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Abstract

In this paper we present a new method to estimate Fekete points on surfaces.
Although our method works in a general setting, we concentrate on its application to
the unit sphere because it is the prototype problem and in the unit cube because its
singularity. The algorithm we present here is very simple and it is based in a physical
interpretation of the behavior of a system of particles when they search for a minimal
energy configuration. Moreover, the algorithm is efficient and robust independently of
the surface and the kernel used to define the energy. The algorithm allows us to work
with a great number of particles, for instance, in less than a day of calculation time,
we have obtained a good configuration for 50000 particles in the unit sphere without
using symmetry properties and with a conventional PC.

1 Introduction

The problem of obtaining Fekete points in a manifold fills a pre-eminent place in the math-
ematical research of the last decades. In its original version, the problem consists in deter-
mining the position of N points on a compact subset S C IR? that maximize the product of
their mutual Euclidean distances. The N-tuples, wy = {z1,...,2y}, that satisfy the above
property are the so-called N-th order Fekete points in S. It is not difficult to check that
those N-tuples minimize in S the functional

I(wy) = > Klwi,zy), (1)

1<i<j<N

where IC(z;, x;) = — In |x;—x;] is the so-called logarithmic kernel and |x;—x;| is the Euclidean
distance between z; and ;. The value Z(wy) represents the potential energy corresponding
to the logarithmic kernel when an unitary weight is associated with any point. In the
three-dimensional Euclidean space multiple variants of the problem can be formulated by
considering different kernels, among which the Riesz’s kernels, defined as K(z;, ;) = |x; —
xj|7° with s > 0, constitute a family of special interest. In particular, the Newtonian kernel,
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obtained taking s = 1, has became the most relevant case and its potential energy Z(wy)
is named electrostatic potential energy. For a more detailed description of this topic, see for
instance [7].

The determination of Fekete points in the unit sphere is considered as a model of a
highly non-linear optimization problem with non-linear constraints. In fact, obtaining a
robust and efficient algorithm for that problem still constitutes a challenge in computational
mathematics [13]. In general, only when the constrains are linear or they can be sufficiently
well approximated by linear constrains it is reasonable to expect a good behavior of the
usual algorithms for optimization problems with constrains. But, even in this case, the
convergence ratios result lower than the corresponding to free optimization methods. Some
authors choose to transform problems as the Fekete points one in optimization problems
without constrains by considering a parametrization of the surface [8, 16]. In this way,
they can use classical optimization techniques such as the Gradient Method, the Conjugate
Gradient Method, the Newton Method and the family of quasi-Newton methods. Also other
methods like the so-called Combinatory Optimization methods have been used, among which
they stand out the Simulated Annealing, Tabu Search and Genetic Algorithms [8].

A considerable amount of theoretical and numerical results have been obtained in relation
with the different versions of Fekete points problem, see for instance [5, 6, 8, 10, 11, 14, 16],
and it has been completely solved in some particular cases. Nevertheless, recent publications
recognize that the simple obtaining of a position near to a local optimum for hundreds
of points in the sphere requires to make use of an important calculation infrastructure.
Moreover, they raise the possibility of obtaining good configurations of thousands of points
reducing the number of unknowns by means of symmetries, see [4].

The resolution of this kind of problems has a lot of theoretical and practical implica-
tions in areas as Mathematics, Chemistry, Biology, Numerical Computation (interpolation
schemes, FEM meshes, numerical integration) and CAD, see for instance [1, 2, 8, 11, 14, 16].

2 The Method

We present here the basis of an algorithm for the obtaining of Fekete points in a surface. We
consider that the results obtained with this algorithm are highly satisfactory. For instance,
in less of a day of calculation time, we have obtained good configurations for 50000 points
in the unit sphere without using symmetry properties and with a conventional Pentium IV
processor of 2.54 GHz and 512 Mb of RAM. The objective of this paper is not to mark
the limits of applicability of the algorithm but to introduce the main ideas on which it is
based, to establish its extraordinary simplicity and to analyze its numerical behavior. For
this reason all the calculations presented in this work have been carried out with the above
mentioned processor. The algorithm has a good behavior independently of the kernel and
the surface considered. In that sense, we present its application to two surfaces: the unit
sphere, because it is the most treated problem in the literature related with the estimation



of Fekete points, and the unit cube, because of the difficulty that represent its singularities
in the edges and in the vertices. The basic structure of the algorithm is classical, in the
sense that each iteration consists on obtaining the advance direction and the step size in a
deterministic way.

The ideas behind the algorithm come from Physics. We do not try to answer directly the
question about which are the minimum potential energy configurations, but how the points
of a non-optimal configuration can advance, in a mechanical sense, to reach a minimum
potential energy configuration. The equivalence between minimum potential energy and
static stable equilibrium configurations constitutes the key of the method. A mechanical
system formed by particles is in equilibrium if the total force that acts on each one of these
particles is null. The equilibrium is stable if small perturbations in the position tend to
return each particle to its original position, and then this position is a minimum for the
potential energy of the system. So, for a given non-optimal configuration, non-equilibrated
forces must act on the particles, and these forces will inevitably induce its movement. We
wonder about the character of these forces and this movement and when it will carry the
particles to an equilibrium position [3].

Flrstly note that the energy of a system of N particles, z, € R®, k = 1,..., N, is given
by 7 = ZV;, where V; = ZIC (x;, ;) is the potential created on z; for all the other

j=1
particles. The problems we arginterested in, require that all the particles lye on a regular
surface S C IR?, in such way that any point z; € S has assigned a normal vector n,. If we
fix the position of the N — 1 particles {x; € S:j=1,...,N,j # i}, V; is a function of z;
and the opposite of its gradient, that we will denote by F; = —VV,; € T}, (]Rg), represents
the repulsive force that acts on the i-th particle due to the existence of the rest. We will
consider F* = (F;,n;)n; and F = F, — F[", the normal and tangent components to S of the
force F; at x;, respectively. On the other hand, if M = SV, then (FlT, . ,Fﬁ) = -V is
the direction of maximum descent of Z in M, independently of the possible parametrizations
of S.

Figure 1: Disequilibrium degree
The i-th particle is in equilibrium on S if FI = 0. Therefore, |FT| could be a measure
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of the disequilibrium degree of that particle on S. Nevertheless, Fig. 1 suggests that an
alternative measure of disequilibrium degree based on the angle between F; and n; could

result more satisfactory. In effect, two particles z;, z; with |F]| = |F]'| can be “more or less
equilibrated” on S depending on the angle between the forces F; and F}; and its corresponding
1

normal vectors n; and n;. We define as the disequilibrium degree of the i-th particle.

il

The suitability of this election will be showed clearly throughout the paper.

The following simple proposition establishes that to advance according with this disequi-
librium measure descents the energy of the system.

Proposition 2.1 The direction

Fr FL
w= ( . N)
|1 | F|
1s of descent of the energy constrained to M. In addition, every particle contributes to the
descent.

Proof. The direction w is obviously compatible with the constraints of the problem, since
w € T, (M). The result follows from the fact that

N |FT|2
<w,—V]|M>:Z t . >0. 1
= |E

Observe that the direction w does not coincide with the one given by the Gradient method
except in very particular cases, for example in the sphere with a great number of particles
when they are in stages very close to the equilibrium. The rest of classical optimization
methods, as Conjugate Gradient, Newton or quasi-Newton, choose advance directions that in
general do not guarantee that each particle contributes to the descent, which results not very
natural in the iterative process. On the other hand, as the disequilibrium degree indicator
that we propose here is bounded -in fact, normalized between 0 and 1-, it allows to treat
each particle only in relation with its own potential equilibrium degree and independently
of the relative distance to the rest of the particles.

In any case, the more substantial difference between our approach and classical methods
is that the determination of the advance direction and the step size is completely independent
of the parametrization that has been chosen for the surface S. Regarding to the direction,
that independence has already been made clare. As for the step size some considerations

must be made. Given an initial configuration, it must exist a unique stationary point for

T
|Fi|
the point of view of Mechanics, these directions not only can be understood as energy
descent directions, but also as the velocity fields of the paths described by the particles in

7 such that the particles arrive to it following the direction w; = Consequently, from
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its movement towards the equilibrium. This approach allows us to look at the optimization
problem from the dynamic systems perspective. The step size will be chosen by applying
an explicit forward Euler method to the system of ODE whose solutions are precisely these
paths. These ODE are raised in a natural way in the coordinates of the ambient space and
its numerical integration fixes a displacement for each particle in that space. In general, the
application of that displacement takes the particles out of the surface S, which generates
the need of considering an algorithm to return the particles to the surface in each iteration.
Maybe the most versatile and simple one consists in using the gradient field of an implicit
representation of the surface. In the examples that are included in the present paper -
the sphere and the cube- that process results trivial. When the surface is described in a
parametric form, the composition with the metric allow us to transfer to the parametric
space the magnitude of the step to apply, which solves the return problem.

To make an exhaustive mechanical treatment of the problem is out of place, since it is
not decisive with regards to the development of the algorithm. Nevertheless, we consider of
interest to make some considerations from this point of view. If z(t) = (x1(¢),...,zn(t))
denotes the position of N particles in the instant ¢, then an equation for the movement of
the system on a surface S can be

2"(t) = =VI(x(t)) — cx'(t) + ®(x(t), 2'(1)). (2)

The term —cz/(t), with ¢ > 0, represents a dissipative force of viscous nature and ® =
(bq,...,Py) is an additional force that takes into account the interaction between each
particle and S. For each i = 1,..., N, the normal component of ®;, ® = p|z}|* — F",
cancels the normal component of F; and provides the centripetal force, being p the normal
curvature in the direction of z} at z; € S. The tangent component ®! considers the friction
with S and its expression depends on each particular model. If the friction force is not
considered, then it is easy to prove that as ¢ — oo the trajectories that solve (2) tend to be
the enveloping of the vectors F}, see [3]. Hence, in this case the particles follow the direction
of —=VIj;. It is possible to propose a friction model such that the corresponding trajectories
tend to be the enveloping of the vectors w;.

Therefore, the search for the minimum of the energy will be carried out obtaining the
paths described by the particles in its movement towards the equilibrium. These ideas belong
to the fundamentals of Rational Mechanics and have already been used in the literature by
different authors, see for example [9, 12, 15]. However, in many cases the equilibrium of
the particles is purely heuristic and it does not come from the minimization of an explicit
functional, and, anyway, the objective is not to localize the equilibrium configuration as a
goal in itself, but to arrive to a reasonable level of approximation.

In short, the system of ODE to solve is
¥ =w. (3)
For its numerical resolution we will use the following explicit forward Euler method:

2* T = b ap(aF) wk (4)



where a is a positive scalar that depends on the kernel and on the surface S, and o(z*)
depends on the current position of all the particles of the system and allows us to adapt the
step size to the difficulty of the different configurations that appear during the calculation.
The step size must be reduced when there exist very close particles in order that they do not
“run helter-skelter” breaking the continuity of the movement, whereas if the relative distances
grow, the step size can be increased in benefit of the convergence ratio. An appropriate choice
is

o(z) = 1§§llqn§v{|xp - ICI|}7

according to which a |w;| represents the fraction of the minimum distance between particles
that the ¢-th one advances in each iteration.

The numerical experimentation carried out until now confirms that our algorithm con-
verges -in the sense that it localizes an equilibrium position- even for crazy initial positions,
for instance the corresponding to confine the N particles in the N-th part of the area of the
surface. However, in general, the algorithm is not stable, in the sense that for each initial
position it does not necessarily localize the unique equilibrium position corresponding to it.
An stable algorithm would require an excessive computational cost due to the existence of
a great quantity of stationary points extraordinarily close, although in any way this type of
stability is not really important since the convergence is guaranteed.

3 The Unit Sphere

The problem of obtaining Fekete points in the unit sphere is probably the most characteristic
both for its hardness and for its different applications. From a numerical point of view we
can mention the Ph.D. of Y. Zhou [16] and some works generated around it [10], [11]. In that
Ph.D. minimum energy configurations are presented for each N < 200 for the Newtonian
and logarithmic kernels and for the kernel of the distance. The algorithms used were quasi-
Newton after the elimination of the constraints by means of the stereographic projection.
In view of these results and other ones of theoretical character, extrapolation formulae for
the minimum energy associated to those kernels in the sphere were proposed. Recently,
some works have appeared in which good configurations of 1600 points obtained by means
of ad — hoc algorithms are presented, see [4].

In the unit sphere, after the generation of an arbitrary initial configuration z° of N
different points, the k-th iteration of our algorithm simply consists in:

-Calculate the advance direction w*=1.

-Calculate 2% = 2! + ady_; wF .

=>
SE

-Obtain the k-th configuration: x*

T

=5

The minimum distance dj_; between two points of the (k—1)-th configuration is obtained

=>



Kernel | Distance | Logarithmic | Newtonian | Riesz s = 2 | Riesz s = 3

a 10 8 1 0.1 0.02

Table 1: Reference values for the coefficient a

as a byproduct of the advance direction calculation. It is necessary to indicate that, for the
kernels we are interested in, the most expensive step of the iterative process is precisely
the calculation of this direction, that involves N? operations. In Table 1 we show reference
values for the coefficient a for some kernels.

To study the convergence of our algorithm, we use max |w;|, i.e., the maximum dise-
(2

quilibrium degree of the particles, as a measure of the error. If we analyze the evolution of
the error with respect to the iteration number, we observe that a linear convergence ratio is
systematically attained after a first highly non-linear stage. When the linear stage is reached
the particles can be supposed to be sufficiently close to a stationary point, in the sense that
from this moment the Newton algorithm can be used with guaranty of convergence. Fig-
ure 2 (a) illustrates the behavior of the error for a configuration of 1000 particles with the
Newtonian kernel.

Error

Energy difference

. . . . . . . . 20 . . . . . . . .
2000 4000 6000 8000 10000 12000 14000 16000 18000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

(a) Iteration number (b) Iteration number

Figure 2: The behavior of the algorithm

Figure 2 (b) displays the evolution of the difference between the energy corresponding to
the extrapolation formula given in [16] and the energy computed by our algorithm. We must
note that the energy given by the formula, in spite of been accurate, can be improved very
quickly. In fact, this happens long before the linear tendency is reached. Figure 3 shows
the initial and final configurations of the non-linear stage for the previous case as well as
the Dirichlet cells of both configurations. The initial configuration was generated randomly
adjusting the distribution of the particles to a uniform probability density on the sphere.
We must note that the energy produced by the initial configuration is 500144.450659, and



after the iterative process the energy value is 482534.789049, which represents only a 3.5% of

decrease. On the other hand, the algorithm shows a high efficiency, since the time required
to reach the linear tendency was around 15 minutes and to surpass the extrapolated energy

value required only around 2 minutes.
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Figure 3: 1000 particles and their Dirichlet cells for the iterations 0 and 8000

Figure 4 shows a configuration of 5000 particles when the linear tendency has been

attained, which required approximately 20 hours of calculation time. With a configuration
of symmetry, the time required to improve the energy corresponding to the extrapolation

of 50000 particles, working also with the Newtonian kernel and without considering any kind
formula has been of approximately 15 hours.

Figure 4: A beautiful configuration and the Dirichlet cells for N = 5000
The numerical experimentation carried out until now is not enough to extract definitive
conclusions about the total cost needed to obtain a near-equilibrium configuration. Never-



theless, the results obtained allow us to be optimistic in that sense, and they seem to suggest
an average computational cost of order less than N®. It must be considered that in such
a non-linear problem, some fluctuations in the cost are natural. For instance, for fixed N
similar initial configurations could require different calculation times, whereas configurations
with more particles than others could require less iterations. It is clear that the memory
requirements are of order N. Moreover, the tests realized until now confirm the robustness
of the algorithm, see [3].

To obtain good equilibrium configurations for a great number of particles without an
increase in the calculus infrastructure, we can use the symmetries of the sphere. Good
initial configurations that take into account symmetries are the geodesic grids. In particular,
we consider families of truncated icosahedron, which correspond to use 120 symmetries.
Although the geodesics constitute an excellent family of initial configuration, they do not
present an uniform density of points. This is due to the projection that takes the points
from the faces of the icosahedron to the sphere. In this conditions our algorithm basically
smooths the density, as can be seen in Figure 5. In it we represent the initial and final
positions of the points corresponding to a face of the original icosahedron for a configuration
with 12002 particles in total.

Figure 5: Initial and final configurations in a spherical triangle

In Figure 6 we present the convergence evolution for several configurations whose initial
positions are defined by different frequency geodesic grids when the Newtonian kernel is
considered. The total number of particles for each one of the seven cases considered are:
(1) N = 4322, (2) N = 12002, (3) N = 27002, (4) N = 52922, (5) N = 100922, (6) N =
201722, (7) N = 300002. Note that the evolution of the error is very smooth even before
the final linear tendency is attained. A reason for that is the great quality of the initial
configurations. Moreover, it must be observed that all geodesics of this family start with
approximately the same error. This fact can be used to realize an analysis of the cost in
similar conditions. If we consider the reference error e = 5-1073, we can obtain in each case
the number of iterations needed to attain e. This is showed in Figure 6 as well as a simple
interpolation of the data.



10

120
L 100} -7
107 ° e
© 0
T wf -
® Y7
ol T 0
5 ¢ g . y
= g oo p
e 3 e y = 0.2509 X"
i — D = % .
— T (4)(5)@} — -% 401 /"(4) R'=0.9996
e & ’
107 AN @ ] = ’ 3
o — e
R @
10 0 5‘0 160 1é0 260 2[1')0 360 3“1':0 400 OO 015 i 115 é 215 é 315 4
Iteration number n

Figure 6: The behavior of the algorithm with geodesics
4 The Unit Cube

We aim here at presenting some results obtained by applying our algorithm in the unit cube.
In this way the versatility of the method will be showed clear since the cube has a geometry
radically different to the sphere one. It is evident that the unit cube does not verify the
regularity properties required to dispose of a normal vector in each point. Nevertheless, we
have considered its 48 symmetries reducing the domain to a triangle representing the eighth
part of the cube face. In this case, the Newtonian kernel is especially interesting, since its
corresponding Fekete points tend to reproduce the electric charge density in electrostatic
equilibrium on the cube, which is itself a classical question.

An important accumulation of particles near the edges of the cube would occur, since
the density presents asymptotes in them and hence the difficulty when searching for Fekete
points increases. However, we want to emphasize that the behavior of the algorithm in the
cube is essentially the same than in the sphere and this is fundamentally due to the choice

ET
|E |maw ’

equivalent to follow the gradient direction, clearly leads to unsatisfactory results.

of w as advance direction. Other possible choices, as for example w; = which is

Figure 7 shows a near-equilibrium distribution in a face of the cube for a total quantity
of 47520 particles, which corresponds to 990 particles inside of the reference triangle. The
same figure shows the convergence of the method. The linear tendency is approximately
reached at iteration 40000.
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Figure 7: 7920 particles in a cube face and the convergence of the method

Acknowledgements

The authors express their sincere gratitude to Professor Antonio Gens by his unconditional
support. This work has been partially supported by the CICYT under project BFM2003-
06014.

References

[1] M. Atiyah and P. Sutcliffe, The geometry of points particles, R. Soc. Lond. Proc. Ser.
A Math. Phys. Eng. Sci., 458 (2002), 1089-1115.

[2] M. Atiyah and P. Sutcliffe, Polyedra in Physics, Chemistry and Geometry, Milan J.
Math., 71 (2003), 33-58.

[3] J.M. Gesto, Estimacion de los puntos de Fekete en la esfera unidad (Spanish). Degree
Thesis, UPC, (2003).

[4] D.P. Hardin and E.B. Saff, Discretizing Manifolds via Minimum Energy Points, Notices
Amer. Math. Soc., 51 (2004), 1186-1194.

[5] J. Korevaar and M.A. Monterie, Approximation of the equilibrium distribution by dis-
tributions of equal point charges with minimal energy, Trans. Amer. Math. Soc., 350
(1998), 2329-2348.

[6] A.B.J. Kuijlaars and E.B. Saff, Asymptotics for minimal discrete energy on the sphere,
Trans. Amer. Math. Soc., 350 (1998), 523-538.

[7] N.S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, (1972).

11



8]

[9]

[10]

[11]

[12]

K.J. Nurmela, Constructing Spherical Codes by Global Optimization Methods, Helsink:
University of Technology, Series A: Research Reports, 32 (1995).

P.-O. Persson and G. Strang, A Simple Mesh Generator in MATLAB, SIAM Review,
46 (2) (2004), 329-345.

E.A. Rakhmanov, E.B. Saff and Y. Zhou, Minimal discrete energy on the sphere, Math.
Res. Lett., 1 (1994), 647-662.

E.B. Saff and A.B.J. Kuijlaars, Distributing many points on a sphere, Math. Intelli-
gencer, 19 (1997), 5-11.

K. Shimada and D.C. Gossard, Automatic Triangular Mesh Generation of Trimmed
Parametric Surfaces for Finite Element Analysis, Computer Aided Geometric Design,
15 (1998), 199-222.

S. Smale, Mathematical Problems for the Next Century, Math. Intelligencer, 20 (1998),
7-15.

M.A. Taylor, B.A. Wingate and R.E. Vincent, An algorithm for computing Fekete points
in the triangle, STAM J. Numer. Anal., 38 (2000), 1707-1720.

A. Witkin and P. Heckbert, Using particles to sample and control implicit surfaces,
Computer Graphics Proc. SIGGRAPH 94, (1994), 269-278.

Y. Zhou, Arrangements of points on the sphere, Ph.D. Department of Mathematics,
University of South Florida, (1995).

12



