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Abstrat

We propose here some new sampling algorithms for Path Sampling in the ase when

stohasti dynamis are used. In partiular, we present a new proposal funtion for equilibrium

sampling of paths with a Monte-Carlo dynamis (the so-alled �brownian tube� proposal).

This proposal is based on the ontinuity of the dynamis with respet to the random foring,

and generalizes all previous approahes when stohasti dynamis are used. The e�ieny of

this proposal is demonstrated using some measure of deorrelation in path spae. We also

disuss a swithing strategy that allows to transform ensemble of paths at a �nite rate while

remaining at equilibrium, in ontrast with the usual Jarzynski like swithing. This swithing is

very interesting to sample onstrained paths starting from unonstrained paths, or to perform

simulated annealing in a rigorous way.

1 Introdution

The behavior of many systems in the �elds of physis, hemistry and biology, is ditated by rare

but important transitions between metastable states. Usually, only some loal exploration of the

metastable sets an be performed, and it is very di�ult to study the transitions by resorting to

straightforward simulations - using for example moleular dynamis or kineti Monte-Carlo. The

Transition Path Sampling (TPS) formalism, �rst proposed in [23℄ and further developped in [11℄

(see also [5, 13℄ for extensive reviews), is a strategy to sample only those paths that lead to a

transition. It also gives some information on the transition kinetis, suh as the rate onstant as

a funtion of time or the ativation energies [10℄. Reent pratial and theoretial developments

(suh as Transition Interfae Sampling [34, 33℄) are still aiming at inreasing the power of the

method. State of the art appliations of path sampling, suh as [3℄, now involve as muh as 15, 000
atoms with paths as long as 10 ns.

Reently, relying on the Jarzynski formula [18, 19℄ (roughly speaking, an exponential average

over the works performed during the swithing from an initial to a �nal state), path sampling

tehniques have also been used to ompute free energy di�erenes more e�iently [30, 36, 22℄ by

preisely enhaning the paths that have the larger weights (whih orrespond to the unlikely lower

work values).

Many path sampling studies (espeially TPS studies) have used deterministi dynamis (Path

sampling in the NVE ensemble has already been thoroughly studied, see [13℄ for a review). How-

ever, path sampling with stohasti dynamis is of great interest for nonequilibrium simulations [9℄.

Besides, some models are stohasti by nature (see e.g [1℄ where the authors onsider a model sys-

tem of protein pulling in impliit solvent, and a hemial reation simulated with kineti Monte

Carlo). Finally, we believe that there is room for improvement in the path sampling tehniques

for stohasti dynamis. We therefore restrit ourselves to the stohasti setting in this study.
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To this date, the usual equilibrium sampling of paths with stohasti dynamis is done either

with the usual shooting dynamis inspired from the orresponding algorithm for deterministi

paths [13℄; or with the so-alled "noise history" algorithm introdued in [9℄, whih relies on the

desription of paths as a starting point and the sequene of random numbers used to generate the

trajetory. It is one of our aims here to relate both strategies and generalize them by introduing

a new way to propose paths: namely by generating random numbers orrelated with the ones

used to generate the previous path. When the orrelation is zero, the usual shooting dynamis is

reovered. When the orrelation is one everywhere exept for some index along the path where it is

zero, the noise-history algorithm is reovered. This generalization may be useful for example when

the dynamis are too di�usive (Langevin dynamis in the high frition limit) sine the shooting

dynamis are ine�ient in this limit; or to enhane the deorrelation of the paths generated using

the noise history algorithm.

We also onsider nonequilibrium sampling of paths, using some swithing dynamis on paths [15℄,

inspired from the now well-known Jarzynski out-of-equilibrium swithing in phase-spae [18, 19℄.

This swithing an be performed whatever the underlying dynamis on paths. It an be used to

transform a sample of unonstrained paths to reative paths (ending up in some given region).

This approah was already followed in [15℄, and allows to ompute rate onstants. However, the

�nal sample of paths is very degenerate, and annot be used as a reliable equilibrium sample of

reative paths. In the same vein, one ould imagine doing simulated annealing on paths (simulated

tempering on paths has already been investigated in [31℄), in order to obtain typial transition

paths at temperatures where diret sampling is not feasible. However, unless the annealing proess

is very slow, the �nal sample is usually not orretly distributed. We therefore also present the

appliation to path sampling of a birth/death proess, the so-alled "Interating Partile System"

(IPS), already used in [26℄ in the �eld of moleular dynamis to ompute regular phase spae prop-

erties. This methodology is widely used in the �elds of Quantum Monte Carlo [4, 25℄ or Bayesian

Statistis, where it is referred to as Sequential Monte Carlo [14℄. It allows, through some seletion

of the paths during the nonequilibrium swithing at a �nite rate, to preisely reequilibrate the

paths distribution at all times. Suh a reequilibration is of paramount importane for the end

sample to be distributed aording to the anonial measure on paths. Besides, sine the sample

of paths follows the anonial distribution at all times, the properties of interest an be omputed

in a single simulation for a whole range of values. For example, the rate onstant ould be obtained

for a whole range of temperatures, whih allows to ompute the ativation energy following the

method presented in [10℄.

The paper is organized as follows. We �rst present the path ensemble in setion 2, and turn

to equilibrium sampling of paths in setion 3. We introdue in partiular in setion 3.3 the

"brownian tube" proposal funtion whih generalizes the previous algorithms for path sampling

with stohasti dynamis, and ompare this new proposal funtions to the previous ones using some

two-level sampling indiators (for the loal sampling, see setion 3.4 where an abstrat measure

of di�usion in path spae is introdued). Finally, we present in setion 4 the swithing dynamis

on paths, with the IPS extension enabling a reequilibration of the paths distribution at all times,

even when the swithing is done at a �nite rate (see setion 4.2).

2 The path ensemble with stohasti dynamis

2.1 The anonial measure on disretized paths

We onsider a system of N partiles, with mass matrix M = Diag(m1, . . . ,mN ), desribed by a

on�guration variable q = (q1, . . . , qN ), and a momentum variable p = (p1, . . . , pN). The dimension

of the spae is denoted by d, so that qi, pi ∈ R
d
for all 1 ≤ i ≤ N . We onsider stohasti dynamis

of the form

dXt = b(Xt) dt+ΣdWt, (1)

where the variable Xt represents either the on�gurational part qt, or the full phase spae variables
(qt, pt). The funtion b is the fore �eld, the matrix Σ is the magnitude of the random foring,
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and Wt is a standard Brownian motion (the dimension of Wt depending on the dynamis used).

We restrit ourselves in this study to the most famous stohasti dynamis used in pratie,

namely the Langevin dynamis

{

dqt = M−1 pt dt,
dpt = −∇V (qt) dt− γM−1pt dt+ σ dWt,

(2)

whereWt denotes a standard dN -dimensional Brownian motion, and with the �utuation-dissipation

relation σ2 = 2γ/β. In this ase, the variable x = (q, p) desribes the system and the energy is

given by the Hamiltonian E(x) = H(q, p) = V (q)+ 1
2p

TM−1p. Some studies (see e.g. [36℄) however

resort to the overdamped Langevin dynamis

dqt = −∇V (qt) dt+

√

2

β
dWt,

in whih ase x = q and E(x) = V (q). The ideas presented in the sequel an of ourse be

straightforwardly extended to this ase.

In pratie, the dynamis have to be disretized. Considering a time step ∆t and a trajetory

length T = L∆t, a disrete trajetory is then de�ned through the sequene

x = (x0, . . . , xL).

Its weight is

π(x) = Z−1
L ρ(x0)

L−1
∏

i=0

p(xi, xi+1), (3)

where ρ(x0) = Z−1
0 e−βE(x0)

is the Boltzmann weight of the initial on�guration, p(xi, xi+1) is

the probability that the system is in the state xi+1 onditionally that it starts from xi, and ZL

is a normalization onstant. This onditional probability depends on the disretization of the

dynamis used.

Denoting by 1A(x),1B(x) the indiator funtions of some sets A,B de�ning respetively the

initial and the �nal states, the probability of a given reative path between the sets A and B is

then

πAB(x) = Z−1
AB1A(x0)ρ(x0)

L−1
∏

i=0

p(xi, xi+1)1B(xL). (4)

Transition Path Sampling [11, 13℄ aims at sampling the measure

1 πAB, using in partiular Monte-

Carlo moves of Metropolis-Hastings type.

2.2 Disretization of the dynamis

We present here a possible disretization of the Langevin dynamis, and the orresponding tran-

sition probability p(xi, xi+1). This disretization, alled �Langevin Impulse� [27℄, relies on an

operator splitting tehnique, and is more appealing from a theoretial viewpoint than previous

disretizations (suh as the BBK algorithm [6℄, or shemes proposed in [2℄). For partiles of equal

masses (up to a resaling of time, M = Id; the extension to the general ase is straightforward),

the numerial sheme we use here reads [27℄:















pi+1/2 = pi −
∆t

2
∇V (qi),

qi+1 = qi + c1 pi+1/2 + U1,i,

pi+1 = c0 pi+1/2 −
∆t

2
∇V (qi+1) + U2,i,

(5)

1

Notie that the measure πAB ≡ π
L,∆t
AB

depends in fat expliitely on the length of the paths, and of the time

steps used in pratie.
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with

c0 = exp(−γ∆t), c1 =
1− exp(−γ∆t)

γ
.

The entered gaussian random variables (U1,i, U2,i) with Uk,i = (u1
k,i, . . . , u

dN
k,i ) are suh that

E
[

(ul
1,i)

2
]

= σ2
1 , E

[

(ul
2,i)

2
]

= σ2
2 , E

[

ul
1,i · u

l
2,i

]

= c12σ1σ2,

with

σ2
1 =

∆t

βγ

(

2−
3− 4e−γ∆t + e−2γ∆t

γ∆t

)

, σ2
2 =

1

β

(

1− e−2γ∆t
)

, c12σ1σ2 =
1

βγ

(

1− e−γ∆t
)2

.

In pratie, the random vetors (U1,i, U2,i) are omputed from standard gaussian random numbers

(G1,i, G2,i) with Gk,i = (g1k,i, . . . , g
dN
k,i ):

ul
1,i = σ1 g

l
1,i, ul

2,i = σ2

(

√

1− c212 g
l
2,i + c12 g

l
1,i

)

. (6)

We will always denote by G standard gaussian random vetors in the sequel, whereas the notation

U refers to non-standard gaussian random vetors.

Denoting by

d1 ≡ d1((qi+1, pi+1), (qi, pi)) =

∣

∣

∣

∣

qi+1 − qi − c1 pi + c1
∆t

2
∇V (qi)

∣

∣

∣

∣

,

d2 = d2((qi+1, pi+1), (qi, pi)) =

∣

∣

∣

∣

pi+1 − c0 pi +
∆t

2
(c0∇V (qi) + V (qi+1))

∣

∣

∣

∣

,

the onditional probability p((qi+1, pi+1), (qi, pi)) to be in the state xi+1 = (qi+1, pi+1) starting
from xi = (qi, pi) reads

p(xi+1, xi) = Z−1 exp

[

−
1

2(1− c212)

(

(

d1
σ1

)2

+

(

d2
σ2

)2

− 2c12

(

d1
σ1

)(

d2
σ2

)

)]

(7)

where the normalization onstant is Z =
(

2πσ1σ2

√

1− c212

)−d

.

3 Equilibrium sampling of the path ensemble

The most popular way to sample paths is to resort to a Metropolis-Hastings sheme [20, 16℄.

Other approahes may be onsidered in some ases , see [13℄ for a review of alternative approahes.

Those approahes however require some fore evaluation (see e.g. [11℄ for a Langevin dynamis

in phase spae in the ase of a toy two-dimensional problem). But the fore exerted on a path is

proportional to ∇(lnπ), and is di�ult to ompute in general sine it requires the evaluation of

seond derivatives of the potential in onventional phase spae.

We �rst reall the general struture of the Metropolis-Hastings algorithm, and preise some

of its spei�ties, espeially when sampling reative paths. We then reall a usual tehnique to

propose paths in setion 3.2, and generalize it in setion 3.3. We �nally propose some benhmarks

to ompare the e�ienies of all these proposal funtions.

3.1 Metropolis-Hastings sampling tehniques for path sampling

For a probability measure π on the disretized path ensemble (suh as (3) or (4)), a Metropolis-

Hastings sheme is de�ned as a Markov hain with transition probability kernel

P (x, dy) = r(x, y)P(x, y) dy +

(

1−

∫

r(x, y′)P(x, y′) dy′
)

δx, (8)
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where the density r(x, ·) is given by

r(x, y) = min

(

1,
π(y)P(y, x)

π(x)P(x, y)

)

. (9)

The funtion P is the proposal funtion (It is more ommonly alled 'generation probability' in

the �eld of moleular simulation). In words, the path y is proposed with probability P(x, y) from
x, and aepted with probability r(x, y), rejeted otherwise.

The measure π is by onstrution an invariant measure of the orresponding Markov hain,

and P is the transition kernel. For all n ≥ 0, Pn(x,A) is the probability to reah the set A in n
steps starting from x (reall that Pn(x, ·) is a probability measure for all n ≥ 0). If for all x, y,
there exists n ≥ 1 suh that Pn(x, y) > 0, and the hain is aperiodi, then the Markov hain is

ergodi [21℄ (We refer to [7℄ for an introdution to ergodiity issues for sampling shemes in the

�eld of Moleular Dynamis).

The key point in all Metropolis-Hastings shemes is to �nd an e�ient proposal funtion. In

partiular, there is always a trade-o� between the aeptane and the deorrelation rate of the

Markov hain. Indeed, if the aeptane rate is low, the obtained sample is degenerate, and

not statistially on�dent. On the other hand, to inrease the aeptane rate, more orrelated

iterations an be used. In this ase the method is more likely to remain trapped in loal minima,

and the numerial ergodiity rate may be slow. In many situations, the optimal aeptane rate

is around 1/2. This heuristi rule an be made rigorous in some situations (see e.g. [24℄ where the

optimal aeptane rate is shown to be 0.574 for a spei� Metropolis-Hastings sheme based on a

Euler-Maruyama proposition, in the limit when the dimension of the phase-spae goes to in�nity).

In the ase of reative paths, a study of the aeptane rate asks to deompose the aep-

tane/rejetion proedure in two suessive steps: (i) the proposition of a path starting from A
and going to B; (ii) the aeptane or rejetion of suh a path aording to the Metropolis-Hastings

sheme. The di�ult step is the �rst one, sine paths bridging A and B are only a (small) sub-

set of the whole path spae. In partiular, di�usive dynamis suh as the overdamped Langevin

dynamis are often not onvenient to propose bridging paths; the situtation is however better for

dynamis with some inertia, suh as the Langevin dynamis. When the paths are onstruted

using deterministi dynamis (NVE ase), some studies have shown that the optimal aeptane

rate is about 40 % for the ases under onsideration [13℄.

For path sampling with stohasti dynamis, the "shooting" proposal funtion is lassially

used [13℄. However, even for moderate values of the frition oe�ient γ in the Langevin dynamis,

this proposal funtion may have low aeptane rates, espeially if the dimension of the system is

high or/and the barriers to ross are large. An alternative way of proposing paths, relying on the

so-alled �noise history� of the paths [9℄ (i.e. the sequene of random numbers used to generate

the trajetory from a given starting point) is to hange only one of the random numbers used and

to keep the others. In this ase, a high aeptane rate is expeted, but the paths generated may

be very orrelated.

A natural generalization of both approahes is to rely on the ontinuity of the dynamis with

respet to the random noise foring, and to propose a new trajetory by generating new random

numbers orrelated with the previous one. We all this approah the �brownian tube� proposal.

In this ase, an arbitrary aeptane rate an be reahed, and there is room for optimizing the

parameters in order to really tune the e�ieny of the sampling.

3.2 The shooting proposal funtion

The shooting tehnique desribed in [13, setion 3.1.5℄ onsists in the three following steps, starting

from a path xn
:

• selet an index 0 ≤ i ≤ L aording to disrete probabilities (wi)0≤i≤L (for example a

uniform probability distribution an be onsidered, unless one wants to inrease trial moves

starting from ertain regions, for example the assumed transition region);
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• generate a new path (yi+1, . . . , yL) forward in time, using the stohasti dynamis (2), with

a new set of independently and identially distributed (i.i.d.) gaussian random numbers

(Un+1
j )i+1≤j≤L−1;

• generate a new path (yi−1, . . . , y0) bakward in time, using a disretized "bakward" stohas-

ti dynamis orreponding to (2), with a new set of i.i.d. gaussian random numbers (U
n+1

j )0≤j≤i−1;

• set xn+1 = y with probability r(xn, y), otherwise set xn+1 = xn
.

The �bakward� part of the trajetory an be omputed using some bakward integration

(resorting to negative time steps), but the assoiated shemes are often unstable [28℄. Therefore, a

more appropriate method is to resort to time reversal: The forward dynamis are used to generate

the points yi from yi+1 in a time-reversed manner. This means that variables odd with respet

to time reversal (suh as momenta) are inverted, and variables even with respet to time reversal

(suh as positions) are kept onstant. Denoting by S the reversal operator, Syi = (qi,−pi) when
yi = (qi, pi) for Langevin dynamis. The usual one-step integrator Φ∆t is then onsidered to

integrate the orresponding trajetory:

yi = (S ◦ Φ∆t ◦ S)yi+1.

The time-reversed onditional probability p̄TR(yi+1, yi) to go from yi+1 to yi is

p̄(yi+1, yi) = p̄TR(yi+1, yi) = p(Syi+1,Syi).

We will always denote in the sequel the random numbers used in this proess by Ū . The probability
of generating a path y = (y0, . . . , yL) from x, shooting forward and bakward from the i-th index,

is then

P(x, y) =

i−1
∏

j=0

p̄(yj+1, yj)

L
∏

j=i+1

p(yj−1, yj). (10)

Notie that the previous path x is present only through the term yi = xi. It then follows

r(x, y) = min (1,1A(y0)1B(yL)cexact(x, y)) ,

with

cexact(x, y) =
ρ(y0)

ρ(x0)

i−1
∏

j=0

p(yj , yj+1)

p̄(yj+1, yj)

p̄(xj+1, xj)

p(xj , xj+1)
. (11)

It is lear that, for reasonable disretizations, P 2(x, y) > 0 for all paths x, y of positive probabil-
ity (under mild assumptions on the potential) so that the orreponding Markov hain is irreduible.

Sine the measure (4) is left invariant by the dynamis (this is a lassial property of Metropolis-

Hastings sheme), the orresponding Markov hain is ergodi [21℄. Notie also that it is enough to

onsider only the forward or the bakward integration steps for the ergodiity to hold, as long as

both have a positive probability to our (and that the possible asymmetry in the orresponding

probabilities is aounted for).

In some ases, the mirosopi reversibility ratio

Rrev(yi, yi+1) =
ρ(yi) p(yi, yi+1)

ρ(yi+1) p̄(yi+1, yi)

is lose to 1, so that cexact(x, y) ≃ 1 and the aeptane/rejetion step is greatly simpli�ed.

However, this assumption should always be heked arefully using some preliminary runs sine it

is sometimes the ase that, even if the reversibility ratio Rrev is lose to 1 pointwise (with a good

approximation), it may be false that cexact(x, y) ≃ 1 along the path, espeially if the paths are

long (see [28℄ for a more systemati study of this point).
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3.3 The brownian tube proposal funtion

A path an also be haraterized uniquely by the initial point x0 and the realization of the brownian

proess Wt in (1). When disretized, the paths are then uniquely determined by the sequene of

standard gaussian random vetors U = (U0, . . . , UL−1) used to generate the trajetories using (5)

(or any disretization of another SDE). This was already noted in [9℄, where a new trajetory was

proposed seleting an index at random and hanging only the gaussian random number assoiated

with this index.

Sine the trajetory is ontinuous with respet to the realizations of the brownian motion, any

onvenient small perturbation of the sequene of random numbers is expeted to generate a path

lose to the initial path. Still denoting by p(xi, xi+1) the probability to generate a point xi+1 in

phase-spae starting from xi, using the gaussian random vetors Ui and Ūi obtained from standard

gaussian random vetors Gi and Ḡi, the transition probabilities for all lassial disretizations we

onsider an be writtten as

p(xi, xi+1) = Z−1 exp

(

−
1

2
GT

i ΓGi

)

, p̄TR(xi+1, xi) = Z−1 exp

(

−
1

2
ḠT

i ΓḠi

)

where Z is a normalization onstant. In the ase of the disretization (5) of the Langevin equation

for example, Γ = V TV where the matrix V allows to reast the orrelated gaussian random

vetors Ui = (U1,i, U2,i) (or Ūi) as standard and independent gaussian random numbers Gi (or

Ḡi) through the transformation Ui = V Gi (or Ūi = V Ḡi) with (see Eq. (7))

V =





σ−1
1 IddN 0
c12

σ1

√

1− c212
IddN

1

σ2

√

1− c212
IddN



 .

The idea is then to modify the standard gaussian vetors Gi by an amount 0 ≤ αi ≤ 1 as

G̃i = αiGi +
√

1− α2
iRi (12)

where Ri is a 2dN -dimensional standard gaussian random vetor. A fration αi is assoiated with

eah on�guration xi along the path. The usual shooting dynamis is reovered with αi = 0 for

all i (all the Brownian inrements are unorrelated with respet to the Brownian inrements of

the modi�ed path), whereas the so-alled 'noise history' algorithm proposed in [9℄ orresponds to

αi = 0 for all i but one i0 for whih αi0 = 1 (in this ase, all the Brownian inrements but one are

re-used).

The dynamis we propose looks like the shooting dynamis: �rst, a position 0 ≤ k ≤ L along

the path is hosen at random; a oe�ient αi is then assoiated to eah on�guration along the

path, and a random gaussian vetor is proposed starting from the previous one using (12); �nally,

the orresponding trajetory is integrated forward from the k-th on�guration to the L-th, and
time-reversed from the k-th to the �rst, and an aeptane/rejetion step is done aording to (9).

It only remains to preise the proposition funtion P(x, y). Denoting by (Ḡx
i )0≤i≤k−1, (G

x
i )k≤i≤L−1

the standard random gaussian vetors assoiated with the path x (the �rst ones arise from the

time reversed integration, the last ones from a usual foward integration), it follows

P(x, y) = wk

∏

0≤i≤k−1

pαi
(Ḡx

i , Ḡ
y
i )

∏

k≤i≤L−1

pαi
(Gx

i , G
y
i ),

where wk denotes the probability to hoose k as a shooting index, and

pα(G, G̃) =

(

1
√

2π(1− α2)

)d

exp

(

−
(G̃− αG)T (G̃− αG)

2(1− α2)

)

.

A tuning of the oe�ients αi an then be performed in order to get the best trade-o� between

aeptane (whih tends to 1 in the limit αi = 1 for all i) and deorrelation (whih arises in the
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limit αi → 0). An interesting idea ould be that α has to be lose to 1 in regions where the

generating moves have a haoti behavior (in the sense that even small perturbations to a path

lead to large hanges to this path), and ould be smaller in regions where the generating moves

have less impat on the paths (so as to inrease the deorrelation). From a more pratial point

of view, possible approahes to obtain suh a trade-o� are to propose a funtional form for the

oe�ients αi and to perform short omputations to optimize the parameters with respet to

some objetive funtion. Some simple hoies for the form of the oe�ients αi, involving only

one parameter (so that the optimization is proedure is easier), are:

• onstant oe�ients αi = α;

• set αi = 1 far from the shooting index, and αi lose to 0 near the shooting index. This an

be done by onsidering αi = min(1,K|i− k|) for some K ≥ 0.

From our experiene, the e�ieny is robust enough with respet to the hoie of the deorrelation

oe�ients αi. Notie also that the seond funtional form allows to reover both the usual

shooting and the noise-history algorithm, respetively in the regimes K → 0 and K ≥ 1. It is

therefore expeted that, optimizing the e�ieny with respet to K ∈ [0, 1], both the shooting

algorithm and the noise-history algorithm should be outperformed.

3.4 Intrinsi measure of e�ieny

Our aim here is to propose some abstrat measure of deorrelation between the paths, so as to

measure some di�usion in path spae. This approah omplements the onvergene tests based

on some observable of interest for the system. We refer to [13℄ for some examples of relevant

quantities to monitor (and appliations to path sampling with deterministi dynamis), and to

setion 3.5 for some numerial results for stohasti dynamis.

The intrinsi deorrelation is related to the existene of some distane or norm on path spae.

Given a distane funtion d(x, y), the quantity

Dp(n) =

(∫ ∫

[d(y, x)]
p
Pn(x, dy) dπ(x)

)1/p

(with p ≥ 1) preises the average amount of deorrelation with respet to the distane d for the

measure π on the path ensemble. Notie that two averages are taken: one over the initial paths

x, and another over all the realizations of the Monte Carlo iterations starting from x (i.e. over all

the possible end paths y, weighted by the probability to end up in y starting from x). In pratie,

assuming ergodiity, Dp(n) is omputed as

Dp(n) = lim
N→+∞

(

1

N

N
∑

k=1

dp(xk+n, xk)

)1/p

.

Usual hoies for p are p = 1 or p = 2. This last ase is onsidered in [8℄ sine a di�usive behavior

over the spae is expeted with stohasti dynamis, the most e�ient algorithms having the

largest di�usion onstants limn→+∞

√

D2(n)/n.
It then only remains to preise the distane d, whih depends on the system of interest. Some

simple hoies are to

• onsider a (weighted) norm || · || on the whole underlying phase-spae (for position or posi-

tion/momenta variables) and set

d(x, y) =

(

1

L

L
∑

i=0

ωi||xi − yi||
p′

)1/p′

with p′ ≥ 1;
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• onsider only a projetion of the on�gurations onto some submanifold, suh as the level sets

of a given (not neessarily ompletely relevant) reation oordinate or order parameter ξ:

d(x, y) =

(

1

L

L
∑

i=0

ωi|ξ(xi)− ξ(yi)|
p′

)1/p′

,

with p′ ≥ 1.

• align the paths projeted onto some submanifold around a given value of the reation oor-

dinate ξ:

d(x, y) =

(

1

2K + 1

K
∑

i=−K

ωi|ξ(xI+i)− ξ(yJ+i)|
p′

)1/p′

, (13)

with p′ ≥ 1, and I, J suh that ξ(xI) = ξ(xJ ) = ξ∗ where ξ∗ is �xed in advane (for

example, if A is haraterized by ξ = 0 and B by ξ = 1, then ξ∗ ould be 1/2). The integer

K represents some maximal window frame so that the distane is really restrited to a region

around the expeted or assumed transition point. In the ase when J − K, I − K < 0 or

J +K, I +K > L, the sum is aordingly restrited to less than 2K + 1 points.

The weights ωi should be non-negative in all ases.

A reasonable hoie for non-trivial systems is for example to use (13) with p′ = 1 and ωi = 1.
This approah ensures that the deorrelations arising in the initial and �nal basins A and B are

disarded, and that only the deorrelation arising near the transition region are important. In

this sense, we term this deorrelation as 'loal deorrelation' sine we measure how di�erent the

transition mehanisms are. As a measure of 'global deorrelation', we will onsider the transition

times. A numerial study based on those lines is presented in setion 3.5.

3.5 Numerial results

We test the di�erent proposal funtions on a model system of onformational hanges in�uened

by solvation. We onsider a system omposed of N partiles in a periodi box of side length l0,
interating through the purely repulsive WCA pair potential [12, 29℄:

VWCA(r) =







4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

+ ǫ if r ≤ r0,

0 if r > r0,

where r denotes the distane between two partiles, ǫ and σ are two positive parameters and

r0 = 21/6σ. Among these partiles, two (labeled 1 and 2 in the following) are designated to form

a dimer while the remaining partiles are solvent partiles. Instead of the above WCA potential,

the interation potential between the partiles in the dimer is a double-well potential

VDW(r) = h

[

1−
(r − r0 − w)2

w2

]2

,

where h and w are two positive parameters. The potential VDW exhibits two energy minima, one

orresponding to the ompat state where the bond length of the solute dimer is r = r0, and one

orresponding to the strethed state where the bond length of the solute dimer is r(q) = r0 + 2w.
The energy barrier separating both states is h. Figure 1 presents a shemati view of the system.

We onsider the distane (13) for reative paths (π ≡ πAB in this ase), using p = p′ = 1
and ωi = 1, ξ(q) = |q1 − q2|, ξ

∗ = r0 + w. We use the parameters L = 500∆t, β = 1, N = 16
partiles of masses 1, l0 = 1.3, σ = 1, ǫ = 1, w = 0.5, ∆t = 0.0025, with the sets A = {ξ(q) ≤
r0 + 0.6w}, B = {ξ(q) ≥ rB = r0 + 1.4w} and averaging over a total of n = 5× 104 Monte Carlo

moves. We set K = 30 sine the typial length of the transitions is about 60 time steps with the

parameters used here.
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Figure 1: Shemati views of the system, when the diatomi moleule is in the ompat state

(Left), and in the strethed state (Right). The interation of the atoms forming the moleule is

desribed by a double well potential, all the other interations are of WCA form.

h 5 10 15

Shooting 24.4 18.1 15.2

Noise history 96.7 85.7 81.2

Brownian tube (αi = 0.8) 47.2 48.1 33.0

Table 1: Aeption rate (%) as a funtion of h for the three proposal funtions onsidered.

We also onsider the orrelation in the transition times. We denote by τ(x) the transition

index of some path x. Here, those indexes τ are suh that ξ(qτ∆t) = ξ∗. The orrelation funtion

for this observable is therefore, in the ase of reative paths,

C(n) =

∫ ∫

(τ(y) − 〈τ〉πAB
)(τ(x) − 〈τ〉πAB

)Pn(x, dy) dπAB(x)
∫

(τ(x) − 〈τ〉πAB
)2 dπAB(x)

,

with 〈τ〉πAB
=
∫

τ(x)dπAB(x) This observable is in some sense omplementary to the measure of

deorrelation in the transition zone de�ned above sine it measures some global spatial deorrela-

tion of the paths. In pratie, assuming ergodiity, C is approximated as

C(n) = lim
N→+∞

1

N

N
∑

k=1

τ(xn+k)τ(xk)−

(

1

N

N
∑

k=1

τ(xn+k)

)(

1

N

N
∑

k=1

τ(xk)

)

1

N

N
∑

k=1

τ(xk)2 −

(

1

N

N
∑

k=1

τ(xk)

)2 .

Figures 2 to 4 present some plots of D(n) and C(n) for h = 5, 10, 15, for the usual shooting

dynamis, the noise-history algorithm, and the brownian tube proposal (with αi = 0.8 for all i).
The average aeptane rates are also presented in Table 1. Notie that no shifting moves [13℄ are

used in order to ompare the intrinsi e�ienies of the proposal funtions. It is likely that these

moves would help improving the deorrelation rate of the sampling.

For the shooting algorithm, many paths are rejeted so that the loal deorrelation (measured

by D(n)) is rather poor, espeially at short algorithmi times and for high barriers (in any ases,

lower than for the brownian tube proposal). But when a path is aepted, it is already very

deorrelated from the previous one, so that the global deorrelation (measured by C(n)) is indeed
dereasing rapidly enough. For the noise-history algorithm, the piture is somewhat inverted:

sine the aeptane rate is very high, even for high barriers, the loal deorrelation is quite
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Figure 2: Comparison of e�ienies for di�erent Metropolis-Hastings proposal moves for h =
5. Left: Plot of the orrelation of the transition times C(n) (related to some global sampling

e�ieny). Right: Plot of D(n) (loal sampling e�ieny) for the brownian tube proposal with

α ≡ 0.8 (solid line), usual shooting dynamis (dashed line), and noise history (dotted line).

.

0 10 20 30 40 50 60 70 80 90 100

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Iteration index n

T
ra

ns
iti

on
 ti

m
es

 a
ut

oc
or

re
la

tio
n 

C
(n

)

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Iteration index n

Lo
ca

l d
is

ta
nc

e 
D

(n
)

Figure 3: Comparison of e�ienies for di�erent Metropolis-Hastings proposal moves for h = 10.
.

e�ient, but the global deorrelation is not sine small loal hanges make it di�ult to hange

the global features of the paths. The brownian tube approah tries to balane the loal and global

deorrelations. This is also re�eted by a more balaned aeptane/rejetion rate.

In onlusion, the brownian tube proposal with the above orrelation funtion is the most

e�ient sampling sheme in the ase onsidered here. The e�ieny ould be further inreased

by a more systemati tuning of the parameters of the orrelation fators αi, possibly depending

on the shooting index k. In general, sine the usual proposal funtions are spei� ases of the

brownian tube proposal funtion, it is expeted that there is always a parameter range suh that

this new algorithm outperforms the previous ones.

4 (Non)equilibrium sampling of the path ensemble

The previous setion was dealing with equilibrium sampling of paths. However, when (free) energy

barriers in path spae are large, diret sampling of paths an be ine�ient, sine the existene

of metastable path sets may onsiderably slow down the numerial onvergene. It is therefore

appealing to perform some kind of simulated annealing on paths. A regular simulated annealing

strategy would be to �rst sample paths at a higher temperature, and then to ool the sample

to the target temperature (see [31℄ for a simulated tempering version of suh an idea). Reative

paths an also be otained by onstraining progressively the paths to end up in B. This approah
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Figure 4: Comparison of e�ienies for di�erent Metropolis-Hastings proposal moves for h = 15.
.

also has the nie feature that it does not ask for an initial guess to start sampling πAB. Finally,

a byprodut of suh a swithing is the ratio of partition funtions in path spae

C(L∆t) =
ZAB(L∆t)

ZA(L∆t)
, (14)

where ZA, ZAB are suh that

πA(x) = ZA(L∆t)−1
1A(x0)ρ(x0)

L−1
∏

i=0

p(xi, xi+1),

and

πAB(x) = ZAB(L∆t)−1
1A(x0)ρ(x0)

L−1
∏

i=0

p(xi, xi+1)1B(xL)

are probability measures. The funtion C in (14) has to be omputed at least one to obtain rate

onstants in pratie [13℄. The assoiated free-energy di�erene in path spae is ∆FA→AB(L∆t) =
− ln(C(L∆t)).

We start this setion by realling the extension of the lassial swithing dynamis for nonequi-

librium dynamis in phase spae to nonequilibrium swithing between path ensembles [15℄. This

method is onvenient to ompute free energy di�erenes, but the �nal sample of paths obtained

is very degenerate. We therefore present in setion 4.2 the appliation to path sampling of a

birth/death proess introdued in [25, 26℄, whih allows to keep the sample at equilibrium at

all times during the swithing. This equilibration may be important in some ases to ompute

the right free energy values [26℄, and allows in any ases to end up with a non-degenerate sam-

ple of paths and redue the empirial variane. We will fous in the sequel on swithing from

onstrained to unonstrained paths, but an extension to simulated annealing (ooling proess) is

straightforward.

4.1 Swithing between ensembles of paths

We present in this setion the approah of [15℄, where the swithing from unonstrained to on-

strained path ensembles is done by enforing progressively the onstraint on the end point of

the path over a time interval [0, T ]. The onstraint is usually parametrized using some order

parameter. This order parameter is the same as the one used for usual omputation of reation

rates in the TPS framework (and even for more advaned tehniques suh as Transition Interfae

Sampling (TIS) [34, 33℄). The point is that this approximate order parameter needs not to be a

�good� reation oordinate (or a omplete one) sine the general path sampling approah should
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help to get rid of some problems arising from a wrong hoie of order parameter (see e.g [32℄ for

a reent study on this topi).

Assuming an order parameter is given, we an onsider a swithing shedule λ = (λ0, . . . , λn)
suh that λ0 = 0 and λn = 1 and a family of funtions hλ suh that

h0 = 1, h1 = 1B.

We also introdue the family of measures assoiated with the funtions hλ:

πλ(x) = Z−1
L,λ1A(x0)ρ(x0)

L−1
∏

i=0

p(xi, xi+1)hλ(xL). (15)

We omit in the sequel the expliit dependene of the partition funtions Z on L and ∆t. An

energy Eλ(x) an then formally be assoiated to a path x as

πλ(x) = Z−1
L,λe

−Eλ(x).

The aim is to sample from π1 ≡ πAB, whih is usually a di�ult task, and sometimes not diretly

feasible. It may be easier to use a sample of π0 = πA (whih is muh easier to obtain), and to

transform it through some swithing dynamis into a weighted sample of π1. Starting from a path

xk,0
, the weight fator for a resulting path xk,n

is of the form e−Wk,n

where W k,n
is the work

exerted on an unonstrained path to onstrain it to end in B. We now preise the way the work

is omputed.

Consider an unonstrained initial path x0 = (x0
0, . . . , x

0
L) sampled aording to π0, and a

disrete shedule (λ0, . . . , λn). The dynamis in path spae is as follows:

Algorithm 4.1 (See Ref. [15℄) Starting from W 0 = 0 and m = 0,

• Replae λm
by λm+1

;

• Update the work as Wm+1 = Wm + Eλm+1(xm)− Eλm(xm);

• Do a Monte Carlo path sampling move using a Metropolis-Hastings sheme with the measure

πλm+1

(using for example the usual shooting moves with a Langevin dynamis, or the Monte

Carlo move designed for path swithing presented in Appendix A), so that the urrent path

xm
is transformed into the new path xm+1

.

This proedure is repeated for independent initial onditions xk,0
, so that a sample of M end

paths (x1,n, . . . , xM,n) with weights (e−W 1,n

, . . . , e−WM,n

) is obtained. Besides, an estimation of

the rate onstant is given by the exponential average

CM (L∆t) = − ln

(

1

M

M
∑

k=1

e−Wk,n

)

,

and it an be shown that CM → C when M → +∞.

Sine the realizations of the swithing proedure are independent provided the initial onditions

are independent, the random variables {e−Wk,n

}k are i.i.d. A on�dene interval an be obtained

for CM as

C−
M,σc

≤ CM ≤ C+
M,σc

, with C±
M,σc

= − ln

(

1

M

M
∑

k=1

e−Wk,n

± σc

√

VM

M

)

,

where the empirial variane is

VM =
1

M

M
∑

k=1

(

e−Wk,n

−
1

M

M
∑

l=1

e−W l,n

)2

.
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A on�dene interval on the free energy di�erene is then

− lnC−
M,σc

≤ ∆FA→AB ≤ − lnC+
M,σc

.

For example, the 95 % on�dene interval orresponds to σc = 1.96.

Of ourse, it may the ase that the variane of the work distribution is large, so that only

very few paths are relevant (and the on�dene interval for the rate onstant is large). Therefore,

most omputational e�ort is disarded in the end. A method enabling an on the �y sorting out of

the irrelevant would be an interesting improvement of the method. Suh a proedure ould also

onentrate the e�orts on important transition tubes. The Interating Partile Systems (IPS),

already used in the ontext of nonequilibrium free energy di�erenes [26℄, is suh an approah.

4.2 Enhaning the number of relevant paths

We present here an extension of a birth/death proess, introdued for equilibrating a simulated

annealing proess done at �nite rate (and therefore out of equilibrium), to the ase of path sam-

pling. This proedure an be seen as a time ontinuous resampling, and avoids the degeneray of

the paths weights (see also the related population Monte-Carlo algorithms [17℄). The idea of IPS

is to swith several paths in parallel, and to attah exponentially distributed birth and death times

to eah path. The death time of the path is dereased when the work exerted on it is higher than

the average work; when this time is zero, a new exponentially distributed death time is generated,

the path is suppressed, and replaed by another path piked up at random among the other paths.

The birth time of the path is dereased when the work exerted on it is lower than the average

work; when this time is zero, a new exponentially distributed birth time is generated, another path

piked up at random is suppressed, and is replaed by the path giving birth. In all ases (birth or

death), the works attahed to a path are kept. We refer to [26℄ for a proof of the onsisteny of

the method.

Algorithm 4.2 Consider an initial distribution (x1,0, . . . , xM,0) generated from π0. Generate

independent times τk,b, τk,d from an exponential law of mean 1. Consider two additional variables

Σk,b,Σk,d
per replia, initialized at 0.

• Replae λm
by λm+1

;

• Update the works as W k,m+1 = W k,m + ∆Ek,m = W k,mEλm+1(xk,m) − Eλm(xk,m), and

ompute the mean work update ∆E
m

= M−1
∑

1≤k≤M ∆Ek,m
;

• (Di�usion step) Do a Monte Carlo path sampling move using a Metropolis-Hastings sheme

with the measure πλm+1
, so that xk,m

is transformed into xk,m+1
.

• (Birth/death proess) Update the variables Σk,b
and Σk,d

as

Σk,b = Σk,b + β(∆E
m
−∆Ek,m)−,

and

Σk,d = Σk,b + β(∆E
m
−∆Ek,m)+.

(Death) If Σk,d ≥ τk,d, selet an index m ∈ {1, . . . ,M} at random, and replae the k-th path

by the m-th path. Generate a new time τk,d from an exponential law of mean 1, and set

Σk,d = 0;

(Birth) If Σk,b ≥ τk,b, selet an index m ∈ {1, . . . ,M} at random, and replae the m-th

path by the k-th path. Generate a new time τk,b from an exponential law of mean 1, and set

Σk,b = 0;
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M n Bakward Forward IPS (forward)

2000 2000 4.83 (4.61-5.02) 5.43 (5.28-5.61) 4.82 (4.78-5.85)

2000 5000 5.34 (5.04-5.58) 5.41 (5.32-5.50) 5.19 (5.16-5.23)

2000 10000 5.45 (5.32-5.58) 5.40 (5.34-5.46) 5.40 (5.36-5.43)

2000 15000 5.42 (5.35-5.49) 5.40 (5.35-5.45) 5.45 (5.42-5.48)

Table 2: Free energy di�erenes ∆FA→AB omputed for di�erent swithing lengths n, using a

sample of M = 2000 paths. The results are presented under the form "CM (C−
M,σc

−C+
M,σc

)" with
σc = 1.96 (the value orresponding to a 95 % on�dene interval).

Then, eah path has weight 1 in the end, and the �nal sample (x1,n, . . . , xM,n) is distributed
aording to π1 ≡ πAB. In this ase, an estimation of the rate onstant is given by the simple

average

CM (L∆t) =
1

M

M
∑

k=1

W k,n,

and it an be shown that CM → C when M → +∞. A on�dene interval for the free energy

di�erene an be obtained as in setion 4.1 as

CIPS,−
M,σc

≤ ∆F1→AB ≤ CIPS,+
M,σc

, with CIPS,±
M,σc

=
1

M

M
∑

k=1

W k,n ± σc

√

V IPS
M

M
,

the empirial variane being

V IPS
M =

1

M

M
∑

k=1

(

W k,n −
1

M

M
∑

l=1

W l,n

)2

.

4.3 Numerial results

We ompute here the free energy di�erenes while onstraining paths to for the WCA model

system introdued in setion 3.5. This is done either with plain nonequilibrium swithing, or

with the IPS equilibration. Let us notie that the energy is �xed in [15℄ while we rather have to

�x the temperature in the stohasti setting, so that a straightforward omparison of the results

is not possible. We set β = 1 in the sequel. The other parameters are the same as in [15℄:

N = 9 partiles, h = 6, σ = 1, ǫ = 1, the partile density ρ = 0.6σ−2
, w = 0.25, and the sets

A = {ξ(q) ≤ ξA = 1.3σ}, B = {ξ(q) ≥ ξB = 1.45σ}. The trajetory length is L = 320∆t and
∆t = 0.0025, so that L∆t = 0.8(mσ2/ǫ)1/2.

We perform a total of n MC moves (using the brownian tube proposal funtion (with αi =
α = 0.8 for all 0 ≤ i ≤ L− 1). The funtion hλ is the one given in [15℄:

hλ(q) = e−λK(1−1B(q))(ξB−ξ(q))

with K = 100. The swithing shedule is λi = (i/n)2.
A typial free energy di�erene pro�le is presented in Figure 5 for M = 2000 and n = 10000,

as well as the assoiated weights for the plain nonequilibrium swithing. These weights are the

Jarzynski weights renormalized by the total weight (in order to de�ne a probability distribution):

wk =
e−Wk,n

∑M
l=1 e

−W l,n
. (16)

Notie that the sample is very degenerate sine very many paths have negligible weights, and the

relevant paths are exponentially rare. Reall also that the paths all have weight 1 with the IPS

algorithm.
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Some free energy di�erenes are presented in Table 2 for di�erent values of n (keepingM �xed).

The swithings are slow enough when the on�dene intervals for free energy di�erenes omputed

by onstraining paths agree ('forward' swithing) overlap with on�dene intervals for free energy

di�erenes obtained by starting from a sample of onstrained paths and removing progressively the

onstraint ('bakward' swithing). This is the ase here for n = 5000, 10000, 15000 (but not when
n = 2000). The results show that IPS agrees with the usual Jarzynski swithing, the on�dene

interval on the results being however lower.
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Figure 5: Left: Free energy pro�le for a forward swithing, omputed for M = 2000 and n = 104,
using a plain nonequilibrium swithing. Right: Histogram of the weights wk of the �nal sample

as given by (16).

We also present in Figure 6 a �nal sample omputed using a quite fast swithing (n = 1000)
with a small sample of paths (M = 100). Notie that all the 100 paths generated with the IPS

swithing are reative, in ontrast with the paths generated by a straightforward swithing in the

Jarzynski way. Besides, as a onsequene of the degeneray of paths, only 8 paths in 100 have

a signi�ant weight (larger than 0.05 when normalized by the total weight, as given by (16)).

This simple example shows why it is di�ult to ompute averages over the �nal sample of paths

when performing plain nonequilibrium swithing, and why it may be interesting to resort to some

seletion proess to prevent suh a degeneray.

In agreement with a previous study [26℄, the results show that the IPS algorithm allows to

redue the variane on the estimates and to end up the simulation with a well-distributed and

non-degenerate sample, provided the swithing is slow enough.

5 Conlusion and prospets

In onlusion, we have presented here some new algorithms for path sampling with stohasti

dynamis, either equilibrium sampling (wih an be used for the omputation of free energy di�er-

enes, or reation rates), or nonequilibrium sampling (whih allows to perform simulated annealing

in a rigorous manner instead of performing simulated tempering; or to swith from a sample of un-

onstrained paths to a sample of onstrained paths, and ompute the assoiated ratio of partition

funtions).

The brownian tube proposal used for equilibrium sampling is a simple generalization of the

previous approahes, and an therefore always be used as a shooting algorithm with only minor

modi�ations to existing TPS algorithms. A systemati riterion for setting the orrelation fators

{αi}i would be to onsider simple analytial forms as proposed at the end of setion 3.3, and hoose

{αi}i to obtain balaned aeptane/rejetion rates or, when some spei� observable has to be

omputed, to optimize the parameters to obtain the best onvergene results (on some preliminary
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Figure 6: Comparison, for a nonequilibrium swithing of paths for M = 100 systems in n = 1000
steps without (Left) or with IPS (Right). Only the paths having a weight greater than 0.05 are

plotted in solid lines when plain nonequilibrium swithing is used (the other paths are plotted in

dotted lines).

omputations). However, for simulations of large systems using long paths, the brownian tube

approah may be impossible to use beause of the limited numerial preision and the haoti

behavior of the system: indeed, starting from a given path, it is not lear whether this path an

be reovered by �rst omputing the random numbers assoiated with the trajetory, and then

integrating this trajetory again starting from the initial point.

The equilibration of the nonequilibrium swithing dynamis is very intesting to redue the

variane of free energy omputations when swithing from unonstrained to onstrained paths, or

to obtain well-distributed ensemble of paths in the end (whih is of paramount importane for

the orretness of a simulated annealing proedure for example). However, the swithing still has

to be done slowly enough and using a number of replias large enough. One again, this may be

problemati for very large systems.

It would be interesting now to extend the swithing proedure to TIS [34, 33℄, where the length

of paths is not onstant, but whih is naturally sequential in the way omputations are done in

pratie: indeed, the �ux through the next intermediate interfae is omputed using a sample of

paths rossing the previous interfae (this is the major di�erene with the forward �ux tehniques

of [1℄ where only points on the previous interfae are kept).
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Appendix A: Spei� Monte-Carlo moves for swithing from

unonstrained to onstrained path ensembles

When an interpolating funtion hλ appearing in (15) (or, equivalently, some order parameter ξ)
is known, it is possible to inrease the likeliness of the end point of the trajetory by performing

a move on the last on�guration in the diretion opposite to ∇hλ(q) while keeping the random

numbers used for the transitions. These moves should of ourse be employed with other MC
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moves, espeially MC moves relying on some trajetory generation, in order to relax the shift

toward higher values of hλ or ξ.
More preisely, using for example an overdamped Langevin dynamis to update the end on�g-

uration, the assoiated Metropolis-Hastings Monte-Carlo elementary step is, starting from a path

x for a parameter λ (in the Langevin dynamis setting):

Algorithm 5.1 Starting from a path x = (x0, . . . , xL),

• Compute the sequene of 2d-dimensional noises (Ūi)0≤i≤L−1 assoiated with the bakward

(time-reversed) integration from xL to x0;

• Compute a �nal on�guration as yL = xL + δλ∇ξ(q) + (2δλ/β)
1/2 G where G is a dN -

dimensional random gaussian vetor;

• Integrate the path bakward (time-reversed), starting from yL, using the noises (Ūi)0≤i≤L−1

to obtain a path y = (y0, . . . , yL). The probabilty P(x, y) to obtain y starting from x is

therefore the probability to obtain yL from xL, so that

P(x, y) = pswitch(xL, yL) =

(

β

4πδλ

)d/2

exp

(

−
β

4δ2λ
|yL − xL − δλ∇ξ(q)|2

)

.

• Aept the new path y with probability

r(x, y) = min

(

1,
π(y)P(y, x)

π(x)P(x, y)

)

= min

(

1,
1A(y0)ρ(y0)

1A(x0)ρ(x0)

pswitch(yL, xL)

pswitch(xL, yL)

)

.

The magnitude δλ an be made to depend a priori on λ. It is then adjusted in pratie on the

�y by �rst omputing the values of the gradient for the endpoint of eah replia, in order to ensure

that the displaement is small enough.
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