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Abstract

We propose an adaptive approach in picking the wave-number parameter of ab-
sorbing boundary conditions for Schrödinger-type equations. Based on the Gabor
transform which captures local frequency information in the vicinity of artificial
boundaries, the parameter is determined by an energy-weighted method and yields
a quasi-optimal absorbing boundary conditions. It is shown that this approach can
minimize reflected waves even when the wave function is composed of waves with dif-
ferent group velocities. We also extend the split local absorbing boundary (SLAB)
method [Z. Xu and H. Han, Phys. Rev. E, 74(2006), pp. 037704] to problems in
multidimensional nonlinear cases by coupling the adaptive approach. Numerical ex-
amples of nonlinear Schrödinger equations in one- and two dimensions are presented
to demonstrate the properties of the discussed absorbing boundary conditions.

Key words: Nonlinear Schrödinger equations, artificial boundary conditions,
time-splitting, finite difference method, Fourier transform, group velocity

1 Introduction

The numerical solution of partial differential equations on unbounded domains
arises in a large variety of applications in science and engineering. A typical
example we concern in this paper is the nonlinear Schrödinger-type equations
in multi-dimensional space, which describe the gravity waves on deep water
in fluid dynamics, the pulse propagations in optics fibers, and Bose-Einstein
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condensations in very low temperature; see Sulem and Sulem [1] and Agrawal
[2] for details.

One principal difficulty to obtain numerical solutions of these problems is the
unboundedness of the physical domain. In order to overcome this difficulty, the
artificial boundary method [3–6] has been widely studied in recent decades,
with which the original problem is reduced to an approximate (or equivalent)
problem in a truncated computational domain. The key point of the artificial
boundary method is to construct a “suitable” artificial boundary condition on
the given artificial boundary for the problem. In particular, when we consider
problems containing wave propagations, we hope the artificial boundary con-
ditions can annihilate all the incident waves so as that there is no or minor
reflected waves propagating into the interior domain. These artificial boundary
conditions are also known as absorbing boundary conditions. For linear prob-
lems, many strategies have been developed to obtain accurate and efficient
boundary conditions, such as [7, 8] for hyperbolic wave equations, [9, 10] for
elliptic equations, and [11,12] for parabolic equations. In the case of the linear
Schrödinger equation, there are also several works [13–19] developing trans-
parent boundary conditions and studying their difference approximations and
stability. They utilized the integral transform (Laplace or Fourier transform)
or series expansion method to construct accurate boundary conditions which
are in nonlocal forms. In practical applications the fast evaluation method [20]
must be developed to discretize the nonlocal boundary conditions. On the
other hand, the authors in [21–26] constructed absorbing boundary conditions
by deriving polynomial approximations to nonlocal operators in transparent
boundary conditions with Taylor or rational expansions. This class of bound-
ary conditions is local, and hence they are easy to implement.

The treatment of the boundary conditions on the artificial boundary for non-
linear equations is difficult in general. Hagstrom and Keller [27] studied some
nonlinear elliptic problems by linearizing the equations. Han et al. [28] and Xu
et al. [29] respectively discussed the nonlinear Burgers eqquation and Kardar-
Parisi-Zhang equation. The exact nonlinear artificial conditions have been
obtained by using the Cole-Hopf transformation. For the works related with
the nonlinear Schrödinger equations under consideration, Zheng [30] obtained
the transparent boundary condition using the inverse scattering transform ap-
proach for the cubic nonlinear Schrödinger equation in one dimension. Antonie
et al. [31] also studied the one-dimensional cubic nonlinear Schrödinger equa-
tion and constructed several nonlinear integro-differential artificial boundary
conditions. In [32, 33], Szeftel designed absorbing boundary conditions for
one-dimensional nonlinear wave equation by the potential and the paralin-
ear strategies. Especially, the one-dimensional nonlinear Schrödinger equation
was discussed. The perfectly matched layer (PML) [34] was also applied to
handling the nonlinear Schrödinger equations in which the nonlinear term can
be general.
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Recently, Xu and Han [35] proposed a split local absorbing boundary (SLAB)
method through a time-splitting procedure to design absorbing boundary con-
ditions for one-dimensional nonlinear Schrödinger equations. The local ab-
sorbing boundary conditions were imposed on the split linear subproblem and
yielded a full scheme by coupling the discretizations for the interior equa-
tion and boundary subproblems. In using local boundary conditions for the
Schrödinger-type equations, it is important to pre-estimate a wave-number
parameter (or the group velocity parameter) of the wave function, as is illus-
trated in [35], which strongly influences the accuracy of the boundary con-
dition. In this paper, we present an adaptive parameter selection approach
based on the Gabor transform [36] to capture the wave number near the arti-
ficial boundaries in order that the constructed absorbing boundary conditions
can minimize the reflected wave. In particular, for nonlinear problems, a wave
packet of the nonlinear Schrödinger equation will evolve into various wave
packets with different wave numbers. With the Gabor transform, the bound-
ary conditions can succeed in reflecting the local structure of the frequency
context of the wave. Particular focus of this paper is to apply the adaptive
approach to multi-dimensional problems with nonlinear terms, in which very
few boundary conditions can work well.

The organization of this paper is the following. In section 2, we first give a brief
overview of absorbing boundary conditions for the linear Schrödinger equation,
and then discuss the adaptive strategy in picking the parameter in boundary
conditions. Two-dimensional boundary conditions for linear problems are also
proposed in this section. In section 3, we are devoted to the two-dimensional
nonlinear Schrödinger equation and its numerical issues in both interior do-
main and artificial boundaries. Numerical examples are investigated in section
4.

2 Absorbing boundary conditions for the linear Schrödinger equa-

tion

2.1 Brief overview of the absorbing boundary conditions

We shall give a brief overview for local absorbing boundary conditions of the
linear Schrödinger equation in one dimension

iψt = −ψxx + V ψ, x ∈ R, t > 0. (1)

Set the truncated subdomain Ωi = [xl, xr] be the computational domain.
Suppose that the potential V (x) is constant in the exterior domain Ωe =
(−∞, xl] ∪ [xr,+∞).
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Consider the solutions of the Schrödinger wave equation (1) in the form of one
Fourier mode:

ψ(x, t) = e−i(ωt−kx), (2)

where k is the wave number corresponding to space x, and ω is the time
frequency. We have the dual relation between the space-time (x, t) domain
and the wave number-frequency (k, ω) domain: k ↔ −i ∂

∂x
, and ω ↔ i ∂

∂t
.

Using this duality, we can transform Schrödinger wave equation (1) into the
Fourier domain resulting in a dispersion relation to the equation:

k2 = ω − V. (3)

Under the framework of Engquist and Majda approach [7], solving (3) in terms
of the wave number k gives

k = ±
√
ω − V , (4)

where the plus sign corresponds to waves moving to the positive x direction,
while the minus sign indicates wave motions in opposite direction. The exact
transformation of (4) to physical space is nonlocal in time so that one has to
save all history data in memory in order to perform numerical calculations.
An effective substitution is to approximate the square root through a rational
polynomial.

Let us consider the right exterior domain and obtain boundary condition
at x = xr; that is, the plus sign is taken in (4). Similar procedure can be
performed in the left exterior domain. As in [25], we denote the absorbing
boundary condition by ABC(j1, j2) for that using (j1, j2)-Padé approxima-
tion, where j1, j2 are the degrees of the polynomials in the numerator and
denominator, respectively.

The first absorbing boundary condition is the one developed in Shibata [21].
The author used a linear interpolation to approximate the square root in (4)
through imposing two adjustable parameters which were positive and called
the kinetic energy parameters related to the group velocities of the wave func-
tion [24], that is,

√
ω − V =

1

α1 + α2
(ω − V ) +

α1α2

α1 + α2
. (5)

Then using the dual relations to transform back into physical space yields an
absorbing boundary condition

i(α1 + α2)ψx + (iψt − V ψ + α1α2ψ) = 0. (6)

Kuska [22] used a (1, 1)-Padé approximation to k2 centered at a positive con-
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stant k = k0

k2 = k20
−3k + k0
k − 3k0

+O((k − k0)
3), (7)

and then obtained a second absorbing boundary condition ABC(1,1),

− ψxt + i(3k20 − V )ψx + (k30 − 3k0V )ψ + i3k0ψt = 0 (8)

after transforming back into physical space through the dual transform. Here
the range of validity of the Padé polynomial is the positive part k > 0. Alonso-
Mallo and Reguera [25] developed a class of absorbing boundary conditions
including ABC(2,1), ABC(3,2) and ABC(2,0) and absorbing boundary condi-
tions discussed above. Fevens and Jiang [24] developed a distinct method to
construct absorbing boundary conditions. The authors used the group velocity
C = ∂ω

∂k
= 2k to design a differential equation as absorbing boundary condi-

tion, which can absorb waves with certain group velocities Cl, l = 1, · · · , p,
p
∏

l=1

(

i∂x +
Cl
2

)

ψ = 0. (9)

If we substitute the temporal derivative into ABC(1,0) with the original equa-
tion iψt = −ψxx + V ψ, then we obtain

(i∂x + α1)(i∂x + α2)ψ = 0. (10)

It is a special case of Fevens and Jiang’s formula (9) with C1 = 2α1 and C2 =
2α2. We use the original equation again to replace the temporal derivative
terms in (8) and get

(

i
∂

∂x
+ k0

)3

ψ = 0, (11)

which is also a special case of Eq. (9) for p = 3 and group velocities C1 =
C2 = C3 = 2k0.

2.2 Weighted wave-number parameter based on Gabor transform

In the above absorbing boundary conditions, the authors all imposed param-
eters in the formulae with different meanings. Therefore, perhaps one of the
most important issues is how to pick suitable parameters such that they can
minimize the reflection of the wave. Noticing that the relation between the
group velocity C and wave number k is

C =
∂ω

∂k
= 2k, (12)

we need only calculate one of them.

5



For the initial wave composed of waves with different group velocities, they
shall evolve into different wave packets. Each of them has an unchanged group
velocity. These wave packets hit the artificial boundary separately. Therefore,
in a general physical insight, if only we pre-estimate one component of group
velocities which is a function of time, the boundary condition can well anni-
hilate the reflected wave. Let us consider the third-order boundary condition
ABC(1,1) given in section 2.1 as example to introduce our idea, in which only
one parameter k0 need to be pre-estimated. Similarly, for convenience, the
discussion is focused on the right boundary.

It is important that we must estimate the parameter in the frequency domain.
Note that the wave function at time t can be expressed in terms of a Fourier
series and a single Fourier mode is essentially a plane wave. A general strat-
egy suggested in Fevens and Jiang [24] to pick the wave-number parameter k0,
which is a function of time t, is to use a Fourier series expansion of the phys-
ical variable in space, and then take one of the positive components so that
its Fourier mode is dominant. The Fourier transform presents the frequency
information of the wave over the whole interior domain. However, in our sit-
uations to construct absorbing boundary conditions, we are interested in the
frequency content of the wave in the vicinity of the artificial boundary. So it
is necessary to obtain the local structure of the wave in the frequency domain.
One approach is to replace the Fourier transform with the Gabor transform
which is also known as a windowed Fourier transform. In the frequency domain
with the Gabor transform, we have

ψ̂(k, t) =
∫ xr

xl

W (x)ψ(x, t)e−ikx =
∫ xr

xr−b
ψ(x, t)e−ikx, (13)

where the window function is

W (x) =











1, x ∈ [xr − b, xr],

0, otherwise,
(14)

and b is the window width. Then one choice for k0 is take the frequency such
that its spectrum is the maximum; that is,

|ψ̂(k0, t)| = sup
k≥0

{|ψ̂(k, t)|}. (15)

We remark that we can also utilize the time windowed Fourier transform to
approximate temporal frequency information ω, and then obtain an estima-
tion of the wave number k0 with the dispersion relation (4). However, it is
clear that the Gabor transform in time depends on the history data on the
artificial boundaries. Therefore, although the formulae of absorbing boundary
conditions are in local forms, they are nonlocal in practice.
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The formula (15) is also not the best choice in many practical computations.
On one hand, this procedure involves many logical “if” structures in order to
compare the magnitudes of the Fourier modes, which are not very efficient in
calculations in some computational environments. On the other hand, when
two Fourier modes are both dominant, it is obvious to choose k0 a medial value
of two different wave numbers instead of taking one of them, in order to min-
imize the reflection. Therefore, an improvement is to use a weighted strategy,
we call it the energy-weighted wave-number parameter selection approach, as
follows,

k0 =
∫ ∞

0
(|ψ̂(k, t)|pk)dk

/
∫ ∞

0
|ψ̂(k, t)|p, (16)

with p a positive real number.

We give the following remarks:

Remark 1. The window width b is correlative with the Gibbs phenomena
induced by the discontinuities of the window function. The narrower b is, the
more Gibbs effect. However, if the window width b is very large, then the
obtained parameter cannot correctly response the frequency information in
the vicinity of the boundary.

Remark 2. When p = +∞, the Eq. (16) is equivalent to (15). However,
numerical experiments illustrate that the absorbing boundary conditions work
best when p is in a suitable intermediate interval. Table 1 suggests p = 4 is a
good choice.

2.3 Multi-dimensions

Let us consider the extension of previous ABCs which are local for the linear
Schrödinger equation in two dimensions:

iψt = −(ψxx + ψyy) + V ψ, (x, y) ∈ R
2, (17)

with the potential V constant. Denote the dual variables to (x, y, t) by (ξ, η, ω)
with the correspondence ξ ↔ −i ∂

∂x
, η ↔ −i ∂

∂y
, and ω ↔ i ∂

∂t
. Then the related

dispersion relation to Eq. (17) gives

ξ2 + η2 = ω − V. (18)

We truncate the unbounded domain to get a computational domain [0 , L]2.
Without loss of generality, consider the east boundary Γe = {(x, y)|x = L, 0 ≤
y ≤ L} which corresponds to the positive branch to ξ of the dispersion relation
(18) as follows,

ξ =
√

ω − V − η2. (19)
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With the same procedure as that used in one dimensional case, we can get the
similar ABCs as in section 2.1. We consider the (1, 1)−Padé approximation to
the square ξ2 in the dispersion relation centered as a positive constant ξ = ξ0,
and obtain an approximation to (19)

(η2 − ω + V − 3ξ20)ξ + ξ30 − 3ξ0(η
2 − ω + V ) = 0, (20)

which is first order in ξ. Here the range of validity of the Padé polynomial is the
positive part ξ > 0; see Kuska [22]. Transforming (20) back into the physical
space through the dual relations, we have an ABC on the right boundary of
the form:

Γe : iψxyy −ψxt + i(3ξ20 − V )ψx + (ξ30 − 3ξ0V )ψ+ 3ξ0ψyy + iξ0ψt = 0. (21)

Absorbing boundary conditions on the west, north and south boundaries can
also be obtained through using (1, 1)-Padé approximations to ξ2 centered at
−ξ0, to η2 centered at η0, and to η2 centered at −η0, respectively, which are

Γw : iψxyy −ψxt+ i(3ξ20 − V )ψx− (ξ30 − 3ξ0V )ψ− 3ξ0ψyy − iξ0ψt = 0, (22)

Γn : iψxxy − ψyt + i(3η20 − V )ψy + (η30 − 3η0V )ψ + 3η0ψxx + iψt = 0, (23)

Γs : iψxxy − ψyt + i(3η20 − V )ψy − (η30 − 3η0V )ψ − 3η0ψxx − iψt = 0, (24)

with η0 a positive constant as ξ0.

Now let us look at the formula at the north east corner (x, y) = (L, L). We can
also approximate the two dimensional dispersion relation (18) in the quarter
{(ξ, η) : ξ > 0, η > 0} using (1, 1)−Padé to both ξ2 and η2 with the corre-
sponding centered point (ξ0, η0) to obtain

ξ20
−3ξ + ξ0
ξ − 3ξ0

+ η20
−3η + η0
η − 3η0

= ω − V (25)

Then after multiplying (ξ − 3ξ0)(η − 3η0) in both sides, we have,

−ωξη + 3ξ0ωη + 3η0ωξ + (V − 3ξ20 − 3η20)ξη − 9ξ0η0ω + (ξ30 + 9ξ0η
2
0 − 3ξ0V )η

+ (η30 + 9ξ20η0 − 3ξ0V )ξ + (9ξ0η0V − 3ξ30η0 − 3η30ξ0) = 0. (26)

Then performing the inverse transform to physical space yields the ABC(1,1)
at the corner point,

iψxyt + 3ξ0ψyt + 3η0ψxt + (3ξ20 + 3η20 − V )ψxy − 9iξ0η0ψt − i(ξ30 + 9ξ0η
2
0 − 3ξ0V )ψy

− i(η30 + 9ξ20η0 − 3ξ0V )ψx + (9ξ0η0V − 3ξ30η0 − 3η30ξ0)ψ = 0. (27)

Extension of the adaptive parameter selection for one-dimensional version to
multidimensional cases is straightforward. We note that a multidimensional
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problem can be split into a series of one-dimensional ones. Thus we can obtain
the estimation of the parameters at every boundary grid points by a dimension-
by-dimension procedure. For example, in order to compute the wave number
on the east boundary, we have the Gabor transform in x direction:

ψ̃(ξ, y, t) =
∫ L

L−b(y)
ψ(x, y, t)e−iξxdx, (28)

where the window length is a function of y. The parameter ξ0(y) can then be
determined by using the method in section 2.2.

3 Nonlinear Schrödinger equations

We now consider the nonlinear Schrödinger equation in two dimensions as
follows,

iψt(x, y, t) = −(ψxx + ψyy) + f(|ψ|2)ψ + V (x, y, t)ψ, (x, y) ∈ R
2. (29)

We shall extend the previous work of the split local absorbing boundary
(SLAB) method [35] in one-dimensional version to solving the two-dimensional
case. Denote the approximation of ψ on the grid point (xι, yj, t

n) by ψnιj for
0 ≤ ι ≤ I and 0 ≤ j ≤ J , with xι = ι∆x, yj = j∆y, tn = n∆t, and
xI = yJ = L. Let us first describe the finite difference scheme for the Eq. (29)
in the interior domain (0, L)2, which will be connected with the discretization
on the artificial boundaries.

3.1 Semi-implicit interior scheme

In our previous work in one dimension [35], the full-implicit Crank-Nicholson
scheme, which is unconditionally stable, was used. However, one has to solve
the nonlinear algebraic system iteratively at each time step. It is time consum-
ing in particular for the two dimensional case. In order to avoid the iterative
process, we use the following semi-implicit scheme [37], which was shown ef-
ficient and robust in comparison with various difference schemes for solving
nonlinear Schrödinger equations [38],

i
ψn+1
ιj − ψnιj

∆t
= −(D+

xD
−
x+D

+
y D

−
y )
ψn+1
ιj + ψnιj

2
+[

3

2
f(|unιj|2)−

1

2
f(|un−1

ιj |2)+Vιj]
ψn+1
ιj + ψnιj

2
,

(30)
where D+ and D− represent the forward and backward differences, respec-
tively. This is a five-points scheme and its truncation error is order O(∆t2 +
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∆x2 +∆y2) as that of the Crank-Nicholson scheme. However, since the non-
linear term is approximated by the known variables through an extrapolation
formula, we need only to solve a linear algebraic system at each time step.

3.2 Numerical approximation on the artificial boundary

We have obtained the discrete scheme by formula (30) in the interior point
(xι, yj) for 1 ≤ ι ≤ I − 1 and 1 ≤ j ≤ J − 1. Now we concentrate on
the boundary conditions, in which we shall perform the local time-splitting
procedure. The basic idea of the SLAB method is to split the original equation
in several subproblems which are easy to be handled, and then solve them
alternatively in a small time step ∆t. Consider a standard splitting for Eq.
(29) in the vicinity of the artificial boundary to a nonlinear subproblem

iψt = f(|ψ|2)ψ, (31)

and a linear subproblem

iψt = −(ψxx + ψyy) + V ψ. (32)

We carry out the splitting on boundary points {xα, yβ} for

α ∈ {0, 1, I − 1, I}, and β ∈ {0, 1, J − 1, J}.

Following [39], in the nonlinear step, we have an approximate solver for ex-
plicitly discretizing the ODE (31)

ψ∗
α,β = e−if(|ψ

n
α,β

|2)∆tψnα,β , (33)

which keeps ψ invariant, and does not require any boundary condition. Noting
the next step for the time-splitting procedure is to integrate a linear subprob-
lem (32), we impose here the local absorbing boundary condition discussed
in Section 2. For example, using formulae (21), (27) and their corresponding
formulae on every boundaries and corners, we obtain the full scheme of the
problem by approximating them with finite difference expressions. Here the
discrete forms of the terms in the east boundary condition (21) are

ψx = D−
x

ψn+1
I,j + ψ∗

I,j

2
, ψ = S−

x

ψn+1
I,j + ψ∗

I,j

2
, (34)

ψxt = D−
x

ψn+1
I,j − ψ∗

I,j

∆t
, ψt = S−

x

ψn+1
I,j − ψ∗

I,j

∆t
, (35)

ψxyy = D−
xD

+
y D

−
y

ψn+1
I,j + ψ∗

I,j

2
, ψyy = S−

xD
+
y D

−
y

ψn+1
I,j + ψ∗

I,j

2
, (36)
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with S− the backward sum, for example,

S−
x ψ

∗
I,j =

1

2
(ψ∗

I−1,j + ψ∗
I,j);

and the discrete forms of the terms in the corner boundary condition (27) are

ψxyt = D−
xD

−
y

ψn+1
I,J − ψ∗

I,J

∆t
, ψxy = D−

xD
−
y

ψn+1
I,J + ψ∗

I,J

2
, (37)

ψyt = S−
x D

−
y

ψn+1
I,J − ψ∗

I,J

∆t
, ψy = S−

x D
−
y

ψn+1
I,J + ψ∗

I,J

2
, (38)

ψxt = D−
x S

−
y

ψn+1
I,J − ψ∗

I,J

∆t
, ψx = D−

x S
−
y

ψn+1
I,J + ψ∗

I,J

2
, (39)

ψt = S−
x S

−
y

ψn+1
I,J − ψ∗

I,J

∆t
, ψ = S−

x S
−
y

ψn+1
I,J + ψ∗

I,J

2
. (40)

Similar discretizations can be used for the other three boundaries and the
other three corners. Thus we obtain the full-discrete scheme for the nonlinear
Schrödinger equation (29) in two dimensions, which yields a linear algebraic
system at each time steps.

Remark 3. Near the artificial boundaries, the truncation error of accuracy
is (∆x2 +∆y2 +∆t) because we only adopt the first-order splitting. In order
to improve the accuracy of time-splitting to higher order, such as using the
Strang splitting [40], we will obtain a nonlinear algebraic system which have
to be solved through the iterate approach as discussed in Ref. [35].

4 Numerical examples

We test our absorbing boundary conditions given in the previous sections for
the nonlinear Schrödinger equation. In particular, we test the strategy of adap-
tive parameter selection in the one-dimensional case. Based on its outstanding
performance in one dimension, two-dimensional example of extensions is also
given.

Example 1. We are going to test the performance of the adaptive parameter
selection for absorbing boundary conditions by solving the cubic nonlinear
Schrödinger equation in one dimension

iψt = −ψxx + g|ψ|2ψ + V ψ, (41)

where g is a real constant and V ≡ 0. If g is positive, the equation repre-
sents repulsive interactions. If g is negative, the equation represents attractive
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interactions, and admits bright soliton solution

ψ(x, t) = A

√

−2

g
sec(Ax− 2ABt)eiBx+6(A2−B2)t (42)

with A,B real parameters related to the amplitude and velocity of the soliton.
The numerical scheme is the 1D reduction of 2D version described in Section
3. The first example we consider the case of g = −2 and the initial condition

ψ(x, t) = sec(x− 10)e2i(x−10) + sec(x− 30)e5i(x−30). (43)

It represents two solitons with amplitude 1, located at two isolated centers
x = 10 and 30 respectively, propagate to the right. Their propagating velocities
are double of their wave numbers; that is, 4 and 10, respectively. We compute
the solution up to tn = 10 in interval [0, L] for L = 40. As in [22, 24, 35], to
see the influence of parameter k0, we evaluate the effectiveness of absorbing
boundary conditions by calculating the reflection ratios as follows,

r =
I
∑

j=0

|ψnj |2/
I
∑

j=0

|ψ0
j |2. (44)

The ratio r is handy in the measurement of the quality of the ABC. For
example, r = 0 reflects that the solitons have passed through the boundary
completely; whereas r = 1 indicates the waves are completely reflected into the
interior domain by the artificial boundaries. At the left boundary x = 0, we
set k0 = 0 since there is no left-going wave. We also hope the reflected waves
from the right boundary can also be reflected by the left boundary, therefore
the reflection ratios of absorbing boundary conditions at the right boundary
can be correctly calculated. We show numerical results in Table 1 for different
p in (16) and different transforms, in which we also illustrate L1-errors defined
by

E1 =
1

I + 1

I
∑

j=0

|ψnj − ψ(xj , t
n)|. (45)

Here and hereafter, the time steps ∆t are taken to be ∆t = ∆x2. It is not
the restriction of stability, but the requirement for compensating the accuracy
since we just use the first-order splitting on the artificial boundaries. For the
Gabor transform to pre-estimate the parameter, the window lengths are set
to b = L/4. We also compare the results in Table 2 without the adaptive
parameter selection but fixing the parameter k0 = 2, 3.5 and 5, respectively.
It is observed that the weighted wave-number parameter method can well
improve numerical accuracy.

There are two time phases in the process for the two solitons hit the right
boundary separately. The first phase is for t ∈ [0.5, 1.5] when the first wave
with the wave number 5 transmits the boundary; while the second phase is
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*****************************************************************************************************

t

k 0

0.5 0.75 1 1.25 1.5

2

3

4

5

6

F2
G2
F3
G3
F4
G4*

******************************************************************************************************************************************************
***************************************************

t

k 0

6 6.5 7 7.5 8

2

2.5

3

3.5

F2
G2
F3
G3
F4
G4*

Fig. 1. Weighted wave numbers k0 as a function of time. Left: the first phase for
t ∈ [0.5, 1.5]; right: the second phase for t ∈ [6, 8].

for t ∈ [6, 8] when the second wave with the wave number 2 passes through
the boundary. In order to see the resultant wave-number parameter of the
methods in discussion, we illustrate the wave numbers as a function of time
t for two phases in Fig. 1, where we denote the resultant wave number with
Fourier transform and p norm by Fp wave number, the results with Gabor
transform and p norm by Gp wave number. We see that the parameters with
Gabor transform, especially when p = 4, response a better information for the
solution, which well agrees with the results in Table 1.

In order to see the influence of the window length b, we compute the solution
for different lengths in Table 3 with a fixed p. The window length is in direct
proportion to the wave number b = βk0, in which k0 takes the value at time
t = tn−1 for the calculations at tn. We see that it is necessary to choose a β
larger than 1.

Table 1 L1-errors E1 and reflection ratios r for different parameters and
grid sizes with adaptive parameter selection.

E1 for ∆x = 0.1 E1 for ∆x = 0.05 r for ∆x = 0.1 r for ∆x = 0.05

p Fourier Gabor Fourier Gabor Fourier Gabor Fourier Gabor

1 1.62d-2 1.79d-2 3.28d-2 3.47d-2 7.43d-3 7.63d-3 2.87d-2 2.94d-2

2 5.12d-3 2.72d-3 4.51d-3 2.62d-3 3.79d-4 1.65d-4 3.23d-4 1.70d-4

3 5.29d-3 1.93d-3 4.69d-3 1.54d-3 3.66d-4 7.32d-5 2.99d-4 4.48d-5

4 5.27d-3 1.93d-3 5.01d-3 1.56d-3 3.76d-4 7.14d-5 3.45d-4 4.21d-5

5 5.07d-3 1.95d-3 5.07d-3 1.59d-3 3.70d-4 7.23d-5 3.70d-4 4.49d-5
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Table 2 L1-errors E1 and reflection ratios r for different parameters and
grid sizes without adaptivity.

E1 r

k0 ∆x = 0.1 0.05 0.1 0.05

2 3.22d-3 3.26d-3 2.00d-4 1.73d-4

3.5 5.33d-3 4.98d-3 8.58d-4 7.89d-4

5 1.26d-2 1.23d-2 4.81d-3 4.60d-3

Table 3 L1-errors E1 and reflection ratios r for different window lengths
determined adaptively as b = βk0. p = 4.

E1 r

β ∆x = 0.1 0.05 0.1 0.05

0.5 7.71d-3 2.10e-3 1.73e-3 1.23e-4

1 1.91d-3 1.57d-3 7.35d-5 4.37d-5

2 1.92d-3 1.55d-3 6.93d-5 4.10d-5

3 1.92d-3 1.53d-3 7.02d-5 3.98d-5

4 1.93d-3 1.54d-3 7.09d-5 4.02d-5

Example 2. We then consider a nonlinear wave with repulsive interaction
(g = 2 in Eq. (41)). The initial data and potential function are taken to be
Gaussian pulses

ψ(x, 0) = e−0.1(x−x0)2 and V (x) = e−0.5(x−x0)2 , (46)

with x0 = 15. This has been an example in [35] used to model expansion of
a Bose-Einstein condensate which is composed of waves with different group
velocities. The frequency context at the boundaries is depending on the tem-
poral evolution. In [35], the authors obtained the results under different wave-
number parameters which are independent of time t. It was illustrated that
a very bad result appeared if we cannot choose a suitable k0. Therefore, it
is necessary to capture this parameter adaptively in order to minimize the
nonphysical reflection.

In the calculation, L = 30, ∆x = 0.1, and ∆t = 0.01 are chosen. The numerical
results with the same mesh sizes by using the proposed ABC in a large domain
[−15, 45] are taken to be a reference solution which is regarded as the “exact”
solution, since the analytic solution is unknown. Fig. 2 shows the motion of
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Fig. 2. The |ψ| solutions at time t = 4 and 6.
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Fig. 3. The wave numbers k0 as functions of time t.

the wave with the ABCs at time t = 4 and 6, in which we take p = 4 and the
window length of Gabor transform b = L/4. It is illustrated that the reflected
wave is very small when the waves hit the boundaries under our adaptive
parameter selection strategy. We also show the wave-number parameters at
both boundaries as functions of time in Fig. 3, in which we see that the wave
numbers decay with time after the waves reach artificial boundaries.

Example 3. This is a two-dimensional example for Eq. (29) with cubic non-
linearity f(|ψ|2) = −|ψ|2 in homogeneous media; i.e., the potential V ≡ 0. We
consider the temporal evolution of an initial packet of the wave centered at
(x, y) = (5, 5)

ψ(x, y, 0) =
√
2e(x−5)2+(y−5)2e2i(x+y−10). (47)

The wave packet moves along the northeast direction and impinges on the
artificial boundaries Γe and Γn. At the same time, the amplitude of the wave
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Fig. 4. Numerical solutions of |ψ| under the mesh size ∆x = ∆y = 0.05 and
∆t = 0.0025 at time t = 0.5, 1, 1.5 and 2.

packet deceases with time due to the expansion effect. In the calculations, we
set the computational domain be [0, L]2 for L = 10. We also set p = 4 and
the window length of Gabor tranform b = L/4. We show numerical solutions
of |ψ| at time t = 0.5, 1, 1.5 and 2 in Fig. 4 for h = ∆x = ∆y = 0.05 and
∆t = h2. We see the wave can be well absorbed with only minor reflections. In
order to see the errors, we take the numerical result in a large domain [0, 20]2

with h = 0.05 to be a reference solution. In Fig. 5, we plot the temporal
evolution of the solutions and their errors for different mesh sizes at positions
(x, y) = (10, 10) and (10, 5). These results illustrate that the discussed method
can also works well for the two-dimensional problem.

5 Concluding remarks

We develop an efficient adaptive parameter approach for absorbing boundary
conditions of Schrödinger-type equations. This approach is coupled with the
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Fig. 5. Temporal evolutions and errors of |ψ| at positions: (x, y) = (10, 10) (Left),
and (x, y) = (10, 5) (Right). The “exact” solution is computed in a large domain
[0, 20]2 with the mesh size h = 0.05

local time-splitting method to constitute a complete procedure for nonlinear
problems. We also introduce an extension to deal with absorbing boundary
conditions for multidimensional nonlinear Schrödinger equations. Numerical
examples are performed to show the attractive features of the approach under
consideration. Related further work includes the stability and error analysis
of the proposed approach and further extension to more complicated initial-
boundary value problems. Another problem is induced by the complexity of
nonlinear mechanics. In some situations, the outgoing waves will return to
the interior domain due to their interactions of nonlinear packets. This open
problem is still unsolved in this paper and we leave for further consideration.
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