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Abstract

Blood vessel networks form by spontaneous aggregation of individual
cells migrating toward vascularization sites (vasculogenesis). A success-
ful theoretical model of two dimensional experimental vasculogenesis has
been recently proposed, showing the relevance of percolation concepts and
of cell cross-talk (chemotactic autocrine loop) to the understanding of this
self-aggregation process. Here we study the natural 3D extension of the
computational model proposed earlier, which is relevant for the investiga-
tion of the genuinely threedimensional process of vasculogenesis in verte-
brate embryos. The computational model is based on a multidimensional
Burgers equation coupled with a reaction diffusion equation for a chemo-
tactic factor and a mass conservation law. The numerical approximation
of the computational model is obtained by high order relaxed schemes.
Space and time discretization are performed by using TVD schemes and,
respectively, IMEX schemes. Due to the computational costs of realistic
simulations, we have implemented the numerical algorithm on a cluster
for parallel computation. Starting from initial conditions mimicking the
experimentally observed ones, numerical simulations produce network-like
structures qualitatively similar to those observed in the early stages of in
vivo vasculogenesis. We develop the computation of critical percolative
indices as a robust measure of the network geometry as a first step towards
the comparison of computational and experimental data.

1 Introduction

In recent years, biologists have collected many qualitative and quantitative data
on the behavior of microscopic components of living beings. We are, however,
still far from understanding in detail how these microscopic components interact
to build functions which are essential for life. A problem of particular interest
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which has been extensively investigated is the formation of patterns in biological
tissues [2]. Such patterns often show self-similarity and scaling laws [I8)] similar
to those emerging in the physics of phase transitions [26].

The vascular network [28, 29] is a typical example of natural structure char-
acterized by non trivial scaling laws. In recent years many experimental in-
vestigations have been performed on the mechanism of blood vessel formation
[6] both in living beings and in in vitro experiments. Vascular networks form
by spontaneous aggregation of individual cells travelling toward vascularization
sites (vasculogenesis). A successful theoretical model of two dimensional ex-
perimental vasculogenesis has been recently proposed, showing the relevance of
percolation concepts and of cell cross-talk (chemotactic autocrine loop) to the
understanding of this self-aggregation process.

Theoretical and computational modelling is useful in testing biological hy-
potheses in order to explain which kind of coordinated dynamics gives origin
to the observed highly structured tissue patterns. One can develop computa-
tional models based on simple dynamical principles and test whether they are
able to reproduce the experimentally observed features. If the basic dynamical
principles are correctly chosen, computational experiments allow to observe the
emergence of complex structures from a multiplicity of interactions following
simple rules.

Apart from the purely theoretical interest, reproducing biological dynamics
by computational models allows to identify those biochemical and biophysical
parameters which are the most important in driving the process. This way,
computational models can produce a deeper understanding of biological mech-
anisms, which in principle may end up having relevant practical consequences.
It is worth noticing here that a complete understanding of the vascularization
process is possible only if it is considered in its natural threedimensional setting
(I, 7))

In this paper we illustrate computational results regarding the simulation of
vascular network formation in a threedimensional environment. We consider the
threedimensional version of the model proposed in [I0} 23]. The model is based
on a Burgers-like equation, a well studied paradigm in the theory of pattern
formation, integrated with a feedback term describing the chemotactic autocrine
loop. The numerical evolution of the computational model starting from initial
conditions mimicking the experimentally observed ones produces network-like
structures qualitatively similar to those observed in the early stages of in vivo
vasculogenesis.

Since in the long run we are interested in developing quantitative comparison
between experimental data and theoretical model, we start by selecting a set of
observable quantities providing robust quantitative information on the network
geometry. The lesson learned from the study of twodimensional vasculogenesis is
that percolative exponents [27] are an interesting set of such observables, so we
test the computation of percolative exponents on simulated network structures.

A thorough quantitative comparison of the geometrical properties of experi-
mental and computational network structures will become possible as soon as an
adequate amount of experimental data, allowing proper statistical computation,



will become available.

The paper is organized as follows. Section 2 summarizes some background
knowledge on the biological problem of vascular network formation. Section
3 is a short review of the properties of the model introduced in [I0, 23]. In
Section 4 the numerical approximation technique for the model is described. In
Section 5 we describe the qualitative properties of simulated network structures
and present the results of the computation of the exponents of the percolative
transition. Finally, in the Conclusions, we point out at predictable developments
of our research.

2 Biological background

To supply tissues with nutrients in an optimal way, vertebrates have devel-
oped a hierarchical vascular system which terminates in a network of size-
invariant units, i.e. capillaries. Capillary networks characterized by intercap-
illary distances ranging from 50 to 300 um are essential for optimal metabolic
exchange [TT].

Capillaries are made of endothelial cells. Their growth is essentially driven
by two processes: vasculogenesis and angiogenesis [6]. Vasculogenesis consists of
local differentiation of precursor cells to endothelial ones, that assemble into a
vascular network by directed migration and cohesion. Angiogenesis is essentially
characterized by sprouting of novel structures and their remodelling.

In twodimensional assays, the process of formation of a vascular network
starting from randomly seeded cells can be accurately tracked by videomi-
croscopy [I0] and it is observed to proceed along three main stages: ¢) migration
and early network formation, ii) network remodelling and #i7) differentiation in
tubular structures. During the first phase, which is the most important for de-
termining the final geometrical properties of the structures, cells migrate over
distances which are an order of magnitude larger than their radius and aggre-
gate when they adhere with one of their neighbours. An accurate statistics of
individual cells trajectories has been presented in [I0], showing that, in the first
stage of the dynamics, cell motion has marked directional persistence, pointing
toward zones of higher cell concentration. This indicates that cells communicate
through the emission of soluble chemical factors that diffuse (and degrade) in the
surrounding medium, moving toward the gradients of this chemical field. Cells
behave like not-directly interacting particles, the interaction being mediated by
the release of soluble chemotactic factors. Their dynamics is well reproduced
by the theoretical model proposed in [I0].

The lessons learned from the study of in vitro vasculogenesis is thus that
the formation of experimentally observed structures can be explained as the
consequence of cell motility and of cell cross-talk mediated by the exchange of
soluble chemical factors (chemotactic autocrine loop). The theoretical model
also shows that the main factors determining the qualitative properties of the
observed vascular structures are the available cell density and the diffusivity and
half-life of the soluble chemical exchanged. It seems that only the dynamical



rules followed by the individual cell are actually encoded in the genes. The
interplay of these simple dynamical rules with the geometrical and physical
properties of the environment produces the highly structured final result.

At the moment, no direct observation of the chemotactic autocrine loop
regulating vascular network formation is available, although several indirect
biochemical observations point to it, so, the main evidence in this sense still
comes from the theoretical analysis of computational models.

Several major developments in threedimensional cell culture and in cell and
tissue imaging allow today to observe in real time the mechanisms of cell mi-
gration and aggregation in threedimensional settings [9, 21].

In the embryo, endothelial cells are produced and migrate in a threedi-
mensional scaffold, the extracellular matrix. Migration is actually performed
through a series of biochemical processes, such as sensing of chemotactic gra-
dients, and of mechanical operations, such as extensions, contractions, and de-
grading of the extracellular matrix along the way.

The evidence provided by twodimensional experimental vasculogenesis sug-
gests that cell motion can be directed by an autocrine loop of soluble chemoat-
tractant factors also in the real threedimensional environment.

As a sample of typical vascular structures that are observe in a threedimen-
sional setting in the early stages of development of a living being, we include
here (750 ym)? images of chick embryo brain at different development stages
(Fig.m). At an early stage (about 52-64 hours) one observes a typical immature
vascular network formed by vasculogenesis and characterized by a high density
of similar blood vessels (Fig. [MA). At the next stage (70-72 hours) we observe
initial remodelling of the vascular network (Figs. [B,C). Remodeling becomes
more evident when the embryo is 5 days old, when blood vessels are organized
in a mature, hierarchically organized vascular tree (Fig. D).

3 Mathematical model of blood vessel growth

The multidimensional Burgers’ equation is a well-known paradigm in the study
of pattern formation. It gives a coarse grained hydrodynamic description of
the motion of independent agents performing rectilinear motion and interacting
only at very short ranges. These equations have been utilized to describe the
emergence of structured patterns in many different physical settings (see e.g.
24, [T5]). In the early stages of dynamics, each particle moves with a constant
velocity, given by a random statistical distribution. This motion gives rise to
intersection of trajectories and formation of shock waves. After the birth of these
local singularities regions of high density grow and form a peculiar network-like
structure. The main feature of this structure is the existence of comparatively
thin layers and filaments of high density that separate large low-density regions.

In order to study and identify the factors influencing blood vessel forma-
tion one has to take into account evidence suggesting that cells do not behave
as independent agents, but rather exchange information in the form of soluble
chemical factors. This leads to the model proposed by Gamba et al. in [I0]
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Figure 1: Vascular networks formed by vasculogenesis in chick embryo brain, at
various stages of development, classified according to Hamilton and Hamburger
(HH). A: HH stage 17, corresponding to 52-64 hours; B: HH stage 20 (70-72
hours); C,D: HH stage 26 (5 days).



and Serini et al. in [23]. The model describes the motion of a fluid of ran-
domly seeded independent particles which communicate through emission and
absorption of a soluble factor and move toward its concentration gradients.

3.1 Model equations

The cell population is described by a continuous density n(x,t), where x € R?
(d = 2,3) is the space variable, and ¢ > 0 is the time variable. The population
density moves with velocities v(x,t), that are stimulated by chemical gradients
of a soluble factor. The chemoattractant soluble factor is described by a scalar
chemical concentration field ¢(x,t). It is supposed to be released by the cells,
diffuse, and degrade in a finite time, in agreement with experimental observa-
tions.

The dynamics of the cell density can be described by coupling three equa-
tions. The first one is the mass conservation law for cell matter, which expresses
the conservation of the number of cells. The second one is a momentum bal-
ance law that takes into account the phenomenological chemotactic force, the
dissipation by interaction with the substrate, the phenomenon of cell directional
persistency along their trajectories and a term implementing an excluded vol-
ume constraint [I0, B]. Finally there is a reaction-diffusion equation for the
production, degradation and diffusion of the concentration of the chemotactic
factor. One then has the following system:

on

E+V~(nv):() (1a)
KV VTV = ple)Ve — Vo(n) — Hle)v (1)
dc c

5= DAc+ alc)n — . (1c)

where p measures the cell response to the chemotactic factor, while D and 7 are
respectively the diffusion coefficient and the characteristic degradation time of
the soluble chemoattractant. The function « determines the rate of release of
the chemical factor. The friction term —f8v mimics the dissipative interaction
of the cells with the extracellular matrix.

A simple model can be obtained by assuming that the cell sensitivity u, the
rate of release of the chemoattractant « and the friction coefficient S are con-
stant. A more realistic description may be obtained including saturation effects
as functional dependencies of the aforementioned coefficients on the concentra-
tion c.

The term V¢(n) is a density dependent pressure term, where ¢(n) is zero for
low densities, and increases for densities above a suitable threshold. This pres-
sure is a phenomenological term which models short range interaction between
cells and the fact that cells do not interpenetrate.

We observe that, at low density n and for small chemoattractive gradients,
[@Db) is an inviscid Burgers’ equation for the velocity field v [5], coupled to the
standard reaction-diffusion equation ([Idc) and the mass conservaton law ([[ah).



Since in the early stages of development almost all intraembryonic mesoder-
mal tissues contain migrating endothelial precursors, we use initial conditions
representing a randomly scattered distribution of cells, i.e., we throw an assigned
number of cells in random positions inside the cubic box, with zero initial veloc-
ities and zero initial concentration of the soluble factor, with a single cell given
initially by a Gaussian bump of width o of the order of the average cell radius
(~ 15pm) and unitary weight in the integrated cell density field n.

In order to model the fact that closely packed cells resist to compression,
a phenomenological, density dependent, pressure V¢(n) acting only when cells
become close enough to each other is introduced. The potential ¢ has to be
monotonically increasing and constant for n < ng where ng is the close-packing
density. Our simulations suggest that the exact functional form of ¢(n) is not
relevant. For simplicity we choose

n —n Cp n n
¢<n>={B”< o) n>mo @)

0 n < ng

3.2 Parameter values

Fourier analysis of Eq. (Id) with constant parameters and in the fast diffusion
approximation dc/0t = 0 suggests that starting from the aformentioned initial
conditions, equation () should develop network patterns characterized by a
typical length scale ro = /D7, which is the effective range of the interaction
mediated by soluble factors. As a matter of fact, Fourier components ¢ of the
chemical field are related to the Fourier components of the density field nyx by
the relation )

- aTNng

- DTk + 17

This means that in equation () wavelengths of the field n of order ¢ are
amplified, while wavelengths A > rg or A < 7y are suppressed.

Initial conditions introduce in the problem a typical length scale given by the
average cell-cell distance L/+/N, where L is the system size and N the particle
number. The dynamics, filtering wavelengths [8], rearranges the matter and
forms a network characterized by the typical length scale 7.

It is interesting to check the compatibility of the theoretical prediction with
physical data. From available experimental results [22] it is known that the order
of magnitude of the diffusion coefficient for major angiogenic growth factors is
D =10""cm? s7L. In the experimental conditions that were considered in [I0]
the half life of soluble factors is 64 £ 7 min. This gives 79 ~ 200 pm, a value in
good agreement with experimental observations.

Ck

3.3 Lower dimensional models

In order to get some intuition about the typical system dynamics, we exploit the
1D version of model (@) to simulate the “collision” of two cells. For small values
of B, and sufficiently high C,, in @), the two bumps merge into a single one (see



Fig. @ left) which appears to be stationary, as suggested also by the graphs of
the kinetic energy and of the momentum of inertia (Fig. Bl top). On the other
hand a less smooth onset of pressure obtained with larger B, or smaller C),
leads to forces overcoming the chemical attractive ones, making the two bumps
bounce back (Fig. Bright, Fig. Blbottom). We observe that the better dynamics
from the biological point of view is the first behavior with two bump coalescing.

Biological observations suggest that the dynamics of cell changes when they
establish cell-cell contacts. It is reasonable to suppose that a different genetic
program is activated at this moment, disabling cell motility. We therefore switch
off cell motility as soon as the cell concentration, signalled by chemoattractant
emission, reaches a given threshold. In this way the computational system is
guaranteed to reach a stationary state.

These effects can be taken into account using a non-constant sensitivity u(c),
a non-linear emission rate «(c), or a variable friction coefficient 5(c). We choose
a threshold ¢y and functions of the form

pi(c) = po[l — tanh(c — co)] (3a)
a(e) = ap[l — tanh(c — ¢)] (3b)
B(c) = Bo[l + tanh(c — co)] (3¢)

The effect of the first two terms is that the sensitivity of the cells and their
chemoattractant production is strongly damped when the concentration c reaches
the threshold co. We did not observe a significant dependence on the exact form
of the damping function, provided that it approximates a step function that is
nonzero only when ¢ < ¢gp.

B(c), on the other hand has the effect of turning on a strong friction term
at locations of high chemoattractant concentration. We performed several tests
and observed that the different choices are approximately equivalent in freezing
the system into a network-like stationary state.

4 Numerical methods

Our scheme is based on a suitable relaxation approximation [I4] of the mass
conservation law (&) and the multidimensional Burgers equation ([[H) coupled
with a second order finite-differences method for the reaction-diffusion equation
(Id) of the chemotactic factor. We point out that also for the last equation (Id)
we could consider a relaxation approximation [I3, [T9)] in order to deal with the
system () in an uniform way, but we prefer to adopt here a simpler approach.
We first briefly review an extension of the approach proposed by Jin and Xin
in [T4] for a scalar conservation law to the case when a source term is present

ou 0
o T oa (u) = g(u). (4)

Introducing an auxiliary variable j that plays the role of a physical flux we
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Figure 2: Bump coalescence driven by chemotactic force and pressure. In the
first three rows the density and velocity fields at subsequent instants of time are
shown. In the last row we show the time evolution of the kinetic energy and
of the momentum of inertia. Left column: C, = 3 and B, = 1072, leading to
bump coalescence. Right column: C, 92 and B, = 107!, leading to undesired
rebound of the two bumps.



1 ; 0.01
©
5 £
< ]
(0] o
5 —
L 4 o
05 0.005 O
e =
@ 0]
£ IS
~ o
=
0 L L L L L 1 1 1 L 0
0 100 200 300 400 500 600 700 800 900 1000
x10™ x 107
7 T
16
45
©
= £
> @
(0] 4 o
o 4=
w ks
L2 =
© 13 ©
£ €
< 5]
=
12
11

! 0
0 100 200 300 400 500 600 700 800 900 1000

Figure 3: Time evolution of the kinetic energy and of the momentum of inertia.
Top: C, = 3 and B, = 1073, leading to bump coalescence. Bottom: C, = 2
and B, = 107!, leading to undesired rebound of the two bumps.
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consider the following relaxation system:

ou 0j

5% T g(u) (5a)
0j Ju

D gt =1~ fw) (5b)

where € is a small positive parameter, called relaxation time, and a is a suitable
positive constant. Formally, Chapman-Enskog expansion justifies the agreement
of the solutions of the relaxation system with the solutions of the equation

s =g+ e (@@= ) ©

which is a first order approximation of the original balance law (#).

It is also clear that (@l is dissipative, provided that the subcharacteristic
condition a > f’(u)? is satisfied. We would expect that appropriate numerical
discretization of the relaxation system (B) yields accurate approximation to the
original equation ) when the relaxation parameter e is sufficiently small.

In view of its numerical approximation, the main advantage of the relaxation
system (B) over the original equation () lies in the linear structure of the char-
acteristic fields and in the localized low order term and this avoids the use of
time consuming Riemann solvers. Moreover, proper implicit time discretization
can be exploited to overcome the stability constraints due to the stiffness and
to avoid the use of non-linear solvers.

We observe that system (B) is in the form

0z 1
o +divf(z) = g(z) + Zh(z) (7)
where = = (u,5)7, f() = (j.aw)", g(2) = (9(u), 0)7 and h() = (0,5 — f(u))""
When ¢ is small, the presence of both non-stiff and stiff terms, suggests the use
of IMEX schemes [4 [T6, 20].

Assume for simplicity to adopt a uniform time step At and denote with 2™
the numerical approximation at time t, = nAt, for n = 0,1,... In our case a
v-stages IMEX scheme reads

- [0f : At :
ALY by |2 (20 N+ =3 bih(z?
= SR oG] + S bhe)

where the stage values are computed as

= of N
(1) — n _ 50 | 2L (k) (k) = ) (k)
2\ =z At ,;_1 i k [8:1: ")+ g(z )] + 5 ,}_1 a; xh(z")

Here (aik,b;) and (@, b;) are a pair of Butcher’s tableaux of, respectively, a
diagonally implicit and an explicit Runge-Kutta schemes.
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In this work we use the so-called relaxed schemes, that are obtained letting
€ — 0 in the numerical scheme for [d). For these the first stage

@ n At @

u u u
=Y | +=ah

[J'(” } {J" } e 1 ([ i D

WO 0 2 ),
then it reduces to h(z())) = 0. While the second stage, i = 2, reads

becomes

2@ 2 - Aty [ﬁ(zm) N g(zm)] A )+ 2 g o h ()
or e N—— 9
=0

which implies that h(z(?)) = 0.
Summarizing, the relaxed scheme yields an alternation of relaxation steps

h(z9) =0 ie. ;@ = f(u®)
and transport steps where we advance for time a; At

0z .
% | aivf(z) = 9(2)

with initial data z = z(9) retain only the first component and assign it to w(*T1)
Finally the value of "' is computed as u™ + 3 byu(.
In order to obtain a relaxation approximation of the first and second equation
of @) we rewrite them in conservative form, introducing the moment p(x,t) =
n(x, t)v(x,t):

on
Z—I; + V- (nv®v)=nuVe—nVe(n)— Gp (8b)

Introducing the variable u = (n, p)” and the auxiliary flux w, the relaxation
system reads

8—u+V-w:G(u,w,c) (9a)
ot

ow 1

E+Av~u——g(w—F(u)) (gb)

where G(u,w,c) = (0,nuVe — nVe¢(n) — 8p)T, F(u) = (p,nv ® v) and A
is a suitable diagonal matrix whose positive diagonal elements verify a sub-
characteristic condition. As we previously remarked, our relaxed scheme takes
alternatively an implicit step and an explicit one: the explicit step involves the
computation of the flux V- w and the evaluation of the non stiff source term G.
In particular we compute Ve and Vé(n) using a second order difference scheme.
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In the following we describe for simplicity the fully discrete scheme in one
dimensional case. We introduce the spatial grid points z; with uniform mesh
width b = z;41 — ;. As usual, we denote by u} the approximate cell average of
a quantity u in the cell [z;_; /2, 2;11/2] at time #,, and by u?+1/2 the approximate
point value of u at * = x4,/ and t = t,,. A spatial discretization to () in
conservation form can be written as

ou; 1
8—; *a (Wit1/2 = Wi—172) = G(uj, wj, ¢;) (10a)
ow; 1 1

8t] + EA (llj+1/2 - U—jfl/Q) =z (wj = F(u;)). (10b)

In order to compute the numerical fluxes w;4; /2, We consider the characteris-
tic variables w + A'/2u that travel with constant velocities +A4'/2, and so the
semidiscrete system becomes diagonal. Now we have to apply a numerical ap-
proximation to w + AY?u. A first idea is to apply a ENO or WENO approach
(see e.g. [29]), to build an high order reconstruction, coupled with a suitable
IMEX scheme. The drawback is the high computational costs, especially in
a multidimensional framework. Therefore we chose a suitable compromise be-
tween the computational cost and the accuracy, using a second order TVD
scheme. The numerical flux that we use is obtained coupling an upwind scheme
and the Lax-Wendroff method by a non linear flux limiter [I7]. Namely the high
order flux F(U) for a generic variable U consists of the low order term Fy,(U)
plus a second order correction Fiy(U):

FU) = FrL(U) + ¥(U)(Fu(U) - F(U))

where ¥ is the flux limiter. When the data U is smooth, then ¥(U) should be
near 1, while near a discontinuity we want ¥(U) close to 0. The idea consists
in the selection of a high order flux Fy that works well in smooth regions and
of a low order flux F;, which behaves well near discontinuities.

In our schemes we considered the upwind scheme as a low order flux for the
characteristic variables

FL((W+A1/2u)j+1/2) = (w+A'?u);, FL((W_AI/Qu)j+1/2) = (w—A"?u);
and the Lax-Wendroff scheme as a high order flux for the same variables
Fyr((w AV2u)j1y0) = A3 (W AVPw)j 4 (w o AT ), )
=2 ((w £ AVu)j1 — (w + A ?u);)

where A = At/h (we advance of one time step).
Letting

I \(w A2u), | — (w+ AV2u)
the fully discrete scheme for the variable u using Euler method to advance in
time is the following

ot <(W:l:A1/2u)? — (W:I:Al/2u)}“_1>jEl
J

n+l _ n AAY2 n n A n n
wit = ul +A5—(uj; —2u} +ul ) - 5w —wiy)

I-xA'/2 + + - -
At=25—(=s] + 8]+, =57 ),
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with
st = h( + APl +wi, T AV — w)) W (6)). (11)

After the substitution of the relaxing step we get

n 77, 1/2 n n n

U-j+1 = + }1/2 (u ]-‘,—1 2“ +U- 1) — %(F(uj-i-l) _F(uj+1))
At%( sy s+ —57)

where sT is obtained from () letting w = F(u). The scheme can be put

in a conservative form and it is possible to prove its consistency by standard
technique [I7]. In order to prove a TVD stability, we write

u -t = (1 -y ZDg)(ugﬂ —u})+C}  (uf —u} ) (12)
+D7 1 (ufs —ulyy) + Ejayo,
where
n = (A2 4 Fui)-F@i)
C; = (AP R
n _ A g1/2 _ FQj D-Flu)
Dj = 5 (4Y 51:7_%
n _ 1-2AY2 ( — - - + + +
El )y = At (Sj+2 28541185 — 84 28] — ijl)
where we notice that C and D are non negative.
The coefficient E' can be written in terms of C and D, in fact
si = —C"‘I’(®+)( wiyg —uj)),  s; = - =D U(O7)(uf —uiy)).

VAV

We can rewrite ([2) in the following form

wifl it = (uf; —u}) [(1- C} — DY) + (1 - AAY2)(DFU7,, + CFo))]
+(u} —ury) [C” — =24 (pr 4o U )}
n n _yal/2 n
+(uj, —ujy,) {Dj+1 - =4 (D} V50 + Chyy ]+1)}
(13)

It’s easy to see that under the CFL condition ||A\y/max{a;}|| < 1, where a; are
the positive diagonal elements of the matrix A, and using the fact that the flux
limiter verifies

(C]
Og—ﬁa)é% 0<¥(O) <2,
we have
(1-Cy—-D})+(1— 31241/2)(Dn\1/;+1 +CpU) > 0
n - “1;:2 (Dy 97 +Cr ¥ ,) > 0
n AA n
Dji1 — 1f(DjJrl‘I’jJrz"‘Cj+1‘1’j+1) > 0

and so we can deduce that our scheme is TVD stable from Harten’s Theorem
2.
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Figure 4: Scaling of the 3D algorithm on the ULISSE cluster. Dots repre-
sent execution time (s) and asterisks the number of Mflops/s for our numerical
algorithm. Dashed and dash-dot lines are linear interpolations

In the case of multidimensions, a similar discretization can be applied to each
space dimension [I4] [T3, T9]. Then, since the structure of the multidimensional
relaxation system is similar to the 1D system, the numerical implementation
for higher dimensional problems, based on additive dimensional splitting, is not
much harder than for 1D problems.

For our threedimensional problem the computational cost is quite high and
can be reduced using parallel computing: the semilinearity of relaxation systems,
together with our suitably chosen discretizations, provides parallel algorithm
with almost optimal scaling properties. In particular the domain is divided
in smaller subdomains and each subdomain is assigned to a processor. The
computations of all non linear terms involve only pointwise evaluations and it
is easy to perform these tasks in a local way. Only point near the interfaces
between different subdomain need to be communicated in the transport step.
We implemented these algorithm on a high performance cluster for parallel
computation installed at the Department of Mathematics of the University of
Milano (http://cluster.mat.unimi.it/). The scaling properties of the algorithm
are shown in Fig. Bland are essentially due to the exclusive use of matrix-vectors
operations and to the avoidance of solvers for linear or non-linear systems.

5 Numerical results
We perform threedimensional numerical simulations of model () on a cubic box

with side of length L = 1mm, with periodic boundary conditions. The initial
condition is assigned in the form of a set of gaussian bumps with ¢ = 15um
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Figure 5: Initial state of a numerical simulation with 25OOCells/mm3. The
colorbar on the right is referred to the coloring of the cross sections. The red
three-dimensional isosurface corresponds to the black contour lines in the cross
sections

scattered in the cube with uniform probability and having zero initial velocity.

Biochemical data [23] suggest the values D = 10~®mm?/s and 7 = 4000 s
for the diffusion constant and the chemoattractant decay rate. We fix the other
constant parameters by dimensional analysis and fitting to the characteristic
scales of the biological system. In particular, we choose: pg = 10~ mm?/s3,
a=1s"1 B =10"3s"1. For the coefficients in the expression @) of the pressure
function ¢ we take ng = 1.0,C, = 3 and B, = 1073.

Very fine grids have to be used in order to resolve the details of the n(x,t)
field, which may contain hundreds of small bumps, each representing a single
cell. Since each cell has radius o = 15um, one needs a grid spacing such that
Ax < 10pum and therefore grids of at least 1002 cells for a cubic domain of 1mm
side.
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Figure 6: Transient state of the evolution of the initial state depicted in Fig.
according to model (). The initial formation of network-like structures is
observed
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Figure 7: Stationary state of the evolution of the states depicted in Figs.
and Bl according to model (). Well developed threedimensional network-like
structures are observed

18



We performed numerical simulations with varying initial average cell density
n. We observed that the initially randomly distributed cells coalesce forming
elongated structures and evolve towards a stationary state mimicking the ge-
ometry of a blood vessel network in the early stages of formation.

We assigned 7 in the range 2100 — 3500 cells/mm? and performed 10 to 15
runs for each density value with a 128 x 128 x 128 grid on a biological system
of 1 mm3. The characteristic lengths and geometric properties of the stationary
state depend on 7 and we observed a percolative phase transition similar to the
one described in [I0] for the twodimensional case.

5.1 Analysis of the percolative phase transition

In experimental blood vessel formation it has been shown that a percolative
transition is observed, by varying the initial cell density. For low cell densi-
ties only isolated clusters of endothelial cells are observed, while for very high
densities cells fill the whole available space. In between these two extreme be-
haviours, close to a critical cell density n., one observes the formation of critical
percolating clusters connecting opposite sides of the domain, characterized by
well defined scaling laws and exponents. These exponents are known not to
depend on the microscopic details of the process while their values characterize
different classes of aggregation dynamics.

The purely geometric problem of percolation is actually one of the simplest
phase transitions occurring in nature. Many percolative models show a second
order phase transition in correspondence to a critical value n, i.e. the proba-
bility II of observing an infinite, percolating cluster is 0 for 7 < n. and 1 for
7 > n. [27]. The phase transition can be studied by focusing on the values of an
order parameter, i.e. an observable quantity that is zero before the transition
and takes on values of order 1 after it. In a percolation problem the natural
order parameter is the probability P that a randomly chosen site belongs to the
infinite cluster (on finite grids, the infinite cluster is substituted by the largest
one).

In the vicinity of the critical density n. the geometric properties of clusters
show a peculiar scaling behavior. For instance, in a system of linear finite size
L, the probability of percolation II(n, L), defined empirically as the fraction
of computational experiments that produce a percolating cluster, is actually a
function of the combination (n — n.) L'/*, where v is a universal exponent.

In a neighborhood of the critical point and on a system of finite size L, the
following finite size scaling relations are also observed:

(7, L) ~ M| —ne)L'"] (14)

There are two main reasons to study percolation in relation to vascular net-
work formation: (7) percolation is a fundamental property for vascular networks:
blood should have the possibility to travel through the whole vascular network
to carry nutrients to tissues; (i) critical exponents are robust observables char-
acterizing the aggregation dynamics.
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A rather complete characterization of percolative exponents in the two-
dimensional case has been provided in [I0].

As a first step in the study of the more realistic threedimensional case, we
compute the exponent v characterizing the structures produced by the model
dynamics ([[l) with varying initial cell density.

To this aim, extensive numerical simulation of system ([l) were performed
using lattice sizes L = 1,0.78,0.62,0.5 mm, with different values of the initial
density 7. For each point 10 to 15 realizations of the system of size lmm were
computed, depending on the proximity to the critical point.

The continuous density at final time n(x) was then mapped to a set of
occupied and empty sites by choosing a threshold ny. Each region of adjacent
occupied sites (cluster) was marked with a different index. The percolation
probability IT for each set of realizations was then measured. In Fig. B we
show clusters obtained in a box with L = 0.5 mm with 7 = 3100. The largest
percolating cluster is shown in red, together with some other smaller clusters
shown in different colors.

Using relation ([Id]), we estimate the position of the critical point n. and
the value of the critical exponent v. The data for different box side length
and initial density should lie on a single curve after rescaling the densities as
f = (A — ne)LY". For fixed n. and v we rescale 7 and fit the data with
a logistic curve, then compute the distance of the data from the curve. The
squared distance is minimized to obtain estimates for n. and v.

Using ng = 0.35 we obtain n. = 2658 and v = 0.84. This latter value is com-
patible with the known value 0.88 for random percolation in three dimensions

27).

6 Conclusions

We have exposed results on the numerical simulation of vascular network for-
mation in a threedimensional setting.

We have used the threedimensional version of the equations proposed in
[0, 23] as a computational model. Evolution starting from initial conditions
mimicking the experimentally observed ones produce network-like structures
qualitatively similar to those observed in the early stages of in vivo vasculoge-
nesis.

As a starting point towards a quantitative comparison between experimental
data and the theoretical model we nedd to select a set of observable quantitaties
which provide robust quantitative information on the network geometry. The
lesson learned from the study of twodimensional vasculogenesis is that per-
colative exponents are an interesting set of such observables, so we tested the
computation of percolative exponents on simulated network structures.

A quantitative comparison of the geometrical properties of experimental and
computational network structures will become possible as soon as an adequate
amount of experimental data, allowing proper statistical computation, will be-
come available.
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In order to compute the robust statistical observables described in the paper
one has to perform many runs of the simulation code using different random
initial data. This, toghether with the intensive use of computational resources
required by a three-dimensional hydrodynamic simulation on fine grids, calls for
an efficient implementation of the computational model on parallel computers,
as the one we presented in this paper.

Simulations of blood vessel structures can in principle present practical impli-
cations. Normal tissue function depends on adequate supply of oxygen through
blood vessels. Understanding the mechanisms of formation of blood vessels has
become a principal objective of medical research, because it would offer the pos-
sibility of testing medical treatments in silicio. One can think that the dynami-
cal model (@) can be also exploited in the future to design properly vascularized
artificial tissues by controlling the vascularization process through appropriate
signaling patterns.
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