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Abstra
t

Blood vessel networks form by spontaneous aggregation of individual


ells migrating toward vas
ularization sites (vas
ulogenesis). A su

ess-

ful theoreti
al model of two dimensional experimental vas
ulogenesis has

been re
ently proposed, showing the relevan
e of per
olation 
on
epts and

of 
ell 
ross-talk (
hemota
ti
 auto
rine loop) to the understanding of this

self-aggregation pro
ess. Here we study the natural 3D extension of the


omputational model proposed earlier, whi
h is relevant for the investiga-

tion of the genuinely threedimensional pro
ess of vas
ulogenesis in verte-

brate embryos. The 
omputational model is based on a multidimensional

Burgers equation 
oupled with a rea
tion di�usion equation for a 
hemo-

ta
ti
 fa
tor and a mass 
onservation law. The numeri
al approximation

of the 
omputational model is obtained by high order relaxed s
hemes.

Spa
e and time dis
retization are performed by using TVD s
hemes and,

respe
tively, IMEX s
hemes. Due to the 
omputational 
osts of realisti


simulations, we have implemented the numeri
al algorithm on a 
luster

for parallel 
omputation. Starting from initial 
onditions mimi
king the

experimentally observed ones, numeri
al simulations produ
e network-like

stru
tures qualitatively similar to those observed in the early stages of in

vivo vas
ulogenesis. We develop the 
omputation of 
riti
al per
olative

indi
es as a robust measure of the network geometry as a �rst step towards

the 
omparison of 
omputational and experimental data.

1 Introdu
tion

In re
ent years, biologists have 
olle
ted many qualitative and quantitative data

on the behavior of mi
ros
opi
 
omponents of living beings. We are, however,

still far from understanding in detail how these mi
ros
opi
 
omponents intera
t

to build fun
tions whi
h are essential for life. A problem of parti
ular interest
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whi
h has been extensively investigated is the formation of patterns in biologi
al

tissues [2℄. Su
h patterns often show self-similarity and s
aling laws [18℄ similar

to those emerging in the physi
s of phase transitions [26℄.

The vas
ular network [28, 29℄ is a typi
al example of natural stru
ture 
har-

a
terized by non trivial s
aling laws. In re
ent years many experimental in-

vestigations have been performed on the me
hanism of blood vessel formation

[6℄ both in living beings and in in vitro experiments. Vas
ular networks form

by spontaneous aggregation of individual 
ells travelling toward vas
ularization

sites (vas
ulogenesis). A su

essful theoreti
al model of two dimensional ex-

perimental vas
ulogenesis has been re
ently proposed, showing the relevan
e of

per
olation 
on
epts and of 
ell 
ross-talk (
hemota
ti
 auto
rine loop) to the

understanding of this self-aggregation pro
ess.

Theoreti
al and 
omputational modelling is useful in testing biologi
al hy-

potheses in order to explain whi
h kind of 
oordinated dynami
s gives origin

to the observed highly stru
tured tissue patterns. One 
an develop 
omputa-

tional models based on simple dynami
al prin
iples and test whether they are

able to reprodu
e the experimentally observed features. If the basi
 dynami
al

prin
iples are 
orre
tly 
hosen, 
omputational experiments allow to observe the

emergen
e of 
omplex stru
tures from a multipli
ity of intera
tions following

simple rules.

Apart from the purely theoreti
al interest, reprodu
ing biologi
al dynami
s

by 
omputational models allows to identify those bio
hemi
al and biophysi
al

parameters whi
h are the most important in driving the pro
ess. This way,


omputational models 
an produ
e a deeper understanding of biologi
al me
h-

anisms, whi
h in prin
iple may end up having relevant pra
ti
al 
onsequen
es.

It is worth noti
ing here that a 
omplete understanding of the vas
ularization

pro
ess is possible only if it is 
onsidered in its natural threedimensional setting

([1, 7℄).

In this paper we illustrate 
omputational results regarding the simulation of

vas
ular network formation in a threedimensional environment. We 
onsider the

threedimensional version of the model proposed in [10, 23℄. The model is based

on a Burgers-like equation, a well studied paradigm in the theory of pattern

formation, integrated with a feedba
k term des
ribing the 
hemota
ti
 auto
rine

loop. The numeri
al evolution of the 
omputational model starting from initial


onditions mimi
king the experimentally observed ones produ
es network-like

stru
tures qualitatively similar to those observed in the early stages of in vivo

vas
ulogenesis.

Sin
e in the long run we are interested in developing quantitative 
omparison

between experimental data and theoreti
al model, we start by sele
ting a set of

observable quantities providing robust quantitative information on the network

geometry. The lesson learned from the study of twodimensional vas
ulogenesis is

that per
olative exponents [27℄ are an interesting set of su
h observables, so we

test the 
omputation of per
olative exponents on simulated network stru
tures.

A thorough quantitative 
omparison of the geometri
al properties of experi-

mental and 
omputational network stru
tures will be
ome possible as soon as an

adequate amount of experimental data, allowing proper statisti
al 
omputation,
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will be
ome available.

The paper is organized as follows. Se
tion 2 summarizes some ba
kground

knowledge on the biologi
al problem of vas
ular network formation. Se
tion

3 is a short review of the properties of the model introdu
ed in [10, 23℄. In

Se
tion 4 the numeri
al approximation te
hnique for the model is des
ribed. In

Se
tion 5 we des
ribe the qualitative properties of simulated network stru
tures

and present the results of the 
omputation of the exponents of the per
olative

transition. Finally, in the Con
lusions, we point out at predi
table developments

of our resear
h.

2 Biologi
al ba
kground

To supply tissues with nutrients in an optimal way, vertebrates have devel-

oped a hierar
hi
al vas
ular system whi
h terminates in a network of size-

invariant units, i.e. 
apillaries. Capillary networks 
hara
terized by inter
ap-

illary distan
es ranging from 50 to 300µm are essential for optimal metaboli


ex
hange [11℄.

Capillaries are made of endothelial 
ells. Their growth is essentially driven

by two pro
esses: vas
ulogenesis and angiogenesis [6℄. Vas
ulogenesis 
onsists of

lo
al di�erentiation of pre
ursor 
ells to endothelial ones, that assemble into a

vas
ular network by dire
ted migration and 
ohesion. Angiogenesis is essentially


hara
terized by sprouting of novel stru
tures and their remodelling.

In twodimensional assays, the pro
ess of formation of a vas
ular network

starting from randomly seeded 
ells 
an be a

urately tra
ked by videomi-


ros
opy [10℄ and it is observed to pro
eed along three main stages: i) migration

and early network formation, ii) network remodelling and iii) di�erentiation in

tubular stru
tures. During the �rst phase, whi
h is the most important for de-

termining the �nal geometri
al properties of the stru
tures, 
ells migrate over

distan
es whi
h are an order of magnitude larger than their radius and aggre-

gate when they adhere with one of their neighbours. An a

urate statisti
s of

individual 
ells traje
tories has been presented in [10℄, showing that, in the �rst

stage of the dynami
s, 
ell motion has marked dire
tional persisten
e, pointing

toward zones of higher 
ell 
on
entration. This indi
ates that 
ells 
ommuni
ate

through the emission of soluble 
hemi
al fa
tors that di�use (and degrade) in the

surrounding medium, moving toward the gradients of this 
hemi
al �eld. Cells

behave like not-dire
tly intera
ting parti
les, the intera
tion being mediated by

the release of soluble 
hemota
ti
 fa
tors. Their dynami
s is well reprodu
ed

by the theoreti
al model proposed in [10℄.

The lessons learned from the study of in vitro vas
ulogenesis is thus that

the formation of experimentally observed stru
tures 
an be explained as the


onsequen
e of 
ell motility and of 
ell 
ross-talk mediated by the ex
hange of

soluble 
hemi
al fa
tors (
hemota
ti
 auto
rine loop). The theoreti
al model

also shows that the main fa
tors determining the qualitative properties of the

observed vas
ular stru
tures are the available 
ell density and the di�usivity and

half-life of the soluble 
hemi
al ex
hanged. It seems that only the dynami
al
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rules followed by the individual 
ell are a
tually en
oded in the genes. The

interplay of these simple dynami
al rules with the geometri
al and physi
al

properties of the environment produ
es the highly stru
tured �nal result.

At the moment, no dire
t observation of the 
hemota
ti
 auto
rine loop

regulating vas
ular network formation is available, although several indire
t

bio
hemi
al observations point to it, so, the main eviden
e in this sense still


omes from the theoreti
al analysis of 
omputational models.

Several major developments in threedimensional 
ell 
ulture and in 
ell and

tissue imaging allow today to observe in real time the me
hanisms of 
ell mi-

gration and aggregation in threedimensional settings [9, 21℄.

In the embryo, endothelial 
ells are produ
ed and migrate in a threedi-

mensional s
a�old, the extra
ellular matrix. Migration is a
tually performed

through a series of bio
hemi
al pro
esses, su
h as sensing of 
hemota
ti
 gra-

dients, and of me
hani
al operations, su
h as extensions, 
ontra
tions, and de-

grading of the extra
ellular matrix along the way.

The eviden
e provided by twodimensional experimental vas
ulogenesis sug-

gests that 
ell motion 
an be dire
ted by an auto
rine loop of soluble 
hemoat-

tra
tant fa
tors also in the real threedimensional environment.

As a sample of typi
al vas
ular stru
tures that are observe in a threedimen-

sional setting in the early stages of development of a living being, we in
lude

here (750µm)2 images of 
hi
k embryo brain at di�erent development stages

(Fig. 1). At an early stage (about 52-64 hours) one observes a typi
al immature

vas
ular network formed by vas
ulogenesis and 
hara
terized by a high density

of similar blood vessels (Fig. 1A). At the next stage (70-72 hours) we observe

initial remodelling of the vas
ular network (Figs. 1B,C). Remodeling be
omes

more evident when the embryo is 5 days old, when blood vessels are organized

in a mature, hierar
hi
ally organized vas
ular tree (Fig. 1D).

3 Mathemati
al model of blood vessel growth

The multidimensional Burgers' equation is a well-known paradigm in the study

of pattern formation. It gives a 
oarse grained hydrodynami
 des
ription of

the motion of independent agents performing re
tilinear motion and intera
ting

only at very short ranges. These equations have been utilized to des
ribe the

emergen
e of stru
tured patterns in many di�erent physi
al settings (see e.g.

[24, 15℄). In the early stages of dynami
s, ea
h parti
le moves with a 
onstant

velo
ity, given by a random statisti
al distribution. This motion gives rise to

interse
tion of traje
tories and formation of sho
k waves. After the birth of these

lo
al singularities regions of high density grow and form a pe
uliar network-like

stru
ture. The main feature of this stru
ture is the existen
e of 
omparatively

thin layers and �laments of high density that separate large low-density regions.

In order to study and identify the fa
tors in�uen
ing blood vessel forma-

tion one has to take into a

ount eviden
e suggesting that 
ells do not behave

as independent agents, but rather ex
hange information in the form of soluble


hemi
al fa
tors. This leads to the model proposed by Gamba et al. in [10℄
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A B

C D

Figure 1: Vas
ular networks formed by vas
ulogenesis in 
hi
k embryo brain, at

various stages of development, 
lassi�ed a

ording to Hamilton and Hamburger

(HH). A: HH stage 17, 
orresponding to 52-64 hours; B: HH stage 20 (70-72

hours); C,D: HH stage 26 (5 days).
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and Serini et al. in [23℄. The model des
ribes the motion of a �uid of ran-

domly seeded independent parti
les whi
h 
ommuni
ate through emission and

absorption of a soluble fa
tor and move toward its 
on
entration gradients.

3.1 Model equations

The 
ell population is des
ribed by a 
ontinuous density n(x, t), where x ∈ Rd

(d = 2, 3) is the spa
e variable, and t ≥ 0 is the time variable. The population

density moves with velo
ities v(x, t), that are stimulated by 
hemi
al gradients

of a soluble fa
tor. The 
hemoattra
tant soluble fa
tor is des
ribed by a s
alar


hemi
al 
on
entration �eld c(x, t). It is supposed to be released by the 
ells,

di�use, and degrade in a �nite time, in agreement with experimental observa-

tions.

The dynami
s of the 
ell density 
an be des
ribed by 
oupling three equa-

tions. The �rst one is the mass 
onservation law for 
ell matter, whi
h expresses

the 
onservation of the number of 
ells. The se
ond one is a momentum bal-

an
e law that takes into a

ount the phenomenologi
al 
hemota
ti
 for
e, the

dissipation by intera
tion with the substrate, the phenomenon of 
ell dire
tional

persisten
y along their traje
tories and a term implementing an ex
luded vol-

ume 
onstraint [10, 3℄. Finally there is a rea
tion-di�usion equation for the

produ
tion, degradation and di�usion of the 
on
entration of the 
hemota
ti


fa
tor. One then has the following system:

∂n

∂t
+∇ · (nv) = 0 (1a)

∂v

∂t
+ v · ∇v = µ(c)∇c−∇φ(n)− β(c)v (1b)

∂c

∂t
= D∆c+ α(c)n− c

τ
(1
)

where µ measures the 
ell response to the 
hemota
ti
 fa
tor, while D and τ are

respe
tively the di�usion 
oe�
ient and the 
hara
teristi
 degradation time of

the soluble 
hemoattra
tant. The fun
tion α determines the rate of release of

the 
hemi
al fa
tor. The fri
tion term −βv mimi
s the dissipative intera
tion

of the 
ells with the extra
ellular matrix.

A simple model 
an be obtained by assuming that the 
ell sensitivity µ, the
rate of release of the 
hemoattra
tant α and the fri
tion 
oe�
ient β are 
on-

stant. A more realisti
 des
ription may be obtained in
luding saturation e�e
ts

as fun
tional dependen
ies of the aforementioned 
oe�
ients on the 
on
entra-

tion c.
The term ∇φ(n) is a density dependent pressure term, where φ(n) is zero for

low densities, and in
reases for densities above a suitable threshold. This pres-

sure is a phenomenologi
al term whi
h models short range intera
tion between


ells and the fa
t that 
ells do not interpenetrate.

We observe that, at low density n and for small 
hemoattra
tive gradients,

(1bb) is an invis
id Burgers' equation for the velo
ity �eld v [5℄, 
oupled to the

standard rea
tion-di�usion equation (1

) and the mass 
onservaton law (1aa).
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Sin
e in the early stages of development almost all intraembryoni
 mesoder-

mal tissues 
ontain migrating endothelial pre
ursors, we use initial 
onditions

representing a randomly s
attered distribution of 
ells, i.e., we throw an assigned

number of 
ells in random positions inside the 
ubi
 box, with zero initial velo
-

ities and zero initial 
on
entration of the soluble fa
tor, with a single 
ell given

initially by a Gaussian bump of width σ of the order of the average 
ell radius

(≃ 15µm) and unitary weight in the integrated 
ell density �eld n.
In order to model the fa
t that 
losely pa
ked 
ells resist to 
ompression,

a phenomenologi
al, density dependent, pressure ∇φ(n) a
ting only when 
ells

be
ome 
lose enough to ea
h other is introdu
ed. The potential φ has to be

monotoni
ally in
reasing and 
onstant for n < n0 where n0 is the 
lose-pa
king

density. Our simulations suggest that the exa
t fun
tional form of φ(n) is not
relevant. For simpli
ity we 
hoose

φ(n) =

{
Bp(n− n0)

Cp n > n0

0 n ≤ n0

(2)

3.2 Parameter values

Fourier analysis of Eq. (1
) with 
onstant parameters and in the fast di�usion

approximation ∂c/∂t = 0 suggests that starting from the aformentioned initial


onditions, equation (1) should develop network patterns 
hara
terized by a

typi
al length s
ale r0 =
√
Dτ , whi
h is the e�e
tive range of the intera
tion

mediated by soluble fa
tors. As a matter of fa
t, Fourier 
omponents ĉk of the


hemi
al �eld are related to the Fourier 
omponents of the density �eld n̂k by

the relation

ĉk =
ατn̂k

Dτk2 + 1
.

This means that in equation (1) wavelengths of the �eld n of order r0 are

ampli�ed, while wavelengths λ ≫ r0 or λ ≪ r0 are suppressed.

Initial 
onditions introdu
e in the problem a typi
al length s
ale given by the

average 
ell-
ell distan
e L/
√
N , where L is the system size and N the parti
le

number. The dynami
s, �ltering wavelengths [8℄, rearranges the matter and

forms a network 
hara
terized by the typi
al length s
ale r0.
It is interesting to 
he
k the 
ompatibility of the theoreti
al predi
tion with

physi
al data. From available experimental results [22℄ it is known that the order

of magnitude of the di�usion 
oe�
ient for major angiogeni
 growth fa
tors is

D = 10−7 cm2 s−1
. In the experimental 
onditions that were 
onsidered in [10℄

the half life of soluble fa
tors is 64± 7 min. This gives r0 ∼ 200 µm, a value in

good agreement with experimental observations.

3.3 Lower dimensional models

In order to get some intuition about the typi
al system dynami
s, we exploit the

1D version of model (1) to simulate the �
ollision� of two 
ells. For small values

of Bp and su�
iently high Cp in (2), the two bumps merge into a single one (see

7



Fig. 2 left) whi
h appears to be stationary, as suggested also by the graphs of

the kineti
 energy and of the momentum of inertia (Fig. 3 top). On the other

hand a less smooth onset of pressure obtained with larger Bp or smaller Cp

leads to for
es over
oming the 
hemi
al attra
tive ones, making the two bumps

boun
e ba
k (Fig. 2 right, Fig. 3 bottom). We observe that the better dynami
s

from the biologi
al point of view is the �rst behavior with two bump 
oales
ing.

Biologi
al observations suggest that the dynami
s of 
ell 
hanges when they

establish 
ell-
ell 
onta
ts. It is reasonable to suppose that a di�erent geneti


program is a
tivated at this moment, disabling 
ell motility. We therefore swit
h

o� 
ell motility as soon as the 
ell 
on
entration, signalled by 
hemoattra
tant

emission, rea
hes a given threshold. In this way the 
omputational system is

guaranteed to rea
h a stationary state.

These e�e
ts 
an be taken into a

ount using a non-
onstant sensitivity µ(c),
a non-linear emission rate α(c), or a variable fri
tion 
oe�
ient β(c). We 
hoose

a threshold c0 and fun
tions of the form

µ(c) = µ0[1− tanh(c− c0)] (3a)

α(c) = α0[1− tanh(c− c0)] (3b)

β(c) = β0[1 + tanh(c− c0)] (3
)

The e�e
t of the �rst two terms is that the sensitivity of the 
ells and their


hemoattra
tant produ
tion is strongly damped when the 
on
entration c rea
hes
the threshold c0. We did not observe a signi�
ant dependen
e on the exa
t form

of the damping fun
tion, provided that it approximates a step fun
tion that is

nonzero only when c < c0.
β(c), on the other hand has the e�e
t of turning on a strong fri
tion term

at lo
ations of high 
hemoattra
tant 
on
entration. We performed several tests

and observed that the di�erent 
hoi
es are approximately equivalent in freezing

the system into a network-like stationary state.

4 Numeri
al methods

Our s
heme is based on a suitable relaxation approximation [14℄ of the mass


onservation law (1a) and the multidimensional Burgers equation (1b) 
oupled

with a se
ond order �nite-di�eren
es method for the rea
tion-di�usion equation

(1
) of the 
hemota
ti
 fa
tor. We point out that also for the last equation (1
)

we 
ould 
onsider a relaxation approximation [13, 19℄ in order to deal with the

system (1) in an uniform way, but we prefer to adopt here a simpler approa
h.

We �rst brie�y review an extension of the approa
h proposed by Jin and Xin

in [14℄ for a s
alar 
onservation law to the 
ase when a sour
e term is present

∂u

∂t
+

∂

∂x
f(u) = g(u). (4)

Introdu
ing an auxiliary variable j that plays the role of a physi
al �ux we

8
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Figure 2: Bump 
oales
en
e driven by 
hemota
ti
 for
e and pressure. In the

�rst three rows the density and velo
ity �elds at subsequent instants of time are

shown. In the last row we show the time evolution of the kineti
 energy and

of the momentum of inertia. Left 
olumn: Cp = 3 and Bp = 10−3
, leading to

bump 
oales
en
e. Right 
olumn: Cp = 2 and Bp = 10−1
, leading to undesired

rebound of the two bumps.
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Figure 3: Time evolution of the kineti
 energy and of the momentum of inertia.

Top: Cp = 3 and Bp = 10−3
, leading to bump 
oales
en
e. Bottom: Cp = 2

and Bp = 10−1
, leading to undesired rebound of the two bumps.
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onsider the following relaxation system:

∂u

∂t
+

∂j

∂x
= g(u) (5a)

∂j

∂t
+ a

∂u

∂x
= −1

ǫ
(j − f(u)), (5b)

where ǫ is a small positive parameter, 
alled relaxation time, and a is a suitable

positive 
onstant. Formally, Chapman-Enskog expansion justi�es the agreement

of the solutions of the relaxation system with the solutions of the equation

∂u

∂t
+

∂

∂x
f(u) = g(u) + ǫ

∂

∂x

(
(a− f ′(u)2)

∂u

∂x

)
, (6)

whi
h is a �rst order approximation of the original balan
e law (4).

It is also 
lear that (6) is dissipative, provided that the sub
hara
teristi



ondition a > f ′(u)2 is satis�ed. We would expe
t that appropriate numeri
al

dis
retization of the relaxation system (5) yields a

urate approximation to the

original equation (4) when the relaxation parameter ǫ is su�
iently small.

In view of its numeri
al approximation, the main advantage of the relaxation

system (5) over the original equation (4) lies in the linear stru
ture of the 
har-

a
teristi
 �elds and in the lo
alized low order term and this avoids the use of

time 
onsuming Riemann solvers. Moreover, proper impli
it time dis
retization


an be exploited to over
ome the stability 
onstraints due to the sti�ness and

to avoid the use of non-linear solvers.

We observe that system (5) is in the form

∂z

∂t
+ divf(z) = g(z) +

1

ǫ
h(z) (7)

where z = (u, j)T , f(z) = (j, au)T , g(z) = (g(u), 0)T and h(z) = (0, j − f(u))T .
When ε is small, the presen
e of both non-sti� and sti� terms, suggests the use

of IMEX s
hemes [4, 16, 20℄.

Assume for simpli
ity to adopt a uniform time step ∆t and denote with zn

the numeri
al approximation at time tn = n∆t, for n = 0, 1, . . . In our 
ase a

ν-stages IMEX s
heme reads

zn+1 = zn −∆t

ν∑

i=1

b̃i

[
∂f

∂x
(z(i)) + g(z(i))

]
+

∆t

ε

ν∑

i=1

bih(z
(i))

where the stage values are 
omputed as

z(i) = zn −∆t

i−1∑

k=1

ãi,k

[
∂f

∂x
(z(k)) + g(z(k))

]
+

∆t

ε

i∑

k=1

ai,kh(z
(k))

Here (aik, bi) and (ãik, b̃i) are a pair of But
her's tableaux of, respe
tively, a

diagonally impli
it and an expli
it Runge-Kutta s
hemes.
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In this work we use the so-
alled relaxed s
hemes, that are obtained letting

ε → 0 in the numeri
al s
heme for (7). For these the �rst stage

[
u(1)

j(1)

]
=

[
un

jn

]
+

∆t

ε
a1,1h

([
u(1)

j(1)

])

be
omes

u(1) = un j(1) = f(u(1)),

then it redu
es to h(z(1)) = 0. While the se
ond stage, i = 2, reads

z(2) = zn −∆tã2,1

[
∂f

∂x
(z(1)) + g(z(1))

]
+

∆t

ε
a2,1 h(z

(1))︸ ︷︷ ︸
≡0

+
∆t

ε
a2,2h(z

(2))

whi
h implies that h(z(2)) = 0.
Summarizing, the relaxed s
heme yields an alternation of relaxation steps

h(z(i)) = 0 i.e. j(i) = f(u(i))

and transport steps where we advan
e for time ãi,k∆t

∂z

∂t
+ divf(z) = g(z)

with initial data z = z(i) retain only the �rst 
omponent and assign it to u(i+1)
.

Finally the value of un+1
is 
omputed as un +

∑
b̃iu

(i)
.

In order to obtain a relaxation approximation of the �rst and se
ond equation

of (1) we rewrite them in 
onservative form, introdu
ing the moment p(x, t) =
n(x, t)v(x, t):

∂n

∂t
+∇ · p = 0 (8a)

∂p

∂t
+∇ · (nv ⊗ v) = nµ∇c− n∇φ(n)− βp (8b)

Introdu
ing the variable u = (n,p)T and the auxiliary �ux w, the relaxation

system reads

∂u

∂t
+∇ ·w = G(u,w, c) (9a)

∂w

∂t
+A∇ · u = −1

ε
(w − F (u)) (9b)

where G(u,w, c) = (0, nµ∇c − n∇φ(n) − βp)T , F (u) = (p,nv ⊗ v) and A
is a suitable diagonal matrix whose positive diagonal elements verify a sub-


hara
teristi
 
ondition. As we previously remarked, our relaxed s
heme takes

alternatively an impli
it step and an expli
it one: the expli
it step involves the


omputation of the �ux ∇·w and the evaluation of the non sti� sour
e term G.
In parti
ular we 
ompute ∇c and ∇φ(n) using a se
ond order di�eren
e s
heme.

12



In the following we des
ribe for simpli
ity the fully dis
rete s
heme in one

dimensional 
ase. We introdu
e the spatial grid points xj with uniform mesh

width h = xj+1−xj . As usual, we denote by un
j the approximate 
ell average of

a quantity u in the 
ell [xj−1/2, xj+1/2] at time tn and by un
j+1/2 the approximate

point value of u at x = xj+1/2 and t = tn. A spatial dis
retization to (9) in


onservation form 
an be written as

∂uj

∂t
+

1

h

(
wj+1/2 −wj−1/2

)
= G(uj ,wj , cj) (10a)

∂wj

∂t
+

1

h
A
(
uj+1/2 − uj−1/2

)
= −1

ε
(wj − F (uj)) . (10b)

In order to 
ompute the numeri
al �uxes wj±1/2, we 
onsider the 
hara
teris-

ti
 variables w ± A1/2u that travel with 
onstant velo
ities ±A1/2
, and so the

semidis
rete system be
omes diagonal. Now we have to apply a numeri
al ap-

proximation to w±A1/2u. A �rst idea is to apply a ENO or WENO approa
h

(see e.g. [25℄), to build an high order re
onstru
tion, 
oupled with a suitable

IMEX s
heme. The drawba
k is the high 
omputational 
osts, espe
ially in

a multidimensional framework. Therefore we 
hose a suitable 
ompromise be-

tween the 
omputational 
ost and the a

ura
y, using a se
ond order TVD

s
heme. The numeri
al �ux that we use is obtained 
oupling an upwind s
heme

and the Lax-Wendro� method by a non linear �ux limiter [17℄. Namely the high

order �ux F (U) for a generi
 variable U 
onsists of the low order term FL(U)
plus a se
ond order 
orre
tion FH(U):

F (U) = FL(U) + Ψ(U)(FH(U)− FL(U))

where Ψ is the �ux limiter. When the data U is smooth, then Ψ(U) should be

near 1, while near a dis
ontinuity we want Ψ(U) 
lose to 0. The idea 
onsists

in the sele
tion of a high order �ux FH that works well in smooth regions and

of a low order �ux FL whi
h behaves well near dis
ontinuities.

In our s
hemes we 
onsidered the upwind s
heme as a low order �ux for the


hara
teristi
 variables

FL((w+A1/2u)j+1/2) = (w+A1/2u)j , FL((w−A1/2u)j+1/2) = (w−A1/2u)j+1

and the Lax-Wendro� s
heme as a high order �ux for the same variables

FH((w ±A1/2u)j+1/2) =
A1/2

2 ((w ±A1/2u)j+1 + (w ±A1/2u)j)

−λA1/2

2 ((w ±A1/2u)j+1 − (w ±A1/2u)j)

where λ = ∆t/h (we advan
e of one time step).

Letting

Θ±

j =

(
(w ±A1/2u)nj − (w ±A1/2u)nj−1

(w ±A1/2u)nj+1 − (w ±A1/2u)nj

)±1

,

the fully dis
rete s
heme for the variable u using Euler method to advan
e in

time is the following

un+1
j = un

j + λA1/2

2 (un
j+1 − 2un

j + un
j−1)− λ

2 (w
n
j+1 −wn

j−1)

∆t I−λA1/2

4 (−s+j + s+j−1 + s−j+1 − s−j ),

13



with

s±j =
1

h
(±A1/2un

j±1 +wn
j±1 ∓A1/2un

j −wn
j )Ψ(Θ±

j ). (11)

After the substitution of the relaxing step we get

un+1
j = un

j + λA1/2

2 (un
j+1 − 2un

j + un
j−1)− λ

2 (F (un
j+1)− F (un

j+1))

∆t I−λA1/2

4 (−s+j + s+j−1 + s−j+1 − s−j ),

where s± is obtained from (11) letting w = F (u). The s
heme 
an be put

in a 
onservative form and it is possible to prove its 
onsisten
y by standard

te
hnique [17℄. In order to prove a TVD stability, we write

un+1
j+1 − un+1

j = (1−Cn
j −Dn

j )(u
n
j+1 − un

j ) +Cn
j−1(u

n
j − un

j−1)

+Dn
j+1(u

n
j+2 − un

j+1) + Ej+1/2,
(12)

where

Cn
j = λ

2

(
A1/2 +

F (un
j+1)−F (un

j )

u
n
j+1

−u
n
j

)

Dn
j = λ

2

(
A1/2 − F (un

j+1)−F (un
j )

u
n
j+1

−u
n
j

)

En
j+1/2 = ∆t 1−λA1/2

4

(
s−j+2 − 2s−j+1 + s−j − s+j+1 + 2s+j − s+j−1

)

where we noti
e that C and D are non negative.

The 
oe�
ient E 
an be written in terms of C and D, in fa
t

s+j =
2

λ∆x
Cn

i Ψ(Θ+
i )(u

n
j+1 − un

j )), s−j = − 2

λ∆x
Dn

i−1Ψ(Θ−

i )(u
n
j − un

j−1)).

We 
an rewrite (12) in the following form

un+1
j+1 − un+1

j = (un
j+1 − un

j )
[
(1−Cn

j −Dn
j ) + (1− λA1/2)(Dn

j Ψ
−

j+1 +Cn
jΨ

+
j )
]

+(un
j − un

j−1)
[
Cn

j−1 − 1−λA1/2

2 (Dn
j−1Ψ

−

j +Cn
j−1Ψ

+
j−1)

]

+(un
j+2 − un

j+1)
[
Dn

j+1 − 1−λA1/2

2 (Dn
j+1Ψ

−

j+2 +Cn
j+1Ψ

+
j+1)

]

(13)

It's easy to see that under the CFL 
ondition ‖λ
√
max{ai}‖ ≤ 1, where ai are

the positive diagonal elements of the matrix A, and using the fa
t that the �ux

limiter veri�es

0 ≤ Ψ(Θ)

Θ
≤ 2, 0 ≤ Ψ(Θ) ≤ 2,

we have

(1−Cn
j −Dn

j ) + (1− λA1/2)(Dn
j Ψ

−

j+1 +Cn
j Ψ

+
j ) ≥ 0

Cn
j−1 − 1−λA1/2

2 (Dn
j−1Ψ

−

j +Cn
j−1Ψ

+
j−1) ≥ 0

Dn
j+1 − 1−λA1/2

2 (Dn
j+1Ψ

−

j+2 +Cn
j+1Ψ

+
j+1) ≥ 0

and so we 
an dedu
e that our s
heme is TVD stable from Harten's Theorem

[12℄.
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Figure 4: S
aling of the 3D algorithm on the ULISSE 
luster. Dots repre-

sent exe
ution time (s) and asterisks the number of M�ops/s for our numeri
al

algorithm. Dashed and dash-dot lines are linear interpolations

In the 
ase of multidimensions, a similar dis
retization 
an be applied to ea
h

spa
e dimension [14, 13, 19℄. Then, sin
e the stru
ture of the multidimensional

relaxation system is similar to the 1D system, the numeri
al implementation

for higher dimensional problems, based on additive dimensional splitting, is not

mu
h harder than for 1D problems.

For our threedimensional problem the 
omputational 
ost is quite high and


an be redu
ed using parallel 
omputing: the semilinearity of relaxation systems,

together with our suitably 
hosen dis
retizations, provides parallel algorithm

with almost optimal s
aling properties. In parti
ular the domain is divided

in smaller subdomains and ea
h subdomain is assigned to a pro
essor. The


omputations of all non linear terms involve only pointwise evaluations and it

is easy to perform these tasks in a lo
al way. Only point near the interfa
es

between di�erent subdomain need to be 
ommuni
ated in the transport step.

We implemented these algorithm on a high performan
e 
luster for parallel


omputation installed at the Department of Mathemati
s of the University of

Milano (http://
luster.mat.unimi.it/). The s
aling properties of the algorithm

are shown in Fig. 4 and are essentially due to the ex
lusive use of matrix-ve
tors

operations and to the avoidan
e of solvers for linear or non-linear systems.

5 Numeri
al results

We perform threedimensional numeri
al simulations of model (1) on a 
ubi
 box

with side of length L = 1mm, with periodi
 boundary 
onditions. The initial


ondition is assigned in the form of a set of gaussian bumps with σ = 15µm

15
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Figure 5: Initial state of a numeri
al simulation with 2500cells/mm
3
. The


olorbar on the right is referred to the 
oloring of the 
ross se
tions. The red

three-dimensional isosurfa
e 
orresponds to the bla
k 
ontour lines in the 
ross

se
tions

s
attered in the 
ube with uniform probability and having zero initial velo
ity.

Bio
hemi
al data [23℄ suggest the values D = 10−3mm2/s and τ = 4000 s
for the di�usion 
onstant and the 
hemoattra
tant de
ay rate. We �x the other


onstant parameters by dimensional analysis and �tting to the 
hara
teristi


s
ales of the biologi
al system. In parti
ular, we 
hoose: µ0 = 10−11mm4/s3,
α = 1s−1

, β = 10−3s−1
. For the 
oe�
ients in the expression (2) of the pressure

fun
tion φ we take n0 = 1.0,Cp = 3 and Bp = 10−3
.

Very �ne grids have to be used in order to resolve the details of the n(x, t)
�eld, whi
h may 
ontain hundreds of small bumps, ea
h representing a single


ell. Sin
e ea
h 
ell has radius σ = 15µm, one needs a grid spa
ing su
h that

∆x < 10µm and therefore grids of at least 1003 
ells for a 
ubi
 domain of 1mm
side.
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Figure 6: Transient state of the evolution of the initial state depi
ted in Fig.

5 a

ording to model (1). The initial formation of network-like stru
tures is

observed
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Figure 7: Stationary state of the evolution of the states depi
ted in Figs. 5

and 6 a

ording to model (1). Well developed threedimensional network-like

stru
tures are observed
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We performed numeri
al simulations with varying initial average 
ell density

n̄. We observed that the initially randomly distributed 
ells 
oales
e forming

elongated stru
tures and evolve towards a stationary state mimi
king the ge-

ometry of a blood vessel network in the early stages of formation.

We assigned n̄ in the range 2100− 3500 cells/mm3
and performed 10 to 15

runs for ea
h density value with a 128× 128× 128 grid on a biologi
al system

of 1 mm3
. The 
hara
teristi
 lengths and geometri
 properties of the stationary

state depend on n̄ and we observed a per
olative phase transition similar to the

one des
ribed in [10℄ for the twodimensional 
ase.

5.1 Analysis of the per
olative phase transition

In experimental blood vessel formation it has been shown that a per
olative

transition is observed, by varying the initial 
ell density. For low 
ell densi-

ties only isolated 
lusters of endothelial 
ells are observed, while for very high

densities 
ells �ll the whole available spa
e. In between these two extreme be-

haviours, 
lose to a 
riti
al 
ell density nc, one observes the formation of 
riti
al

per
olating 
lusters 
onne
ting opposite sides of the domain, 
hara
terized by

well de�ned s
aling laws and exponents. These exponents are known not to

depend on the mi
ros
opi
 details of the pro
ess while their values 
hara
terize

di�erent 
lasses of aggregation dynami
s.

The purely geometri
 problem of per
olation is a
tually one of the simplest

phase transitions o

urring in nature. Many per
olative models show a se
ond

order phase transition in 
orresponden
e to a 
riti
al value nc, i.e. the proba-

bility Π of observing an in�nite, per
olating 
luster is 0 for n̄ < nc and 1 for

n̄ > nc [27℄. The phase transition 
an be studied by fo
using on the values of an

order parameter, i.e. an observable quantity that is zero before the transition

and takes on values of order 1 after it. In a per
olation problem the natural

order parameter is the probability P that a randomly 
hosen site belongs to the

in�nite 
luster (on �nite grids, the in�nite 
luster is substituted by the largest

one).

In the vi
inity of the 
riti
al density nc the geometri
 properties of 
lusters

show a pe
uliar s
aling behavior. For instan
e, in a system of linear �nite size

L, the probability of per
olation Π(n, L), de�ned empiri
ally as the fra
tion

of 
omputational experiments that produ
e a per
olating 
luster, is a
tually a

fun
tion of the 
ombination (n− nc)L
1/ν

, where ν is a universal exponent.

In a neighborhood of the 
riti
al point and on a system of �nite size L, the
following �nite size s
aling relations are also observed:

Π(n̄, L) ∼ Π̂[(n̄− nc)L
1/ν ] (14)

There are two main reasons to study per
olation in relation to vas
ular net-

work formation: (i) per
olation is a fundamental property for vas
ular networks:

blood should have the possibility to travel through the whole vas
ular network

to 
arry nutrients to tissues; (ii) 
riti
al exponents are robust observables 
har-

a
terizing the aggregation dynami
s.
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A rather 
omplete 
hara
terization of per
olative exponents in the two-

dimensional 
ase has been provided in [10℄.

As a �rst step in the study of the more realisti
 threedimensional 
ase, we


ompute the exponent ν 
hara
terizing the stru
tures produ
ed by the model

dynami
s (1) with varying initial 
ell density.

To this aim, extensive numeri
al simulation of system (1) were performed

using latti
e sizes L = 1, 0.78, 0.62, 0.5mm, with di�erent values of the initial

density n̄. For ea
h point 10 to 15 realizations of the system of size 1mm were


omputed, depending on the proximity to the 
riti
al point.

The 
ontinuous density at �nal time n(x) was then mapped to a set of

o

upied and empty sites by 
hoosing a threshold n0. Ea
h region of adja
ent

o

upied sites (
luster) was marked with a di�erent index. The per
olation

probability Π for ea
h set of realizations was then measured. In Fig. 8 we

show 
lusters obtained in a box with L = 0.5mm with n̄ = 3100. The largest

per
olating 
luster is shown in red, together with some other smaller 
lusters

shown in di�erent 
olors.

Using relation (14), we estimate the position of the 
riti
al point nc and

the value of the 
riti
al exponent ν. The data for di�erent box side length

and initial density should lie on a single 
urve after res
aling the densities as

n̂ = (n̄ − nc)L
1/ν

. For �xed nc and ν we res
ale n̄ and �t the data with

a logisti
 
urve, then 
ompute the distan
e of the data from the 
urve. The

squared distan
e is minimized to obtain estimates for nc and ν.
Using n0 = 0.35 we obtain nc = 2658 and ν = 0.84. This latter value is 
om-

patible with the known value 0.88 for random per
olation in three dimensions

[27℄.

6 Con
lusions

We have exposed results on the numeri
al simulation of vas
ular network for-

mation in a threedimensional setting.

We have used the threedimensional version of the equations proposed in

[10, 23℄ as a 
omputational model. Evolution starting from initial 
onditions

mimi
king the experimentally observed ones produ
e network-like stru
tures

qualitatively similar to those observed in the early stages of in vivo vas
uloge-

nesis.

As a starting point towards a quantitative 
omparison between experimental

data and the theoreti
al model we nedd to sele
t a set of observable quantitaties

whi
h provide robust quantitative information on the network geometry. The

lesson learned from the study of twodimensional vas
ulogenesis is that per-


olative exponents are an interesting set of su
h observables, so we tested the


omputation of per
olative exponents on simulated network stru
tures.

A quantitative 
omparison of the geometri
al properties of experimental and


omputational network stru
tures will be
ome possible as soon as an adequate

amount of experimental data, allowing proper statisti
al 
omputation, will be-


ome available.

20



Figure 8: Cluster per
olation with 
ell density n = 2500
ells/mm

3
. A: 
on-

ne
ted 
lusters in a realization of model (1). B: the largest 
luster depi
ted in

A per
olates.
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Figure 9: Per
olation probability at varying densities A: B: the 
urves in A are


ollapsed a

ording to formula (14)

22



In order to 
ompute the robust statisti
al observables des
ribed in the paper

one has to perform many runs of the simulation 
ode using di�erent random

initial data. This, toghether with the intensive use of 
omputational resour
es

required by a three-dimensional hydrodynami
 simulation on �ne grids, 
alls for

an e�
ient implementation of the 
omputational model on parallel 
omputers,

as the one we presented in this paper.

Simulations of blood vessel stru
tures 
an in prin
iple present pra
ti
al impli-


ations. Normal tissue fun
tion depends on adequate supply of oxygen through

blood vessels. Understanding the me
hanisms of formation of blood vessels has

be
ome a prin
ipal obje
tive of medi
al resear
h, be
ause it would o�er the pos-

sibility of testing medi
al treatments in sili
io. One 
an think that the dynami-


al model (1) 
an be also exploited in the future to design properly vas
ularized

arti�
ial tissues by 
ontrolling the vas
ularization pro
ess through appropriate

signaling patterns.
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