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Abstract

This study addresses a new fictitious domain method for elliptic problems in order
to handle general and eventually mixed embedded boundary conditions (E.B.C.) :
Robin, Neumann and Dirichlet conditions on an immersed interface. The main in-
terest of this fictitious domain method is to use simple structured meshes, possibly
uniform Cartesian nested grids, which do not generally fit the interface but define
an approximate one. A cell-centered finite volume scheme with a non-conforming
structured mesh is derived to solve the set of equations with additional algebraic
transmission conditions linking both flux and solution jumps through the immersed
approximate interface. Hence, a local correction is devised to take account of the
relative surface ratios in each control volume for the Robin or Neumann boundary
condition. Then, the numerical scheme conserves the first-order accuracy with re-
spect to the mesh step. This opens the way to combine the E.B.C. method with
a multilevel mesh refinement solver to increase the precision in the vicinity of the
interface. Such a fictitious domain method is very efficient: the L? and L>°-norm er-
rors vary like O(h;+) where Ry« is the grid step of the finest refinement level around
the interface until the residual first-order discretization error of the non-refined zone
is reached.

The numerical results reported here for convection-diffusion problems with Dirichlet,
Robin and mixed (Dirichlet and Robin) boundary conditions confirm the expected
accuracy as well as the performances of the present method.

Key words: Fictitious domain method, embedded boundary conditions, elliptic
problems, cell-centered finite volume, non-conforming structured meshes, multilevel
local mesh refinement.
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1 Introduction and motivation

This paper is devoted to the numerical validation of a new fictitious domain
method for general embedded boundary conditions (E.B.C.) associated with a
multilevel local mesh refinement. To compute the solution u of a given problem
(P) in a domain €, a fictitious domain methodology [1,2] generally consists in
several steps.

i) The domain Q) is embedded inside an auziliary fictitious domain €, gen-
erally larger and simpler such that : 2 = QuUXU ()., where (), stands
for an external domain and Y the common interface between the two
sub-domains. The domain € is chosen simply shaped, geometrically more
simple than €, see Fig. 1.

ii) A fictitious problem (P) is designed and solved all over the fictitious
domain 2, with appropriate transmission conditions on ¥ and data in
Q. in order to handle the original boundary conditions of (P) on the
immersed interface 3. The restriction of the problem (P) over the domain
() is then chosen of the same type of (7?)

iii) The solution % of the original problem (P) is finally found as : @ = ulg, the
restriction of the fictitious solution u of (P) over 2, or at least u|s ~ 4.

The objective is to use a simple structured mesh in €2, e.g. a uniform Cartesian
grid, independent of the shape of the immersed interface 3. This significantly
simplifies and reduces the cost of the mesh generation in comparison to the
use of boundary conforming structured or even unstructured meshes, specially
in 3-D or for a moving interface 3. The efficient mesh generation for the latter
situations remains actually an extremely challenging problem. Moreover, the
solution process of the fictitious problem (P) with such a regular structured
grid on {2 can be carried out with a fast solver.

In this work, the fictitious domain method uses a recent fracture model pro-
posed in [3], which links both flux and solution jumps on an immersed in-
terface ¥. The fictitious domain formulation for general E.B.C. is analyzed
in [4]. The addressed problems are general second-order elliptic problems or
associated parabolic ones in () with usual boundary conditions on ¥: Dirich-
let, Neumann or Fourier-Robin. An interesting feature of our approach is to
allow the treatment of mixed immersed boundary conditions on ., i.e. the im-
mersed interface > may be the union of some parts, each of them supporting
a different boundary condition. Moreover, the embedding configurations can
be very general (see Fig. 1). In particular, the original domain does not need
to be totally immersed inside the fictitious domain.

In practical computations, the immersed interface ¥ (which is not generally
aligned with the grid lines) is roughly approximated by some X, lying on sides
of control volumes. For example, with a uniform Cartesian grid of mesh step



h, ¥, is a set of stair steps, see Fig. 9. This defines an approximation Qy, of
the original domain Q such that we may have : |meas(Q,) —meas(Q)| = O(h).
This method is fast and has all the advantages of using a regular structured
grid; however, the expected accuracy is only of first-order in the L2-norm.
An adaptive local mesh refinement in the vicinity of the immersed interface
¥ is then required to increase the precision of the solution. A multigrid [5]
process enables the solutions of each level to be each others connected. A
FIC-like solver [6,7] is implemented by using a sequence of local nested grids
having finer and finer sizes, the solution at each level being corrected by a flux
residual calculated with the next finer level. The expected accuracy now varies
asymptotically like O(h;«), where h;« is the mesh step of the local finest grids
around X (last level of refinement), until the residual first-order discretization
error of the non-refined zone is reached. Such a fictitious domain method com-
bined with an adaptive multilevel local mesh refinement solver proves to work
efficiently and it yields a significant improvement in the ratio of the obtained
precision over the resulting cost or CPU (central processing unit) time, see
also [8,7] and the references therein.

A lot of papers have been now dedicated to embedded Dirichlet boundary con-
ditions with several approaches, e.g. [9,10,11,12,13,8,14,15] and the references
therein, among the methods which deal with a “sharp interface”. However, only
few studies are devoted to other embedded boundary conditions like Neumann
[16,17,18,19,20] or especially Robin (or Fourier) ones [21,22,12,23,24]. More-
over, the present method does not require the use of Lagrange multipliers and
hence the solution of a saddle-point problem involving the inf-sup condition to
be satisfied by the discrete spaces [11,25,26]. Compared to the Grid Embed-
ded Method (e.g. [27,14,28,20]), the main advantage of our fictitious model
is to conserve the same local stencil of discretization to evaluate the numer-
ical fluxes, even near the immersed interface. As in the Immersed Interface
Method (see [29] for an overview), appropriate coefficients are introduced in
the scheme to take into account the immersed jumps. Moreover, the algebraic
transmission conditions used in the present method for the immersed jumps
are more general than for the IIM where the jumps are supposed to be given,
and no additional unknown is introduced near the immersed interface.

Let us mention that some fictitious domain methods use a “diffuse interface”
approach to handle immersed boundary conditions, e.g. [30,31,32] and the ref-
erences therein. To the best of our knowledge, only [33,32] focus on Robin
boundary conditions. An interesting feature of the approach described in [32]
is to combine such a fictitious domain method with multilevel local mesh re-
finement, while the fictitious boundary method presented in [34,35| deals with
multigrid iterative filtering and special grid deformation techniques.

The structure of this paper is as follows. In Section 2, we recall the fictitious
domain model with immersed jumps for an elliptic problem and we detail how



to impose each kind of general E.B.C. Section 3 will be dedicated to the finite
volume scheme devoted to compute this fictitious domain method. Then, in
Section 4, an adapted refinement algorithm based on a multilevel flux restric-
tion is introduced to increase the precision of the solution. Finally, in Section 5
some numerical results focused either on diffusion or on convection-diffusion
problems illustrate the performance of the method.

2 Fictitious domain method with immersed jumps

Our objective is to solve, with a fictitious domain method, the following prob-
lem originally defined in a bounded domain €} C R? with either a Dirichlet, a
Neumann or a Robin boundary condition (or mixed) on 8(2 OQp U :
For a € L®(Q)%4, ¥ € L=(Q)%, b e L®(Q) and f € L*(Q), find & € H'(Q)
such that

5 div(—aVia + Vi) 4+ b = f in €, (1)
( ) u = up on 8QD, (2)
—(aVa)n =art + gr on ), (3)

where n is the outward unit normal vector on dQg, up € HY?(0Qp),
0<ar € L*®(0Qg) and gi € L2(0QR).

The tensor of diffusion & = (a;;)1<i j<q¢ and the reaction coefficient b verify the
classical ellipticity assumptions:

Jag > 0, V&€ € RY, a(z)€.€ > aplé]? ae. in Q, (A1)
where |.| is the Euclidean norm in RY,
3o >0, b(x) >by ae. in Q. (A2)

In a fictitious domain approach, the original domain Q) is embedded inside an
open bounded polygonal domain € R? such that Q = QU X UQ,, where .
is the external fictitious domain and ¥ the common interface between ) and
Q. (see Figure 1 and 8). This interface ¥ C R4~ is called immersed interface.
The fictitious domain (2 is chosen to be geometrically simple (rectangular for
example in 2-D). The boundary of Q) is defined by 9Q = TUY, and the bound-
ary of Q by 90 =T UT, (see Fig. 1).

Let us first notice that writing the Robin boundary condition (3) on ¥ in a
fictitious domain method with Q D  is not directly possible unless accepting
flux or solution jumps on X or both. This problem is thus “extended” in the
following manner to the whole fictitious domain €2 by using the formulation
for general embedded boundary conditions introduced in [4].
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Figure 1. Embedding the original domain € inside a fictitious rectangular domain
Q.

2.1 Model with embedded jump transmission conditions on X

Let n be either the outward unit normal vector on I'., or the unit normal vec-
tor on X oriented from  to €. For a function ¢ in H(QU,), let ¢5; and 5.
be the traces of 1|5 and v|q, on each side of ¥ respectively, 1|s = (V5 +15)/2
the arithmetic mean of traces of ¢, and [¢]y. = (¢35 — 15;) the jump of traces
of ¢y on ¥ oriented by n.

For the data f € L*(Q2), g and ¢ given in L?*(X), we consider the second-order
elliptic problem for the real-valued function u defined in €2 and including im-
mersed transmission conditions on Y which assume jumps of both the normal
diffusive flux ¢(u).n = —(aVu).n and the traces of the solution u through the
interface >

div(—aVu +vu) +bu=f in Q, (4)
original B.C. onT, (5)
(P) :
suitable B.C. on I, (6)
[(aVu).n]y =aTly —¢ on X, (7)
(aVu)nly = Gluly —g  on X, (8)

where the uniformly positive definite tensor of diffusion a = (a;;)1<i j<d4, the
reaction coefficient >0, and the transfer coefficients o, 3>0 on ¥ are measur-
able and bounded functions verifying classical ellipticity assumptions. More-
over, we choose

a|Q:5‘> V‘fz:{’> b‘fz :67 f‘fz:f

in order to recover the original problem (1-3) in 2. The B.C. (6) on I, is chosen
to ensure the solvability of the above fictitious domain model. This problem
is proved to be well-posed in [3,4] and the solution u belongs to H'(Q U Q).
When a@ = g = ¢ = 0 and § — oo, the perfect transmission problem is recov-



ered with u € H'(Q), see Theorem 3.2 in [12].

The data a, v, b, f in Q. and «, 3, g, ¢ on X will be defined further in
order to get u|g = @ or at least u,|g ~ @ when the model is penalized with a
penalty parameter n — 0.

2.2 Treatment of the original E.B.C. on X

2.2.1 Embedded Robin or Neumann boundary conditions

Let o5 = —(aVu) .n|g and ¢ = —(aVu)".n|x be the traces of the diffu-
sive normal flux on each side of ¥ respectively. The algebraic transmission
conditions (7-8) write

o5 — =75 (uh +ug) — g, ©)
1
—5 (s +ex) =0 (ug —uz) —g. (10)

The four unknown quantities 5, @3, us; and us; on X are then linked with the
algebraic transmission conditions (9-10). Hence, by eliminating one of the two
exterior quantities, either o3 or uf, o5 can be written in the two following
equivalent ways, respectively :

@z:(5+%)uz—<ﬁ—%)u§+g—g, on X, (11)
%:ng) [aﬁuz+(ﬁ—%)¢§+%g—ﬁq , onX. (12)
4

Note that Eq. 12 is a prior: defined if o and 3 are different from 0.

The particular choice 3 = «/4 requires no exterior control since both Eqgs. (11)

and (12) yield the same Robin boundary condition below, independently of
+ +

Uy OT Py

a
oy, = —(aVu) .|y = §u£ +9— g, on Y. (13)

When the Robin boundary condition in (3) is desired for the original problem
(1-3) in Q, the following immersed boundary condition on 3 must be satisfied
by the solution of the fictitious domain problem in (2 :

vy, = —(aVu) .n|y = aguy + gr  on 2. (14)

This gives the sufficient conditions for the data such that Eq. (13) satisfies
(14), see (R) in the Table 1.



The Neumann boundary condition is obtained as the particular Robin case
where ap = 0.

This Robin or Neumann E.B.C. method is proved to be consistent, i.e. u|g = @,
in [4]. Other variants are proposed there which require either uy, or % to be
“controlled” by L? or H! volume penalty methods [12,13,36] performed with
the parameters a, b and f in Q..

2.2.2 Embedded Dirichlet boundary condition

Let 0 < n < 1 be a real penalty parameter (called penalty coefficient) which is
likely to tend to zero. When the Dirichlet condition uy, = up is to be handled,
the Robin condition in Eq. (3) or (14) can be penalized by a surface penalty

on ¥ with ag = — (ag —>0+ o0) and ggr = —— up. The previous Robin E.B.C.
’r]ﬂ

method can be then penalized as in (D1) in the Table 1. Hence for g = 0 and
B — o0, the (D1) E.B.C method yields no solution jump [u,]y;, — 0 inde-

pendently on «. Thus, we can use for example the parameters : @« = § = —,
n

1
q= —up and g = 0.
U]

Another type of method consists in using a L? or H' volume penalty in the
exterior domain €2, such that 1in% u;rz = up for the model with 3 = — — o0,
77—)

g = 0 and thus [u,]s, HO(), as proposed in [12]. In that case, we consider an
T]*}

extension u, € H'(Q.) of up over Q. such that the trace v(u.) = uc|s = up,
see (D2) in the Table 1.

The convergence of these methods is proved in [4] and for usual weak reg-
ularity assumptions the following error estimate : ||u,|q — || q = O(/N)
is at least reached. Better estimates are possible with stronger regularity.

Since the immersed boundary conditions are treated within the same unified
formulation with appropriate data (see Table 1), it is straightforward to deal
with mixed embedded boundary conditions on the immersed interface . An
example is given in Section 5.4.



E.B.C. method Parameters in €, Parameters on X

Robin (R) alg, =1Id, v|g, =0, a =40 = 2ap,
No exterior control blo, = fla. =0 g— g =9R
Dirichlet (D1) alg, =1Id, v|g, =0, a=40F = %,
Surface penalty bla. = fla. =0 g —g= %uD

Id L? penalty

1
Dirichlet (D2) |alo, = ¢ 1 , Vo, =0, p=-,
—Id H' penalty n
n
1
Volume penalty blo, = —, fla. = —ue a=qg=9g=0
n n

Table 1
Parameters in (). and on ¥ for the E.B.C. method with immersed jumps.

3 Finite volume (FV) discretization
3.1 Notations

The polygonal domain 2 is meshed with a family 7;, = { K'} of disjointed finite
volumes K C Q (called “control volumes”) which are open convex polygons

such that Q = KUTF with usual assumptions, e.g. [37]. The mesh size is
€7n

defined by h = sup{diam(K), K € 7,}.

Let &€ be the family of sides (also called edges in 2-D) of the control volumes.
For any (K,L) € 7;? with K # L, either the (d — 1)-dimensional Lebesgue
measure of K N L is 0 or K N L = & for some ¢ € &, which will then be
denoted by o = K|L. The set of neighbors of K is denoted by N (K), that
is N(K) = {L € T;; 30 € £,7 = KN L}. For each K € T, let £x be
the subset of £ such that 0K = K \ K = U &. Furthermore, £ = KgThSK.

o€€K

The set of interior (resp. boundary) sides is denoting by & (resp. Eeut),
that is &y = {0 € E;0 ¢ 90} (resp. Eeue = {0 € E; 0 C IN}). One of
the most interest of the E.B.C. method is to use a simple non-conforming
and structured mesh. Therefore, the sides of the mesh 7, do not generally
match the immersed interface 3 (e.g. with a uniform Cartesian mesh like in
Section 5). An approximate interface X;, is thus defined by the mesh (see
Section 5). This interface separates the approximate original domain Q,, from
the approximate external domain €, . Let & = {0 € £€; 0 C X,} be the set
of sides lying on X,. For each K € 7y, a “cell-centered” discretization point
xx € K is chosen such that for each o € Ex; 0 = K|L, the segment [z, x;] is
orthogonal to o at the point z, € 0. For each K € 7, let dx, = |tk —2,| > 0
be the distance from zx to o and ng, be the unit outward normal vector on
o. For 0 = K|L, we then denote by d, the Euclidean distance between x



and zr, hence we have d, = dg , + dr .
For each K € 7, or 0 € £, m(K) = / dz and m(o) = /ds denote the
K

(e

measure of K or o. For a given quantity v, the discrete values ¢, and 1, are
defined by the mean values of ¢ over K or o, respectively:

1 1
Vi = W/Kw(x)dx, and ¢, = W/ow(s)ds.

3.2 A numerical scheme for the immersed jumps model

For sake of simplicity, the numerical scheme is now written for an isotropic
diffusion tensor a = a(z)Id. For each K € 7;, the main discrete unknown
denoted by wug is an approximation of the value u(xy) of the exact solution
u at the nodal point zx of the mesh. Two auxiliary unknowns (ug q,ur )
are introduced on 0 = K|L € &;,; which are approximations of respectively
u(z, )|k and u(z,)|L.

The cell-centered FV numerical scheme uses the scheme proposed in 3| for
diffusion-reaction problems. The numerical convective flux is obtained with a
monotone upwind scheme. This scheme is of first order which is in agreement
with the expected accuracy of our method. This FV scheme allows jumps of
diffusive and convective fluxes as well as jumps of the solution on each side
o € &y and it reads in the following synthetic form:

S m(0) (Fro + vieouily) +m(K) b ux = m(K) fx, VYK €T, (15)

o€fK

where the numerical diffusive flux Fi , reads for all K € 7j,:

—OJKUKZZ;UK 1fa:K\L€5mt
K,o
Us — UK . . ..
Fro= —QKT if 0 € &.44 with a Dirichlet B.C. on o : u = gp
K,o
a—K(/@guK + ¢o) if 0 € E.y with a Robin B.C.ono: — (a.Vu)n=ru+ ¢
al('+'ﬁo‘jkﬂo

(16)
and the numerical convective flux Vi, = UKJuIU(]fJ is obtained with an up-
stream scheme by:

1 _
VKo = ) /ovaa.nKpds




and

UK if UKJZO

Up U, ifvg,<0andoeyun

uK,a .
Ug o if Vg, <0and o € Ex N &t

uy, if VKo < 0 and o € (gz U 5ext)

The key point of this scheme is to use transmissions conditionson all 0 € &;,;
in order to have the same generic numerical scheme for all the mesh. Thus the
discretization of Eqgs. (7-8) for all 0 = K|L € &;,; yields respectively:

UK, o + Ur,o

9 — (4o (17)

FK,O’ _'_FL,U:ao
1
§<FL,0' - FK,O’) :50 (uL,o - uK,o) - n-nK,oga (18)
where n now stands for the unit normal on >j,.

Hence, for all 0 = K|L € &, Egs. (16) and (17-18) enable the interface
unknown ug, to be expressed with respect to the main discrete unknowns

(UK)KETh:

da dLa (6% do dKa (6% (%
o = 2 1 ’ 1—
UK ( + 4@7) U + ard, ( 4@;) ur, + dO’/BUUK

Ao'd g 410 dO' 1 Ao'd g Jo UdO'
N cal (L’ + )—n.n %o AK0 9o <1+a L’) (19)

~

ag da ar, 2 ﬁa o ag da ﬁa 2 ar,
where
A (% da g ar,
Ay = A, =
7 Uy 1 T disax +dggar’
1 o(——— _|_)\U Lo UK K,o UL
5, g T
A A1 o
A, Ko G,

droax +dgesar

Therefore, the interface unknowns ug ,,ur, can also be eliminated in the
diffusive flux expression as reported in 3] and we have:

I . (UL_UK>+ Qg Uy (uK+uL> Qg G5 dL o
c = Qg
K, d, 26, d, 2 ar, dy
do 4o dLO’ 1 do 9o (0% dLO’
— : nng, 1 = |, 20
do ( ar, - 250) * o do ﬁo ( - QCLL ( )

10



The cell-centered F'V scheme (15) then requires the standard (2d+1)-points
stencil only. This numerical scheme is as cheap as the standard scheme without

any jump. The convergence properties of the present scheme are also presented
in [3].

On the sides 0 € &0 € Es, we set the discrete transfer coefficients of
Egs. (17-18) in order to respect the local conservativity and the solution con-
tinuity properties :

Frxo,=—-Fr,, and ug,=up,, ifo=K|L¢e&u\Es (21)

Hence,
1
O = (o = Jo = 0 and 50 = 5 — 00 Vo€ Sz’nt\gﬁ

Otherwise, Vo € &, N &, the discrete transfer coefficients are equal to the
mean value on o of the transfer coefficients of the fictitious problem (P) lying
on Y, (see Table 1).
REMARK 1. Vo € &;;0 € Es, the local conservativity of the convective fluz
15 also ensured

Vo = —Vio

REMARK 2. In the following numerical results, a Cartesian mesh is used.
In this case, if the diffusion tensor is diagonal, the above FV scheme can be
applied in each mesh direction. The non-trivial anisotropic case requires some
important modifications of the F'V scheme, which are beyond the scope of this

paper.
3.8 Geometric correction for a Robin E.B.C.

When the interface X is roughly approximated by the mesh into ¥, a surface
correction is then required for a Robin (or a non homogeneous Neumann) em-
bedded boundary condition. Let wy, »» = {UK, K € T,,, KNX # ()} be the union
of the finite volumes crossed by Y. Around each finite volume X' C wy, 5, the
local conservativity between the embedded flux integral and the approximate
flux integral is ensured by

_ 1 _
/ _pyds :/ _— iy, ds (22)
SNK ShnK €K

where oy, = agug, + gr, K is a union of control volumes around K precised
below and e is the local correction parameter to determine.

For all K C wpyx, we denote by f:'K ={o € &o € & N &,
o € Egroro = K|Lwitheither L C Q.p,orL ¢ w,x} the set of
sides lying on X, associated to K. Otherwise, for K ¢ wy y, éK = 0.

11



Hence, for all ¢ C ), 0 € Ex the discrete value ¢y, of oy and thus the
discrete data az and gr on o are divided by the characteristic parameter €.

Let us now detail the calculation of ex. This correction takes account of the
relative surfaces considered in each cell K C wy y. For sake of simplicity, a
piecewise linear approximation Y; (see Fig. 2) of ¥ composed by a segment
¥,k in each control volume K C wy x is defined.

OK|L

\x %,

Figure 2. Local parameters in a control volume K C wy, x.

So, a natural way to evaluate the correction parameter ex in each K C wyx

would be
> m(o)

UeéK
— oSk 23
K meas (X ) (23)
Yo C Xy, 0 € éK, € = €K (24)

However, for some cells K’ C wy, 5, we may have Ex = 0, for example K C wyx
without any 0 € &y (see Fig. 2) or K C (wpx NQep) with 0 = K|L € &
where L C wy, .. For such a cell, since ex = 0, the approximate measure of the
segment X,  is never taken into account. Then,

1

Sl xr
= X > m(o)

~ € N
KCwp ;8 #D K o€k

= > meas(X; x) < meas(X;) ~ meas(X),

K Cwp 5;E€k #0

1

and the conservativity of the fluxes will not be ensured.

12



In order to take account of the entire measure of the immersed interface X,
for the cells K C wyy such that éK = (), the measure of 2,k 1s added to
the measure of ¥, ;v of one of the neighbor K’ € N(K) with Exr # (). The
choice of the neighbor K’ (called in the sequel “chosen” neighbor) can be made
by different ways, for example arbitrarily among all the neighbors L € N(K)
such that & 1. # 0. Another choice is detailed hereafter. Let us underline that
for each K C wy, 5, such that Ex = (), the “chosen” neighbor is defined uniquely
in order to take account of the measure of ¥; x only once.

For all K C wy,y such that £ # 0,let C(K) = {L € Tp; Le N(K), L C wpy,
£, =0, K is the “chosen” neighbor of L} be the set of cells of which K is the
“chosen” neighbor. Then, we define 217 Kk such that:

LeC(K)

and we have

K=KU( U L.
LeC(K)

Thus, VK C wy,x such that Ex # (), the local correction parameter ez becomes

UGéK
€ = ——— 26
® meas (X k) (26)

And R
Vo C Xy, 0 €€k, € =¢€x (27)

In order to determine the “chosen” neighbor, we favour the neighbor cell hav-
ing the most important intersection with the original domain €. To do this,
in each K C wp, »; with Ex = (), and for each side 0 = K|L € Ex N &y strad-
dling the original domain Q) and the exterior domain ., we denote by dxz
the proportion of o lying in the original domain Q) (see Fig. 2). Among the
neighbors L € N(K) such that £ # 0, the “chosen” neighbour K is taken
such that 0x g = max OK|L-

REMARK 1. The local surface ratio ex (see Eq.(26)) is defined within an
O(hg) error, where hy is the diameter of the cell K. For example, an approx-
imation of €5 when X is a circle, as in the following numerical tests, can be
found in [23].

REMARK 2. A global correction can be also considered with a rough esti-
mation of ex by a constant value ¢, over the whole interface ;. In this case,
it is the ratio between the surfaces of >, and X:

meas (%)

€n = m (28)
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However, this global correction is not accurate enough to ensure the conver-
gence of the fictitious domain algorithm with respect to the mesh step h in
the general case (see the numerical results in Section 5).

REMARK 3. Theoretical error estimates

We are interesting in error estimates of the discrete fictitious solution u; over
the approximate original domain Q. Indeed the aim of our fictitious domain
approach is to find an approximation of the exact solution @ defined in € using
a simple, possibly uniform, Cartesian mesh.

In [38], a convergence study of the error is carried out for a ;-finite element
method with Cartesian non-boundary fitted meshes for both Dirichlet and
Robin boundary conditions. This analysis can be considered as a subproblem
of the convergence study of the previous fictitious domain methods. In this
case, the immersed boundary conditions are supposed to be perfectly imposed
on the approximate interface or at least the modelling error in order to impose
the immersed boundary conditions is assumed to be negligible compared to
the approximation error of the immersed interface.

For a regular mesh, if the exact solution @ belongs to H?(2), the following
estimates hold in the approximate domain €,

o — uhHHl(Qh) :0(h1/2)>
12 = unll 2,y = O(h).

These estimates only depend on appropriate norms of the original data and
the H2-norm of the exact solution @ in the original domain ().

For a cell-centered FV scheme as introduced in the previous section, it is
natural to obtain similar error estimates. The numerical results reported in
Section 5 confirm that the error of the discrete solution wuy, restricted to €, is
of order h in the L2 norm. Hence the estimates in the approximate domain €,
seem not to depend on the regularity of the fictitious problem solution over €.
Indeed, the solution of the whole fictitious problem (P) with immersed jumps
does not generally belong to H*(Q2) (when [u]y, # 0), but the convergence
remains of first-order for the L2-norm. For the Lagrange multiplier approach,
in [39] the same conclusion is drawn looking to the numerical interior error
(see page 501: in the interior of Q, uy, probably satisfies local error estimates
that involve only the values of @ in Q).

4 Adaptive mesh refinement (AMR) solver

The E.B.C. method proposed in this paper uses a structured (most often
Cartesian) uniform mesh. As explained in the previous section, this mesh
defines an approximate interface >;, on which the E.B.C. are imposed. In order

14



to improve the accuracy of the solution, the present fictitious domain method
is combined with a local multilevel mesh refinement solver in the vicinity of
the immersed interface ..

4.1  Multigrid method

A multigrid method [5] is based on a recursive process that consists in gen-
erating local subgrids G;, 0< [, having finer and finer discretization steps h;
until reaching a given level [*. The differential problem under study is solved
on each computational grid. The solutions between each level are connected
through the following interactions:

e the boundary conditions on the fine grids G;, 0 < [ <I*, are interpolated
from the solution to the next coarser grid G;_; via a prolongation opera-
tor P71,

e in the problem solved on the coarse grids GG;, 0 <[l < [*, some corrective
terms evaluated from the solution to next finer grid G, are added to the
right-hand side by a restriction operator Rf“.

Iterations of a multigrid process can be represented for example by V-cycles
(see Fig. 3).

S : Solver (exact or inexact) and/or Smoother
P : Prolongation or interpolation of the "coarse" solution in order to determine the B.C. on the fine grid
R : Local restriction of the "fine" solution or of the "fine" defect on the coarse grid

Figure 3. Multigrid process

In our approach, each level of refinement [ consists of a set of local patches
(. Each patch G| is a nested subgrid around a single control volume at the
next coarser level [ — 1.

4.2 FIC method

The principle of the Flux Interface Correction (FIC) [40,41,6,7] method is
based on the respect of a flux weak continuity relation between two grids that
are non-concordant. A conservative adjustment between the nested subgrids
is then ensured.

In the sequel, we use the same notations than those introduced in Section 3.1.
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Moreover the subscript [ refers to the level of refinement under consideration.
For 0< [ < I*, we denote by A; the union of control volumes at the level [ that
are included in the refinement area. The restriction operator R/™' is a flux
restriction operator which takes part into the evaluation of a flux residual on
each side of the control volume K; C A;.

Let us consider the resolution of the following problem:

Lu = fin Q
B.C. onI =00

(P)

At each iteration k of the FIC algorithm, the following discrete problem is
solved on the subdomain (2, associated to the grid G:

Lruf = fFin O

B.C. on Fl = an

(PF)

Let us assume that the operator L can be divided into a conservative part
(with a divergence term) involving the flux F(u) and a non-conservative part
G(u):

Lu = div(F(u)) + G(u) = f
For each K; C A; on a coarse level [, 0 <[ < [*, a local flux correction residual
r(F) is defined by

n<f><m>=m{zﬁ*%ﬂu»(m— > /lﬂ(U)-nmm} (29)

01 COK; g

where R/™ is the flux restriction operator

R (F (u)(Ki) = > Fron(w) M 01, (30)

{UZ+1 C@KZ;KchKl} 0l+1

At each iteration k, a correction term is added to the right-hand side of the
equation of the problem (PF):

flo = f‘Qz

=0+ > xwr (F)K)
K;CA;

(31)

where rF(F)(K;) is the flux residual (see Eq. (29)) evaluated at the iteration
k for u = u* and y is the characteristic function.
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4.8 A FIC-like solver for the E.B.C. method

The FIC method is well adapted to a conservative discretization of the equa-
tions on multilevel nested meshes. As the F'V scheme introduced in Section 3 is
locally conservative, a FIC solver can be used with the present E.B.C. method.

4.3.1 Rectangular local patches

At each level [, a set of local nested subgrids G; with the same grid step A;
are obtained from the following process:

e The original coarse grid G corresponds to the mesh 7, of the whole domain
(). The mesh size h = hy.

o At each level [, 0 <I<!*, the approximate interface ¥;,, the approximate
original domain €),, the approximate external domain €. 5, as well as wp, 5
are detected (see Fig. 4(a)).

e For 0<! < I*, each control volume K; C wy, 5 or such that Ex, N (Ex); # 0
generates a subgrid or patch at the level [ + 1 with the grid step h; 1 < hy.
The domain of this refinement patch is composed of the “parent” cell K;
enlarged of h;;1 on all sides (see Fig. 4(b)). By this way, the interpolated
B.C. on each subgrid GG;;; are not directly imposed on the sides of the parent
cell. Naturally, if one of the sides of K lies on the boundary 0f2, there is
no enlargement in this direction. In the sequel, we will denote by G the
set of control volumes K; € (G; which are not in the enlargement zone of
G,. Then, let A, = {UK;; K, € G™, K, C wy, 5 or Ex, N (Ex) # 0} be the
refinement area on each level [, 0< [ < [*. As a fact, a control volume lying
in the enlargement zone of G; does not generate a refinement patch nested

in GG, but may induce a refinement patch connected to a neighbor patch of
G.

Since all the nested subgrids are simply shaped (rectangular in 2-D), the
E.B.C. solver (see Section 2) can be easily implemented on each patch in
a recursive way.

4.8.2 A FIC-like solver

h
For sake of clarity, we suppose now that h;,; = El in each direction. Hence,

each patch G; has 49 cells at most, i.e. 16 cells in 2-D and 64 cells in 3-D.
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around K

Figure 4. Generation of the refinement patches

4.3.2.1 The prolongation operator P/~
The boundary conditions on I'; = 0€2; are divided into two subsets:

e On I NT, the B.C. of the original problem are imposed,
e On T\ (I';NT), Dirichlet B.C. are imposed by a prolongation operator P/~'.

The E.B.C. method introduced here allows jumps of flux and solution. The
prolongation operator P/~ is then an interpolation operator which takes
account of the solution jumps. As the FV scheme (see Section 3) enables
Uk, 0, to be evaluated (see Eq. (19)), a linear interpolation is implemented
from the values (ug, ., Uk, |0, 1)K €G-

We use the following linear interpolation formula

fla—06)+ fla+9)
2

fla) =

along the segment [a — §,a + ¢].

In our case, f(a) represents ug,,-. The interpolation nodes {a — d,a + ¢}
depend on the dimension d of the problem. For 2-D problems, f(a —J) and
f(a+ 0) represent either ug, , or ug, ,,_,, while for 3-D problems f(a — ¢)
and f(a + 0) are both side values ug, , ,,_, (with different 0,1 € &k, ,), see
Fig. 5 and Fig. 6.

h .
REMARK: if hjq # EI’ the linear interpolation formula becomes a bilinear

interpolation formula where the interpolation nodes are four of the values
Uk, ,.0,_, Of the cell K;_;.
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Figure 5. 2-D case : Nodes of interpolation for the prolongation operator Pllfl.
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Figure 6. 3-D case : Nodes of interpolation for the prolongation operator Pll_l.

4.3.2.2 The restriction operator R/

The restriction operator R/™ is based on the FIC restriction operator (see
Eq. (30)). Then, r/(F) will take into account the flux residual between the
level [ and the level [ + 1. With the E.B.C. method, since the approximate
interface XJ;, is defined on each level [, a control volume K; C th in the
approximate original domain can contain control volumes K;;; C ., , in
the approximated external domain (see Fig. 7). As the approximate original
domain Q, and the external one .5, are uncoupled, the flux residual has to
be evaluated on sides of control volumes in the approximate original domain
only.

Moreover, on the sides o, € (€x);, the immersed boundary conditions are
imposed. These sides are then boundary sides of the approximate original do-
main th. So, the flux correction residual r;(F) is obtained by the difference
between the fluxes F;(u) and F;;1(u) on strictly interior sides of the approxi-
mate original domains only. Hence, at level [, the interior flux will be corrected
on the approximate original domain. If we denote by (&,..f); = {01 € &; 01 €
(Eint)i\ (Es);00 C th} the set of sides at the level [ which are strictly interior
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Qhur»

Qi
Figure 7. Interior control volume K; with exterior control volumes Kj,

to the approximate original domain th, then VK; C A,

WD) = s R Y [ A} (62)
{o1 C OKy;
o1 € (Erep)i}

with the restriction operator Ri™ defined by

RUF@)E) = X[ Aange,  (63)
{0141 COK;; K141 C K s
o141 € (Eref)itr
o141 C oy € (Erep)i}

4.3.2.3 Domain decomposition method (DDM)

Due to the patches enlargement (see Section 4.3.1), there is an overlapping
between some patches of the same level. Hence, on each level 0 < [<I* (at de-
scent and ascent phases of the V-cycles), we perform a small number of domain
decomposition iterations (typically 3) via a standard multiplicative Schwarz
procedure (see e.g. [42]) acting as a smoother. Moreover, at the ascent phase,
in order to obtain the same solution on a control volume belonging to different
patches, the same equation has to be solved on this control volume. The right-
hand side corresponding to a restricted control volume K; C A;, K; € G,
is then imposed as right-hand side of all the equations solved on this control
volume.

For some kind of approximations of the immersed interface (see for example
the “cut” interface of the Section 5), control volumes K; C A; belonging to the
approximate external domain €2, ;, at the level /, may contain control volumes
K1 included in the approximate original domain th ., at the level [ + 1. In
this case, at the level [+ 1, the DDM smoothing iterations (Schwarz iterations
and right-hand side correction) are really necessary to have a better approxi-
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mation of the flux F;,1(u) on the neighbors patches and then to obtain a good
evaluation of the restriction operator R;™.

4.3.2.4 The FIC-EBC algorithm
The multilevel FIC-EBC algorithm writes for V-cycles:

Initialization: Computation of ), the solution to the original problem (7))
on the grid Gj.

Iterations: Computation of u}.

for k =1 to nbVcycles do

k_ k=1
Uy = Ug -

Resolution on the fine grids G;:
for | =1to (" do

(i) Compute B.C. on T;\(I'; N T) by interpolation of u} :
uf = P7tuf | on T)\(I,NT)
where Pf’l is the prolongation operator.
(ii) Computation of uf by solving (PF) with fF = fF=".
(iii) DDM iterations (Schwarz iterations).
endfor

Correction on the coarse grids Gi:
for | =1*—1t00do

(i) Evaluation of the flux residual r}(F) defined for VK; C A; by

i {5

meas
- Z E<uk)'nKz7Uz}

{O’l CBK“
o] € (Sv"ef)l}

i (F)(K1) =

where RI*! is the restriction operator.
(ii) Computation of the corrected solution u}': resolution of the problem

flo = f|Ql

fzk = lkil + Z XKZTIIC<F)(KI) '
K;CA;

(iii) DDM iterations (Schwarz iterations and correction of the right-hand
side in the enlargement zone)

endfor
endfor
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In the discrete case, with the notations of Section 3.1, the flux integrals are
approximated by the following quadrature formula, which is in agreement with
the FV discretization

Vl, Oglél*v / '/le(u)'nsz = m(al) (]:lk(u)'nKl,Ul) ($Uz) (34)
ol

lug*" — uf

The stopping criterium for the V-cycles is chosen as ” <107*in the

lug
following numerical results. The steepest refinement level tested here is [* = 3
(i.e. 4 levels including the initial coarse level). This leads to a convergence of

the algorithm within about 10 V-cycles.

5 Numerical results

In what follows, we focus on 2-D problems, even though the simulation of 3-D
problems is straightforward.

5.1 Solvers

In the computations, if we consider an isotropic diffusion tensor a = a(z)Id,
the discretization of a diffusion problem leads to a symmetric positive definite
linear system. A conjugate gradient iterative algorithm [43] is used to solve the
linear system. However, for a convection-diffusion problem discretized with an
upstream scheme for the convective flux, the linear system is no more symmet-
ric. A Bi-GCSTAB [44] algorithm is then implemented. For all the resulting
linear systems, a diagonal preconditioner is used to improve the ill-conditioning
due to the penalization coefficients. Looking for a better preconditioning will
be an interesting study for further works. However, the choice of a better pre-
contionner is not so crucial since the multilevel solver involves for the local
patches the resolution of linear systems with a small number of unknowns.
The stopping criterium of the Krylov gradient methods is ||r;]|<107°, where
71, is the residual vector at the k' iteration of the algorithm. Hence, the diag-
onal preconditioned gradient methods converge within about 10 iterations on
the local patches.
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5.2 Discrete norms

The errors between the numerical and analytic solutions to the following test
problems can be appreciate by the calculation of either the discrete L?-norm
or the L®-norm (max norm) in €.

For the approximate solution wu;, the discrete L?-norm in the approximate
original domain €, is defined by

1/2
[unll 2@,y = ( > meas( IuKIQ)
KCQh
and for the analytic solution % to the original test problems
1/2
]l 26, ( > meas(K)[a( SUK)\Q) :

KCQh

Then a relative discrete L*-norm of the error is evaluated by

o — Uh||L2(Qh)

e-(up) =

]l L2,
By definition, the discrete L>-norm is:

[0 = unll @,y = max [a(rx) — ukl.
h

5.8  First test problem: a quarter disk domain

We solve a 2-D boundary value problem either for convection-diffusion or
diffusion alone in a quarter of the unit disk Q with symmetry conditions on the
axis I (see Fig. 8(a)). The fictitious domain is the unit square Q =0, 1[x]0, 1],
see Fig. 8(b).

The domain €2 is meshed by uniform square cells K with a grid step varying

from h = 1 to h = BTGk This defines the exterior approximate interface ¢*¢

such that Q C €2, and the cut approximate interface 3** which may cross the
physical immersed interface 3, see Fig. 9. The resulting approximate physical
domains Qh are such that: |meas(Qh) meas(§2)| = O(h), or more precisely,

meas((QU Q) \ (2N Q) = O(h).
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(a) Original domain Q. (b) Fictitious domain €.

Figure 8. Immersion of the unit disk into the unit square.

(a) Exterior approximate (b) Cut approximate inter-
interface X§*°. face LU

Figure 9. Non-conforming mesh, approximate interfaces X and approximate do-
mains €)p,.

5.3.1 Diffusion problems

5.3.1.1 Dirichlet problem
First, we consider the following homogeneous Dirichlet problem

—Au=4 in
(P) @:0 on T,
on

=0 on X(up=0),

which has the analytic solution

t=1-7r* in Q where 7 = \/x2 + 42 denotes the radius in Q.
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The fictitious domain problem is solved in §2 with the E.B.C. method (D1),
using only the surface penalty on 3, without exterior control, and (D2), using
both a surface penalty on X, and a volume H' penalty in ), 5, described in
the Table 1 of Section 2 with u, = 0.

In Fig. 10, we observe that the L?-norm of the modelling error varies with re-
spect to the penalization parameter 7 better than O(52) for (D1), and O(n?1)
for (D2). These results are in agreement with the H' estimation of the mod-
elling error in [4]. The stagnation plateau shown in this figure corresponds
to the value of the space discretization error. The following computations are
performed with 7 = 1072 to get the modelling error negligible compared to
the discretization error.

. 2
Relative L™ error norms versus eta

||u—uh||/||0u|| Dirichlet diffusion problem — Exterior interface — h=1/512
10 N T T rororrTT T rororrTT T T
: Surface penalty (no ext. control) => slope= 0.6
Volume penalty (H1 penalty) on the ext. domain => slope= 0.8
107 1
10° 1
1 07‘3 1 1 Lo 1
10°° 107° 107 107 10°

eta (penalty coefficient)

Figure 10. Convergence for the L2-norm of the modelling error with 7 in the Dirichlet

1
case for (D1) and (D2) E.B.C. methods with X¢** and h = BB

The Fig. 11 shows the convergence of the numerical error with respect to the
discretization step h. Both E.B.C. methods (D1) and (D2) exhibit a first-order
convergence for the L2-norm, as expected since |meas(€2;,) — meas(Q)| = O(h)
only. We can also observe that for a given discretization ¥, (either exterior
or cut) of the immersed interface ¥, the two variants (D1) and (D2) lead to
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the same errors. Indeed, performing a H' penalty method in €., the solution
and its gradient are penalized. So u,, ~ up on the exterior domain ). until
the approximated interface ;. As no solution jump on ¥, is also imposed
by penalization, the (D2) method leads to w, >~ up on 3, as for the surface
penalty method (D1).

Moreover, the methods which use the cut approximate interface are more ac-
curate since Y.¢"* approximates > more precisely than ¢

In Fig. 12(a), the error distribution |i(zx) — ugx| VK C Qp, illustrates that
the main differences between the approximate solution and the analytic one
are located on the grid cells crossed by the immersed interface.

Then the (D1) E.B.C. method is combined with the FIC-EBC solver (see
Section 4.3), the refinement zone of which is located around the immersed
interface. The two-grid algorithm converges within about 10 V-cycles. The
number of V-cycles for the convergence almost does not increase with the
number of refinement levels. The first conclusion to draw from Fig. 12(b), is
that the error values are reduced when the FIC-EBC solver is applied. We
can also remark some error spikes. These spikes are localized around the im-
mersed interface, on the cells K C wy,y» = {UK, K € T, KNY # (}. Indeed,
on these cells, the embedded Dirichlet boundary condition is still imposed on
the sides o C X, while the interior fluxes on o C ), and hence the interior
solution are corrected by the FIC-EBC solver. For each cell K C w5, the
most important is the distance between the approximate immersed interface
Y., and the original interface X (see Fig. 9), the most important is the error.
The L? error norms obtained for several levels of refinement are reported in
Fig. 13.

As shown in Fig. 13 the combination of the E.B.C. method with the FIC-EBC
solver conserves the first order accuracy for the L?-norm. Moreover, the error
on the original coarse grid is similar to the error obtained without refinement
on a mesh with a discretization step equal to the local finest grid’s discretiza-
tion step. The numerical results enable us to conclude that for the L?-norm,
the accuracy of the method varies like O(h;«) where h;« is the mesh step of
the local finest refinement grid (last level of refinement). However, since the
error of the whole coarse mesh depends also on the error of the non-refined
zone, the method varies like O(h;«) for [* less than a maximum number of
refinement levels (see details in Section 5.5).

This multi-grid technique is low cost since each level of refinement contains a
small number of degrees of freedom. Table 2 and Fig. 14 show that in term of
CPU (central processing unit), the combination of the (D1) E.B.C. method
with the FIC-EBC solver becomes interesting from a relative error lower than
5.1072. For example, the CPU time is divided by 2 between the error obtained

1
with hy = RE and [* = 0 (without refinement - 1 level) and the same error
obtained with hy = 58 and [* = 2 (3 levels). Moreover, for a given error, the

memory storage required is always smaller with the FIC-EBC solver.

26



. 2
Relative L™ error norms versus h

—-uh
llu-u ||/||0U|| Dirichlet diffusion problem — Surface Penalty (no exterior control)
10 T T T T T T T
Ext. interface => slope=0.9

@@ Cut interface => slope=0.9
107 b ]
107° + :
10_3 L L L L L L L L

1/512  1/256  1/128 1/64 1/32 1/16 1/8 /4. L
discretization step
(a) (D1) E.B.C. method.
. 2
Relative L™ error norms versus h
—-uh
llu-u ||/||0U|| Dirichlet diffusion problem — Exterior Volume Penalty (H1 penalty)
10 T T T T T T T T T T
Ext. interface => slope=0.9

@@ Cut interface => slope=0.9
107 b 1
107° + :
107

1 1 L 1 1 1 L 1 1
1/512 1/256 1/128 1/64 1/32 1/16 1/8 ) L
discretization step

(b) (D2) E.B.C. method.

Figure 11. Convergence for the L?-norm of the discretization error with A for the

Dirichlet diffusion problem with X¢*¢ or ¥¢% and n = 10712,
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0.09

0.06
U-Uh|
0.03

(a) Without refinement (I* = 0), max |a(zx) — ug|= 7.9 1072,
KCQh

20e-3
15e-3
|U-Aig-3

5e-3

(b) With refinement: [* = 3, max |i(zx) — ug| = 1.1 1072
KCQh

Figure 12. Error distribution with a 16 x 16 mesh for the (D1) E.B.C. method
with X¢** before and after the combination with the FIC-EBC solver (with DDM
iterations) - Dirichlet diffusion problem.
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(D1) E.BC. method + FIC-EBC solver + DDM

||u—uh||/||0u|| Dirichlet diffusion problem — Ext. interface
10 T T T T T T
G—=o0 without refinement — I = 0
O—-H2levels - I* =1
3levels - 1*=2

A—Ad4levels-1"=3
107 b E
107 b E
10° ]
1()74 L L L L L L L L

1/512 1/256 1/128 1/64 1/32 116 1/8 1/4
discretization step
(a) Exterior interface X¢*".
(D1) E.BC. method + FIC-EBC solver + DDM
||u—uh||/||0u|| Dirichlet diffusion problem — Cut interface
10 T T T T T T
G—=o0 without refinement — I = 0
O—-H2levels - I* =1
3levels - 1*=2

A—A4levels-1"=3
107 b E
107 b E
10° g
107

1/512  1/256  1/128 1/64 1/32 1/16 1/8 1/4
discretization step

(b) Cut interface X§“.

Figure 13. Convergence for the L?-norm of the discretization error with hg for the
combination of the (D1) E.B.C. method with the FIC-EBC solver for the Dirichlet
diffusion problem.

29



Exterior interface X¢*

[ ho 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512
0 1.95 1072 | 1.95 1073 | 3.90 1073 | 3.32 1072 | 2.38 10~* | 6.26 10° | 6.02 10 | 4.87 102
1 1.79 1071 1 3.90 10 | 1.03 10° | 3.05 10° | 1.16 10} | 8.88 10* | 4.78 102
2 9.41 1071 | 2.31 10° | 5.99 10° | 1.80 10> | 5.98 101 | 2.44 102
3 3.35 100 | 8.44 109 | 2.41 10! 7.35 101 | 2.24 102

Cut interface Efl“t

[ ho 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512
0 1.95107% | 1.95107% | 5.86 107% | 3.12107% | 2.34 107" | 5.76 10° | 5.53 10! | 4.97 10°
1 1.42 1071 | 3551071 | 8731071 | 2.76 10° | 1.01 10} | 7.46 10 | 4.17 102
2 7.90 1071 | 1.99 10° | 5.20 109 1.52 101 | 4.62 10! 1.96 102
3 2.86 109 | 7.28 10° | 1.96 10} | 5.89 10* | 1.84 10?2

Table 2

CPU time (in seconds) with respect to hy and [* for the (D1) E.B.C. method com-
bined with the FIC-EBC solver for the Dirichlet diffusion problem.

As we explained in Section 4.3.2.3, the DDM iterations are necessary to recover

the good solution with a cut interface approximation X§* of ¥. On the other

hand, for the exterior interface X5, at each level [+ 1, all the control volumes
Ky € fol, K C th have their parent cell K; C th. Fig. 15(a) shows
that, even without DDM iterations, the convergence of the E.B.C. method
combined with the FIC-EBC solver remains in O(h+) for X%, In this case

the CPU time is reduced (see Table 3 and Fig. 15(b)). Indeed, to obtain the

1 1
error of hg = R and [* = 0 using the FIC-EBC solver with hg = 198 and
[* = 2, the CPU time is divided by a factor 9.

Since the method with the exterior interface ¥§* does not require DDM iter-
ations, the ratio of the precision of the solution over the CPU time is better
for this method than for the method with a cut interface X§“. To avoid the
DDM smoothing iterations for the cut interface approach, some patches (of
the same level of refinement) have to be gathered.
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(D1) E.B.C. method + FIC-EBC solver + DDM

[lu=uhi/ull Dirichlet diffusion problem — Ext. interface

0
10 ‘ " [c——O'without refinement — I* = 0
F—-=H2levels - I* =1
3levels - 1" =2
A—A4levels - I"=3
107" L ]
107 | 1
10° | 1
1074 L L L L L
107 107 107" 10° 10’ 10° 10°
CPU time (s)
(a) Exterior interface X%t
(D1) E.B.C. method + FIC-EBC solver + DDM
IIU—uhII/IIUUII Dirichlet diffusion problem — Cut interface
10 e e e
GC—-0 without refinement - I* = 0
O—-a2levels - 1" =1
3levels - 1" =2
A—A4levels - I =3
107 b E
107 ]
10° :
10’4 L L L L L
10° 107 10™ 10° 10’ 10° 10°
CPU time (s)

(b) Cut interface X§*.

Figure 14. Convergence for the L?-norm of the discretization error with the CPU
time for the combination of the (D1) E.B.C. method with the FIC-EBC solver for
the Dirichlet diffusion problem.
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(D1) E.B.C method + FIC-EBC solver

IIU—uhH/II(:JH Dirichlet diffusion problem — Ext. interface
10 T T T T T T
GC—©O without refinement - I* = 0
O—a2levels - 1" =1
3levels-I"=2
A—A4dlevels - I"=3
10" 1
10% | 5
10° 5
1074 L L L L L L L L
1/512 1/256 1/128 1/64 1/32 116 1/8 1/4
discretization step
(a) Error versus hyg.
(D1) E.B.C. method + FIC-EBC solver
IIU—UhII/IIOUII Dirichlet diffusion problem — Ext. interface
10 T T T T
GC—O without refinement — I* = 0
O—=H82levels - 1" =1
3levels - 1" =2
A—7A4levels - I*=3
10" | E
107 | 5
10° | 5
10_4 L L L L L
10° 107 10™ 10° 10’ 10° 10°
CPU time (s)

(b) Error versus CPU time.

Figure 15. Convergence for the L2-norm of the discretization error for the combina-
tion of the (D1) E.B.C. method with the FIC-EBC solver without DDM iterations
for the Dirichlet diffusion problem with X¢%*.
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Exterior interface X¢* (FIC-EBC solver without DDM)

" o 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512
0 1.951073 | 1.95 1073 | 3.90 1073 | 3.32 1072 | 2.38 10~! | 6.26 10° | 6.02 10' | 4.87 10?
1 2.73 1072 | 5.08 1072 | 1.39 10! | 5.29 10~ | 3.09 10° | 4.46 10' | 2.83 10?
2 9.771072 | 2.15 107 | 5.12 107! | 1.49 10° | 5.85 10° | 5.43 10*
3 277107 | 6.62 107! | 8.87 10" | 3.68 10° | 9.46 10°
Table 3

CPU time (in seconds) with respect to hy and [* for the (D1) E.B.C. method com-
bined with the FIC-EBC solver without DDM iterations for the Dirichlet diffusion
problem with $¢%¢.

In order to validate the (D1) E.B.C. method for any Dirichlet boundary con-
ditions, we now study a nonhomogeneous Dirichlet problem

—At = —(2+ 42?) exp(z?) in Q,
(75) g—z =0 on T,

on Y (where 6 = arctan(g)),

@ =up = 3+ exp(cos?0)
x

which has the analytic solution

i =3 +exp(z®) in Q.

The fictitious problem over €2 is solved using the (D1) E.B.C. method. As Fig-
ure 16(a) shows, the first-order accuracy is reached for the L?-norm for both
approximate immersed interfaces. Since the method involving the cut inter-
face is more accurate, the FIC-EBC solver is combined with the (D1) E.B.C.
method for the cut interface. The results reported in Figure 16(b) exhibit a
first-order convergence of the method with respect to the local finest grid’s
discretization step h;«. This confirms that the (D1) E.B.C. method enables
to take account for any Dirichlet embedded boundary condition and that the
combination with the multilevel algorithm leads to an O(h;+) asymptotic con-
vergence for the L2-norm.
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. 2
Relative L™ error norms versus h

||u—uh||/|1|u|| Dirichlet diffusion problem — Nonhomogeneous Dirichlet B.C.
107 T T T T T T T T
=——m Exterior interface => order= 0.95
@—@ Cut interface => order= 0.95 "
I
107 ]
10° ]
10_4 L L L L L L L L
1/512  1/256 1/128 1/64 1/32 116 1/8 1/4. L
discretization step
(a) (D1) E.B.C. method with X§*" and X¢“.
(D1) E.B.C. method + FIC-EBC solver + DDM
||U‘Uh||/|1|u|| Nonhomogeneous Dirichlet diffusion problem — Cut interface
107 T T T T T T T T
G—>©o without refinement - I* = 0
G—H2grids - I" =1
—<3grids-1"=2
A—A4Qgrids - 1"=3
107 ]
10° ]
107

1/512  1/256 1/128  1/64 1/32 116 1/8 1/4
discretization step

(b) Combination with the FIC-EBC solver for $§*.

Figure 16. Convergence for the L?-norm of the discretization error with hq for the
nonhomogeneous Dirichlet diffusion problem with 7 = 10712,
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5.3.1.2 Robin problem
We now consider the Robin problem

— A% =16r in Q,

@
3n
on

=0 on [

(P)

=u+3 on ¥(agr=1, gr=3),

which has the analytic solution
a=2-—r* inQ withr=/22+ ¢

The fictitious domain problem is solved in 2 with the E.B.C. method (R) with-
out exterior control, as described in the Table 1. We investigate in Fig. 17(a)
the effect of the global correction for the approximate interface proposed in
Section 3.3 where ¢, is computed by Eq. (28) in each finite volume crossed by
Y. An asymptotic stagnation of the error can be observed and the first-order
precision is lost. For a local correction e, if a local formula (see Eq. (23))
is applied without taking into account the control volumes K C wjy with
Ex = 0, there is no error convergence (see Fig. 17(b)).

When the accurate local correction ex (see Eq. (26)) taking account of all the
local measures of > i for K C wyx» is computed, the first-order accuracy is
then yielded for the L?-norm error, see Fig. 18. Here again, the approximate

cut

interface Y5 gives a better precision than the approximate interface 35*'.

The (R) E.B.C. with the accurate local correction is then combined with the
FIC-EBC solver. The results reported in Fig. 19 show a L?-norm asymptotic
accuracy of the method in O(h+), hy» being the discretization step of the local
finest grid.

As we can observe in Table 4 and Fig. 20, the combination of the E.B.C.
method with the FIC-EBC solver improves the ratio of the obtained precision
over the CPU time from a relative precision of 107!. This improvement is
better than for the Dirichlet case: the CPU ratio is around 15 between the

error obtained with hg = R and [* = 0 and the same error obtained with
1
= — * = 2
ho 198 and [

As in the Dirichlet case, Fig. 21(a) enables us to conclude that DDM itera-
tions are not required for the exterior interface X§**. The relative CPU time
is more improved (see Table 5 and Fig. 21(b)). The CPU time ratio reaches

25 between the same error obtained either with hy = R and [* = 0 or with
1
ho = 128 and [* = 2. However, even looking at the results in term of CPU
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. 2
Relative L™ error norms versus h

[lu=uh]i/ljul| Robin diffusion problem — Global epsilon
10" :
107 b ]
107 E
Exterior interface => slope=0.85
G—>0 Cut interface => slope =0.6
1073 L L L L L L L L
1/512 1/256 1/128 1/64 1/32 116 1/8 1/4 L
discretization step
(a) Global correction with €.
. 2
Relative L™ error norms versus h
(lu-uh]i/|jul| Robin diffusion problem — Local epsilon (with local measure only)
0 O\O/O\OW ]
107 b ]
107 E
Exterior interface
O—O Cut interface
10 ‘

1/5612  1/256  1/128 1/64 1/32 1/16 1/8

1/4 -
discretization step

(b) Local correction ex without correction of ¥; -

Figure 17. Convergence for the L2-norm of the discretization error with h of the (R)
E.B.C. method for the Robin problem with X¢** or £¢% : global correction and local
correction without extension of the local surface X k.
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. 2
Relative L™ error norms versus h

[lu-uh]|/|jul| Robin diffusion problem - Local epsilon
. Exterior interface => slope= 0.98
10" [e@—®@ Cut interface => slope= 0.96 7
107" 1
107 1
107 ‘

1/512  1/256  1/128 1/64 1/32 1/16 1/8

/4. L
discretization step

Figure 18. Convergence for the L?norm of the discretization error with h of the
(R) E.B.C. method for the Robin problem with X¢** or £ : local correction with
extension of the local surface ¥ k.

Exterior interface X¢*!

1 o 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512
0 3.90 1073 | 3.90 1073 | 5.86 1073 | 3.71 1072 | 2.81 10~! | 7.43 10° | 8.04 10! | 5.89 10
1 4291072 | 9771072 | 213 107! | 6.76 107" | 2.33 10° | 2.17 10' | 1.77 102
2 222107 [ 4921071 | 9.04 107! | 3.44 10° | 9.84 10° | 5.17 10!
3 7.66 10~ | 1.55 10° | 3.05 10° | 1.19 10" | 4.01 10!

Cut interface ¢

1 o 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512
0 1.951073 | 1.95 1073 | 5.86 1073 | 3.71 1072 | 2.89 10~ | 7.22 10° | 7.72 10! | 6.18 10
1 3.90 1072 | 9.77 1072 | 2.07 107! | 6.44 107" | 2.17 10° | 2.20 10" | 1.83 102
2 213107 | 404 107! | 877 107! | 2.84 10° | 9.67 10° | 4.08 10!
3 6.56 1071 | 1.50 10° | 3.7510° | 9.86 10° | 4.01 10!

Table 4

CPU time (in seconds) with respect to hg and {* for the (R) E.B.C. method combined

with the FIC-EBC solver for the Robin diffusion problem.
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(R) E.B.C. method + FIC-EBC solver + DDM

[{u=uhl|/|]ul| Robin diffusion problem — Local epsilon — Ext. interface

o G—=o0 without refinement — I = 0
100 b lo o2levels— "= 1 1
3levels-1"=2 -
A—A4levels — I =3 -
107 b 1
107+ 1
10_3 L L L L L L L L
1/512 1/256 1/128 1/64 1/32 1/16 1/8 1/4
discretization step
(a) Exterior interface X¢*".
(R) E.B.C. method + FIC-EBC solver + DDM
[lu-uhi}/jull Robin diffusion problem — Local epsilon — Cut interface
0 G—->0 without refinement — I" = 0
100 Fle—a2levels - I = 1 1
3levels - I"=2
A—7A4levels - 1"=3
10" - 1
107 - E
107

1/512 1/256 1/128 1/64 1/32 1/16 1/8 1/4
discretization step

(b) Cut interface X

Figure 19. Convergence for the L?-norm of the discretization error with hq for the
combination of the (R) E.B.C. method with the FIC-EBC solver for the Robin
diffusion problem with a local correction eg.
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[lu-uhl/lju|

(R) E.B.C. method + FIC-EBC solver + DDM

Robin diffusion problem - Local epsilon - Ext. interface

107 -

-2

10° L

G—=o0 without refinement — I* = 0

O—-a2levels - 1" =1
3levels - I* =

A—Ad4levels - 1" =3

10

[lu-uh}/ljuf|

(a) Exterior interface X¢*°.

(R) E.B.C. method + FIC-EBC solver + DDM

Robin diffusion problem — Local epsilon — Cut interface

10°
CPU time (s)

10° t

10

G—-©O without refinement — I* = 0
O—-Ha2levels - 1" =1

3levels - I"=2
A—Ad4levels - 1" =3

107

Figure 20. Convergence for

107 10™ 10° 10

(b) Cut interface X§“.

10°
CPU time (s)

the L2-norm of the discretization error with CPU time

for the combination of the (R) E.B.C. method with the FIC-EBC solver for the
Robin diffusion problem.
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accurate in the Robin case.

time, the method with the cut interface 3¢*

and DDM iterations is the most

Exterior interface X§** (FIC-EBC solver without DDM)

[ o 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512
0 3.90 1073 | 3.90 1073 | 5.86 1073 | 3.71 1072 | 2.81 107! | 7.43 10" | 8.04 10" | 5.89 10?
1 7811073 | 2341072 | 5271072 | 2.32 107" | 1.40 10° | 2.11 10" | 1.73 10?
2 3.711072 | 7421072 | 1.72 107! | 5.25 107" | 1.91 10° | 2.40 10*
3 9.57 1072 | 1.62 107! | 5.21 10~ | 1.17 10° | 3.60 10°
Table 5

CPU time (in seconds) with respect to hg and [* for the (R) E.B.C. method combined
with the FIC-EBC solver without DDM iterations for the Robin diffusion problem
with x¢et.

REMARK. The convergence results for the L°>°-norm are similar to those pre-
sented for the L2-norm (see the curves plotted for convection-diffusion prob-
lems in the next section):

18— upl| oo,y = O(hur)
and

|@ — un|l oo (a,) = O(ho) when the residual stagnation error is reached.

5.3.2  Convection-diffusion problems

5.3.2.1 Dirichlet problem
The convection-diffusion Dirichlet problem is considered as follows

— A+ div(va) =4 in Q,
il -
% —0 on T,

u=up =0 on X,

,
with v = §er where r = /22 4+ y? and e, is the radial unit vector.
The analytic solution of this problem is :

The associated fictitious problem (P) is solved using either the (D1) or (D2)
E.B.C method (see Table 1). The following results have been performed with
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(R) E.B.C. method + FIC-EBC solver

[{u=uhl|/|]ul| Robin diffusion problem — Local epsilon — Ext. interface

o G—=o0 without refinement — I = 0
107 Flg—a2levels - I* = 1 1
3levels - =2
As—7A4levels-1"=3
107 b 1
10 ]
10_3 L L L L L L L L
1/512 1/256 1/128 1/64 1/32 1/16 1/8 1/4
discretization step
(a) Error versus hyg.
(R) E.B.C. method + FIC-EBC solver
[lu-uhi/||u] Robin diffusion problem — Local epsilon — Ext. interface
. G—->© without refinement - I = 0
100 - OB—-Ha2levels - I* =1 E
3levels - I"=2
As—A4levels—1"=3

107 F ]
107 ¢ ]
10° L - = 5 5 5 s

10 10 10 10 10 10 10

CPU time (s)

(b) Error versus CPU time.

Figure 21. Convergence for the L2-norm of the discretization error for the combina-
tion of the (R) E.B.C. method with the FIC-EBC solver without DDM iterations
for the Robin diffusion problem with X6
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n = 107! to obtain a negligible modelling error compared to the discretiza-
tion error. As in the diffusion case, the two Dirichlet E.B.C. methods are both
first-order methods for the L2-norm and lead to the same errors (see Fig. 22).

An adaptive mesh refinement is performed around the immersed interface for
the (D1) E.B.C. method. As shown in Fig. 23, the (D1) E.B.C. method com-
bined with the FIC-EBC algorithm is a first-order method for the L?-norm.
However for the cut interface with 4 levels (I* = 3), a stagnation appears: the
error due to the non-refined zone of the original domain is reached. Hence, the
combination of the E.B.C. method and the FIC-EBC solver varies like O(h)
until the discretization error of the non-refined zone is obtained.

If we look towards the error obtained for the L*°-norm, we can see in Fig. 24
that the behaviour of the max norm error is similar to the behaviour of the
L?-norm error. The E.B.C. method is of first-order for the L>-norm, and the
combination of the (D1) E.B.C. method with the FIC-EBC solver remains of
first-order with respect to the finest local grid discretization step.

Moreover, the discretization of the convective flux makes the DDM iterations
necessary even for the exterior interface X§**. The upstream scheme may re-
quire the unknown value of the neighbor control volume. If this control volume
belongs to the enlargement zone of a patch and also belongs to the refinement
zone of another patch, the values of the convective flux can then be really
different. This may cause large differences on the next coarser grids.

5.3.2.2 Robin problem
We now consider the Robin problem

— At + div(vi)) = 16r*  in Q,

8~ ~

_u:0 on I,

n

u
_a_n:ﬂ—l—f-} on Y (ag =1, gr = 3),

with v = 2r%e, where r = /22 + y2 and e, is the radial unit vector.
The analytic solution of this problem is :

5 11 ~
ﬂ:2—§exp(T2 ) in Q.

Since |meas () —meas(Q)| = O(h), the expected accuracy is of first-order for
the L2-norm. In Fig. 25, the convergence of the (R) E.B.C. method (see Table
1) for two kinds of surface correction is compared. A global approximation of
the characteristic parameter ¢, (see Eq. (28)) leads to an asymptotic stagna-
tion of the error and then the first-order precision is lost. With an accurate
local correction (see Eq. (26)), the asymptotically first-order accuracy is then
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Relative L° error norms versus h

IIU—Uh||/||0U|| Dirichlet convection—diffusion problem — Surface penalty
10 T T T T T T T
Exterior interface => slope = 0.9
@@ Cut interface => slope = 0.9
107 5
107 1
107 1
1074 L L L L L L L L
1/512 1/256 1/128 1/64 1/32 1/16 1/8 1/4 . .
discretization step
(a) (D1) E.B.C. method.
. 2
Relative L™ error norms versus h
||u—uh||/||0u|| Dirichlet convection—diffusion problem — H' exterior volume penalty
10 T T T T T T T T
Exterior interface => slope = 0.9
@@ Cut interface => slope = 0.9

107 ]
10° ]
10° .
107 ‘

1/512 1/256 1/128 1/64 1/32 1/16 1/8 /4 L
discretization step

(b) (D2) E.B.C. method.

Figure 22. Convergence for the L?-norm of the discretization error with h for the
Dirichlet convection-diffusion problem with X¢%* or B¢
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(D1) E.B.C. method + FIC-EBC solver + DDM

||U‘Uh‘|/||0“” Dirichlet convection—diffusion problem — Ext. interface
10 T T T T T T T
G—>o without refinement - I = 0
O—H2levels - I" =1
3levels - I"=2

A—Adlevels - I*=3
107 ]
10% | g
10° :
1074 L L L L L L L L

1/512 1/256 1/128 1/64 1/32 1/16 1/8 1/4
discretization step
(a) Exterior interface X¢*".
(D1) E.B.C. method + FIC-EBC solver + DDM
||U‘Uh‘|/||0“” Dirichlet convection—diffusion problem — Cut interface
10 T T T T T T T
G—>o without refinement - I = 0
O—-H2levels - I" =1
3levels - I"=2

A—Adlevels - I*=3
107 ¢ E
10% | g
10° :
107

1/512  1/256  1/128 1/64 1/32 116 1/8 1/4
discretization step

(b) Cut interface X§*.

Figure 23. Convergence for the L?-norm of the discretization error with hg for the
combination of the (D1) E.B.C. method with the FIC-EBC solver for the Dirichlet
convection-diffusion problem.
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(D1) E.B.C. method + FIC-EBC solver + DDM

max |U_L0’h| Dirichlet convection—diffusion problem — Ext. interface
10 T T T T T T T

GC—->© without refinement - I* = 0

O—Ha2grids - I*=1

> 3grids-1*=2

A—A4grids-1"=3
10" 1
107 E
10° E
1074 L L L L L L L L

1/512  1/256 1/128 1/64 1/32 1/16 1/8 1/4
discretization step
(a) Exterior interface X¢*".
(D1) E.B.C. method + FIC-EBC solver + DDM
max |U‘L:h| Dirichlet convection-diffusion problem — Cut interface
10 T T T T T T T

GC—-© without refinement - I* = 0

O—Ha2grids - I* =1

> 3grids-1*=2

A—A4grids-1"=3
10" 1
107 E
10° E
107

1/512 1/256 1/128 1/64 1/32 1/16 1/8 1/4
discretization step

(b) Cut interface X5*.

Figure 24. Convergence for the L°°-norm of the discretization error with hg for the
combination of the (D1) E.B.C. method with the FIC-EBC solver for the Dirichlet
convection-diffusion problem.
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yielded for the L?-norm error. Compared to diffusion problems, the asymptotic
stagnation of the variant involving a global ¢, appears earlier, from the 8 x 8
mesh for the cut interface 35**. For Robin (or non homogeneous Neumann)
problems, a local correction is thus required to keep the first-order method.
A multi-level algorithm with local nested patches around the immersed inter-
face is performed with the method involving a local surface correction. As in
the Dirichlet case, the FIC-EBC solver reduces the original coarse error until
the stagnation due to the global error in the non-refined zone (see Fig. 26).
Then, the combination of the E.B.C. method with the FIC-EBC solver leads
to a convergence for the L?-norm in O(h;+) as long as the most important
error remains around the immersed boundary.

The max norm convergence of the error obtained with the combination of
(R) E.B.C. method and the FIC-EBC solver is also of first order, see Fig. 27.
For the cut approximate interface, the same stagnation as for the L2-norm
appears. The max norm error is then controlled be the max norm error of the
non-refined zone.

5.4 Second test problem: a corner domain

We now consider an original polygonal domain ) immersed in the unit square
Q =10,1[x]0, 1[. That defines a corner immersed interface ¥ = 3, U 3, see
Fig. 28(a). As in the quarter disk case (see section 5.3), the fictitious square

domain is meshed with a grid step varying from h = - to h = Rk The
approximate immersed interface X5, lying on sides of the mesh, is chosen such

that it crosses the physical immersed interface 3, see Fig. ~28(b). Then, the
approximate physical domain verifies meas((Q U Q) \ (2N Q) = O(h).

We want to solve the mixed problem

—Au =4 inQ,
~ g_uzo onf,
(P) g, 2 4 2
iy, = —=2?+ —=x +1 on Y (up = —=a2?+ —=z+1),
8~|2 3 \/g 1( D 3 \/g )
_8_u|22:a|22+4x2_6x+1+\/§ on ¥y (ag = 1,9 = 4% — 62 + 1 +V/3).
n

with the analytic solution @ = 2 — (22 + 3?) in €.
This mixed problem is solved over the square domain €2 with the E.B.C.

method (D1) on ¥, and the E.B.C. method (R) on X, with a local cor-
rection parameter ex. We combine these E.B.C. methods with the FIC-EBC
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. 2
Relative L™ error norms versus h

||U-Uh||/||0U|| Robin convection—diffusion problem — Global epsilon
10 T T T T T T T
Exterior interface
G—=>© Cut interface

107" | 1

107 1

107 E

1074 L L L L L L L L

1/512 1/256 1/128 1/64 1/32 1/16 1/8 1/4d. -
iscretization step
(a) Global correction with €.
. 2
Relative L™ error norms versus h
||U-Uh||/||0U|| Robin convection—diffusion problem — Local epsilon
10 ; ; ; : T T T
Exterior interface => slope = 0.9
® @ Cut interface => slope = 0.85

107 b E

107t —

10° 1

107

1/512  1/256  1/128 1/64 1/32 1/16 1/8 1/4,. -
discretization step

(b) Local correction eg.

Figure 25. Convergence for the L?-norm of the discretization error with h of the (R)
E.B.C. method for the Robin convection-diffusion problem with X¢** or £ : global
correction and local correction with extension of the local surface ¥; k.
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(R) E.B.C. method + FIC-EBC solver + DDM

||U—Uh||/||oU|| Robin convection—diffusion problem — Local epsilon —Ext. interface
10 T T T T T T T T
G—=o0 without refinement — I = 0
G—-=H2levels - I =1
3levels-1"=2
A—7A4levels-1"=3
107 b .
107 b E
10° 1
‘I()74 L L L L L L L L
1/512 1/256 1/128 1/64 1/32 1/16 1/8 1/4
discretization step
(a) Exterior interface X¢*".
(R) E.B.C. method + FIC-EBC solver + DDM
||U—Uh||/||oU|| Robin convection—diffusion problem — Local epsilon — Cut interface
10 T T T T T T T T
G—=o0 without refinement — I = 0
G—-=H2levels - I =1
3levels-1"=2
A—-A4levels-1"=3
107 b .
107 b E
10° 1
D/
107

1/512 1/256 1/128 1/64 1/32 1/16 1/8 1/4
discretization step

(b) Cut interface X§*.

Figure 26. Convergence for the L?-norm of the discretization error with hg for the
combination of the (R) E.B.C. method with the FIC-EBC solver for the Robin
convection-diffusion problem with a local correction eg.
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max [u-uh|
10°

10™

(R) E.B.C. method + FIC-EBC solver + DDM

Robin convection—diffusion problem — Ext. interface

G—=© without refinement - I* = 0
O—=H82grids - 1" =1
3grids —I"=2
A—A4grids-1"=3

max |u—uh|

10°

Figure 27. Convergence for the L°-norm of the discretization error with Ay for the
combination of the (R) E.B.C. method with the FIC-EBC solver for the Robin

1512 1/256  1/128 1/64 1/32 1/16 1/8 1/4

discretization step

(a) Exterior interface X¢*".

(R) E.B.C. method + FIC-EBC solver + DDM
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(b) Cut interface X6

convection-diffusion problem.
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Figure 28. Description of the corner domain, associated fictitious domain mesh and
approximate immersed interface.

solver in order to improve the accuracy of the solution around the immersed
interface. The results are reported in Fig. 29.

This test case enables us to conclude that even when the shape of the immersed
interface is more singular (with corners for example), the E.B.C. method is in
O(h) for the L?-norm. Then, the combination with the FIC-EBC solver leads
to a convergence in O(h;«), with [* the finest grid level, until the error of the
non-refined zone is reached. Moreover, these results confirm that the fictitious
domain method presented in this article can be used without difficulty for
mixed boundary conditions. Indeed, for each general boundary condition, the
same generic formulation with appropriate coefficients is used to evaluate the
numerical fluxes.

5.5 Analysis and comments on the numerical results

In all the previous examples, the space discretization error is numerically mea-
sured by several manners. The L?-norms (e.g. Fig. 19) or L*-norms (e.g.
Fig. 24) of the error inside the approximate original domain Q, are plotted
with respect to the discretization step hy of the global coarse mesh. Typical
distributions inside 2, of the absolute error calculated with or without local
refinement are represented in Fig. 12. These numerical results enable us to
draw the following conclusions for diffusion or convection-diffusion problems
with Dirichlet, Robin or mixed embedded boundary conditions:

e for the L?-norm and the L°°-norm, the mesh convergence of the E.B.C.
methods asymptotically varies like O(hg), where ho denotes the global mesh
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Figure 29. Convergence for the L?-norm of the discretization error with hq for the
combination of the (D1) and (R) E.B.C. methods with the FIC-EBC solver for the
mixed diffusion problem on the corner immersed domain.

step.

e when the multilevel FIC-EBC solver is used, the mesh convergence becomes
in O(hy+) where h;» denotes the discretization step of the local finest grid
(last level of refinement). Indeed, the slope of all the plotted curves (in log-
log representation) is nearly one: the accuracy still varies as O(hg). More-
over, the error obtained with [* refinement levels from a given global mesh
step hg is reduced to the error obtained without refinement (monogrid calcu-
lation) with a global mesh step equal to hj-. However the O(h+) convergence
holds until a maximum number of refinement levels is reached, over which
no more improvement of the discretization error is observed (see Fig. 23 and
Fig. 26). Then, only the O(h) convergence remains.

e the stagnation of the error, which can be observed when the number of
refinement levels increases, is due to the residual discretization error in the
non-refined zone of the global mesh. This residual error is also of first-
order. Indeed, as we solve elliptic problems, the influence of the boundary
conditions is visible on the whole domain and consequently remains non
negligible far away from the boundary. The error distribution inside the
approximate original domain confirms this conclusion, see Fig. 12. Thus,
the discretization error of non-refined zone (which does not contain the
immersed boundary) is always spoiled by the poor discretization of the
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immersed interface by stair cases, even with a local mesh refinement around
this immersed boundary. Whatever the number of refinement levels [* is, the
residual error converges like O(hg) and never like O(h3), which is clearly
observed in the mesh convergence results.

These previous remarks suggest that the discretization error in the approxi-
mate original domain ), converges for the L?>-norm and by the same way for
the L* norm with the following law

ho

er(uh)ﬁcoho-i-cl*hl*, 0<cp<Co<Ci < <O, hl*:?,

(35)
where the constants cq, C;, 0<I<!* do not depend on the discretization steps.
Thus, the term cyhg is the residual stagnation error in the non-refined zone.
This numerical estimation summarizes the previous conclusions:

e without refinement (I* = 0), the first order accuracy with respect to hg is
obtained
er(up) >~ (co + Co)ho.
e while [* is sufficiently small in order to have

Coho < Cl*hl*7

the mesh convergence varies like O (k).
e as soon as the number of refinement levels [* is bigger than a “stagnation”
number of refinement levels (%, , the residual stagnation error is reached.

stag?
So we have
Ciphp < Coho, l*>l:tag7
where
Cl’;mghl’;tag ~ vcghy, v <K 1.
ln < l;tag)

ve
Then, for [* bigger than I3, = 1720, which is a bounded number

n

of refinement levels independent of hg, the global error e,(uy) is equal to
the residual error cohg. The correction of the solution around the immersed
interface is then negligible compared to the residual error of the non-refined
part.

The figures of the discretization error versus the CPU time (Figs. 14 and 20)
and corresponding tables with respect to hy and [* (Tables 2 and 4) show the
performances of the multilevel solver.

In view of all the previous comments, the optimal strategy to obtain a given
error is first to increase the number of refinement levels [* before to decrease
hq if the residual stagnation error is reached.

The resolution of 3-D problems with the previous E.B.C. methods combined
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with the FIC-EBC solver should follow the same strategy. In particular, the
mesh convergence will be of first-order: O(h;+) or O(hy) as in 2-D. There still
exists a maximum number of refinement levels independent of hg over which
no improvement of the solution is observed. However, we may expect that the
multilevel solver would be relatively less efficient than in 2-D. In this case, the
improvement of the ratio between the solution precision and the CPU time
will be surely a little bit less important.

6 Conclusion and perspectives

An accurate fictitious domain approach to solve elliptic problems with gen-
eral boundary conditions has been introduced. This method is based on the
introduction of embedded transmission conditions linking jumps of flux and so-
lution through the immersed interface. This method is low cost since a unique
Cartesian mesh of the fictitious domain is required. As this method yields
a first-order convergence for the L? and L°-error norm, an adaptive refine-
ment algorithm is implemented to improve the accuracy of the solution. This
algorithm takes account of the properties of the fictitious domain method in-
troduced here and then an asymptotic convergence in O(h;+), hi~ being the
discretization step of the finest local grid, can be observed until the discretiza-
tion error of the non-refined zone is reached. The numerical results obtained
for Dirichlet, Robin or mixed problems are very satisfactory.

Such a fictitious domain method is full of promise, especially to simulate
moving and deformable boundaries with a cheap computational cost since no
boundary-fitted remeshing is required. Only the local patches of refinement
have to be adjusted around the moving immersed boundary. The general-
ization of this embedded boundary conditions method to the corresponding
parabolic evolution problems is also straightforward. The next step will consist
in extending this fictitious domain method to the resolution of Navier-Stokes
equations (with a projection step for example) with moving boundaries prob-
lems like two phase flow simulations or fluid/structure interactions (see [45]).
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