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onally implicit Runge-Kutta method (ESDIRK). Furthermore, we apply adaptive
time-step controllers based on the embedded temporal error predictors. We demon-
strate in a number of numerical test problems that IMEX methods in conjunction
with efficient preconditioning become more efficient than explicit methods for sys-
tems exhibiting high levels of grid-induced stiffness.
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1 Introduction

In this paper, we are interested in alleviating the severe stability-based time-
step restrictions that affect explicit time integration schemes when applied
to problems that exhibit high levels of geometry-induced stiffness. Geometry-
induced stiffness, or scale-separation stiffness, is a result of attempting to
simultaneously simulate a system that has geometric features of drastically
varying scales, and is defined in Section 3.2.

One example of this effect in the field of computational electromagnetics
(CEM) occurs when attempting to simulate EM scattering off of a jet fighter,
whose very thin stealth coating is much smaller than the other aircraft di-
mensions. Such a stealth coating can be discretized using proportionately few
high-order elements. However, introducing these relatively small elements will
result in a very high stiffness (on the order of 103) and a very small time step,
since the stable time step for the scheme will be determined by the smallest-
sized element. As a result, current algorithms in CEM can only handle purely
harmonic (up to 10GHz plane wave) scattering by fighter aircraft, which are
assumed to be pure metallic shells, and cannot handle the inclusion of coatings,
penetration into and radiation out of the aircraft.

Another important example can be found in computational fluid dynamics
(CFD), where the elements used to discretize the boundary layer near an
airfoil can often result in a geometry-induced stiffness on the order of 103

to 104 or greater depending on the Reynolds number, and will thus severely
restrict the maximum stable time step. Mesh generation may also result in
high stiffness if a small percentage of “poor” elements are considerably more
skewed than the average element.

The basic form of time-dependent algorithms hasn’t changed in the last thirty
to forty years. Explicit methods are the most efficient methods for long-time
simulations of non-stiff systems, while implicit methods are more efficient for
solving stiff systems. One approach that has been used to increase the effi-
ciency of explicit methods for stiff equations is based on explicit local timestep-
ping schemes (often called multi-rate integration) , where equations on indi-
vidual cells or elements are integrated using different local time-steps. Osher
and Sanders introduced a local time stepping method for one-dimensional con-
servation laws in [32]. Other examples of such schemes include [5,15,12,39,34].

A disadvantage with multi-rate methods is that they are generally imple-
mented at 2nd-order (or lower) temporal accuracy. Methods higher than 2nd-
order exist, but suffer increasing implementation complexity. Even 2nd-order
multi-rate methods suffer difficulties contending with irregular unstructured
engineering meshes for which elements can range in size by many orders of
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magnitude.

Implicit-Explicit or IMEX algorithms were originally developed to solve the
stiff term or operator of convection-diffusion-reaction (CDR) type equations
implicitly and the nonstiff term explicitly [4]. A number of IMEX Runge-
Kutta methods have been developed in recent times, such as [3,8,13,16,42,43],
which combine ERK schemes with diagonally implicit Runge-Kutta (DIRK)
schemes. However, these schemes have various drawbacks, such as lower-order
coupling errors, coupling stability problems, no error control, and poor ERK
or DIRK stability properties.

The recently-developed Additive Runge-Kutta (ARK) methods in [26] can
be used for the classical operator-based IMEX time-splitting or a geometric
region-based IMEX time-splitting. They allow for integration of stiff terms by
an L-stable, stiffly-accurate explicit, singly diagonally implicit Runge-Kutta
method (ESDIRK), and integration of nonstiff terms by an explicit Runge-
Kutta method (ERK). Furthermore, they provide extrapolation-based stage-
value predictors as well as embedded schemes (one order lower) which al-
low for the use of automatic error-based time-step controllers, such as inte-
gral (I), proportional-integral (PI) and proportional-integral-derivative (PID)
controllers, which are defined in Section 3.3.8. We implement the high-order
implicit-explicit Runge-Kutta (IMEX-RK) methods of Kennedy and Carpen-
ter [26] to overcome geometry-induced stiffness. IMEX algorithms solve the
non-stiff portions of the domain using explicit methods, and isolate and solve
the more expensive stiff portions (e.g. stealth coating or boundary layer) using
implicit methods.

We follow the method of lines approach, and discretize space using a nodal
discontinuous Galerkin spectral element method based on [21],[22]. The dis-
continuous Galerkin method is a class of finite element methods using a com-
pletely discontinuous piecewise polynomial space for the numerical solution
and the test functions. The first discontinuous Galerkin method was intro-
duced in 1973 by Reed and Hill [36], in the framework of neutron transport
(steady state linear hyperbolic equations).

Since then, the discontinuous Galerkin method has been applied in a number of
fields, such as aeroacoustics, electro-magnetism, gas dynamics, granular flows,
magneto-hydrodynamics, meteorology, modeling of shallow water, oceanogra-
phy, oil recovery simulation, semiconductor device simulation,turbulent flows,
viscoelastic flows and weather forecasting. For a detailed description of the
method as well as its implementation and applications, we refer readers to the
lecture notes [10] and the papers in Springer volume [11]. The discontinuous
Galerkin finite element (DGFEM) method builds upon the strengths of the
classical spectral element method introduced by Patera [33], and has a num-
ber of advantages over classical finite difference and finite volume methods.
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DGFEM methods are especially well suited for IMEX algorithms, since they
allow for clean and easy decoupling of the stiff from the nonstiff regions of the
domain. Furthermore, they are highly parallelizable and accurate, provide for
simple treatment of boundary conditions, handle complicated geometries well,
and can easily handle adaptivity.

This paper is organized as follows. In Section 2, we discuss the details of the
spatial discretization scheme, which is based on a nodal discontinuous Galerkin
finite element method (DGFEM). We review the properties and characteris-
tics of implicit-explicit Runge-Kutta (IMEX-RK) time-integration methods
in Section 3. Numerical results comparing IMEX-RK and ERK schemes for
various test problems are presented in Section 4. Finally, we discuss all the
results and give concluding remarks in Section 5.

2 Spatial discretization

2.1 Two-dimensional scheme

The nodal discontinuous Galerkin (DG) finite element spatial discretization is
based on [21],[22], and [23]. We now review the details for a two-dimensional
spatial discretization, although a generalization to the three-dimensional case
is fairly straightforward. Assume that we have a multi-dimensional wellposed
conservation law

∂u(x, t)

∂t
+ ∇ · F(u(x, t)) = 0 , x ∈ Ω, t ≥ 0 (1)

with initial and boundary conditions

u(x, 0) = f(x) , x ∈ Ω

u(x, t) = g(x) , x ∈ δΩ, t ≥ 0,

where u is the state vector of unknown/s, and F(u) is the flux. We assume that
our computational domain Ω is composed of K non-overlapping d-simplices
or elements

Ω =
K
⋃

k=1

Dk (2)

In two dimensions, we will assume that the elements are 2-simplexes or trian-
gles to allow for fully unstructured meshes. We also assume that the triangles
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Fig. 1. Linear mapping Ψ from reference element I to element Dk in 2D.

have straight sides, which results in a constant transformation Jacobian for all
elements, and greatly simplifies the scheme. The reference or standard triangle
I ⊂ R2 has the three vertices

vI =







−1

−1





 , vII =







1

−1





 , vIII =







−1

1





 , (3)

while the physical simplex or subdomain Dk has the three corresponding ver-
tices vk

1 , vk
2 , and vk

3 as can be seen in Fig. 2.1. Also, element Dk has physical
coordinates x = (x, y), while the reference element I has coordinates ξ = (ξ, η).
Dk and I are related through the linear, invertible map Ψ

Ψ : I → D =⇒ Ψ−1 : D → I. (4)

We construct the linear map Ψ given as

x = Ψ(ξ, η) = −
(

ξ + η

2

)

vk
1 +

(

1 + ξ

2

)

vk
2 +

(

1 + η

2

)

vk
3 . (5)

We assume that the solution in each subdomain Dk is well approximated by
the local polynomial of degree p

uk(x, t) =
N
∑

i=0

uk(xk
i , t)L

k
i (x) =

N
∑

i=0

uk
i (t)L

k
i (x), (6)
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where xk
i are the N + 1 grid points in the kth element and Lk

i (x) is the two-
dimensional multivariate Lagrange polynomial based on these points

Li(x) ∈ P 2
p = span{xiyj; i, j ≥ 0; i + j ≤ p}. (7)

Note that

N =
(p + 1)(p + 2)

2
− 1, (8)

and N + 1 is the total number of grid points necessary in 2D for polynomials
of degree p. The physical flux F is approximated as

Fk(uk) =
N
∑

i=0

Fk(uk(xi, t))L
k
i (x). (9)

We express the local polynomials in a more general framework

uk(x, t) =
N
∑

i=0

uk
i (t)L

k
i (x) =

N
∑

n=0

ûk
n(t)φn(x). (10)

where φn(x) are the basis functions defined on the kth element, while ûk
n(t) are

the modal coefficients. A polynomial basis such as the multivariate monomials
φij(x) = xiyj will result in a nearly dependent basis, and therefore a poorly
conditioned Vandermonde matrix (grows exponentially with p). We choose an
orthonormal basis that has been rediscovered on several occasions by Dubiner
[14], Proriol [35] and Koornwinder [29]

φ̃ij(ξ, η) = P
(0,0)
i

(

2(ξ + 1)

(1 − η)
− 1

)

(

1 − η

2

)i

P
(2i+1,0)
j (η), (11)

φij(ξ, η) =
φ̃ij(ξ, η)
√

γij

, γij =
(

2

2i + 1

)

(

1

i + j + 1

)

, (12)

where P (α,β)
n is the Jacobi polynomial of order n, which are orthogonal on I,

and γij is the orthonormalizing weight.

We choose the grid points xk
j , j = 0, 1, ..., N computed as the steady state,

minimum energy solution to an electrostatics problem on an equilateral trian-
gle by Hesthaven in [20]. The distribution is illustrated in Fig. 2.2 for polyno-
mial degrees p ranging from 2 to 12 on the reference element I. Note that this
grid distribution becomes the Legendre-Gauss-Lobatto distribution along the
edges of the triangle.
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Fig. 2. Electrostatic Node Distribution [20] on I.

We define the vectors of nodal and modal values on Dk as

uk
N = [uk

0, ...,u
k
N ]T , ûk

N = [ûk
0, ..., û

k
N ]T , (13)

and the vectors of local Lagrange polynomials and basis functions on Dk as

Lk
N = [Lk

0, ..., L
k
N ]T , φk

N = [φk
0, ..., φ

k
N ]T . (14)

Let us simplify our notation for φij by defining a new index α ∈ [0, N ] that
represents a reordering of (i, j) and rewrite φα = φij. The Vandermonde matrix
is defined to be

Viα = φα(xi), (15)

This implies that

uk
N = Vûk

N , ûk
N = V−1uk

N , VTLk
N = φk

N . (16)

We implement a Galerkin projection methodology and integrate

∂uk
N

∂t
+ ∇ · Fk

N = 0 (17)
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against a sequence of N + 1 test functions Li(x). After integrating by parts
twice, we get the final form of the scheme

∫

Dk

(

∂uk
N

∂t
+ ∇ · Fk

N

)

Lk
i (x)dx =

∮

δDk

Lk
i (x)n̂ · [Fk

N − F∗
N ]dx. (18)

The numerical flux is the local Lax-Friedrichs flux [30],[31]

F∗
N = F∗

N (u−,u+) =
FN (u+) + FN (u−)

2
− |λ|

2

(

u+ − u−
)

, (19)

where u− refers to the local solution, u+ refers to the neighboring solution/s,
and λ is the maximum local eigenvalue of the flux Jacobian.

The mass and stiffness matrices on I are

Mij = (Li(ξ), Lj(ξ))I =
∫

I

Li(ξ)Lj(ξ)dξ (20)

Sij = (Sξ
ij,S

η
ij)I = (Li(ξ),∇Lj(ξ))I =

∫

I

Li(ξ)∇Lj(ξ)dξ, (21)

and are computed in two dimensions as

M = (V−1)T (V−1), (22)

Sξ = (V−1)TWξ(V−1), W
ξ
ij =

∫

I

φi(ξ)
∂φj(ξ)

∂ξ
dξ, (23)

Sη = (V−1)TWη(V−1), W
η
ij =

∫

I

φi(ξ)
∂φj(ξ)

∂η
dξ. (24)

It is important to mention that for higher order equations (having spatial
derivatives of order greater than 1), such as the Navier-Stokes equations, we
follow the approach of Bassi and Rebay [6] by introducing an additional vari-
able (for formulation only) so that we may rewrite the higher order equation

∂u

∂t
+ ∇ · F = ∇ · (ν∇u) (25)

as a system of first order equations

∂u

∂t
+ ∇ · (F − p)= 0 (26)
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ν∇u=p. (27)

We then use the same approach and seek an approximation as

∫

Dk

(

∂uN

∂t
+ ∇ · (FN − pN)) Li(x) dx (28)

=
∮

δDk

Li(x)n̂ · [FN − F∗
N − (pN − p∗

N)] dx, (29)

∫

Dk

(pN − ν∇uN )Li(x) dx =
∮

δDk

Li(x)n̂ · [uN − u∗
N ] dx. (30)

A central flux is used for u∗
N and the local Lax-Friedrichs flux is used for F∗

N

and p∗
N .

To stabilize the scheme, we apply a modal filter to the numerical approxima-
tion at regular intervals

FNuN (x, t) =
N
∑

n=0

σ
(

n

N

)

ûn(t)φn(x), (31)

where σ (η) is the filter kernel. Two commonly used filters, which are imple-
mented in Section 4 are the exponential and the sharp-cutoff filters [24].

3 Time integration schemes

3.1 Explicit Runge-Kutta (ERK) methods

We have a semi-discrete scheme, which we will integrate in time using a high-
order Runge-Kutta method. Let us write the system of ordinary differential
equations (ODEs) as the initial value problem (IVP)

dU

dt
= F(t,U(t)), U(t0) = U0,

Following Butcher [7], we write the RK scheme in a tabular format known as
the Butcher tableau

ci aij

bi
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Fully-explicit Runge-Kutta schemes, commonly referred to as ERK schemes,
have zeros on the main diagonal and above the main diagonal of A, e.g.
aij = 0, j ≥ i.

We implement an efficient and accurate 5-stage, 4th-order low-storage ERK
scheme [9] in order to minimize memory storage. Carpenter and Kennedy [9]
derive a 2N-storage scheme which is competitive with the classical 4th-order
high-storage method, where N is the dimension of the ODE system. Given the
coefficients Aj, Bj, and cj [9], the algorithm to compute U(t + ∆t) requires
the storage and overwriting of only 2 vectors Uj and dUj

dUj = AjdUj−1 + ∆tF(Uj), j = 1, ..., s (2)

U(t + ∆t) = Uj = Uj−1 + BjdUj (3)

Williamson [41] demonstrated that the connection between the 2N-scheme and
the general RK scheme

Bj = aj+1,j j 6= s

Bs = bs

Aj = (bj−1 − Bj−1)/bj j 6= 1, bj 6= 0

Aj = (aj+1,j−1 − cj)/Bj j 6= 1, bj = 0.

Although fully-explicit time-integration schemes are simple to implement and
the most efficient methods for low levels of stiffness, they are at the mercy of
the stability-based time-step restriction (CFL condition), especially for prob-
lems that have high levels of geometry-induced or physics/operator-induced
stiffness. For this reason, we implement implicit-explicit RK methods, which
we discuss in Section 3.3.

3.2 Geometry-induced stiffness

We now define two measures of geometry-induced stiffness, S, which will be
referred to as “stiffness” throughout this paper, unless specified otherwise.
For the one-dimensional case, the definition of geometry-induced stiffness is
straightforward, since the system eigenvalues will scale just as the ratio of
element lengths. We define the grid-induced stiffness as the ratio of the mini-
mum element length in the explicit set, Ω[ex], to that of the minimum element
length in the implicit set, Ω[im] (i.e. ratio of minimum element length of all
elements integrated with ARK-ERK to that of minimum element length of all
elements integrated with ARK-ESDIRK)
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S1D =
minDk∈Ω[ex]

(l)

minDk∈Ω[im]
(l)

, (4)

where l represents the element length. The two-dimensional grid-induced stiff-
ness is defined to be the ratio of the minimum element (triangle) chord length
in the explicit set, Ω[ex], to that of the minimum element (triangle) chord
length in the implicit set, Ω[im] (i.e. ratio of minimum element chord length
of all elements integrated with ARK-ERK to that of minimum element chord
length of all elements integrated with ARK-ESDIRK)

S2D =
minDk∈Ω[ex]

(c)

minDk∈Ω[im]
(c)

, (5)

where c represents the element chord length. The two-dimensional stiffness
may also be based on other measures, such as the triangles’ inscribed radius.

3.3 Implicit-Explicit Runge-Kutta (IMEX-RK) methods

In order to alleviate geometry-induced stiffness, we implement the recently
introduced Additive Runge-Kutta schemes by Kennedy and Carpenter [26],
which are a class of implicit-explicit Runge-Kutta or IMEX-RK methods.
IMEX algorithms solve the nonstiff terms using explicit methods, and iso-
late and solve the more expensive stiff terms using implicit methods. The N-
Additive Runge-Kutta (ARK-N) schemes [9] are used to integrate equations
of the form

dU

dt
= F(t,U(t)) =

N
∑

ν=1

F[ν](t,U(t)) , U(t0) = U0, (6)

and are given by the s-stage RK scheme

U(i) = U(n) + ∆t
N
∑

ν=1

s
∑

j=1

a
[ν]
ij F[ν](t(n) + cj∆t,U(j)), 1 ≤ i ≤ s (7)

U(n+1) = U(n) + ∆t
N
∑

ν=1

s
∑

i=1

b
[ν]
i F[ν](t(n) + ci∆t,U(i)), (8)

where U(n) = U(t(n)), U(n+1) = U(t(n+1)), and U(i) = U(t(n) +ci∆t). We shall
order U in the following way:
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U =







U[ex]

U[im]





 , (9)

where U[ex] corresponds to the m[ex] ordinary differential equations resulting
from the spatial discretization of the partial differential equation on the ex-
plicit set of elements, Ω[ex], and U[im] corresponds to the m[im] ordinary differ-
ential equations resulting from the spatial discretization of the partial differen-
tial equation on the explicit set of elements, Ω[im]. Note that m = m[ex]+m[im].

We define F = F[ex] + F[im] = F[1] + F[2], where

F[1]







U[ex]

U[im]





 =







F(U[ex])

0





 , F[2]







U[ex]

U[im]





 =







0

F(U[im])





 , (10)

and the coefficient matrices A[ν] and vectors b[ν] are

A[1] = A[ERK], A[2] = A[ESDIRK] (11)

b[1] = b[2] = b, (12)

where A[ERK], A[ESDIRK], and b are given in the Appendix. We now write
the scheme as

U
(i)
[ex] = U

(n)
[ex] + ∆t

s
∑

j=1

a
[1]
ij F(t(n) + cj∆t,U

(j)
[ex]), 1 ≤ i ≤ s, (13)

U
(i)
[im] = U

(n)
[im] + ∆t

s
∑

j=1

a
[2]
ij F(t(n) + cj∆t,U

(j)
[im]), 1 ≤ i ≤ s, (14)

U(n+1) = U(n) + ∆t
s
∑

i=1

biF(t(n) + ci∆t,U(i)), (15)

since b
[1]
i = b

[2]
i . This set of RK schemes allows for great flexibility in the sense

that the implicit-explicit partition can be based on the operator or on the grid
point/geometric region. In this paper, we reduce the N-Additive RK scheme
to a 2-Additive scheme, which is given by an explicit-implicit partition. In
other words, we choose to perform the time-splitting by geometric region.

The ARK schemes can be expressed in the following Butcher tableau format,

which is similar to the basic tableau, but has one extra set of coefficients b̃i.

The coefficients b̃i provide a scheme of one order lower than the main scheme
based on the coefficient weights bi. Such schemes are referred to as embedded
schemes.
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ci aij

bi

b̃i

Note that the two fourth-order schemes in Table A.1 are coupled through

the nodes ci, e.g. c
[ERK]
i = c

[ESDIRK]
i so that the corresponding RK times

t(n) + ci∆t will be the same for both schemes at each RK stage, and also

through the weights bi, e.g. b
[ERK]
i = b

[ESDIRK]
i . Also, the embedded scheme

will be used to compute the temporal error after every time step, which will
be fed into a time-step controller to adaptively control the time-step (refer to
Sec. 3.3.8).

The coupling between the explicit and implicit regions is straightforward. At

each RK stage, the explicit grid points are integrated to find U
(i)
[ex], and then

the implicit grid points are integrated to find U
(i)
[im], using the explicit regions

as boundary conditions.

3.3.1 Newton-Krylov methods: Newton methods (outer iteration)

Let us assume for generality that we are solving a nonlinear conservation law,
such as the Navier-Stokes equations. To integrate the semi-discrete system for-
ward in time with an implicit Runge-Kutta scheme, we must solve a nonlinear
system of equations at the ith RK stage if the ith row of A has at least one
entry aij that is nonzero for j ≥ i.

For example, for the second stage of the ARK4(3)-ESDIRK (i = 2) scheme,

we need to solve for U(2)

U(i) =U(n) + ∆t
s
∑

j=1

aijG(U(j)) (16)

U(2) =U(n) + ∆t
6
∑

j=1

a2,jG(U(j)) (17)

U(2) =U(n) + ∆t
(

a2,1G(U(1)) + a2,2G(U(2))
)

(18)

U(2) =U(n) + ∆t
(

1

4
G(U(1)) +

1

4
G(U(2))

)

(19)

We choose to solve for U(2) using a modified Newton-Krylov method [25]. Let

us assume that U = U(2). Eqn. (3.19) becomes
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U = U(n) + ∆t
(

1

4
G(U(1)) +

1

4
G(U)

)

(20)

We rewrite the system as

F(U) =U − U(n) − ∆t
(

1

4
G(U(1)) +

1

4
G(U)

)

(21)

=
(

U − ∆t

4
G(U)

)

+ H(U(n),U(1)) (22)

= 0, (23)

where H(U(n),U(1)) = −U(n) − ∆t
4
G(U(1)). A multivariate Taylor expansion

about the current iterate of the solution Uk gives us

F(Uk+1) = F(Uk) + F
′

(Uk)(Uk+1 − Uk) (24)

+F
′′

(Uk)(Uk+1 − Uk)2 + ... (25)

Neglecting the higher order terms O(Uk+1 − Uk)2, we arrive at Newton’s
method

Uk+1 = Uk + δUk, k = 0, 1, ... (26)

J(Uk)δUk = −F(Uk) (27)

where J = F
′

is the Jacobian matrix.

3.3.2 MFNK method

The above method is a strict Newton method and requires the formation
and storage of the Jacobian matrix for each nonlinear solve (each implicit RK
stage). This can be a very expensive and perhaps unfeasible task for large-scale
problems. For these reasons, we implement a modified Jacobian-free Newton-
Krylov method (JFNK) [27], which is referred to as the MFNK method by
Knoll and McHugh in [28]. The MFNK method is not exactly JFNK, due to
the fact that some Jacobians are computed and stored, and differs from the
modified Newton-Krylov method (MNK) in that MNK holds both the precon-
ditioner and the action of the Jacobian (Eqn (3.32)) constant over a number
of Newton iterations, while MFNK only holds the Jacobian-based Precondi-
tioner constant. For this reason, MFNK has stronger nonlinear convergence
properties than MNK. We also note that the very expensive formation and
storage of the Jacobian is performed infrequently.
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3.3.3 Krylov methods: inner iteration

Each Newton iteration involves solving a sequence of linear systems

JδU = −F(U) (28)

for δu. Due to the nature of the DGFEM spatial discretization discussed in
Section 2, the Jacobians are sparse and therefore lead to extremely sparse
linear systems, since elements communicate only with “adjacent” neighboring
elements that share a common point in one-dimension, edge in two-dimensions,
and face in three-dimensions. The Jacobian matrix J for the ARK schemes
may be found by differentiating Eqn. (3.22) with respect to U

J =
dF(U)

dU
= I− aii∆t

dG(U)

dU
, 2 ≤ i ≤ s (29)

where the Jacobian dG
dU

may be computed analytically (note: this is not true

for all equations) and the factor aii for the ARK-ESDIRK schemes is constant
for all RK stages (i > 1) since the schemes are SDIRK for i > 1, or singly
diagonally implicit Runge-Kutta.

Iterative methods are particularly well-suited for solving extremely-sparse,
unsymmetric linear systems [37]. (Iterative methods are indirect, as opposed
to direct methods such as Gaussian elimination, and require a certain criteria
to end the iterations.) For these reasons, we solve these sparse linear systems
using two popular Krylov subspace methods [37]: the generalized minimum
residual method, commonly referred to as GMRES, and the Bi-Conjugate
Gradient STABilized method also known as BiCGSTAB.

The success of an iterative linear solver largely depends on an effective precon-
ditioner [37], which efficiently clusters the eigenvalues of the iteration matrix,
and results in a speed-up of the Krylov method. We apply right precondition-
ing, which leaves the right-hand side of (3.28) unchanged

(JP−1)(PδU) = −F(U), (30)

where P represents the preconditioning matrix. Solving the preconditioned
system above involves two main steps.

(a) Firstly, we define z = PδU and solve

JP−1z = −F(U) (31)

for z using a Krylov solver and the Frechet derivative
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JP−1r0 ≈ [F(u + εP−1r0) − F(u)]/ε, ε � 1. (32)

(b) Secondly, we solve for δU using a linear solver

PδU = z =⇒ δU = P−1z. (33)

The Newton-Krylov algorithm only requires the action of P−1 on vector v

(matrix-vector product P−1v). Thus, only the matrix elements required for the
action of P−1 are formed. This may be done at every single Newton iteration
or periodically when required (MFNK, MNK). We form the Jacobian once
every k time steps (k = 20, 50, 100 , etc...) and reuse the “frozen” Jacobian as
the preconditioner for the next k steps. However, even though we reuse the old
Jacobian for preconditioning, we compute the current action of the Jacobian
(current matrix-vector multiply JP−1r0) using forward differencing (3.32).

It is also important to mention that GMRES involves only one matrix-vector
multiply per Krylov iteration versus BiCGSTAB’s two, which becomes an
increasingly important consideration for increasingly stiff systems when using
preconditioned Newton-Krylov algorithms.

Note that all of the Newton-Krylov algorithms applied in the numerical tests
in Section 4 are based on C.T. Kelley’s nsoli algorithm, which is a Newton-
Krylov solver using inexact Newton-Armijo iteration, an Eisenstat-Walker
forcing term and parabolic line search via 3-point interpolation [25]. The code
is available from SIAM at the URL: http://www.siam.org/books/fa01/.

3.3.4 Newton-Krylov termination criteria

Iterative methods will continue iterating until a prescribed stopping or ter-
mination criteria is met. We use the following termination conditions for the
Newton (outer) and Krylov (inner) iterations.

The outer Newton iteration will stop when

‖F(Uk+1)‖2 < atol + rtol‖F(U0)‖2, (34)

where atol and rtol are the user-specified absolute and relative tolerances
respectively. Typically, atol = rtol =1E-03 for most numerical tests in Section
4.

The inner Krylov iteration will stop when the relative linear residual

‖rk+1‖2 < ηmax‖F(Uk+1)‖2, (35)

16



10
1

10
2

10
3

10
2

10
3

10
4

10
5

Stiffness

p=4

No Preconditioner
Block−Jacobi
ILU(1E−03)
ILU(101/2 E−03)

C
P

U
 T

im
e

10
1

10
2

10
3

10
2

10
3

10
4

10
5

Stiffness

C
P

U
 T

im
e

p=8

No Preconditioner
Block−Jacobi
ILU(1E−03)

Fig. 1. 2D Preconditioner Tests for p = 4 (left) and p = 8 (right), T=1.

where ηmax = .9.

3.3.5 Preconditioning

We conduct several numerical tests comparing the performance of the precon-
ditioners discussed in this section. We perform the tests on the nozzle flow with
shock test case from Section 4 for polynomials of degree p = 4 (∆tmean = 1/50)
and p = 8 (∆tmean = 1/142). The tests are run until final time T=1, which
is much earlier than the time for which the shock begins to develop (roughly
T=20). The reason for this is because the times steps in this region are still
fairly large with respect to the ERK case, and the results for this case are
therefore more meaningful and important as far as IMEX-RK schemes are
concerned. Please refer to Section 4 for all other parameters and details on
the nozzle flow problem.

The results for the Jacobi, block (subdomain) Jacobi, ILU(0) and ILUT(τ)
preconditioners are summarized in Tables 3.1 and 3.2, and are plotted in
Fig. 3.1. The tests were conducted on three different grids having geometry-
induced stiffnesses of 12.6, 96.4 and 928.6, in order to study how the various
preconditioners respond to geometry-induced stiffness. The preconditioners
were formed and stored once every physical unit of time (once every t=1 or
once every 50 time steps for p = 4, and once every 142 time steps for p = 8).
We used the GMRES Krylov scheme with no restarts as part of the MFNK
method, and used a Newton tolerance of 1E-03 to stop the iterations. We
tested the ILUT(τ) preconditioner for three values of τ , namely for τ = 1E-

02,
√

10E-03 and 1E-03.

First, let us clarify that the term “failed” in Tables 3.1 and 3.2 signifies stag-
nating or repeating failures of the MFNK, which resulted from ill-conditioned
preconditioners. We can see from Table 3.1 that for polynomials of degree
p = 4, the Jacobi, ILU(1E-02) and the ILU(0) preconditioners are not robust
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Preconditioner Stiffness (S) Avg. GMRES CPU Time

Iter. per ∆t

None 12.6 99 1.67 E+02

Jacobi 946 1.19 E+03

Block Jacobi 56 1.30 E+02

ILU(1E-03) 7 2.06 E+02

ILU(
√

10E-03) 10 2.60 E+02

ILU(1E-02) 24 2.99 E+02

ILU(0) singular singular

None 96.4 850 1.58 E+03

Jacobi failed failed

Block Jacobi 158 3.35 E+02

ILU(1E-03) 12 6.31 E+02

ILU(
√

10E-03) 41 1.35 E+03

ILU(1E-02) failed failed

ILU(0) singular singular

None 928.6 1054 2.19 E+04

Jacobi failed failed

Block Jacobi 454 8.00 E+02

ILU(1E-03) 25 8.50 E+02

ILU(
√

10E-03) 196 3.85 E+03

ILU(1E-02) failed failed

ILU(0) singular singular

Table 1
2D Preconditioner Tests, p=4, T=1.

and result in repeated failures, especially as the stiffness increases. The ILU(0)
factorization produced singular factors in all cases (and therefore repeating
failures) and was the least robust method.

However, the ILU(
√

10E-03), ILU(1E-03) and the block Jacobi preconditioners
were consistently robust, even for high levels of stiffness, and are plotted in

Fig. 3.1(a) for this reason. As expected, the ILU(
√

10E-03) forms the factors
faster than the ILU(1E-03). It is evident from Fig. 3.1 that preconditioning
helps increase the efficiency of the MFNK and therefore the IMEX-RK scheme.
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Preconditioner Stiffness (S) Avg. GMRES CPU Time

Iter. per ∆t

None 12.6 121 7.25 E+02

Jacobi 410 2.41 E+03

Block Jacobi 43 2.01 E+03

ILU(1E-03) 7 3.81 E+03

ILU(
√

10E-03) 12 4.02 E+03

ILU(1E-02) 68 8.48 E+03

ILU(0) singular singular

None 96.4 832 5.30 E+03

Jacobi failed failed

Block Jacobi 113 4.94 E+03

ILU(1E-03) 16 1.65 E+04

ILU(
√

10E-03) 371 1.78 E+05

ILU(1E-02) failed failed

ILU(0) singular singular

None 928.6 6064 3.80 E+04

Jacobi failed failed

Block Jacobi 350 1.23 E+04

ILU(1E-03) 101 5.62 E+04

ILU(
√

10E-03) failed failed

ILU(1E-02) failed failed

ILU(0) singular singular

Table 2
2D Preconditioner Tests, p=8, T=1.

The preconditioners help alleviate the CPU time versus stiffness slope. The
ILU(1E-03) resulted in the flattest curve (smallest CPU time versus stiffness
slope), but was slower than the block Jacobi preconditioner for all three test
cases. The ILU(1E-03) may become more efficient than the block Jacobi for
extremely high levels of stiffness (i.e. >1E+03). In terms of speed, storage,
formation time, practicality (if we want to form the preconditioner at more
frequent intervals) and implementation, the block Jacobi is the clear winner
of this group, especially for the levels of stiffness that were tested.

Similarly, Table 3.2 for polynomials of degree p = 8 shows that the Jacobi,
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ILU(1E-02), ILU(
√

10E-03) and the ILU(0) fail repeatedly for increasing stiff-
ness. We plot the ILU(1E-03) and the block Jacobi results in Fig. 3.1(b).
Again, the block Jacobi preconditioner is more efficient than the ILU(1E-03).
It is interesting to note that the preconditioned MFNK only starts to pay off
for stiffness levels greater than roughly two orders of magnitude. This result
may seem counterintuitive since preconditioned Implicit-RK methods are typ-
ically implemented for very large levels of stiffness where the preconditioner
increases efficiency. However, if the stiffness level is low enough, the precondi-
tioner may not increase the efficiency of the method.

3.3.6 Stability: explicit Runge-Kutta methods

We now analyze the domain of absolute stability (linear stability envelope) for
a general ERK scheme. In order to determine the region of absolute stability,
we apply the RK scheme to the scalar test equation

dU

dt
= F(U) = λU, (36)

where λ is a complex constant that generally represents an eigenvalue of a
matrix. Since Runge-Kutta schemes are one-step methods, we can write the
numerical solution U(n+1) at time t(n+1) as the product of an amplification
factor R(z) and the numerical solution U(n) at time t(n)

U(n+1) = R(z)U(n), (37)

where the complex number z = λh and h = ∆t is the time-step. The region
of absolute stability occurs when |U(n+1)| ≤ |U(n)| or when |R(z)| ≤ 1.

For an s-stage ERK of order p, the amplification factor R(z) is given as [2]

R(z) = 1 + z +
z2

2
+ ... +

zp

p!
+

s
∑

j=p+1

zjbTAj−11, (38)

where the vectors 1 = [1, ..., 1]T and b = [b1, ..., bs]
T .

We plot the regions of absolute stability for ERK methods with s = p ≤ 4,
which includes the classical fourth-order, 4-stage method, the 5-stage, fourth-
order low-storage 2N ((5,4)-2N ERK) scheme, and the 6-stage, fourth-order
ARK4(3)-ERK scheme in Fig. 3.2. We note that the s = 6 ARK4(3)-ERK
and the s = 5 low-storage (5,4)-2N ERK schemes have the largest stability
regions in the left-hand plane. The ARK4(3)-ERK scheme has the largest
extent along the imaginary axis, while the (5,4)-2N ERK scheme has the
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Fig. 2. The regions of absolute stability for various ERK schemes.

largest extent along the real axis. However, we can see that for all of the explicit
RK schemes, the values of z = λh necessary for stability are confined by the
envelope regions. For stiff problems, the eigenvalues may become very large,
thus squeezing the maximum allowable time step h to very small values. For
this reason, we consider semi-implicit methods, such as the ARK4(3) scheme,
which couples an explicit RK scheme to an implicit RK scheme, and therefore
extends the stability region of purely explicit RK methods.

3.3.7 Stability: implicit Runge-Kutta methods

Let us discuss the stability of implicit RK methods. For explicit RK schemes,
the amplification function is a polynomial. However, for implicit RK schemes,
the amplification function R(z) is not a polynomial, but a rational function
that may be expressed as the quotient of two polynomials (by definition)

R(z) = 1 + zbT (I − zA)−11 (39)

=
N(z)

D(z)
(40)

=
det(I + z(1bT − A))

det(I − zA)
(41)

Let us review a couple of important definitions regarding stability. A numerical
method is A-stable if its region of absolute stability includes the entire left
half-plane of z = hλ, i.e. |R(z)| ≤ 1, for all z s.t.Re(z) < 0. A numerical
method is L-stable if it is A-stable and R(z = ∞) = 0. Also, a scheme that
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has a nonsingular coefficient matrix A for which asj = bj, j = 1, ..., s, is
stiffly-accurate. Note that stiffly accurate methods have stiff decay. Methods
with stiff decay have the property that as the real part of z goes to negative
infinity (Re(z) → −∞), the amplification factor tends to 0 (R(z) → 0).

We note that the ARK-ESDIRK [26] family of schemes are implicit RK meth-
ods ranging from third to fifth-order accurate. The three schemes are designed
for the integration of stiff terms |z| → ∞, and have many desirable properties
with respect to stability. They are L-stable and stiffly-accurate with vanishing
stability functions for very large eigenvalues z → −∞.

3.3.8 Time-step control

In order to control both accuracy and stability, it is important to choose a
time-step controller which is a function of both criteria. The basic idea behind
embedded time-integration schemes is to provide an additional scheme that is
one order lower than the main scheme in order to allow for the computation of
the temporal error. For example, the ARK5(4), ARK4(3) and ARK3(2) [26]
schemes are of design orders 5, 4, and 3 respectively with embedded schemes
of orders 4, 3, and 2 respectively. The computed temporal error may be fed
into a controller such as an I, PI, or a PID controller, in order to automatically
and adaptively control the time step ∆t.

Let us the derive the I-based controller in order to gain a deeper understanding
of time-step controller design in general. In order to compute the temporal
error δ, we subtract the solution based on the embedded scheme of order p
from the solution based on the main scheme of order p + 1

δ =U − Û (42)

= (Uexact + O((∆t)p+1)) − (Uexact + O((∆t)p)) (43)

=O((∆t)p) (44)

=C(∆t)p, (45)

where C is a constant. Therefore, our computed temporal error is of order
p. We now compare the time errors δ(n+1) and δ(n) for 2 different time steps,
(∆t)(n+1) and (∆t)(n)

δ(n+1)

δ(n)
=

C((∆t)(n+1))p

C((∆t)(n))p
(46)

=

(

(∆t)(n+1)

(∆t)(n)

)p

, (47)

where (∆t)(n+1) is the time-step we want to determine and δ(n+1) is the tem-
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poral error that will occur for this step. Let us specify the time error we want
to commit for this step and call it ε = δ(n+1). Substituting ε for δ(n+1) gives us

ε

δ(n)
=

(

(∆t)(n+1)

(∆t)(n)

)p

, (48)

and solving for (∆t)(n+1)

(∆t)(n+1) = (∆t)(n)
(

ε

δ(n)

) 1
p

. (49)

Finally, we add a factor of safety κ

(∆t)(n+1) = κ(∆t)(n)
(

ε

δ(n)

)
1
p

(50)

Two common controllers are given below (refer to [17,18,38])

(∆t)
(n+1)
I = κ(∆t)(n)

(

ε

‖δ(n)‖∞

)
1
p

(51)

(∆t)
(n+1)
PID = κ(∆t)(n)

(

ε

‖δ(n)‖∞

)α (‖δ(n−1)‖∞
ε

)β (

ε

‖δ(n−2)‖∞

)γ

, (52)

(53)

where κ ≈ .9 is a factor of safety, ε is a specified tolerance for the controlled
parameter (e.g. temporal error,etc...), and p is the order of accuracy of the
embedded scheme. δ is a measure of temporal error and is defined as

δ(n+1) =U(n+1) − Û(n+1) (54)

=∆t
s
∑

i=1

biF(U(i)) − ∆t
s
∑

i=1

b̂iF(U(i)) (55)

=∆t
s
∑

i=1

(bi − b̂i)F(U(i)) (56)

We follow [26] and select the PID controller with the following fixed controller
gains

kI = 0.25, kP = 0.14, kD = 0.10, ωn = 1, (57)

where
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pα =
[

kI + kP +
(

2ωn

1 + ωn

)

kD

]

, pβ = [kP + 2ωnkD] , (58)

pγ =

(

2ω2
n

1 + ωn

)

kD. (59)

and

ωn =
(∆t)(n)

(∆t)(n−1)
(60)

Therefore,

α =
.49

p
, β =

.34

p
, γ =

.10

p
. (61)

We demonstrate the responsiveness and time-step control of the PID-controller
for the one-dimensional Burgers equation

∂u

∂t
+

1

2

∂(u2)

∂x
= ε

∂2u

∂x2
(62)

with a perturbation at the inflow x = −.5 given as

u(−.5, t)=
(

−a tanh
(

a
x − ct

2ε

)

+ c
)

·
(

1 + A(sin(ft))4
)

(63)

= 1 + .1(sin (100t))4, (64)

since a = 1, wave speed c = 0, ε = 1E-03, f = 100 and amplitude A = .1.
The perturbation is designed to test the time-controller’s responsiveness (refer
to Section 4 for details for this test case). The time-step history is illustrated
in Fig. 3.3. The red curve is the inflow sin4 perturbation function scaled so
that both the time-step history curve (black) and the inflow function (red)
can easily be visually compared. We can see that the PID controller responds
well to the oscillations of the inflow perturbation function, thereby having a
frequency that appears to match the frequency of (3.64), which is 100/π, quite
well. Also, note that the time-step history is a smooth function, indicating the
proper behavior for the PID controller (since the problem is smooth and is
spatially resolved).

Finally, the time step ∆t is chosen as the minimum of the stability-based
time-step and the time-accurate controller-based time step

∆t = min(∆tStable, ∆tController). (65)

24



0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

10
−4

PID−Controller

PID ∆t

Inflow sin4 function

Time

Fig. 3. PID-control for 1-D Burgers equation with perturbation at inflow.

4 Numerical tests

In this section, we carry out numerical experiments in 1D and 2D. We imple-
ment both ERK and IMEX-RK schemes to solve several test problems, such
as nozzle flows modeled by the Euler equations, and compare the efficiency
of the methods. Note that the ERK method used for all 1D test cases is the
classical fourth-order ERK4 scheme, while the ERK method used for the 2D
test cases is the low-storage (5,4)-2N ERK scheme. The IMEX method used is
always the ARK4(3) IMEX-RK scheme, unless specified otherwise, and selects
time steps using a PID time step controller (refer to Section 3.3.8).

4.1 Viscous Burgers equation

The one-dimensional viscous Burgers equation is the classical one-dimensional
analog of the multidimensional viscous Navier-Stokes equations

∂u

∂t
+

1

2

∂(u2)

∂x
= ε

∂2u

∂x2
, −1 ≤ x ≤ 1, t ≥ 0. (1)

We set the initial condition to be a hyperbolic tangent wave so that the exact
solution to Eqn. (4.1) is a rightward traveling hyperbolic tangent wave with
velocity equal to c, and initial condition u(x, 0):

u(x, t) = −a tanh
(

a
x − ct

2ε

)

+ c, u(x, 0) = −a tanh(a
x

2ε
) + c. (2)
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ε Stiffness (S) Avg. ∆t Avg. ∆t Avg. GMRES CPUERK/CPUIMEX

(ERK) (IMEX) Iter. per ∆t

.01 90.0 5.03 E-06 1.98 E-03 4 36.96

45.0 1.78 E-05 1.98 E-03 3 14.72

22.5 5.76 E-05 1.98 E-03 3 4.00

9.0 2.30 E-04 1.98 E-03 3 1.50

4.5 5.26 E-04 1.98 E-03 2 .75

1.8 1.69 E-03 1.98 E-03 3 .25

.001 90.0 5.71 E-07 6.38 E-04 3 128.88

45.0 2.25 E-06 3.19 E-03 6 116.39

22.5 8.74 E-06 3.19 E-03 6 31.18

9.0 5.03 E-05 3.19 E-03 5 5.57

4.5 1.78 E-04 3.19 E-03 5 1.50

1.8 8.23 E-04 3.19 E-03 4 .25

Table 1
ERK and IMEX-RK Results for 1D Burgers Equation.

The wave-speed c, and the constant a are:

c =
u−∞ + u∞

2
, a =

u−∞ − u∞

2
. (3)

The numerical solutions to Eqn. (4.1) are shown in Fig. 4.1(a). The grid used
is displayed in Fig. 4.1(b), where the elements in the blue region are solved
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Fig. 2. Comparison of IMEX-RK and ERK results for 1D traveling wave solution
to Burgers equation for ε = .01 (left) and ε = .001 (right).

using an IMEX-RK method, while the elements in the black region are solved
using the ERK scheme. The results for both ε = .01 and ε = .001 are shown in
Fig. 4.2 and are summarized in Table 4.1. We can see the same type of pattern
appear as for the previous two cases. At a certain critical stiffness level, S∗,
the IMEX scheme starts to beat the ERK scheme. S∗ ≈ 6 for ε = .01, and
S∗ ≈ 3 for ε = .001.

4.2 Compressible Navier-Stokes equations

We review the compressible, nondimensional Navier-Stokes equations in con-
servation form, which will be used to test the RK schemes described in this
paper. Consider the three-dimensional Navier-Stokes equations given in Carte-
sian coordinates

∂q

∂t
+ ∇ · F(q) =

1

Reref

(∇ · Fν) , t > 0. (4)

The state vector q and the flux vector F(q) are given as

q =
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ρw
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k̂ ,(5)
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where ρ is density, u, v and w are the Cartesian velocity components, E is the
total energy, and p is the pressure. The total energy

E = ρ
(

T +
1

2
(u2 + v2 + w2)

)

. (6)

The pressure and temperature are related through the ideal gas law

p = (γ − 1)ρT. (7)

where T is the temperature and γ = cp/cv is the ratio between the constant
pressure (cp) and constant volume (cv) heat capacities. γ = 1.4 for air. The
viscous vector is

Fν =





























0

τxx
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Pr
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k̂. (9)

Note that the Cartesian coordinates (x, y, z) = (x1, x2, x3). We assume that
the fluid is Newtonian, for which the stress tensor is defined as

τxixj
= µ

(

∂ui

∂xj

+
∂uj

∂xi

)

+ δijλ
3
∑

k=1

∂uk

∂xk

, (10)

where µ is the dynamic viscosity, λ is the coefficient of Bulk viscosity for the
fluid, and k is the coefficient of thermal conductivity. We use Sutherland’s law
to relate the dynamic viscosity to the temperature

µ(T )

µs

=
(

T

Ts

)

3
2 Ts + S

T + S
, (11)
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where µs = 1.716 × 10−5 kg/m sec, Ts = 273oK, S = 111oK and the Prandtl
number Pr = .72 for atmospheric air. Stokes hypothesis gives us λ = − 2

3
µ.

We normalize Eqn (4.4) using reference values uref = u0, ρref = ρ0, pref =
ρ0u

2
0, Tref = u2

0/cv and L as the reference length. Therefore, the reference

Reynolds number Reref = ρ0u0L
µ0

and the Prandtl number Pr = cpµ0

k0
.

4.3 Euler equations: two-dimensional nozzle flows

Consider the two-dimensional Euler equations given in conservation form

∂q

∂t
+ ∇ · F(q) = 0. (12)

The state vector q and the flux vector F(q) are given in Section 4.2 for the
three-dimensional Euler equations. For the two-dimensional Euler equations,
the state vector is

q = [ρ, ρu, ρv, E] . (13)

We consider the flow in a two-dimensional duct (rectangular cross-section)
or nozzle, modeled using the Euler equations. We solve the two-dimensional
compressible Euler equations using both ERK and IMEX-RK time-stepping
schemes and compare the accuracy and efficiency of both schemes. The converging-
diverging nozzle (Fig. 4.3) has an area A(x) given by

A(x) =











1.75 − .75 cos ((.2x − 1.0)π), 0 ≤ x ≤ 5

1.25 − .25 cos ((.2x − 1.0)π), 5 ≤ x ≤ 10
. (14)

This is a classic one-dimensional steady (steady-state), inviscid compressible
flow problem that has an analytic solution [1] on the centerline at y = 0. The
initial condition is a linear profile that connects the exact (analytic) boundary
conditions at x = 0 and x = 10.

4.3.1 (i) Nozzle flow with normal shock

A ratio between the stagnation pressure and the back pressure of .75 (back
pressure/stagnation pressure) results in a choked flow with a stationary nor-
mal shock in the divergent part of the nozzle at x ∼= 7.5623. The Mach num-
ber M = 1.0 and the stagnation temperature T = 300◦K as the flow is
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Fig. 3. The set of 5 grids used for the nozzle flow tests. Nozzlea (top-left) has a
stiffness ≈ 12.6, Nozzleb (top-middle) has a stiffness ≈ 21.6, Nozzlec (top-right)
has a stiffness ≈ 53.2, Nozzled (bottom-left) has a stiffness ≈ 96.4, and Nozzlee

(bottom-right) has a stiffness ≈ 928.6. The blue regions are solved implicitly when
using the IMEX-RK scheme, and explicitly when using the ERK scheme.

choked. The inflow Mach number M = .240 and the outflow Mach number
M = .501. The inflow values of the conserved variables are (ρi, ρui, ρvi, Ei) =
(1.5331E + 00, 4.0000E − 01, 0, 3.3001E + 00), while the outflow values are
(ρo, ρuo, ρvo, Eo) = (1.2427E + 00, 6.6668E − 01, 0, 2.7141E + 00). A sample
numerical solution for the Mach number and pressure contours at time T=40
is shown in Fig. 4.4 (for p = 4). We compare ERK and IMEX results at final
time T=1, since the flow is still smooth in this regime. The shock begins to
develop roughly at T=20, after which the PID controller (based on L∞ norm)
drives the time steps to very small values ( about the same as for ERK), and
the computational advantage of the IMEX scheme disappears. We perform
the nozzle tests on a set of 5 different grids illustrated in Fig. 4.3: Nozzlea

has a stiffness S ≈ 12.6, Nozzleb has a stiffness S ≈ 21.6, Nozzlec has a stiff-
ness S ≈ 53.2, Nozzled has a stiffness S ≈ 96.4, and Nozzlee has a stiffness
S ≈ 928.6. All of the grids have roughly the same number of elements (56-72)
in the implicit set, Ω[im], so that we can measure the effects of changing stiff-
ness with roughly the same system sizes (for constant order p). Furthermore,
the grids are clustered near the location of the shock (x ∼= 7.56) on the center-
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Fig. 4. Nozzle flow with shock: left plot is Mach contour, right is Pressure
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Fig. 5. Supersonic nozzle flow: left plot is Mach contour, right is Pressure

line (y = 0), which is the axis along which we compare the numerical solution
to the one-dimensional analytic solution (away from the walls).

The ERK and IMEX-RK results are summarized in Table 4.2, and are plotted
in Fig. 4.6(a) for polynomials of degree p = 4, 6, 8. The IMEX method becomes
more efficient than the ERK method at roughly a stiffness level of S = 10 for
the p = 4 case, while it does so at roughly a stiffness of S = 20 for p = 8.

Fig. 4.7 compares the time-step histories (a), the L2 norm residuals of ρ (b)
defined as

residual(t + ∆t) =
‖ρ(t + ∆t) − ρ(t)‖2

‖ρ(t)‖2
, (15)

and the CPU time versus the physical time (c) for the ERK and the IMEX-RK
schemes for Nozzlec which has a stiffness level of approximately 22. We can
see that before the shock develops (t < 10), the ratio of the IMEX time-steps
to that of the ERK time-steps is roughly equal to the stiffness level. From the
point when the shock begins to develop, the PID-controller takes charge and
reduces the magnitude of the IMEX time-steps. This translates into a loss of
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Fig. 6. 2D nozzle flow with shock (left) and supersonic (right) CPU time vs. stiffness
(S), T=1.

computational efficiency as far as the IMEX results are concerned, since the
original time-step ratio ≈ 22 shrinks to levels of O(1). The effect of this can
be seen in Fig. 4.7(c), where we plot CPU time versus physical time. Initially,
the slope of CPU to physical time is lower for the IMEX scheme, but starts to
catch up after the shock develops. We can see that both methods result in a
decrease of the residual with time, although the ERK residual decreases more
smoothly due to the smaller time-steps.

Finally, we plot the number of Newton and Krylov iterations versus time
in Fig. 4.8(a), and the temporal error (based on ρ) vs. time based on the
embedded scheme in Fig. 4.8(b).

4.3.2 (ii) Supersonic nozzle flow

A ratio between the stagnation pressure and the back pressure of .16 (back
pressure/stagnation pressure) results in supersonic nozzle flow (no normal
shock).

The inflow values of the conserved variables are (ρi, ρui, ρvi, Ei) = (1.5331E +
00, 4.0000E−01, 0, 3.3001E+00), while the outflow values are (ρo, ρuo, ρvo, Eo) =
(4.2639E − 01, 6.6667E − 01, 0, 1.0626E + 00). A sample numerical solution
for the Mach number and pressure contours at time T=40 is shown in Fig. 4.5
(for p = 4).

The ERK and IMEX-RK results are summarized in Table 4.3, respectively,
and are plotted in Fig. 4.6(b) for polynomials of degree p = 4, 6, 8. The results
are quite similar to those of the normal shock case and will not be discussed
further.
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Stiffness (S) p Avg. ∆t Avg. ∆t Avg. GMRES CPUERK/CPUIMEX

(ERK) (IMEX) Iter. per ∆t

12.6 4 1.66 E-03 2.00 E-02 56 .97

6 8.87 E-04 1.06 E-02 46 .78

8 4.99 E-04 7.04 E-03 43 .62

96.4 4 2.16 E-04 2.00 E-02 158 2.99

6 1.16 E-04 1.06 E-02 126 2.21

8 6.50 E-05 7.04 E-03 113 1.99

928.6 4 2.25 E-05 2.00 E-02 454 11.96

6 1.20 E-05 1.06 E-02 391 8.51

8 6.75 E-06 7.04 E-03 350 7.67

Table 2
ERK and IMEX-RK Results, Nozzle flow with shock, T = 1.

Stiffness (S) p Avg. ∆t Avg. ∆t Avg. GMRES CPUERK/CPUIMEX

(ERK) (IMEX) Iter. per ∆t

12.6 4 1.19 E-03 1.33 E-02 59 1.00

6 6.33 E-04 7.14 E-03 49 .62

8 3.56 E-04 4.69 E-03 45 .60

96.4 4 1.55 E-04 1.33 E-02 177 2.70

6 8.25 E-05 7.14 E-03 147 1.68

8 4.64 E-05 4.69 E-03 137 1.61

928.6 4 1.61 E-05 1.33 E-02 510 10.52

6 8.56 E-06 7.14 E-03 447 7.12

8 4.82 E-06 4.69 E-03 415 6.40

Table 3
ERK and IMEX-RK Results, Supersonic nozzle flow, T = 1.

4.3.3 Navier Stokes equations: cylinder flow

Consider the two-dimensional Navier-Stokes equations given in conservation
form

∂q

∂t
+ ∇ · F(q) =

1

Reref

(∇ · Fν) . (16)
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Fig. 8. Plot of Newton and Krylov iterations vs. time (left) and temporal errors vs.
time (right) generated by the embedded IMEX-RK scheme.

The state vector q and the flux vector F(q) are given in Section 4.2 for the
three-dimensional Navier-Stokes equations. For the two-dimensional Navier-
Stokes equations, the state vector is

q = [ρ, ρu, ρv, E] . (17)
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Fig. 9. The mesh used for the cylinder flow tests. The blue region is solved implicitly
when using the IMEX-RK scheme, and explicitly when using the ERK scheme.

Two-dimensional flow around a cylinder predicted by the 2D NS equations has
good agreement with experimental results up to Reynolds numbers of roughly
Re = 180. For Re > 180, three-dimensional effects take place, and numerical
results can no longer be validated against experimental results. We perform
calculations at Re = 75, 100 and 125, and compare the Strouhal numbers
for these flows versus experimental data by Williamson [40] and numerical re-
sults by Hesthaven [19]. The Strouhal number is the nondimensional shedding
frequency and is defined as St = ωL/u0.

We run the tests with polynomials of degree p = 4 until time T = 100−150, by
which periodic vortex shedding is well established. The computational domain
is a disk with radius equal to approximately 20 cylinder diameters. The mesh
used is shown in Fig. 4.9. The black elements are solved explicitly in time,
while the two rows of elements in the blue region are solved implicitly. The
ratio of number of elements in the implicit region to those in the explicit region
is 128/1408.

We plot contours of density, pressure, vorticity and Mach number for Re = 100
in Fig. 4.10(a-d), and the velocity streamlines in Fig. 4.10(e). Table 4.4 com-
pares the Strouhal numbers computed numerically using the IMEX scheme
to those from Williamson’s experimental results and Hesthaven’s computa-
tions, and the comparison is very good. It is important to note that we use
the sharp-cutoff filter with Nc = N − 1 for this test, the Newton tolerance
is 1E-03, and the Krylov solver is BiCGSTAB without preconditioning. Also,
the stiffness S ≈ 3, and the CPU time for the IMEX is roughly the same as
that for an ERK scheme.

35



Density Pressure

Vorticity Mach

Streamlines

Fig. 10. The density, pressure, vorticity, and Mach number contour plots for the
IMEX-RK simulation of cylinder vortex shedding at Re = 100 and time T = 100
(p = 4). The bottom plot shows the velocity streamlines for this flow.

Re St St St

Computed Computed [19] Experiment [40]

75 .151 .149 .149

100 .166 .165 .164

125 .177 .177 .175

Table 4
Strouhal numbers from experiment and computations at Re = 100.
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5 Conclusions

In this paper, we introduced, discussed, tested and compared explicit (ERK)
and implicit-explicit (IMEX-RK) Runge-Kutta time integration schemes. The
main motivation for considering implicit RK methods is geometry-induced
stiffness, which is a result of computing on grids that are composed of elements
having drastically varying length scales. Geometry-induced stiffness leads to
severe time-step restrictions in the context of ERK schemes, which have been
the most popular vehicles for time-integration up to the present day.

Figure 3.2 shows the regions of absolute stability for various explicit methods.
The complex product z = λh = λ∆t must lie within this region for each
respective ERK scheme to guarantee stability (amplification factor is bounded
by 1). However, for problems for which the eigenvalues are driven towards
infinity due to the presence of geometry-induced or physics/operator-induced
stiffness, the maximum stable time-step ∆tST is driven towards zero. This
stability-based time step restriction is the Achilles heel of ERK methods in
general. Explicit Runge-Kutta methods are at the mercy of the “smallest”
element in the mesh. Explicit methods that allow integrating elements with
variable local time-steps (depending on the size of each element), such as
local timestepping or multi-rate methods [32], have been developoed, but are
typically second-order accurate and suffer difficulties contending with irregular
unstructured meshes.

Our approach for overcoming geometry-induced stiffness is to apply IMEX-RK
schemes based on [26]. We divide a given mesh into two main sets or regions:
the first containing the “explicit” elements which we integrate in time using
an ERK scheme, and the second containing the “implicit” elements which are
integrated in time with an implicit SDIRK scheme. The sets are divided in such
a way so that the explicit set contains the ”largest” elements (based on length
in 1D, chord of triangle or other measure of length in 2D), while the implicit
set contains the “smallest” elements which are responsible for constraining
the maximum stable time step in purely ERK schemes. Thus, we alleviate
the time-step restriction (to a degree) by integrating the small elements using
an implicit scheme. With IMEX methods the problem of contending with
irregular unstructured meshes that may have a combination of very small and
highly distorted anisotropic elements is transferred over to that of building an
adequate preconditioner for these strange cells.

All of the numerical test case results lead to a similar conclusion with re-
gard to IMEX schemes. IMEX-RK schemes become more efficient than ERK
schemes at a certain level of stiffness, even without the use of precondition-
ing. However, the application of efficient preconditioners in conjunction with
IMEX MFNK schemes is critical to increasing the robustness and efficiency
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of IMEX methods, leading to even greater gains in computational efficiency
for IMEX versus ERK methods. As the stiffness level S increases, efficient
preconditioning becomes more important to speed-up the MFNK method. Ef-
fective preconditioning will decrease the CPU time versus stiffness slope. Also,
out tests indicate that as stiffness levels increase, the preconditioned GMRES
method becomes the Krylov method of choice (as compared to preconditioned
BiCGSTAB), since it involves only one matrix-vector product per Krylov it-
eration versus BiCGSTAB’s two. Adaptive controller-based time-stepping is
very important in conjunction with IMEX schemes to control temporal errors.
However, we found that L∞-based time-step controllers are not suitable for
problems with shocks.

6 Acknowledgments

The work of AK was partly supported by NASA Graduate Student Researchers
Program (GSRP) Fellowship NGT-1-01024 and by the NSF VIGRE Program.
The work of MHC was partially funded under NASA fellowship 23847923847.
The work of DG was ... The work of JSH was partly supported by NSF Career
Award DMS-0132967 and by the Alfred P. Sloan Foundation through a Sloan
Research Fellowship.

References

[1] J. D. Anderson, Modern Compressible Flow, McGraw-Hill. New York, 2002.

[2] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential

Equations and Differential-Algebraic Equations, SIAM, 1998.

[3] U. M. Ascher, S. J. Ruuth and R. J. Spiteri, Implicit-explicit Runge-Kutta

methods for time-dependent partial differential equations, Appl. Numer. Math.
25(1997), pp. 151-167.

[4] U. M. Ascher, S. J. Ruuth, and B. T.R. Wetton, Implicit-Explicit Methods

for Time-Dependent Partial Differential Equations, SIAM J. Numer. Anal.
32(1995), pp. 797-823.

[5] M. J. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial

differential equations, J. Comput. Phys. 53(1984), pp. 484512.

[6] F. Bassi and S. Rebay, A High-Order Accurate Discontinuous Finite

Element Method for the Numerical Solution of the Compressible Navier-Stokes

Equations, J. Comput. Phys. 131(1997), pp. 267-279.

[7] J. C. Butcher, Numerical Methods for Ordinary Differential Equations, Second
edition. John Wiley Sons. Chichester, England, 2003.

38



[8] M. P. Calvo, J. de Frutos and J. Novo, Linearly implicit Runge-Kutta methods

for advection-reaction-diffusion equations, Appl. Numer. Math. 37(4)(2001),
pp. 535-549.

[9] M. H. Carpenter and C. A. Kennedy, Fourth-Order 2N-Storage Runge-Kutta

Schemes, NASA-TM-109112(1994), pp. 1-24.

[10] B. Cockburn, Discontinuous Galerkin Methods for Convection-Dominated

Problems, High-Order Methods for Computational Physics, T.J. Barth and H.
Deconinck, editors, Lecture Notes in Computational Science and Engineering,
volume 9, Springer, Berlin, 1999, pp. 69-224.

[11] B. Cockburn, G. E. Karniadakis, and C.-W. Shu (Editors), Discontinuous

Galerkin Methods: Theory, Computation and Applications, Springer-Verlag.
Lecture Notes in Computational Science and Engineering 11(2000).

Computing, 16 (2001), 173-261.

[12] C. N. Dawson and R. Kirby, High resolution schemes for conservation laws with

locally varying time steps, SIAM J. Sci. Comput. 22(2001), pp. 22562281.

[13] T. A. Driscoll, A composite Runge-Kutta method for the spectral solution of

semilinear PDE, 2001, unpublished.

[14] M. Dubiner, Spectral Methods on Triangles and Other Domains, J. Sci. Comput.
6(1991), pp. 345-390.

[15] J. E. Flaherty, R. M. Loy, M. S. Shephard, B. K. Szymanski, J. D. Teresco
and L. H. Ziantz, Adaptive local refinement with octree local-balancing for the

parallel solution of three-dimensional conservation laws, J. Parallel Distributed
Comput. 47(1997), pp. 139152.

[16] P. Fritzen and J. Wittekindt, Numerical solution of viscoplastic constitutive

equations with internal state variables, Part I: Algorithms and implementation,
Math. Meth. Appl. Sci. 20(16)(1997), pp. 1411-1425.

[17] K. Gustafsson, Control theoretic techniques for stepsize selection in Runge-

Kutta methods, ACM Trans. Math. Soft. 17(4)(1991), pp. 533-554.

[18] K. Gustafsson, Control theoretic techniques for stepsize selection in implicit

Runge-Kutta methods, ACM Trans. Math. Soft. 20(4)(1994), pp. 496-517.

[19] J. S. Hesthaven, A Stable Penalty Method for the Compressible Navier-Stokes

Equations: II. One-Dimensional Domain Decomposition Schemes, SIAM J. Sci.
Comput. 18(3)(1997), pp. 658-685.

[20] J. S. Hesthaven, From Electrostatics to Almost Optimal Nodal Sets for

Polynomial Interpolation in a Simplex, SIAM J. Numer. Anal. 35(2)(1998),
pp. 655-676.

[21] J. S. Hesthaven and T. Warburton, Nodal High-Order Methods on Unstructured

Grids I: Time-Domain Solution of Maxwell’s Equations, J. Comput. Phys.
181(2002), pp. 186-221.

39



[22] J. S. Hesthaven and T. Warburton, Discontinuous Galerkin Methods for the

Time-Domain Maxwell’s Equations: An Introduction, ACES Newsletter. vol.
19(2004), pp. 12-30.

[23] A. Kanevsky, High-Order Implicit-Explicit Runge-Kutta Time Integration

Schemes and Time-Consistent Filtering in Spectral Methods, Brown University
PhD Thesis (2006), pp. 1-138.

[24] A. Kanevsky, M. H. Carpenter, and J. S. Hesthaven, Idempotent Filtering in

Spectral and Spectral Element Methods, J. Comput. Phys. 220(1)(2006), pp.
41-58.

[25] C. T. Kelley, Solving Nonlinear Equations with Newton’s Method, SIAM,
Philadelphia, 2003.

[26] C. A. Kennedy and M. H. Carpenter, Additive Runge-Kutta Schemes for

Convection-Diffusion-Reaction Equations, Appl. Numer. Math. 44(2003), pp.
139-181.

[27] D. A. Knoll and D. E. Keyes, Jacobian-free Newton-Krylov methods: a survey

of approaches and applications, J. Comput. Phys. 193(2004), pp. 357-397.

[28] D. A. Knoll and P. R. McHugh, Enhanced nonlinear iterative techniques applied

to a nonequilibrium plasma flow, SIAM J. Sci. Comput. 19(1998), pp. 291-301.

[29] T. Koornwinder, Two-variable analogues of the classical orthogonal polynomials,
Theory and Application of Special Functions, edited by R. A. AskeyAcademic
Press, New York, 1975, pp. 435-495.

[30] R. J. LeVeque, Numerical Methods for Conservation Laws, Birkhauser Verlag,
Basel, 1990.

[31] R. J. LeVeque, Finite-Volume Methods for Hyperbolic Problems, Cambridge
University Press, 2002.

[32] S. Osher and R. Sanders, Numerical approximations to nonlinear conservation

laws with locally varying time and space grids, Math. Comp. 41(1983), pp.
321336.

[33] A. T. Patera, A Spectral Element Method for Fluid Dynamics: Laminar Flow

in a Channel Expansion, J. Comput. Phys. 54(1984), pp. 468-488.

[34] S. Piperno, Symplectic local time-stepping in non-dissipative DGTD methods

applied to wave propagation problems, ESAIM:M2AN, 40(2006), pp. 815-841

[35] J. Proriol, Sur une Famille de Polynomes deux Variables Orthogonaux dans un

Triangle, C. R. Acad. Sci. Paris 257(1957), pp. 2459-2461.

[36] W. H. Reed and T. R. Hill, Triangular mesh methods for the neutron transport

equation, Los Alamos Scientific Laboratory Report LA-UR-73-479, 1973.

[37] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Co.
(1996).

40



[38] G. Soderlind, Automatic control and adaptive time-stepping, Numerical
methods for ordinary differential equations (Auckland, 2001), Numer.
Algorithms 31(2002), no. 1-4, pp. 281-310.

[39] Z. Tan, Z. Zhang, Y. Huang, and Tao Tang Moving mesh methods with locally

varying time steps, J. Comput. Phys. 200(2004), pp. 347-367.

[40] C. H. K. Williamson, Oblique and parallel modes of vortex shedding in the wake

of a circular cylinder at low Reynolds numbers, J. Fluid Mech. 206(1989), pp.
579-627.

[41] J. H. Williamson, Low-storage Runge-Kutta schemes, J. Comput. Phys.
35(1980), p. 48.

[42] J.J.-I. Yoh and X. Zhong, Semi-implicit Runge-Kutta schemes for stiff multi-

dimensional reacting flows, AIAA Paper 97-0803, AIAA, Aerospace Sciences
Meeting and Exhibit, 35th, Reno, NV, January 6-9, 1997.

[43] X. Zhong, New high-order semi-implicit Runge-Kutta schemes for computing

transient nonequilibrium hypersonic flows, AIAA Paper 95-2007, AIAA,
Thermophysics Conference, 30th, San Diego, CA, June 19-22, 1995.

A Appendix

The fourth-order ARK4(3) scheme:
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Table A.1
The fourth-order ARK4(3) scheme consists of two coupled RK schemes: a six-
stage, fourth-order ERK scheme (top) and a six-stage fourth-order explicit singly
diagonally implicit Runge-Kutta (ESDIRK) scheme (bottom).
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