths,

C(n) =

∫ ∫

(τ(y) − 〈τ〉πAB
)(τ(x) − 〈τ〉πAB

)Pn(x, dy) dπAB(x)
∫

(τ(x) − 〈τ〉πAB
)2 dπAB(x)

,

with 〈τ〉πAB
=
∫

τ(x)dπAB(x) This observable is in some sense 
omplementary to the measure of

de
orrelation in the transition zone de�ned above sin
e it measures some global spatial de
orrela-

tion of the paths. In pra
ti
e, assuming ergodi
ity, C is approximated as

C(n) = lim
N→+∞

1

N

N
∑

k=1

τ(xn+k)τ(xk)−

(

1

N

N
∑

k=1

τ(xn+k)

)(

1

N

N
∑

k=1

τ(xk)

)

1

N

N
∑

k=1

τ(xk)2 −

(

1

N

N
∑

k=1

τ(xk)

)2 .

Figures 2 to 4 present some plots of D(n) and C(n) for h = 5, 10, 15, for the usual shooting

dynami
s, the noise-history algorithm, and the brownian tube proposal (with αi = 0.8 for all i).
The average a

eptan
e rates are also presented in Table 1. Noti
e that no shifting moves [13℄ are

used in order to 
ompare the intrinsi
 e�
ien
ies of the proposal fun
tions. It is likely that these

moves would help improving the de
orrelation rate of the sampling.

For the shooting algorithm, many paths are reje
ted so that the lo
al de
orrelation (measured

by D(n)) is rather poor, espe
ially at short algorithmi
 times and for high barriers (in any 
ases,

lower than for the brownian tube proposal). But when a path is a

epted, it is already very

de
orrelated from the previous one, so that the global de
orrelation (measured by C(n)) is indeed
de
reasing rapidly enough. For the noise-history algorithm, the pi
ture is somewhat inverted:

sin
e the a

eptan
e rate is very high, even for high barriers, the lo
al de
orrelation is quite

10
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Figure 2: Comparison of e�
ien
ies for di�erent Metropolis-Hastings proposal moves for h =
5. Left: Plot of the 
orrelation of the transition times C(n) (related to some global sampling

e�
ien
y). Right: Plot of D(n) (lo
al sampling e�
ien
y) for the brownian tube proposal with

α ≡ 0.8 (solid line), usual shooting dynami
s (dashed line), and noise history (dotted line).

.

0 10 20 30 40 50 60 70 80 90 100

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Iteration index n

T
ra

ns
iti

on
 ti

m
es

 a
ut

oc
or

re
la

tio
n 

C
(n

)

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Iteration index n

Lo
ca

l d
is

ta
nc

e 
D

(n
)

Figure 3: Comparison of e�
ien
ies for di�erent Metropolis-Hastings proposal moves for h = 10.
.

e�
ient, but the global de
orrelation is not sin
e small lo
al 
hanges make it di�
ult to 
hange

the global features of the paths. The brownian tube approa
h tries to balan
e the lo
al and global

de
orrelations. This is also re�e
ted by a more balan
ed a

eptan
e/reje
tion rate.

In 
on
lusion, the brownian tube proposal with the above 
orrelation fun
tion is the most

e�
ient sampling s
heme in the 
ase 
onsidered here. The e�
ien
y 
ould be further in
reased

by a more systemati
 tuning of the parameters of the 
orrelation fa
tors αi, possibly depending

on the shooting index k. In general, sin
e the usual proposal fun
tions are spe
i�
 
ases of the

brownian tube proposal fun
tion, it is expe
ted that there is always a parameter range su
h that

this new algorithm outperforms the previous ones.

4 (Non)equilibrium sampling of the path ensemble

The previous se
tion was dealing with equilibrium sampling of paths. However, when (free) energy

barriers in path spa
e are large, dire
t sampling of paths 
an be ine�
ient, sin
e the existen
e

of metastable path sets may 
onsiderably slow down the numeri
al 
onvergen
e. It is therefore

appealing to perform some kind of simulated annealing on paths. A regular simulated annealing

strategy would be to �rst sample paths at a higher temperature, and then to 
ool the sample

to the target temperature (see [31℄ for a simulated tempering version of su
h an idea). Rea
tive

paths 
an also be otained by 
onstraining progressively the paths to end up in B. This approa
h
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Figure 4: Comparison of e�
ien
ies for di�erent Metropolis-Hastings proposal moves for h = 15.
.

also has the ni
e feature that it does not ask for an initial guess to start sampling πAB. Finally,

a byprodu
t of su
h a swit
hing is the ratio of partition fun
tions in path spa
e

C(L∆t) =
ZAB(L∆t)

ZA(L∆t)
, (14)

where ZA, ZAB are su
h that

πA(x) = ZA(L∆t)−1
1A(x0)ρ(x0)

L−1
∏

i=0

p(xi, xi+1),

and

πAB(x) = ZAB(L∆t)−1
1A(x0)ρ(x0)

L−1
∏

i=0

p(xi, xi+1)1B(xL)

are probability measures. The fun
tion C in (14) has to be 
omputed at least on
e to obtain rate


onstants in pra
ti
e [13℄. The asso
iated free-energy di�eren
e in path spa
e is ∆FA→AB(L∆t) =
− ln(C(L∆t)).

We start this se
tion by re
alling the extension of the 
lassi
al swit
hing dynami
s for nonequi-

librium dynami
s in phase spa
e to nonequilibrium swit
hing between path ensembles [15℄. This

method is 
onvenient to 
ompute free energy di�eren
es, but the �nal sample of paths obtained

is very degenerate. We therefore present in se
tion 4.2 the appli
ation to path sampling of a

birth/death pro
ess introdu
ed in [25, 26℄, whi
h allows to keep the sample at equilibrium at

all times during the swit
hing. This equilibration may be important in some 
ases to 
ompute

the right free energy values [26℄, and allows in any 
ases to end up with a non-degenerate sam-

ple of paths and redu
e the empiri
al varian
e. We will fo
us in the sequel on swit
hing from


onstrained to un
onstrained paths, but an extension to simulated annealing (
ooling pro
ess) is

straightforward.

4.1 Swit
hing between ensembles of paths

We present in this se
tion the approa
h of [15℄, where the swit
hing from un
onstrained to 
on-

strained path ensembles is done by enfor
ing progressively the 
onstraint on the end point of

the path over a time interval [0, T ]. The 
onstraint is usually parametrized using some order

parameter. This order parameter is the same as the one used for usual 
omputation of rea
tion

rates in the TPS framework (and even for more advan
ed te
hniques su
h as Transition Interfa
e

Sampling (TIS) [34, 33℄). The point is that this approximate order parameter needs not to be a

�good� rea
tion 
oordinate (or a 
omplete one) sin
e the general path sampling approa
h should

12



help to get rid of some problems arising from a wrong 
hoi
e of order parameter (see e.g [32℄ for

a re
ent study on this topi
).

Assuming an order parameter is given, we 
an 
onsider a swit
hing s
hedule λ = (λ0, . . . , λn)
su
h that λ0 = 0 and λn = 1 and a family of fun
tions hλ su
h that

h0 = 1, h1 = 1B.

We also introdu
e the family of measures asso
iated with the fun
tions hλ:

πλ(x) = Z−1
L,λ1A(x0)ρ(x0)

L−1
∏

i=0

p(xi, xi+1)hλ(xL). (15)

We omit in the sequel the expli
it dependen
e of the partition fun
tions Z on L and ∆t. An

energy Eλ(x) 
an then formally be asso
iated to a path x as

πλ(x) = Z−1
L,λe

−Eλ(x).

The aim is to sample from π1 ≡ πAB, whi
h is usually a di�
ult task, and sometimes not dire
tly

feasible. It may be easier to use a sample of π0 = πA (whi
h is mu
h easier to obtain), and to

transform it through some swit
hing dynami
s into a weighted sample of π1. Starting from a path

xk,0
, the weight fa
tor for a resulting path xk,n

is of the form e−Wk,n

where W k,n
is the work

exerted on an un
onstrained path to 
onstrain it to end in B. We now pre
ise the way the work

is 
omputed.

Consider an un
onstrained initial path x0 = (x0
0, . . . , x

0
L) sampled a

ording to π0, and a

dis
rete s
hedule (λ0, . . . , λn). The dynami
s in path spa
e is as follows:

Algorithm 4.1 (See Ref. [15℄) Starting from W 0 = 0 and m = 0,

• Repla
e λm
by λm+1

;

• Update the work as Wm+1 = Wm + Eλm+1(xm)− Eλm(xm);

• Do a Monte Carlo path sampling move using a Metropolis-Hastings s
heme with the measure

πλm+1

(using for example the usual shooting moves with a Langevin dynami
s, or the Monte

Carlo move designed for path swit
hing presented in Appendix A), so that the 
urrent path

xm
is transformed into the new path xm+1

.

This pro
edure is repeated for independent initial 
onditions xk,0
, so that a sample of M end

paths (x1,n, . . . , xM,n) with weights (e−W 1,n

, . . . , e−WM,n

) is obtained. Besides, an estimation of

the rate 
onstant is given by the exponential average

CM (L∆t) = − ln

(

1

M

M
∑

k=1

e−Wk,n

)

,

and it 
an be shown that CM → C when M → +∞.

Sin
e the realizations of the swit
hing pro
edure are independent provided the initial 
onditions

are independent, the random variables {e−Wk,n

}k are i.i.d. A 
on�den
e interval 
an be obtained

for CM as

C−
M,σc

≤ CM ≤ C+
M,σc

, with C±
M,σc

= − ln

(

1

M

M
∑

k=1

e−Wk,n

± σc

√

VM

M

)

,

where the empiri
al varian
e is

VM =
1

M

M
∑

k=1

(

e−Wk,n

−
1

M

M
∑

l=1

e−W l,n

)2

.
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A 
on�den
e interval on the free energy di�eren
e is then

− lnC−
M,σc

≤ ∆FA→AB ≤ − lnC+
M,σc

.

For example, the 95 % 
on�den
e interval 
orresponds to σc = 1.96.

Of 
ourse, it may the 
ase that the varian
e of the work distribution is large, so that only

very few paths are relevant (and the 
on�den
e interval for the rate 
onstant is large). Therefore,

most 
omputational e�ort is dis
arded in the end. A method enabling an on the �y sorting out of

the irrelevant would be an interesting improvement of the method. Su
h a pro
edure 
ould also


on
entrate the e�orts on important transition tubes. The Intera
ting Parti
le Systems (IPS),

already used in the 
ontext of nonequilibrium free energy di�eren
es [26℄, is su
h an approa
h.

4.2 Enhan
ing the number of relevant paths

We present here an extension of a birth/death pro
ess, introdu
ed for equilibrating a simulated

annealing pro
ess done at �nite rate (and therefore out of equilibrium), to the 
ase of path sam-

pling. This pro
edure 
an be seen as a time 
ontinuous resampling, and avoids the degenera
y of

the paths weights (see also the related population Monte-Carlo algorithms [17℄). The idea of IPS

is to swit
h several paths in parallel, and to atta
h exponentially distributed birth and death times

to ea
h path. The death time of the path is de
reased when the work exerted on it is higher than

the average work; when this time is zero, a new exponentially distributed death time is generated,

the path is suppressed, and repla
ed by another path pi
ked up at random among the other paths.

The birth time of the path is de
reased when the work exerted on it is lower than the average

work; when this time is zero, a new exponentially distributed birth time is generated, another path

pi
ked up at random is suppressed, and is repla
ed by the path giving birth. In all 
ases (birth or

death), the works atta
hed to a path are kept. We refer to [26℄ for a proof of the 
onsisten
y of

the method.

Algorithm 4.2 Consider an initial distribution (x1,0, . . . , xM,0) generated from π0. Generate

independent times τk,b, τk,d from an exponential law of mean 1. Consider two additional variables

Σk,b,Σk,d
per repli
a, initialized at 0.

• Repla
e λm
by λm+1

;

• Update the works as W k,m+1 = W k,m + ∆Ek,m = W k,mEλm+1(xk,m) − Eλm(xk,m), and


ompute the mean work update ∆E
m

= M−1
∑

1≤k≤M ∆Ek,m
;

• (Di�usion step) Do a Monte Carlo path sampling move using a Metropolis-Hastings s
heme

with the measure πλm+1
, so that xk,m

is transformed into xk,m+1
.

• (Birth/death pro
ess) Update the variables Σk,b
and Σk,d

as

Σk,b = Σk,b + β(∆E
m
−∆Ek,m)−,

and

Σk,d = Σk,b + β(∆E
m
−∆Ek,m)+.

(Death) If Σk,d ≥ τk,d, sele
t an index m ∈ {1, . . . ,M} at random, and repla
e the k-th path

by the m-th path. Generate a new time τk,d from an exponential law of mean 1, and set

Σk,d = 0;

(Birth) If Σk,b ≥ τk,b, sele
t an index m ∈ {1, . . . ,M} at random, and repla
e the m-th

path by the k-th path. Generate a new time τk,b from an exponential law of mean 1, and set

Σk,b = 0;
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M n Ba
kward Forward IPS (forward)

2000 2000 4.83 (4.61-5.02) 5.43 (5.28-5.61) 4.82 (4.78-5.85)

2000 5000 5.34 (5.04-5.58) 5.41 (5.32-5.50) 5.19 (5.16-5.23)

2000 10000 5.45 (5.32-5.58) 5.40 (5.34-5.46) 5.40 (5.36-5.43)

2000 15000 5.42 (5.35-5.49) 5.40 (5.35-5.45) 5.45 (5.42-5.48)

Table 2: Free energy di�eren
es ∆FA→AB 
omputed for di�erent swit
hing lengths n, using a

sample of M = 2000 paths. The results are presented under the form "CM (C−
M,σc

−C+
M,σc

)" with
σc = 1.96 (the value 
orresponding to a 95 % 
on�den
e interval).

Then, ea
h path has weight 1 in the end, and the �nal sample (x1,n, . . . , xM,n) is distributed
a

ording to π1 ≡ πAB. In this 
ase, an estimation of the rate 
onstant is given by the simple

average

CM (L∆t) =
1

M

M
∑

k=1

W k,n,

and it 
an be shown that CM → C when M → +∞. A 
on�den
e interval for the free energy

di�eren
e 
an be obtained as in se
tion 4.1 as

CIPS,−
M,σc

≤ ∆F1→AB ≤ CIPS,+
M,σc

, with CIPS,±
M,σc

=
1

M

M
∑

k=1

W k,n ± σc

√

V IPS
M

M
,

the empiri
al varian
e being

V IPS
M =

1

M

M
∑

k=1

(

W k,n −
1

M

M
∑

l=1

W l,n

)2

.

4.3 Numeri
al results

We 
ompute here the free energy di�eren
es while 
onstraining paths to for the WCA model

system introdu
ed in se
tion 3.5. This is done either with plain nonequilibrium swit
hing, or

with the IPS equilibration. Let us noti
e that the energy is �xed in [15℄ while we rather have to

�x the temperature in the sto
hasti
 setting, so that a straightforward 
omparison of the results

is not possible. We set β = 1 in the sequel. The other parameters are the same as in [15℄:

N = 9 parti
les, h = 6, σ = 1, ǫ = 1, the parti
le density ρ = 0.6σ−2
, w = 0.25, and the sets

A = {ξ(q) ≤ ξA = 1.3σ}, B = {ξ(q) ≥ ξB = 1.45σ}. The traje
tory length is L = 320∆t and
∆t = 0.0025, so that L∆t = 0.8(mσ2/ǫ)1/2.

We perform a total of n MC moves (using the brownian tube proposal fun
tion (with αi =
α = 0.8 for all 0 ≤ i ≤ L− 1). The fun
tion hλ is the one given in [15℄:

hλ(q) = e−λK(1−1B(q))(ξB−ξ(q))

with K = 100. The swit
hing s
hedule is λi = (i/n)2.
A typi
al free energy di�eren
e pro�le is presented in Figure 5 for M = 2000 and n = 10000,

as well as the asso
iated weights for the plain nonequilibrium swit
hing. These weights are the

Jarzynski weights renormalized by the total weight (in order to de�ne a probability distribution):

wk =
e−Wk,n

∑M
l=1 e

−W l,n
. (16)

Noti
e that the sample is very degenerate sin
e very many paths have negligible weights, and the

relevant paths are exponentially rare. Re
all also that the paths all have weight 1 with the IPS

algorithm.
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Some free energy di�eren
es are presented in Table 2 for di�erent values of n (keepingM �xed).

The swit
hings are slow enough when the 
on�den
e intervals for free energy di�eren
es 
omputed

by 
onstraining paths agree ('forward' swit
hing) overlap with 
on�den
e intervals for free energy

di�eren
es obtained by starting from a sample of 
onstrained paths and removing progressively the


onstraint ('ba
kward' swit
hing). This is the 
ase here for n = 5000, 10000, 15000 (but not when
n = 2000). The results show that IPS agrees with the usual Jarzynski swit
hing, the 
on�den
e

interval on the results being however lower.
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Figure 5: Left: Free energy pro�le for a forward swit
hing, 
omputed for M = 2000 and n = 104,
using a plain nonequilibrium swit
hing. Right: Histogram of the weights wk of the �nal sample

as given by (16).

We also present in Figure 6 a �nal sample 
omputed using a quite fast swit
hing (n = 1000)
with a small sample of paths (M = 100). Noti
e that all the 100 paths generated with the IPS

swit
hing are rea
tive, in 
ontrast with the paths generated by a straightforward swit
hing in the

Jarzynski way. Besides, as a 
onsequen
e of the degenera
y of paths, only 8 paths in 100 have

a signi�
ant weight (larger than 0.05 when normalized by the total weight, as given by (16)).

This simple example shows why it is di�
ult to 
ompute averages over the �nal sample of paths

when performing plain nonequilibrium swit
hing, and why it may be interesting to resort to some

sele
tion pro
ess to prevent su
h a degenera
y.

In agreement with a previous study [26℄, the results show that the IPS algorithm allows to

redu
e the varian
e on the estimates and to end up the simulation with a well-distributed and

non-degenerate sample, provided the swit
hing is slow enough.

5 Con
lusion and prospe
ts

In 
on
lusion, we have presented here some new algorithms for path sampling with sto
hasti


dynami
s, either equilibrium sampling (wi
h 
an be used for the 
omputation of free energy di�er-

en
es, or rea
tion rates), or nonequilibrium sampling (whi
h allows to perform simulated annealing

in a rigorous manner instead of performing simulated tempering; or to swit
h from a sample of un-


onstrained paths to a sample of 
onstrained paths, and 
ompute the asso
iated ratio of partition

fun
tions).

The brownian tube proposal used for equilibrium sampling is a simple generalization of the

previous approa
hes, and 
an therefore always be used as a shooting algorithm with only minor

modi�
ations to existing TPS algorithms. A systemati
 
riterion for setting the 
orrelation fa
tors

{αi}i would be to 
onsider simple analyti
al forms as proposed at the end of se
tion 3.3, and 
hoose

{αi}i to obtain balan
ed a

eptan
e/reje
tion rates or, when some spe
i�
 observable has to be


omputed, to optimize the parameters to obtain the best 
onvergen
e results (on some preliminary
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Figure 6: Comparison, for a nonequilibrium swit
hing of paths for M = 100 systems in n = 1000
steps without (Left) or with IPS (Right). Only the paths having a weight greater than 0.05 are

plotted in solid lines when plain nonequilibrium swit
hing is used (the other paths are plotted in

dotted lines).


omputations). However, for simulations of large systems using long paths, the brownian tube

approa
h may be impossible to use be
ause of the limited numeri
al pre
ision and the 
haoti


behavior of the system: indeed, starting from a given path, it is not 
lear whether this path 
an

be re
overed by �rst 
omputing the random numbers asso
iated with the traje
tory, and then

integrating this traje
tory again starting from the initial point.

The equilibration of the nonequilibrium swit
hing dynami
s is very intesting to redu
e the

varian
e of free energy 
omputations when swit
hing from un
onstrained to 
onstrained paths, or

to obtain well-distributed ensemble of paths in the end (whi
h is of paramount importan
e for

the 
orre
tness of a simulated annealing pro
edure for example). However, the swit
hing still has

to be done slowly enough and using a number of repli
as large enough. On
e again, this may be

problemati
 for very large systems.

It would be interesting now to extend the swit
hing pro
edure to TIS [34, 33℄, where the length

of paths is not 
onstant, but whi
h is naturally sequential in the way 
omputations are done in

pra
ti
e: indeed, the �ux through the next intermediate interfa
e is 
omputed using a sample of

paths 
rossing the previous interfa
e (this is the major di�eren
e with the forward �ux te
hniques

of [1℄ where only points on the previous interfa
e are kept).
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Appendix A: Spe
i�
 Monte-Carlo moves for swit
hing from

un
onstrained to 
onstrained path ensembles

When an interpolating fun
tion hλ appearing in (15) (or, equivalently, some order parameter ξ)
is known, it is possible to in
rease the likeliness of the end point of the traje
tory by performing

a move on the last 
on�guration in the dire
tion opposite to ∇hλ(q) while keeping the random

numbers used for the transitions. These moves should of 
ourse be employed with other MC
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moves, espe
ially MC moves relying on some traje
tory generation, in order to relax the shift

toward higher values of hλ or ξ.
More pre
isely, using for example an overdamped Langevin dynami
s to update the end 
on�g-

uration, the asso
iated Metropolis-Hastings Monte-Carlo elementary step is, starting from a path

x for a parameter λ (in the Langevin dynami
s setting):

Algorithm 5.1 Starting from a path x = (x0, . . . , xL),

• Compute the sequen
e of 2d-dimensional noises (Ūi)0≤i≤L−1 asso
iated with the ba
kward

(time-reversed) integration from xL to x0;

• Compute a �nal 
on�guration as yL = xL + δλ∇ξ(q) + (2δλ/β)
1/2 G where G is a dN -

dimensional random gaussian ve
tor;

• Integrate the path ba
kward (time-reversed), starting from yL, using the noises (Ūi)0≤i≤L−1

to obtain a path y = (y0, . . . , yL). The probabilty P(x, y) to obtain y starting from x is

therefore the probability to obtain yL from xL, so that

P(x, y) = pswitch(xL, yL) =

(

β

4πδλ

)d/2

exp

(

−
β

4δ2λ
|yL − xL − δλ∇ξ(q)|2

)

.

• A

ept the new path y with probability

r(x, y) = min

(

1,
π(y)P(y, x)

π(x)P(x, y)

)

= min

(

1,
1A(y0)ρ(y0)

1A(x0)ρ(x0)

pswitch(yL, xL)

pswitch(xL, yL)

)

.

The magnitude δλ 
an be made to depend a priori on λ. It is then adjusted in prati
e on the

�y by �rst 
omputing the values of the gradient for the endpoint of ea
h repli
a, in order to ensure

that the displa
ement is small enough.
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