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Abstract

We consider a controllability technique for the numerical solution of the Helmholtz
equation. The original time-harmonic equation is represented as an exact control-
lability problem for the time-dependent wave equation. This problem is then for-
mulated as a least-squares optimization problem, which is solved by the conjugate
gradient method. Such an approach was first suggested and developed in the 1990s
by French researchers and we introduce some improvements to its practical realiza-
tion.

We use higher-order spectral elements for spatial discretization, which leads to
high accuracy and lumped mass matrices. Higher-order approximation reduces the
pollution effect associated with finite element approximation of time-harmonic wave
equations, and mass lumping makes explicit time-stepping schemes for the wave
equation very efficent. We also derive a new way to compute the gradient of the
least-squares functional and use algebraic multigrid method for preconditioning the
conjugate gradient algorithm.

Numerical results demonstrate the significant improvements in efficiency due to
the higher-order spectral elements. For a given accuracy, spectral element method
requires fewer computational operations than conventional finite element method.
In addition, by using higher-order polynomial basis the influence of the pollution
effect is reduced.
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1 Introduction

The Helmholtz equation is a fundamental equation for time-harmonic wave
propagation. It occurs in a number of physical applications such as underwater
acoustics, medicine, and geophysics. It can also be used to model the scattering
of time-harmonic acoustic waves by an obstacle. In this paper, we concentrate
on scattering problems but the same method can be used for other types of
Helmholtz problems as well.

A wide range of numerical methods have been used for solving the Helmholtz
equation. These methods can be divided into boundary and domain based
methods. We are especially interested to solve problems with varying mate-
rial parameters. For such problems, boundary based methods are not directly
applicable whereas domain based methods are more flexible in this respect.
Thus, we focus our attention to domain based methods.

Domain based formulations can be discretized, for instance, by finite differ-
ence (FDM), Galerkin finite element methods (FEM) (see, e.g., [1,2]) or infinite
element methods (IFEM) (see, e.g., [3,4,5]). Especially the FEM approxima-
tion and solution of Helmholtz equation has received much attention during
the past two decades (see, e.g., [6]). Many efficient solution techniques have
been developed for the finite element equations such as domain decomposition
methods [7,8,9,10], fictitious domain (domain embedding) methods [11,12,13]
and multigrid methods [14,15,16]. Preconditioners for solving the Helmholtz
equation are considered in [17] and [18].

In the FEM solution of the Helmholtz equation, the discretization mesh needs
to be adjusted to the wavelength of the wave. Higher frequencies require finer
meshes to reach sufficient accuracy and a typical rule is to keep a fixed num-
ber of grid points in a wavelength. This means keeping the quantity «h fixed,
where  is the wavenumber and h the mesh step size. Therefore, high frequency
problems often lead to large-scale linear systems to be solved for which con-
ventional solution methods can not be used.

In addition to approximation error, an important consideration in the finite
element solution of Helmholtz problems is the so-called pollution effect (see,
e.g., [2,19,20,21] and references there in). In [20], it is shown that the relative
error of the hp-version of finite element solutions in the H! -seminorm consists
of two parts. One of these is the approximation error, which is of order (’;—Z)p

2
and the other is the pollution error, which is of order H(%) p, where p is the

order of the basis functions. Consequently, the relative error increases as the
wavenumber increases, even if kh is kept constant. The pollution part becomes

the dominant source of the relative error at high wavenumbers.



It is known that the pollution effect can not be avoided in two- and three-
dimensional problems [21]. Thus, fixed error level would require keeping the
quantity ~2h fixed, which leads to unacceptable computational costs for high
frequency problems. One way to reduce the influence of the pollution effect
is to use higher-order polynomial basis, and we shall pursue this direction in
this article. The controllability techniques studied in this article provide an
efficient method to Helmholtz equations with higher-order approximations.
Higher-order approximations are considered on a general level, for example, in
[22]. We apply specifically the spectral element method, which is considered
in the book [23].

To reduce the pollution error, especially in large scale problems, modifications
of the classical FEM are needed. One way to decrease the pollution effect
is to modify the polynomial basis of standard FEM so that the local basis
will consist of nonpolynomial shape functions. This is done in discontinuous
Galerkin method [24,25,26].

Ultra weak variational formulation (UWVF) [27,28] uses standard finite ele-
ment meshes and a new kind of variational formulation on the interfaces be-
tween the elements. It reduces the memory requirement compared to the stan-
dard FEM, but might suffer from numerical instability. Also spectral [29,30]
and collocation methods [19] are used to reduce the pollution effect.

The discretization and solution methods mentioned above are based on han-
dling directly the time-harmonic equation. They all lead to large-scale discrete
problems with indefinite linear equations for which it is difficult to develop ef-
ficient iterative methods. An alternative is to simulate the time-dependent
equation with respect to time until time-harmonic solution is reached (asymp-
totic approach). However, this approach suffers from poor convergence at least
in the case of large wavenumbers and complicated domains.

In this paper, we use the idea of Bristeau, Glowinski, and Périaux (see, e.g.,
[31,32,33,34,35]) to formulate the Helmholtz problem as an exact controllabil-
ity problem for the time-dependent wave equation. Exact controllability ap-
proach is introduced by Lions [36] as a systematic method to address controlla-
bility problems for partial differential equations. This controllability technique
was used also in [37], where it was combined with a fictitious domain method,
and Lagrange multipliers were used to handle the Dirichlet condition.

As in [23], we discretize the wave equation in space domain with spectral el-
ements, which combines the geometric flexibility of finite elements with the
high accuracy of spectral methods. The basis functions are higher-order La-
grange interpolation polynomials, and the nodes of these functions are placed
at Gauss-Lobatto (GL) collocation points. The integrals in the weak form of
the equation are evaluated with the corresponding Gauss-Lobatto quadrature



formulas. As a consequence of the choice, the mass matrix is diagonal.

In [38], we used the central finite difference scheme for time discretization.
That scheme is second order accurate and with a diagonal mass matrix also
fully explicit, which are both essential properties for computational efficiency.
Only matrix-vector products are needed in time-dependent simulation, but
the scheme needs to satisfy the CFL condition, which limits the length of the
time step. When higher-order elements are used with the second order time
discretization, the temporal error is larger than the spatial error, unless very
small time steps are used (see [23] for details). Now, we improve the accuracy
of the method by using the fourth order accurate Runge-Kutta method. Ex-
plicitness of the method can be maintained with diagonal mass matrices, but
still, the method is only conditionally stable.

After discretization, exact controllability problem is reformulated as a least
squares problem, which is solved with the preconditioned conjugate gradient
(CG) algorithm. Computation of the gradient of the function to be minimized
is an essential stage of the method. In [35], the gradient was derived on the
continuous level, and the same formula was used also on the discrete level. We
discretize first the wave equation and the function to be minimized. Then, we
compute the gradient directly for the discretized problem.

The rest of the paper is organized as follows: First, we present the Helmholtz
equation for scattering problems in Section 2. The formulation of the exact
controllability problem is considered in Section 3. The discretization of the ex-
act controllability problem is described in Section 4. In Section 5, we present
the least-squares problem and consider its conjugate gradient solution in Sec-
tion 6. Finally, in Section 7, we study the performance of the method with
numerical experiments. Also comparison with the method presented in [38] is
done.

2 Helmholtz equation

We consider the scattering of a time-harmonic acoustic plane wave by a
bounded obstacle in the two-dimensional case. The scattering can be mod-
elled by the Helmholtz equation with an absorbing boundary condition



Figure 1. Obstacle ©, domain 2 = II; U Ily, and the two parts of the boundary
0Q = I'g U ey of the domain 2.

Kk(x)? ( 1 > _
— U-V-|—VU|=F, in €, 1
p(x) p(x) W
WU =0, on I, (2)
, oUu
—ik(x)U + on = Yext on ey, (3)

where U(x) denotes the (complex-valued) total acoustic pressure field. The
total field is sum of the scattered wave Us.,; and the incident plane wave Uj,.
Operator W sets the boundary condition on I'y, and F and Y. are source
terms due to the incident plane wave. The Helmholtz equation describes the
linear propagation of acoustic waves in an isotropic and inviscid fluid.

The problem setting is illustrated in Fig. 1, where © denotes the obstacle
and € is the domain between the obstacle and the absorbing boundary I'cy.
The boundary of the obstacle is denoted by I'y. Domain 2 is divided into two
parts by a closed curve T'. (collection curve), which is chosen such that all the
inhomogenities in €2 are inside I'.. The two parts of € are denoted by 1I; and
I, (see Fig. 1). Vector n denotes the outward normal vector to (2 and v denotes
the outward normal to I'. (points away from obstacle). The wavenumber and
density of the material are denoted by x(x) and p(x), respectively, and they
may be varying in II;. The wavenumber is related to the angular frequency w
and to the speed of sound ¢(x) by the formula x(x) = - The corresponding
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wavelength is given by A\(x) = Ok

The boundary condition on the surface of the obstacle depends on its acoustic
properties. With sound-soft obstacle the total pressure is zero on the surface
I'y, which implies Dirichlet boundary condition with W equal to the identity
operator. Sound-hard obstacle leads to Neumann boundary condition with
W = a%' Third alternative is Robin boundary condition, which means a linear
combination of the previous conditions.



On the absorbing boundary I'., we impose the conventional first-order bound-
ary condition [39]. This is the simplest alternative and not accurate in approx-
imating the Sommerfeld radiation condition. However, it is sufficient for the
presentation of the controllability method of this article. We shall consider
more sophisticated boundary conditions and absorbing layers in future.

The time-harmonic incident plane wave is given by Ui.(x) = exp(id - x),
where 7 is the imaginary unit and the vector & gives the propagation direction
(w = ||d||2). Then, the functions Yy and F' in the equations above are of the
form

G N G
F e U~V (p(x>vumc< ). (4)
Yo = —iri(x)Usne (x0) + 20melX). (5)

on

In general, function F' is non-zero, but if material is homogeneous, it becomes
zero. By the choice of I'., F' is zero in the domain IIs.

3 Exact controllability problem

Hilbert Uniqueness Method (HUM) was introduced by J.L. Lions 1986 [36]
as a systematic method to address controllability problems for partial differ-
ential equations. It is based on the construction of appropriate Hilbert space
structures on the initial data. These Hilbert structures are connected with
uniqueness properties. We use a method which is inspired by HUM, and in-
troduced in [31], to find time periodic solutions to the wave equation.

With exact controllability, it is possible, to find a time periodic solution to
wave equation without solving the Helmholtz equation. If we have a system
in a given initial state (u(0),2%(0)) and a control e = (eg, e1) such that the
given final state (u(7),2%(7)) can be achieved, the system is said to be ex-
actly controllable [40]. Thus, the basic idea of exact controllability is to have
preassigned initial and final states of the wave equation such that beginning
from the initial state, the final state can be achieved by some control. Exact
controllability is well-known and extensively researched topic within classical

wave equations [35].

Solution of the time-harmonic equation (1)-(3) is equivalent to finding a peri-
odic solution for the corresponding time-dependent wave equation. The period
T corresponding to the angular frequency w is given by %”, and the 7-periodic
solution can be achieved by controlling the initial conditions such that the



solution at time 7 coincides with the initial conditions. In what follows, we
restrict our attention to Dirichlet problem (i.e., W = I) although Neumann
and Robin boundary conditions could be treated in a related way. We also
introduce the Hilbert space Z for the the initial conditions e = (eg,e1) € Z
by

7 =V x L*(Q), (6)

where

V = {v € H(Q) such that v = 0 on I'y}. (7)

Then, we have the following exact controllability problem: Find initial condi-
tions e € Z such that equations

1 0%u 1 )
mﬁ—v <p(X)Vu> —f, an—QX [0,7’], (8)
Wu = 0, on vy = Iy x [0, 7], (9)
1 Oou Ou
@a + n = Yexts OnN Yext = Lext X [07 7']7 (10)
u(x,0) = e in Q, (11)
6M;(x, 0) =¢e in €, (12)
u(x,7) = eg in €, (13)
81:()(, T)=¢ in Q, (14)
hold with
K(x)? ( 1 )
= ——— < Uinc Xat -V 7VUinC ) 15
e R A Ve )
Yoxt = %méil’"t) — Re(irUine exp(—iwt)), (16)

where Uin(X,t) = Re(Uinc(x) exp(—iwt)). The spectral element discretization
of the problem is based on the weak formulation of the classical wave equation
(8)-(10): Find u satisfying u(t) € V for any ¢ € [0, 7] and



1 0%u 1 1 ou
- - - — Yu- -z 1
/Qp(X)C(X)2 at2vd:c—|— Qp(}{)Vu Vudzr + o €O p() atvds (17)
1
- va dx + /1_‘EXt p(x)yextv ds

for any v € V and t € [0, 7].

4 Discretization

In order to produce an approximate solution of the wave equation, the com-
putational domain is discretized into a set of finite elements. For this, we
use spectral elements, which allow convenient treatment of complex geome-
tries and varying material properties. The fourth order Runge-Kutta scheme
is used to advance the system in time.

4.1 Spectral element method

The spectral element method (SEM) was pioneered in the mid 1980’s by An-
thony Patera [41] and Yvon Maday [42]. It is a method, which combines the
geometric flexibility of finite elements with the high accuracy of spectral meth-
ods. When using SEM, the physical domain is typically divided into nonover-
lapping quadrilateral elements, but also triangular elements can be used. Al-
though triangular spectral elements offer high accuracy in complex geometries,
solving the related problems might be difficult and time consuming. Contrary
to quadrilateral spectral elements, mass matrices are not generally diagonal by
nature with triangular elements [43]. Whether mass matrices are diagonal or
not, the computational effort is larger on triangular elements than on quadri-
lateral elements. The reason for this is that triangles are not tensor-product
elements, and hence the computation of the derivatives involves all collocation
point values on elements. Consequently, the cost of computing derivatives is
higher on triangles than on quadrilaterals. Moreover, accuracy is slightly bet-
ter on quadrilaterals than on triangles, and condition number of the stiffness
matrices grows faster for triangles than quadrilaterals [44]. At present, it seems
that triangle based SEM is competitive with the quadrilateral one only if the
domain €2 has a curved shape. These are the reasons why we have chosen to
use quadrilateral elements and the associated polynomial spectral basis. A de-
tailed comparison of SEM on quadrilaterals and triangles is done in [44], and
quadrature formulas needed for quadrilateral and triangle based methods are
recently presented, for instance, in [23] and [45], respectively.



After the domain is decomposed into elements, a local polynomial basis is
introduced in each element. These basis functions are explained in the next
section. The degrees of freedom associated with the basis functions are situated
at the Gauss-Lobatto quadrature points of the quadrilateral. This is the main
difference between SEM and p-FEM. So, SEM can be described as a finite
element method in which higher-order spectral method is used within each
element.

The computational efficiency of the method is based on the use of the Gauss-
Lobatto quadrature rule in the computation of the finite element matrices. It
provides lumped mass matrices without reducing the order of accuracy and
leads to efficient simulation for transient problem.

4.2 Discrete weak formulation

The physical domain €2 is decomposed into N, quadrilateral elements. We
denote the elements by €;,7 = 1, ..., N, and assume that Q = Y, Q;, i.e., the
mesh coincides with the domain exactly. For the discrete formulation, we first
define the reference element Q.. = [0, 1]> and affine mappings G; : Quer — Q;
such that G;(Qer) = €2;. Then, the finite element subspace V;" of V' is given by

V' = {v, € V such that vy, 0 G; € Q"}, (18)
where
Q () ={v(& () = Z Z apg§PCY,  apg € R} (19)
p=0¢=0

is the set of polynomials of order r in R%. The quadrilateral mesh is assumed
to satisfy the usual regularity assumptions for a finite element mesh [46].

The basis functions ¢,, for the space V} are constructed with the help of the
basis functions ¢, j,k = 1,...,7 4+ 1, on the reference element (,t. These
functions are Lagrange interpolants of the Gauss-Lobatto integration points
in Q¢ and can be written as a product of two polynomials of order r (1D
basis functions). Then, for each basis function ¢, for V;/ we can identify a
basis function ¢, such that ¢,|o, © G; = ¢k (see [23] for details).

Based on these definitions we can write the semidiscrete weak formulation of
the wave equation (8)-(10): Find u, satisfying u,(t) € V) for any t € [0, 7]
and



1 Ouh
/Qp( ) ( 8t2 Uhd$+/ Vuh Vvhdx—i— o mﬁvhds
(20)

= / fopdx —I—/ yextvh ds

for all v, € VJ and t € [0,7]. The dimension of the space V| is the number
of Gauss-Lobatto points of the quadrilateral mesh and we denote this number
by Ndof-

4.3  Semidiscretized equation

We denote by u € RMaor the vector containing the values of the function wuy,
(total pressure) at the Gauss-Lobatto points of the quadrilateral mesh. Then
the weak formulation of the previous section can be rewritten in the matrix
form

0u ou
j\/l— S—+K F, 21
o oo T T (21)
where M is the mass matrix, S the damping matrix due to the absorbing
boundary condition, K is the stiffness matrix, and F is the vector due to the
functions f and yey:. The entries of the Nqor X Ngor matrices M, S, and K are
given by the formulas

1
Mi,j :/QWSOiSOjd% (22>
Sij= /m ngi@jds, (23)
Kis= [ oo Ve Vs, (24)

The values of these integrals are computed element by element with the Gauss-
Lobatto integration rule. Thus, it is obvious that the matrices M and S be-
come diagonal. The components of the vector F are of the form

Fi= / foidx + / yextsozds (25)

10



4.4 Time discretization

The time discretization of the semi-discrete equation is performed with the
fourth order Runge-Kutta method. This method needs four substeps at each
timestep to give a method with fourth order accuracy with respect to the
timestep At, and leads to an explicit time-stepping scheme. Both properties
are essential for computational efficiency.

The time interval [0, 7] is divided into N timesteps, each of size At = 7/N.
After replacing the time derivatives in the semidiscretized form (21) by the
appropriate approximations and taking into account the initial conditions (11)-
(12) we obtain the fully discrete state equation, which can be represented in

the matrix form

s(e,u(e)) =

Y
n
N T yN1
NT yN

- : =0, (26)

. S NT
where 7 is the identity matrix, y* = (uZ a“) , 1 =1,...,N, and 3 =

> ot

(eg, e1)T. The matrix A and the vector F' are

2C
2C

. 2C
2C
C

T -1
A
BT
B T
2BT
T -1
7z
BZ
B T
2BT

2B
2B
2B
2B

Di—l

Di3

Di~3
Di

The matrix blocks C and B, and the vector blocks D¢, are given by the formulas

11



C — 6
0 —i7
5 0 —-47
SMTIKE GMTS
. AtMTF
D' = :
0

where F' is the vector F at time ¢t = iAt. In practice, one timestep from 3*~1
to ' is achieved by solving a system

7 ky 2B Di-l
BT ks 2B Di~s
B I ks |+ | 2B |y = | D=2 | =0, (29)
2B T ke 2B Di
caccz]|\y 7 0

where k; = (kj1, kj2)",j = 1,2,3,4, are the gradient estimates.

In the next section, when describing the control algorithm, we use for the state
equation the short form

s(e,u(e)) =0, (30)

where e = (eg, e;)” contains the initial values and u the vectors u’. We denote
the state equation by sg(e,u(e)) = 0 in the special case with F* = 0 for all i.

5 Control problem

The exact controllability problem for computing 7—periodic solution for the

wave equation involves finding such initial conditions e, and e; that the so-

lution © and its time derivative % at time 7 would coincide with the initial

conditions. For the numerical solution, this problem is formulated as a least-
squares optimization problem with the cost function

12



ou(x, T)
ot

i + ’V(u(x, T) — €o) de) (31)

J(e, u(e)) = ;( /

where e = (eg,e1) € Z, and w is the solution of the initial value problem
(8)-(12) [35].

5.1 Least-squares formulation

In order to solve the exact controllability problem, we use the least-squares
formulation

min J(e, u(e)), (32)

ec”Z

where e solves equations (8)-(12) and

N T N 1 [ou? g ouly
J(e,u(e)) = (u - eo) K (u - eo) + 5 (815 —€1> M (815 - 61) 5

DN | —

is the discretized objective function, where %‘TN and u” are given by the equa-
tion (26). Once we find e € Z such that J(e,u(e)) = 0 the conditions (13)
and (14) are also satisfied and the time-harmonic solution is achieved.

Solving the minimization problem (32) is equivalent to finding such e € Z
that V.J(e,u(e)) = 0. Since J is a quadratic functional this is a linear system,
and the conjugate gradient (CG) method is suitable for solving it. If the un-
preconditioned CG algorithm is used, the number of iterations grows with the
order of elements [42]. In order to avoid this difficulty, we use a preconditioned
CG method. Each iteration step involves computation of the gradient of the
cost function .J, which is an essential stage of the algorithm.

5.2 Gradient of the discretized cost function

The state equation (26) can be represented in the residual form (30), and by
the adjoint equation technique we see that

dJ(e,u(e)) 0J(e,u) r0s(e,u)

dek N a6k P Oek ’

k=01, (34)

where p is the solution of the adjoint equation

13



The state equation (30) is also called the forward equation because it is solved
by advancing forward in time. The adjoint state equation (35) requires ad-
vancing backward in time, so it is called the backward equation [35].

The adjoint state equation (35) can be represented in a block form similar to
(26):

INT 20 0
I NT 2t 0

= 7 (36)
INT ZN-1 0

where 2' = (p', %—”;)T contains the solution of the adjoint state equation and

its time derivative at t = iAt, 1 =N —1,...,0, and

dJ(e,u(e)) K(uh — eg)

oyN M2 e))

The gradient components, computed by the equation (34), are then the fol-
lowing:

CU(ZQ:(G)) = K(eo —u™) +p°, (37)
dJ(e,u(e)) ou | 9p°
o)

In the same way as with the state equation, one step of the adjoint equation
(36) can be written out in the matrix form corresponding to the system (29),
as

14



7 28T 2BT 28T 2BT 2 7z
I BT kq —C
7 B ky | = | —2¢ | 2,
I 2B7T ks -2C
A ky —C
with starting value
Kl —e
ZN _ ( 0)

6 Conjugate gradient method

Cost function is minimized with a preconditioned conjugate gradient (CG)
method. Because vector u depends linearly on the initial conditions eq and
e1, the function to be minimized is a quadratic function, and its minimization
corresponds to the solving the linear system V.J(e) = 0.

6.1 Computation of the initial approximation

It is important to have smooth initial approximations for ey and e;, which
satisfy the boundary conditions. In [35], a special procedure suggested by Mur
in [47, p. 950] was used, which leads to faster convergence to the time-harmonic
solution. We apply the same procedure, and first define a smooth transition
function 6(t), which increases from zero to one in the time interval [0, 7,]:

(2 — sin (7rt/27‘tr)> sin <7rt/27'tr), if 0 <t <,

L, if t > 7.

0(t) = (39)

The length of the time interval should be chosen as a multiple of the period
T, i.e., Ty = nT with n a positive integer. Then, we solve the following initial
value problem:

15



1 Pw g (1v )—Q(t)f in Q=0 x [0,7] (40)
po0exp o~ T\ ) T T e
w = 0, on vy = 1—‘O X [Oa Ttr]? (41)
1 Jow OJw
TX)E + ain - g(t)yexta on ’Yext - Fext X [07 Ttr]’ <42)
w(x,0) =0 in Q, (43)

The initial approximations for the control variables ey and e; are now the
solution w and its time derivative at time 7,. If the obstacle © of the scattering
problem is convex, there are no interacting reflections, and already this initial
procedure may converge rapidly to the time-harmonic solution. However, in
general the convergence is slow and we need to continue with the control
algorithm.

6.2 Preconditioned conjugate gradient algorithm

Our preconditioned CG algorithm differs from the one in [35] with respect to
the spatial discretization and the gradient computation. Each CG iteration
requires computation of the gradient V.J, which involves the solution of the
state equation (30) and the corresponding adjoint equation (35). Also solution
of one linear system with the preconditioner £ and some matrix-vector op-
erations are needed. Values of the control variables e at the ith iteration are
denoted by € and e!. Solution of the adjoint state equation is p = (p°, 88—”;),
and the gradient variable is g = (go, 91)- By so(e, u(e)) = 0 we denote the state
equation (26), where F' = 0 for all i. Then, the CG algorithm for solving the
least-squares problem is the following:

Algorithm 1 Preconditioned C'G algorithm

Use method of Section 6.1 to compute the initial values €) and €.
Solve the state equation s(e®, u(e?)) = 0.

- ‘ 9s(e®ue)\ T (0J(%uEe)\ T
Solve the adjoint state equation (7&1(90) ) = (7811((30) ) .
Compute the gradient vectors go and g, by the formulas (37)-(38).
Solve linear system with the preconditioner Lw = —g.
Set cg = —(w,g), c=cy and i = 1.
Repeat until \/g <e

Solve the state equation so(w,u(w)) = 0.

16



aﬂmﬂy»f}):<aﬂwmw»Yf

ou(w ou(w)

Compute the gradient updates vy and vy by the formulas (37)-(38) .

Solve the adjoint state equation (

C

Compute p = =

. . (W7V) '
el =e !+ pw.
g=g+pv.
Solve linear system with the preconditioner Lv = —g.

7:%762_(Vag)7’7:0’y‘
w=v+yw, it =1+ 1.

6.3 Block-diagonal preconditioner

We use the block-diagonal preconditioner

K 0
L= : (45)
0 M

where the first and second blocks are associated with the first and second
terms in (33), respectively.

Solution with the first preconditioner block is computed by using an alge-
braic multigrid (AMG) method. This approach is recently studied for solving
problems with higher-order discretizations in the article by Hays et al. [48], in
which they applied the well-known AMG of Ruge and Stiiben [49] to Poisson
problem and Stokes equations discretized with higher-order elements.

At this stage, we use the method based on the work of Kickinger [50]. In this
method coarsening (i.e. selection of the unknowns for coarser levels) is based
on the graph of the stiffness matrix only, instead of using actual values stored
in the stiffness matrix. This approach ensures fast computation of coarser level
components. Additionally, it is an easy task to extend this method to use any
graph related to the problem, and this property is used here.

Coarsening strategy proposed in [50] leads to far too coarse systems when
applied to stiffness matrix obtained by higher-order discretization. This is
due to increasing amount of connections between unknowns of the problem.
Consequently, convergence factor of AMG degrades rapidly as the order of
the approximation polynomials increases. We have overcome this problem by
employing a graph that is constructed so that unknowns are connected to each
other as if a lower-order element would have been used in the discretization
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process, i.e. only the unknowns corresponding to the nearest neighbouring
nodes are connected to each other.

As a smoother of AMG we use Successive Over Relaxation (SOR), with re-
laxation parameter 1.2 unless other mentioned. One iteration of SOR is used
as pre- and post-smoothing. Additionally, in the beginning of every multigrid
iteration, four iterations of SOR is used to smooth the solution. In this case,
so called W-cycle (see, e.g., [51]) is utilized as a multigrid iteration.

7 Numerical experiments

The main goal of these numerical experiments is to study the accuracy of the
spatial discretization and its effect on computational complexity. In order to
validate the method, we consider the solution of various test problems dealing
with acoustic scattering of an incident plane wave. We also study the accuracy
of the temporal discretization by comparing the method with the one with
central finite difference time discretization, which is presented in [38].

The problem is formulated in terms of the total wave u, which is a sum of
the incident wave and the scattered wave. For all test cases, we have set the
propagation direction & = w(—g, ?), density of the material p(x) = 1, speed
of the wave ¢(x) = 1, total time 7 = %”, and the stopping criterion ¢ = 107,
unless other mentioned. Mesh generator provided by Numerola Ltd. is used
to divide the computational domain into square elements, each having a side
length h. Computations have been carried out on a 1.80 GHz AMD Athlon

PC.

7.1 Error factors

The overall accuracy of the discrete solution given by the controllability method
depends on many factors. In order to concentrate on the spatial discretization
we choose the test problems in such a way that as many error factors as pos-
sible are eliminated. We try to isolate the effects of those error factors which
we can not eliminate.

The accuracy depends on the spatial and temporal discretization parameters,
which are the mesh density A, the order 7 of the spectral basis, and the timestep
At. Large time step allows to compute the solution utilizing only small amount
of CPU time, but it may involve an error which deteriorates the accuracy of
the method. Hence, time steps small enough are used to attain the proper
temporal accuracy.
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Figure 3. Non-convex semi-open scatterer.

Geometries with curved boundaries can not be represented exactly by a rect-
angular mesh, which also causes error. We avoid this error component by using
only geometries with polygonal boundaries (see Figs 2-4). Curvilinear geome-
tries could be approximated accurately by using elements with curved edges.
The least-squares optimization problem is not solved exactly, since the CG
algorithm is terminated after given criterion is reached. This error component
can be controlled by decreasing ¢ in Algorithm 1.

In scattering problems, the approximation of the radiation condition leads
to yet another error component. We eliminate this factor in the first test
example by creating an artificial problem with known analytic solution, which
satisfies the absorbing boundary condition. The approximation of the radiation
condition could be improved by using more sophisticated boundary conditions
or absorbing layers.

7.2 Accuracy of approzimation

The first test problem is chosen to test the accuracy of the approximation.
The boundary I'ey coincides with a rectangle with the lower left corner at the
point (0.0,0.0) and the upper right corner at the point (4.0,4.0). In the center
of this rectangle, we have a bounded square scatterer with side length 2 (see
Fig. 2).
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Figure 4. System of two non-convex semi-open scatterers.

We modify the functions f and y. in the scattering problem such that the
analytic solution of the problem is known to be the plane wave wu;,.. For this
purpose, we introduce an auxiliary function y € H'(Q) which satisfies the
conditions uiy(x,t) = cos(wt — & - X), Y|r, = Uines Y|ro, = % r.. = 0, and
Yext = % + %. Then, the function @ defined by u = u — y satisfies equa-

tion (8) with the nonzero right-hand side f = —% +V2y as well as equations
(9) and (10). This modification eliminates the error caused by the absorbing
boundary condition, and allows us to study the effect of the spatial discretiza-

tion.

The test problem is solved with angular frequencies w = 7 and w = 27 with
both Runge-Kutta (RK) and central finite difference (CD) time discretization.
The relaxation parameter of SOR is 1.4 in preconditioning. To ensure the
stability and accuracy conditions, the time interval [0, 7] is divided into 300
timesteps in the case of CD time discretization and into 150 timesteps in the
case of RK time discretization. After solving 4, solution to the actual test
problem is given by u = 4 + y.

The number of non-zero entries in the stiffness matrix is essential for computa-
tional efficiency, since the time stepping scheme involves mainly matrix-vector
multiplications. This is why the comparison between mesh step refinement
(h-refinement) corresponding to the classical FEM discretization and spectral
basis order refinement (r-refinement) corresponding to the SEM discretization
is presented in terms of the number of nonzero matrix entries in Fig. 5. The
error curves of the r-refinement are achieved when the order of the spectral
basis 7 is increased from 1 to 5 with mesh stepsize h = 1/4. The h-refinement is
obtained by keeping the basis order fixed (r = 1) and doubling the resolution
of the mesh, given by \/h, consecutively.

As the order of the polynomial basis increases, the maximum error between
the numerical solution and the analytical solution decreases until the error of
the time discretization or the stopping criterion is achieved. The error becomes
smaller also with mesh step refinement, but the convergence rate is higher for
r-refinement than for h-refinement. Based on these results, it seems clear that
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it is better to increase the order than the resolution to improve efficiency.

In conjunction with higher-order elements, results computed with RK version
of the algorithm are more accurate than the ones computed with the CD ver-
sion (see Fig. 5). This happens, because RK is higher-order time scheme than
CD. Apparently, the error of time discretization limits the accuracy with basis
orders r > 3 in the CD case, whereas the stopping criterion causes the limiting
error in the RK case. Since the error of spatial discretization dominates with
low order elements, the difference between errors is insignificant for spectral
orders r =1 and r = 2.

When the polynomial basis increases or the mesh stepsize becomes smaller,
systems to be solved become larger, which causes the increase in CPU time.
When At is constant, the computational cost needed for one iteration is pro-
portional to the number of non-zero elements in the stiffness matrix. To be
more precise, the computational effort of the method seems to depend linearly
on number of non-zero elements in the stiffness matrix (see Fig. 6). According
to Fig. 6, the number of iterations varies such that the CPU time required for
the two refinements corresponding to SEM and FEM are of the same order of
magnitude.

Most of the CPU time is used for solving state (i.e. forward, FWD) and ad-

AMG mmm
FWD E=x
BWD &=z
100 | .
Q
£
= 80 | §
>
[a
(@)
o 60 - .
()
(@)]
g
[
8 40 1
(]
[a
20 .
0
1 2 3 4 5

Order of the polynomial basis
Figure 7. Proportion of CPU time (in percent) required by the AMG cycles and

computing state (FWD) and adjoint state (BWD) in one CG iteration with RK
time discretization, w = 27 and 100 timesteps.
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joint state (i.e. backward, BWD) equations. Fig. 7 shows the proportion of
computational efforts of those equations and AMG preconditioner in one CG
iteration with RK time discretization, w = 27 and 100 timesteps. Also some
matrix-vector multiplications are computed at each iteration, but from Fig. 7
we notice that the amount of CPU time used for those is negligible when com-
pared to the other computational efforts. Similar bar charts can be achieved
also with the other r-refinements discussed in this Section.

When higher-order elements are used, good efficiency with high accuracy can
be achieved by using sufficiently large mesh stepsize [52]. This is why we
have performed another set of experiments by using coarser mesh with higher
element order.

7.3 Pollution effect

In these computations, the number of timesteps is chosen such that decreasing
the length of the timestep does not improve the accuracy significantly. Number
of timesteps in CD and RK cases for different spectral orders is shown in
Thl. 1. We have also used coarser meshes with higher spectral orders such
that the resolution of the spatial discretization, i.e. degrees of freedom per
wavelength, is approximately constant (rA/h =~ 40). Mesh stepsizes used for
angular frequencies w = {m, 27,47} are presented in Thl. 1.

The behaviour of the error with respect to the wavenumber can be seen in
Fig. 8. In the case of classical finite element discretization, i.e. r = 1, the error
increases considerably large as the wavenumber increases. Error increases with
wavenumber also for higher spectral orders. Thus, the pollution effect is not
eliminated with higher-orders, but results are more accurate than with r» = 1.

Maximum error is plotted with respect to CPU time in Fig. 9, with both
time discretizations, so that the wavenumbers corresponding to results of Fig.
8 are used for a particular spectral order. Better accuracy is achieved with

T 1 2 3 4 )

Mesh stepsizes w=m|1/20 1/10 1/7 1/5 1/4
for different
2r | 1/40 1/20 1/14 1/10 1/8

angular

frequencies 47 | 1/80 1/40 1/28 1/20 1/16
Number of CD| 90 270 300 320 320
timesteps RK | 60 100 140 150 150

Table 1
Mesh stepsizes for different angular frequencies and number of timesteps for different
spectral orders.
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less work, when higher-order elements are used. In the case of finite element
discretization, the error is a little bit larger with RK than with CD time
discretization. With higher-order elements the error in the CD case seems to
be an order of magnitude larger than the error in the RK case with the same
CPU time consumption.

From Figs. 8 and 9 we can notice that CPU time for algorithm grows with
wavenumber. Reasons for this are increase in number of CG iterations (see
Fig. 10) and the fact that denser mesh is used with higher wavenumber in
these experiments. With a certain spectral order, amounts of CPU time used
for AMG and for the whole algorithm grow nearly at the same rate. Thus, the
proportion of CPU time used for AMG at each iteration is almost constant
for fixed r (see Fig. 11).

7.4 Acoustic scattering

We consider acoustic scattering by a square, a non-convex semi-open cav-
ity and a system of two semi-open cavities (see Figs. 2-4) by solving a two-
dimensional problem (8)-(12) with f = 0 and yex, = Zine + e The incident
plane wave wuy,. is of the same form as in Section 7.2. In these experiments,
we have used the angular frequency w = 4m. We consider also problems with

25



10 T T

I’Z% ——
=2 -->%--
9 r =3 - 7
r=4 -5
gt r=5 -m- |

Percentage of CPU time required by AMG

T 2T 31 41t
Wavenumber

Figure 11. Proportion of CPU time (in percent) required by the AMG cycles in one
CG iteration with respect to the wavenumber such that rA/h = 40.

varying speed of the sound, i.e. coated scatterers. In all test cases, the arti-
ficial boundary is located at distance 2\ from the scatterer. Mesh stepsizes
and number of timesteps for non-coated geometries are chosen as in the pre-
vious example. Because of stability conditions for RK, we need to use more
timesteps when RK is used with varying material parameters (see Tbl. 2).

T 1 2 3 4 )

Mesh stepsize | 1/80 1/40 1/28 1/20 1/16

Number of non-coated | 60 100 140 150 150
timesteps coated 120 200 280 300 350
Table 2

Mesh stepsizes and number of timesteps for different spectral orders with w = 4.

7.4.1 Scattering by one obstacle

We begin with scattering by the same square obstacle which was considered
in Section 7.2 (see Fig. 2). In the second scattering example, the obstacle is
a non-convex semi-open cavity. Internal width and height of the cavity are 5
and %, respectively, and thickness of the wall is i (see Fig. 3).
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With these geometries, we consider also problems with varying speed of sound
¢(x). For this, we define thin layers around the obstacles in which ¢(x) differs
from the value in the surrounding domain. Thickness of the coating material
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Figure 12. Contourplot of scattering by a  Figure 13. Contourplot of scattering by a
convex obstacle with r = 3 and h = 1/28.  coated obstacle with r = 3 and h = 1/28.
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Figure 14. Contourplot of scattering by a non-convex semi-open cavity with r = 3
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r=3and h =1/28.
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r| 1 2 3 4 5
Number of c=1|40 20 14 10 8
elements per 3130 15 105 7.5 6
wavelength 1
5120 10 7 5 4
Table 3
Number of elements per wavelength for different spectral orders.
r
Type of the obstacle 1 2 3 4 5
convex obstacle (square) non-coated | 59 75 74 76 75
coated 172 178 178 177 177
non-convex semi-open cavity non-coated | 211 300 301 300 299
coated 851 738 736 735 735
two non-convex semi-open cavities non-coated | 123 146 145 145 145
coated 367 347 347 347 347

Table 4
The number of iterations of the preconditioned CG algorithm with different scat-
terers.

parallel to the surface of the obstacle is %. The speed of sound ¢(x) is equal
to one outside the obstacle and % in the coating, implying that outside the
obstacle wavelength A(x) = 1 and in the coating A(x) = . Since rectangular
mesh with element width A is used, there are 1/2h elements per wavelength
outside the obstacle and 1/4h in the coating (see Tbl. 3). Contour plots of the
numerical solution of scattering by the square and the non-convex semi-open

cavity are shown in Figs. 12-15 with r = 3 and h = 1/28.

7.4.2  Scattering by two non-convexr semi-open cavities

We have solved the scattering problem also with two non-convex semi-open
cavities. In this case, internal width and height of each cavity are % and %,
respectively. Thickness of the wall is i, and distance between cavities is 1
(see Fig. 4). Both non-coated and coated obstacles are used also with this
geometry. In the test with two non-convex semi-open cavities with coatings,
thickness of the coating material is i, and the speed of sound c¢(x) is varying
such that it is equal to one outside the obstacle, i in the coating of the left
hand obstacle, and % in the coating of the right hand obstacle. This implies
that in the coating of left hand obstacle A(x) = , and there are 1/4h elements
per wavelength, whereas in the coating of right hand obstacle A(x) = g, which
means 3/8h elements per wavelength (see Tbl. 3). Numerical solutions of these
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scattering problems with r = 3 and h = 1/28 are shown in Figs. 16-17.
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Figure 16. Contourplot of scattering by Figure 17. Contourplot of scattering by
two non-convex semi-open cavities with coated non-convex semi-open -cavities

r=3and h =1/28.

with r =3 and h = 1/28.

Number of iterations with coated and non-coated scatterers considered in Sec-
tions 7.4.1 and 7.4.2 is compared in Thl. 4. When considering the algorithm
with RK time discretization, we notice that computations with coated scatter-
ers need two and a half times the number of iterations needed with non-coated
scatterers. Convex obstacle is the simplest scatterer, and with it the smallest
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Figure 18. Proportion of CPU time (in percent) required by the AMG cycles in one

CG iteration.
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number of iterations is needed. For solving the scattering problem with two
non-convex cavities, the number of iterations is twice as large as in the the
case of convex scatterer. More reflections are produced inside the obstacle with
one non-convex cavity than with the system of two non-convex cavities. That
is why twice the number of iterations is needed to solve the problem with one
non-convex cavity than with two non-convex cavities. Hence, the number of
iterations depends strongly on the geometry of the scatterer.

Preconditioners play an important role in accelerating the convergence rate of
the CG method. The number of preconditioned CG iterations is independent
of polynomial degree r (see Thl. 4). At each iteration, CPU time required by
the AMG preconditioner with higher-order elements is only a few percent of
the CPU time for the whole iteration (see Fig. 18). Thus, significant savings
result from the AMG preconditioner.

7.5 Computation of sonar cross section

When solving scattering problems, one is often more interested in the asymp-
totic behaviour of the solution than in the solution itself. This property is
important, for example, when studying the scattering of sonar echoes by un-
derwater objects (see, e.g., [53]). In this section, we describe the method which
we have used to compute the far-field pattern and the associated sonar cross
section (SCS) of the scattered wave. The method is the same as described
in [54]. In the numerical experiments, we compute also SCS values for the
numerically computed scattered waves.

The actual scattering problem we want to solve is given by equation (1) in the
exterior domain outside obstacle © together with the boundary condition (2)
and the Sommerfeld radiation condition (see [54]). Solution U of the equations
(1)-(3) leads to an approximation for the solution of the original problem, and
the (approximate) scattered wave U, can be computed from the solution U
by Uscat = U —Usne. It is known that the scattered wave satisfies the asymptotic
form

s (x) = SRCIX]2) (Uoo@c) e (HQH» b oo, (46)

||X||2

where X = x/||x||2. The function U, (%) is called the far-field pattern, and
sonar cross section is defined by

SCS(x) = 10 logy k|Use (%)% (47)
After solving the exact controllability problem (8)-(14) we know the real-
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valued initial values (e, e}) which lead to 7-periodic solution w. In the com-
putation of the SCS we need the complex-valued solution U of (1)-(3), which
is obtained by U = ¢ + Lej. We introduce functions ¢(x,y) and #(x,y) on
I'. by

_exp(im/4) Dexp(—ikx - y)

0.y) = " (k). (49)

where I, is the collection curve defined in Section 2 and v(y) is outward unit
normal vector to I'. at y. Then, the far field corresponding Ug.,t is given by

N aU - Uinc N
Ui - | ey y>) ds. (50)

As in [54] we introduce a new function V satisfying the conditions V|Hj €
HY(IL,), j = 1,2, V|, = 0 and [V] = ¢, where [V] is the jump in the value of
V across I'.. We also define the bilinear form a(-,-) by

c

(<U<y> U)ol y) —

(U, V) :/ (VU -VV — $UV) da
1T
! (51)
+ [ (VU-VV —k2UV) dz—ir [ UV ds.
112

T ext

Then, the values of the far field pattern can be computed by the formula

Un(3) = [ (U(Y) = Une(y))6(%,y) ds + a0, V) = [ You V' ds

a7 (52)
aUma ds.

+
r. Ov

In Fig. 19, we have visualized the SCS of two examples in Sections 7.4.1 and
7.4.2, in decibels (dB), plotted in polar coordinates.

8 Conclusions

We considered the use of controllability techniques to solve the time-harmonic
acoustic wave equations with spectral elements. The spectral element formu-
lation used in this article results in a global mass matrix that is diagonal by
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Figure 19. SCS comparison such that wh = 7 and r = 4.
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construction. No inversion of a mass matrix is needed, which leads to a very
efficient implementation. This is an advantage compared to classical finite el-
ement method.

Spatial discretization based on spectral elements is very accurate since it is
based on high degree polynomials. To achieve the same accuracy, spectral el-
ement method requires fewer grid points per wavelength than finite element
method. Consequently, accurate results are reached by solving smaller systems,
i.e. fewer computational operations, which saves CPU time. More precise re-
sults concerning expenditure of CPU time seems to show linear dependence
on the number of non-zero elements in the stiffness matrix. In addition, using
higher-order polynomial basis reduces the influence of the pollution effect.

We also derived a new way to compute the gradient of the least-squares func-
tional and used algebraic multigrid method for preconditioning the conjugate
gradient algorithm. The number of preconditioned CG iterations is indepen-
dent of the order of the spectral element basis, which confirms the efficiency
of the AMG preconditioner, and makes the solver feasible for higher-orders.
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