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Abstract

In a plasma with a population of super-thermal particles generated by heating or
fusion processes, kinetic effects can lead to the additional destabilisation of MHD
modes or even to additional energetic particle modes. In order to describe these
modes, a new linear gyrokinetic MHD code has been developed and tested, LIGKA
(Linear Gyrokinetic Shear Alfvén Physics) [1; 2], based on a gyrokinetic model [3].
A finite Larmor radius expansion together with the construction of some fluid mo-
ments and specification to the shear Alfvén regime results in a self-consistent, elec-
tromagnetic, non-perturbative model, that allows not only for growing or damped
eigenvalues but also for a change in mode-structure of the magnetic perturbation
due to the energetic particles and background kinetic effects.

Compared to previous implementations [3], this model is coded in a more general
and comprehensive way. LIGKA uses a Fourier decomposition in the poloidal coor-
dinate and a finite element discretisation in the radial direction. Both analytical and
numerical equilibria can be treated. Integration over the unperturbed particle orbits
is performed with the drift-kinetic HAGIS code [23; 24] which accurately describes
the particles’ trajectories. This allows finite-banana-width effects to be implemented
in a rigorous way since the linear formulation of the model allows the exchange of
the unperturbed orbit integration and the discretisation of the perturbed potentials
in the radial direction.

Successful benchmarks for toroidal Alfvén eigenmodes (TAEs) and kinetic Alfvén
waves (KAWs) with analytical results, ideal MHD codes, drift kinetic codes and
other codes based on kinetic models are reported.
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1 Introduction

The closer magnetic fusion experiments approach ignition the more interest
and concern is attracted by super-thermal particles and their effect on sta-
bility and transport. Especially large scale MHD instabilities are among the
most dangerous modes for future fusion devices. Due to their global structure
they can efficiently tap energy from the free gradients of the fast particle dis-
tribution, grow to large amplitudes, expell hot particles and thus decrease the
heating efficiency and cause damage to the first wall.
These modes usually have frequencies in the range of the plasma’s Alfvén
frequency (for typical parameters ∼ 106/s) i.e. well below the ion cyclotron
frequency (∼ 108/s). A large scale structure means that these perturbations
have low m (poloidal) and low n (toroidal) mode numbers . Therefore they
cannot be described locally or in the ballooning (i.e. high-n) approximation
[7].
When the properties of an ignited plasma are predicted, especially toroidal
Alfvén eigenmodes modes (TAEs) attract increasing interest: TAEs can be
excited in ‘gaps’ that are caused by the break up of the continuous Alfvén spec-
trum due to toroidal coupling. In such a gap, there is no continuum damping
present. This allows the existence of global modes [13; 14] that can be driven
to large amplitudes by passing or trapped energetic ions [16] with dangerous
consequences to confinement and stability.
The traditional description with ideal MHD codes cannot take into account
kinetic effects such as wave-particle interaction, finite-Larmor-radius (FLR)
and parallel electric field effects which are crucial to determine the mode sta-
bility [11; 17]. In order to include these kinetic effects, hybrid models were used
extensively: for hot particles, the gradient ∇P term is replaced by ∇(P +Phot)
derived from the kinetic equations. This leads to an extension of the energy
principle and this extended system is then solved in a perturbative way, i.e.
only the eigenvalue and not the eigenfunction is allowed to change. The most
important numerical codes based on this model are CASTOR-K [18] and
NOVA-K [15], the extensions of the resistive MHD spectral stability codes
CASTOR [26] resp. NOVA. Furthermore, a complex resisity model has been
employed [20] to descibe background kinetic effects with CASTOR-K.
This perturbative treatment is only valid for small fast particle pressures and
for cases where there is no coupling to small-scale modes. Therefore non-
perturbative models are required to explain discrepancies that have been found
between experimental data and the predicitons of perturbative codes. Also
modes that only exist in the presence of fast particles, energetic particle modes
(EPMs), demand this non-perturbative treatment.
On the non-perturbative side, there is the dielectric tensor model [27] and its
numerical implementation PENN [21]. With this code it has been shown that
the non-perturbative treatment indeed becomes crucial for cases where e.g. ra-
diative damping via coupling the the kinetic Alfvén wave (KAW) [11; 17; 25]
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is important. However, some of the results have not been confirmed by other
codes or by analytical estimates.
LIGKA is based on a linear, self-consistent, non-perturbative, gyrokinetic
model [3]-[6] which will be described in section 2. Compared to the derivation
and numerical implementation (KIN2DEM) described in references [3]-[6], the
equations here are kept more general: some of the analytical expansions as
used in KIN2DEM are replaced by more accurate numerical evaluations. Also
the gyro-operators in the GKM were kept for consitency.
Section 3 gives a detailed desciption of the numerical implementation, i.e. the
discretisation of the operators, the evaluation of the propagator integrals, the
Landau-resonance-integral problem and the overall strategy for solving this
non-linear eigenvalue problem.
Section 4 shows a series of benchmarks with analytical results, ideal-MHD
codes, the drift-kinetic CAS3D-K code and the KIN2DEM code [3].
Finally, conclusions and an outlook to future applications and improvements
are given.

2 Model

Based on a linear gyrokinetic formulation, a model consisting of the following
three equations was previously developed [3]-[6]: the quasi-neutrality equation
(QN)

∑

a

e2
ana

Ta

[
%2

a∇2
⊥
]
φ + ea

∫
J0fad

2v = 0; E = −∇φ− ∂A

∂t
, (1)

the gyrokinetic moment equation (GKM)

−ω2

[
∇ · ( 1

v2
A

∇⊥φ)

]
+ (B · ∇)

(∇×∇× (∇ψ)‖) ·B
B2

+ [∇(∇ψ)‖ × b] · ∇µ0j0‖
B

=

−
∑

a

iωµ0

∫
d2v(evd · ∇J0f)a + ω2 3

4

µ0e
2
ana

Ta

%4
a∇4
⊥φ (2)

and the gyrokinetic equation (GKE) itself:

∂fa

∂t
+ (Uab + vd,a) · ∇fa =

b

eaB
· (∇F0,a ×∇H1,a) +

∂F0,a

∂E
(Uab + vd,a) · ∇H1,a (3)
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In these equations,
∑

a stands for the summation over the particle species
(background ions and electrons, fast ion population), ea for the particle charge,
na and Ta for density and temperature, %a for the gyro radius, J0 = J0(k⊥%a)
for the 0-th order Bessel function originating from the gyro-angle average

1

2π

∫
dξe±%·∇ =

1

2π

∫
dξe±%∇⊥ cos ξ = J0

(%∇⊥
i

)
,

∫
d2v for the integration over the two remaining variables in velocity space,

vA for the Alfvén velocity, j0‖ for the parallel equilibrium current, U for the
velocity parallel to the equilibrium magnetic field B, vd for the drift veloc-
ity of the particles, F0 for the equilibrium particle distribution function and

H1 = eaJ0(φ− k‖U
ω

ψ) for the perturbed Hamiltonian.
The unknown variables are the electrostatic potential φ, the potential ψ for
the parallel component of the electromagnetic potential A‖ = 1

iω
(∇ψ)‖ and

the perturbed distribution function f . Note, that the eigenfrequency ω ap-
pears non-linearly within the propagator and velocity space integrals.
The equations above were derived by setting A⊥ = 0. This simplification to-
gether with a low-β assumption implies that the modes under consideration
are almost incompressible shear Alfvén modes with small parallel magnetic
perturbations and small pressure perturbations. For arbitrary β one would
have to solve one additional equation for the perturbed parallel magnetic field
δB‖ as derived in the framework of kinetic ballooning theory [8]. However, if
β is assumed to be small but nevertheless the coupling to the sound waves
has to be kept, a set of two slightly modified equations can be derived which
will be reported elsewhere. The present version of LIGKA neglects the cou-
pling to the sound wave which is a good approximation for the modes under
consideration in this paper.
The GKE is further transformed by substituting [9]:

fa = ha + H1,a
∂F0,a

∂E
−
[
ea

∂F0,a

∂E
− ∇F0,a

iωB
· (b×∇)

]
J0ψ. (4)

This substitution creates terms proportional to φ − ψ that contain the E‖-
effects. Close to the MHD-limit, they become small compared to the ω∗-term.
As shown below, this ω∗-term gives the lowest order solution of the GKE,
leading to an MHD-like pressure term. Expressions proportional to U vanish
during integration over velocity space, if an equilibrium distribution symmetric
in U is chosen. This is true for background species (no rotation assumed)
and typical α-particle distributions. Equations that take into account also
asymmetry in U (e.g. caused by NBI heating) have been derived and will be
published elsewhere.
Substituting h in favour of f in the QN and GKM equations, assuming a
Maxwellian equilibrium distribution function F0 and integrating over velocity
space results for the QN equation in (the index a is omitted for simplicity):
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e
∫

J0hd3v +
e2n0

T
Γ0

[
ψ − φ−

(
1 + ηG0

)ω∗
ω

ψ
]

= −e2n0

T

[
%2∇2

⊥
]
φ, (5)

where

ω∗ ≡ [
Tb

ieB
× ∇n0

n0
· ∇]; η ≡ ∇T

T
/
∇n0

n0

and

χ ≡ v2
thk

2
⊥

Ω2
; Γ0(χ) = e−χI0(χ); 2G0(χ) = −χ + χI1(χ)/I0(χ),

v2
th = T/m, Ω2 = eB/m and In as the modified Bessel functions of n-th order.

Using

ωd ≡
vd · ∇

i
and vd =

1

mΩB

(
µB + mU2

‖
)(

b×∇B
)

which is true for low-β, and partially carrying out the integration over velocity
space, the first term on the right hand side of the GKM becomes:

ω2eµ0

∫
d2v

ωd

ω
J0f = µ0eω

2
∫

d2v
ωd

ω
J0h +

2µ0eω
2

B2

(
b×∇B

)
· ∇ (6)

{
n0Γ0(χ)

[
ψ − φ−

[
(1 + η)(1 + G0(χ) + ηG1(χ)

]ω∗
ω

]
ψ

}

with G1(χ) = χ(I1/I0 − 3/2)− χ2(I1/I0 − 1). Following reference [3], contact
to ideal MHD can be established by leaving out E‖-effects (setting h and φ−ψ
zero), going into the zero gyroradius limit (χ = 0) and applying

−
∑

i,e

en0[1 + η]
ω∗
ω

=
∑

i,e

[T∇n0 + n0∇T

iωB
× b

]
· ∇ =

∇[P (r)]

iωB
· (b×∇).

Then the GKM reads:

−ω2

[
∇ · ( 1

v2
A

∇⊥φ)

]
+ (B · ∇)

(∇×∇× (∇ψ)‖) ·B
B2

(7)

+[∇(∇ψ)‖ × b] · ∇µ0j0‖
B

+ 2µ0

[
b

B
× ∇B

B

]
· ∇

[∇P

B
(b×∇)ψ

]
= 0.

This equation can also be derived starting from the ideal MHD equations [3].
The QN is trivially satisfied in this limit. When FLR-effects are kept, another
limit called the ’reduced kinetic model’ can be derived [2]. These two limits
will be recovered numerically in the validation and benchmark section of this
paper.
Now the expressions proportional to h are further manipulated: using the
ansatz

ha(t, x) = h̄a(r, θ)e
i(nϕ−ωt),
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where ϕ and n are the toroidal angle and mode number, the GKE becomes:

h̄a = iea

∑

m

t∫

−∞
dt′ei[n(ϕ′−ϕ)−m(θ′−θ)−ω(t′−t)]e−imθ ·

∂F0,a

∂E
(ω − ωT

∗ )J0 · [φm(r′)− (1− ωd(θ
′)

ω
)ψm(r′)] (8)

Here, a Fourier expansion in the poloidal angle θ with the poloidal mode num-
ber m has been performed. The time integral in equation (8) has to be carried
out along the unperturbed particle orbit, indicated by the primed quantities
t′, r′, θ′ and ϕ′.

2.1 Circulating Particles

After expanding into bounce harmonics labelled by the index k, changing to
the the velocity space coordinates Y = E/T and Λ = µB0/E, considering
only first order terms for the drifts, integrating over time and applying the
projection operator

∫ π
−π

dθ
2π

eipθ, the circulating particle contribution becomes:




π∫

−π

dθ

2π
eipθ

∫
J0hd3v




circ

= −πeav
3
th

∑

m

bmin(r)∫

0

dΛ

∞∫

0

dY
√

Y · (9)

∑

k

∂F0

∂E

(ω − ω̂∗)ω

ω2 − (Sm + k)2ω2
t

Km,p,k · J2
0

[
âkmφm(r)− (âkm −

âG
kmω̄d(r)

ω
)ψm(r)

]

with

Km,p,k =
1

2π

π∫

−π

dθ

b(r, θ)
√

1− Λ
b(r,θ)

e−i[Spθ−(k+Sm)ωt t̂(θ)],

âm,k =
1

τt

τt/2∫

−τt/2

dt̂′ei[Smθ′−(k+Sm)ωt t̂′]; âG
m,k =

1

τt

τt/2∫

−τt/2

dt̂′
ωd(r

′, θ′)

ω̄d(r)
ei[Smθ′−(k+Sm)ωt t̂′]

and
Sp = nq(r)− p; Sm = nq(r)−m.

For circulating particles the integration over Λ has to be carried out from 0 to
bmin(r) = min[b(r, θ)] = min[B0/B(r, θ)]. ωt and τt are the transit frequency
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and time, and

ω̂∗ =
∇F0 × b

ieB ∂F0

∂E

· ∇

Also the sum over co- and counter-passing particles has been performed al-
ready assuming symmetry in velocity space.
The operator J2

0 [k⊥(r, θ)%] can be treated in three different ways:

• If the mode structure permits, it’s radial derivatives are completely ne-
glected and only the θ- dependent terms are taken into account. This is
how e.g. KIN2DEM is set up. k⊥ simply reduces to ky = −m/r.
• A more accurate way is to use an intermediate result for the eigenfunction:

since the eigenvalue is calculated iteratively, a guess for φ and ψ during
run-time is available. As initial guess the pure MHD eigenfunction or an
eigenfunction calculated with the approximation method given above can
be employed. Also results from the ’antenna’-version of LIGKA [2] can be
used.
This method was tested so far only for cases where the eigenfunctions did
not have any zero crossings: φ′′/φ and φ′/φ were therefore always a well
behaved functions without singularities.
• The operator can be expanded up to second order and the result added to

the contributions of the first and second order derivative coefficients from
the MHD part. This treatment will be tested in a future version of LIGKA.

2.2 Trapped Particles

For trapped particles the drift effects due to the drift operator on the left hand
side of the GKE (equation 3) are taken into account: in a linear description,
where the orbit integrals are performed over unperturbed orbits it is possible
to change the order of time integration and the discretisation of the perturbed
potentials in radial direction. Thus, the time integral can be written as a sum
of integrals:

t∫

−∞
dt′ =

t2∫

t1

dt′ +

t3∫

t2

dt′ + ... =
∑

j′

tj′+1∫

tj′

dt′ (10)

The index j ′ counts the finite element partitions in the radial coordinate: the
particle spends the time tj′+1− tj′ in the radial bin with number j ′ (see figure
1).
Before proceeding, the phase factor

ei[n(ϕ′−ϕ)−m(θ′−θ)−ω(t′−t)]
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t 1

t 2 t 3

t4

t5

t0

0 1 2 3 4

Fig. 1. The orbit for trapped particles is split up in pieces corresponding to the
finite element discretisation

is rewritten in a more convenient way using the following definitions [10]:

n(ϕ′ − ϕ)−m(θ′ − θ) =

t′∫

t

dt′′(n
dϕ

dt′′
−m

dθ

dt′′
)

ωD = n
[dϕ

dt
− q(r0)

dθ

dt

]
; ω0

D =
1

τb,t

∫
dtωD

r0 is the orbit averaged radial position of a particle.

W = W (t) =

t∫

0

dt′′∆ωD; W ′ = W (t′) =

t′∫

0

dt′′∆ωD; ∆ωD = ωD − ω0
D

The time integration has to be started at t′ → −∞. Taking into consideration
that the orbit motion is periodic, one obtains:

t∫

−∞
dt′e−i(ω−ω0

D−kωb)(t
′−t)ψ(r′) =

=
∞∑

κ=0

t−κτb∫

t−(κ+1)τb

dt′e−i(ω−ω0
D−kωb)(t

′−t)ψ(r′) =

=
∞∑

κ=0

N−1∑

j=0

t−κτb−tj∫

t−κτb−tj+1

dt′e−i(ω−ω0
D−kωb)(t

′−t)ψ(rj) =

=
∞∑

κ=0

N−1∑

j=0

[
e−i(ω−ω0

D−kωb)(−κτb−tj) − e−i(ω−ω0
D−kωb)(−κτb−tj+1)

]

−i(ω − ω0
D − kωb)

ψ(rj) =
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=
N−1∑

j=0

ei(ω−ω0
D−kωb)tj [1− ei(ω−ω0

D−kωb)(tj+1−tj)]

−i(ω − ω0
D − kωb)[1− ei(ω−ω0

D
−kωb)τb ]

ψ(rj) (11)

where the relation

∞∑

κ=0

eixκ =
1

1− eix

was used. It can be easily verified that for N = 1, tj = 0 and tj+1 = τb,
expression (11) simplifies to the zero-orbit-width result: −1/i(ω − ω0

D − kωb).
Now we can integrate h over the velocity space and over θ, like above for
circulating particles .
Therefore, the final expression for trapped particles is:




π∫

−π

dθ

2π
eipθ

∫
J0hd3v




trap

= −πeav
3
th

∑

m

∑

j

bmax(r)∫

bmin(r)

dΛ

∞∫

0

dY
√

Y
∂F0

∂E

∑

k

RkjKkp(ω − ω̂∗)

ω − ω0
D − kωb

J2
0 ·
[
âkmφm(rj)−

(
âkm −

âG
kmω̄d(r)

ω

)
ψm(rj)

]
(12)

with

Rkj =
N−1∑

j=0

ei(ω−ω0
D−kωb)tj [1− ei(ω−ω0

D−kωb)(tj+1−tj)]

1− ei(ω−ω0
D
−kωb)τb

Kkp =
1

2π

θ+∫

θ−

dθ

b(r, θ)
√

1− Λ
b(r,θ)

e−i[(nq(r)−p)θ+W−kωb t̂]

It should be noted that contrary to the perturbed potentials φ, ψ and the
quantities in the propagator, the equilibrium quantities F0, ω̄d and ω̂∗ are
assumed to stay constant in the radial coordinate along a particle orbit.
Finally, in the GKM equation, an integral of the form

∫
ie

vd

ω
· ∇J0hd3v (13)

has to be performed.
Furthermore, in the expression for h there is also a term proportional to
ωd(r) ≡ vd/i · ∇:

[
âkmφm(rj)−

(
âkm −

âG
kmω̄d(r)

ω

)
ψm(rj)

]

This drift operator entails radial derivatives of ψ and φ. In principle, these
derivatives could be included is the system using a similar procedure as de-
scribed before for J0. But due to the smallness of ṙ (one order of ε = a/R0
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smaller) compared to θ̇ and ϕ̇, ωd is replaced by ωD = ϕ̇−q(r0)θ̇. This simplifi-
cation is not justified, when very low frequencies, close to the sound frequency
are investigated since the second order derivatives of ω2

d are needed e.g. for the
geodesic acoustic correction of the Alfvén continuum [12]. Equations suited for
this limit have been recently derived and will be reported elsewhere. In this
work, only high frequency phenomena (compared to the sound frequency) are
investigated.
Finally, line (13) can be rewritten as:




π∫

−π

dθ

2π
eipθ

∫
iea

vd

ω
· ∇J0hd3v




trap

= −πe2
av

3
th

∑

m

∑

j

bmax(r)∫

bmin(r)

dΛ

∞∫

0

dY
√

Y
∂F0

∂E

∑

k

·Rkj ·KG
kp ·

ω − ω̂∗
ω − ω0

D − kωb
·
[
âkmφm(rj)−

(
âkm −

âG
kmω̄d(r)

ω

)
ψm(rj)

]
(14)




π∫

−π

dθ

2π
eipθ

∫
iea

vd

ω
· ∇J0hd3v




circ

= −πe2
av

3
th

∑

m

bmin(r)∫

0

dΛ

∞∫

0

dY
√

Y
∂F0

∂E

∑

k

·KG
mkp ·

(ω − ω̂∗)ω

ω2 − (Sm + k)2ω2
t

·
[
âkmφm(r)−

(
âkm −

âG
kmω̄d(r)

ω

)
ψm(r)

]
(15)

As before,

KG
m,p,k =

1

2π

π∫

−π

dθ

b(r, θ)
√

1− Λ
b(r,θ)

ωD(r′, θ′)

ω̄D(r)
e−i[Spθ−(k+Sm)ωt t̂(θ)],

and

KG
kp =

1

2π

θ+∫

θ−

dθ

b(r, θ)
√

1− Λ
b(r,θ)

ωD(r′, θ′)

ω̄D(r)
e−i[(nq(r)−p)θ+W−kωbt̂]

Now our system of equations is complete consisting of the QN (5) and the
GKM (2,6) together with the integrals (10), (12), (14) and (15).

3 Numerical Implementation

In this section the structure of the numerical implementation and details of
the methods involved are described.
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As sketched in figure 2, we start from an equilibrium given analytically or
numerically. At present, there exists an interface for the equilibrium code
HELENA [26]. Also HAGIS [23; 24],a Monte-Carlo code in a guiding centre
Hamiltonian formulation, usually applied for non-linear wave-particle interac-
tion, can use HELENA equilibria as input. Before one starts to run LIGKA
itself one computes the integrals over the unperturbed particle orbits with
HAGIS based on a given equilibrium, i.e. one calculates for each m, p, k, r,
Y and Λ the integrals akm, Kmpk, Kpk and the corresponding aG

km, KG
mpk, KG

pk.
For a typical run with 5 poloidally coupled mode numbers this means ap-
proximately one gigabyte of data per species. To be able to choose the points
in velocity space in an advantageous way, i.e.more points near the trapped-
passing boundary, HAGIS is called iteratively to provide a grid in velocity
space on which the required integrals are calculated in a separate step.
For calculating the drift orbit averages that determine the wave-particle reso-
nances, no gyro orbit effects are taken into account. This is a reasonable ap-
proximation because firstly the 6-d unperturbed trajectory only differs slightly
from the drift kinetic one, at least in an ITER, JET or ASDEX-Upgrade like
device. Secondly, for the wave-particle energy transfer it is more crucial to cap-
ture numerically the fact that there is a pole rather than it’s exact position in
the complex plane. Thus, as long as the deviations of 6-d and 5-d trajectories
are not too large with respect to background quantities, the resonance inte-
grals in the guiding centre approximation are very accurate. The differential
operators are calculated with a General Vector Algebra Package [3] based on
MATHEMATICA, allowing for a fast and flexible change between different
geometries (cylindrical, straight tokamak, tokamak,circular, shaped).

Helena

HAGIS

Mathematica

Analytical
Equilibria

LIGKA

↓

↓

↓

↓

Numerical
Equilibria

Orbit 
Integrals

Operator
Expansion

Eigenvalues,
Eigenfunctions

Trapped-Passing-
Boundary Finder

↓ ↓

↓

Fig. 2. Survey of different codes involved
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3.1 Finite Element Discretisation

As indicated in the last section, LIGKA employs a Fourier decomposition
in the toroidal and poloidal angle and finite elements of length l with cubic
Hermite polynomials as basis function in the radial coordinate x:

{1− 3x2

l2
+

2x3

l3
, x− 2x2

l
+

x3

l2
,
3x2

l2
− 2x3

l3
,
x3

l2
− x2

l
}. (16)

As coordinate system straight field line flux coordinates with s =
√

Ψ (poloidal
flux) are chosen. The toroidal angle is chosen as the geometric angle. The field
lines are straight, but not field-aligned. The total matrix is set up using the
Galerkin method: the solution is approximated by

φm(r) =
N∑

j=1

φmjϕj(x), ψm(r) =
N∑

j=1

ψmjϕj(x).

This expansion is substituted into the differential equation and weighted with
the basis functions (here given just for φ):

∫

plasma

dxR(x)ϕk(x) = 0

with

R(x) = Apm[
N∑

j=1

φmjϕj(x)]′′ + Bpm[
N∑

j=1

φmjϕj(x)]′ + Cpm

N∑

j=1

φmjϕj(x).

The goal is now to find a set of ϕk(x) so that the integral above is zero for
some choices of the weight functions. By carrying out a partial integration one
can transform the differential equations into algebraic ones.
As boundary conditions one imposes that the perturbed potentials for all
poloidal harmonics vanish at the the plasma centre (except the the m = 0-
component) and at the outermost flux surface. This is introduced in the system
by deleting the first column and the first row as well as the last-but-one column
and row for each m-block. Finally, a matrix as graphically described in figure
3 is formed.
The basic convergence is checked for an ideal MHD case, where the system

is linear in the eigenvalue, and a standard NAG routine can be applied for
solving the matrix equation Aφ = λBφ. As shown in figure 4, green line, the
relative error of the eigenvalue scales like l−5 where l is the length of a finite
element and an equidistant grid was chosen. This convergence rate has also
been found by other codes based on finite elements [26]. The case shown in
figure 4 is an internal kink mode that has a localised structure at the q = 1
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Fig. 3. graphical representation of the complete system for two coupled poloidal
modes

surface. This is the reason why with an equidistant grid a l−5-convergence can
only be found for 100 radial grid points or more (green line in figure 4). LIGKA
allows also for mesh accumulation, resulting in a much faster convergence if
more points close to the q = 1 surface are chosen (red dots in figure 4).
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Fig. 4. Relative error of the growth rate of an internal kink mode in dependence
of the finite element length l: with an equidistant grid an l−5 dependence is only
found for more than 100 grid points, with grid refinement around the q = 1 surface
the error scales immediately with l−5.
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3.2 Propagator Integrals

The bounce and drift frequencies and propagator integrals calculated with
HAGIS were benchmarked against analytical formulae, given in [3]. One can
see that as expected, for low-energy ions (and of course also electrons, not
shown here) the analytical results are recovered accurately (see figure 5). For
trapped α-particles the analytical expressions become inaccurate and thus de-
viations can be found.
The propagator integrals involving drifts show the biggest deviations from the
analytical formulae: even for low-energy ions in an non-up-down-symmetric
elliptical equilibrium, drifts cause substantial differences, even in the sign for
energetic particles (figure 6). Thus, for realistic equilibria, the numerical eval-
uation becomes essential.
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Fig. 5. Circulating/bounce frequency for 28 keV ions (left,dots) and 3.5 MeV al-
pha particles (right,dots) for a numerical, elliptical equilibrium compared to the
analytical formulae (solid line)
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3.3 Landau Integrals

As mentioned before, the kinetic data is given numerically on a E − Λ-grid.
The question now arises how to interpolate or spline this data in order to
carry out the resonance integrals ω−ω∗/ω− ωD − kωt e.g. in equations 14 15
. There are many difficulties connected with this task:

• One typical application of the code is to determine stability boundaries.
That means that for these calculations the ratio of damping rate or growth
rate γ to the real frequency ω is very small and can be both positive and
negative. If now a resonance condition is met the denominator becomes
very small and a special Cauchy principal integral algorithm [32] for a near
singular function has to be used. Many evaluations of the integrand have to
be made.
• Negative imaginary parts of the denominator require the determination of

the residual:

Λmax∫

0

hdΛ = P

Λmax∫

0

hdΛ + 2πih(Λz)(Λ− Λz)
∣∣∣
Λ→Λz

(17)

Here, Λz is the pole in the extended complex Λ-plane. Numerically, this
problem is extremely difficult because either derivatives of the denominator
or numerical cancellation of Λ− Λz have to be carried out.
• There were predictions about relatively high damping rates for TAE modes

at JET [19]. Therefore, any algorithm applied has to be correct also for
large imaginary parts. Often the exact position of the pole is not taken into
account, but it is rather assumed that the pole lies on the axis.
• The trapped-passing boundary has to be represented accurately because

especially barely trapped electrons and fast ions are often in resonance with
the modes under investigation.

It was found that rational interpolation solves all the problems mentioned
above: applying the Thacher-Tukey algorithm [31], the denominator is written
as

D(Λ) = iγ + D̃(Λ) = iγ +
a0(Λ− a1)(Λ− a2)

(Λ− a3)(Λ− a4)

with real coefficients a0, ..., a4. In order to include γ one solves a simple
quadratic equation which yields:

D(Λ) =
c0(Λ− c1)(Λ− c2)

(Λ− a3)(Λ− a4)

where c0, c1 and c2 are now complex. This expression interpolates D suffi-
ciently, also close to the trapped-passing boundary because it allows for a
singularity there (error below 2%, see figure 7), is easy and fast to evaluate,
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is trivially continued into complex plane and allows an analytical cancellation
of the singularity in the residual term:

2πi
g(z, Λ, t)(Λ− a3)(Λ− a4)

c0(Λ− c2)
· (Λ− c1)

(Λ− c1)
|Λ→c1

The singularity c2 lies out of the integration range.
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As a test and benchmark case, the Landau damping problem is solved with
this rational interpolation technique:

2π
∫

dv⊥v⊥

∫
dv‖

∂F0

∂E

ω

ω − v‖k‖
=

n

T
ζZ(ζ) (18)

with

ζ =
ω

k‖vth

√
2
; vth =

√
T/m;

and

Z(ζ) =
1√
π

∞∫

−∞

due−u2

u− ζ
= 2ie−ζ2

iζ∫

−∞
dte−t2 = i

√
πe−ζ2

(1 + Erf(iζ))

Figure 8 shows that the analytical result as given by formula 18 is very well
recovered by the numerical integration using the rational interpolation tech-
nique described above.

Having done this rational interpolation in Λ for each energy point, the location
of the resonance is known accurately (see figure 9). This information is needed
for the Cauchy principal value integration and furthermore it allows to re-
adjust the energy grid.
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For a typical test equilibrium (the exact parameters are shown in the radiative
damping benchmark) the lines of resonance in velocity space are shown in
figure 9 for thermal electrons (left) and α-particles (right). The frequency
chosen is the TAE frequency. There are no resonances with the background
ions in this case. Therefore, for the ions the lowest order solution for hi is
sufficient and no integration over velocity space has to be performed. One
can see that for circulating electrons there is a k = 0 resonance due to the
matching of ω and ωD and two sideband resonances due to k ± 1. There are
also contributions from trapped electrons. For the α-particles only co-passing
and trapped resonances are shown. In order to determine if these resonances
are stabilising or destabilising, one has to look at the combination of signs of
∂F0/∂E and ∂F0/∂r (contained in ω∗).
It has been found that a 40 by 40 grid in velocity space (Λ−E)is sufficient for
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Fig. 9. Lines of resonance in the energy - pitch angle plane: electrons (left) and
α-particles, only co-passing and trapped (right).

the background species, whereas a 40 by 60 grid is needed for fast particles. All
the integrations are independent of each other and therefore were parallelised.
On a 16-CPU, 3.4GHz Linux cluster with 5 coupled poloidal harmonics, 3
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species, 10 bounce harmonics and 100 radial grid points, these integrations
take about 5 minutes.

3.4 Eigenvalue Solver

As mentioned above, the problem is non-linear in the eigenvalue. Therefore a
combination of several algorithms are applied for solving:

• As described in reference [3] , the smallest eigenvalue ei(ω) of the total
(square) matrix Mij has to be identified and by using a Newton iteration,
ei(ω) = 0 has to be found. Then ω is also an eigenvalue of the whole deter-
minant Det(ω). This method works if the eigenvalue is guessed sufficiently
accurate. Otherwise, the smallest ei can jump between different roots.
• If the eigenvalue is not known well enough, a Nyquist contour integration

method [28; 29; 30] is applied: a series of 8 up to 64 points on a circle around
the guess are evaluated. Integrating along this contour gives the residual,
that allows to determine how many roots can be found where within the
contour. This algorithm seems to work relatively reliable, however the cost
for typically 32-64 evaluations of the determinant is relatively high.
• As described in [2], the antenna version of the code can be employed, to find

the approximated eigenvalues of the system. Usually, the antenna-result is
an excellent guess and only 8-16 points are needed for full convergence with
the Nyquist solver.

4 Benchmarks and Results

4.1 MHD-Limit

The benchmarks carried out in this section are all TAEs. These modes attract
great interest and concern when the stability of a burning tokamak plasma is
predicted. It was shown numerically and analytically how toroidal geometry
breaks up the continuous Alfvén spectra, generates gaps and permits global
modes within these gaps. These global modes can be driven unstable by ener-
getic particles if the mode frequency is close to either the transit, bounce or
drift frequency of the energetic particles.
For a series of circular, numerical HELENA-based equilibria [26] with q0 =
1.05, a = 0.9m (minor plasma radius), B0 = 5T, n(s) = n0 = 5·1019m−3 where
R0 (i.e. the aspect ratio) varies between 3m and 5m, the mode frequencies for
the even and the odd TAE mode are compared: LIGKA in the MHD-limit and
CASTOR show perfect agreement (see figure 10). The gap size scales linearly
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with ε = a/R0 as predicted theoretically [14]. Also the mode structures, shown
in figure 11 for the case R0 = 4m are very similar to each other. The difference
for the m = 3 component might be due to the fundamental difference of the
models in CASTOR and LIGKA. However, KIN2DEM [3] shows the same
mode ratio as LIGKA.
For the following kinetic test cases always a successful comparison with CAS-
TOR in the MHD limit has been carried out.
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4.2 Hot Particle Drive

Now kinetic modifications of the TAE mode are investigated. In order to do
so a population of super-thermal Maxwellian hydrogen ions is added to the
system. The parameters for this third species are chosen to be:

phot = p(0)e−ψ/0.09

with a constant temperature profile Th. Following Qin’s choice [3] for the

temperature of the hot ions at the magnetic axis, vth/hot =
√

2Thot/0/m is
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varied over the interval

0.5 < vth/hot/vA < 1.5,

and the poloidal βhot/0 = 2µ0phot/0/Bθ/a at the magnetic axis is chosen as 1.
The background temperature is set to:

Ti = Te =
1

2
(1− ψ)2keV

The results for this case are shown in figure 12: the growth rate increases with
the fast particle velocity and the real part of the frequency is shifted. The re-
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Fig. 12. Growth rate (left) and frequency shift (right) of the (m=2,3) TAE mode:
KIN2DEM (black line) and CAS3D-K (red diamonds) vs. LIGKA with (green tri-
angles) and without (black squares) finite orbit width effects

sults obtained with LIGKA agree reasonably well with other codes which are
capable of dealing with fast particle effects in different approximations: the
red diamonds in figure 12 represent CAS3D3K results [33]. CAS3D3K is a per-
turbative kinetic MHD code based on CAS3D [34; 35] which is a linear, ideal,
3-dimensional MHD code, here applied in the 2d tokamak geometry limit.
The fast particle treatment of CAS3D3K is based on a drift kinetic descrip-
tion with zero banana orbit width. When the banana width is also neglected in
LIGKA (black squares), an acceptable agreement of both codes is found. The
remaining discrepancy can be attributed to the fact that E‖ and FLR-effects
are missing in CAS3D3-K. When the finite orbit widths are switched on in
LIGKA (green triangles), the growth rate decreases considerably, especially
for higher vth/hot. It is even smaller than predicted by KIN2DEM (solid line),
which uses a Taylor expansion in the banana width. This also agrees with the
fact that for large banana widths, the Taylor expansion becomes inaccurate
and underestimates the stabilising influence.

4.3 Mode Damping

In the test case above the fast particle drive exceeded by far the damping
effects. However, in order to predict stability limits, the background damping
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has to be understood. Therefore, three main damping mechanisms are now
investigated: Landau damping, continuum damping and radiative damping.
Collisional damping cannot be considered with the present version of LIGKA.

4.3.1 Landau Damping

As seen in figure 9 there are typically resonances of electrons with the TAE-
mode. For a Maxwellian background distribution function this means that the
mode is Landau damped.
Based on the JET limiter discharge #42979@10.12s with B0 = 3.53, R0 =
2.96m, q0 = 0.87, a = 1.0m, n0 = 3.727 · 1019 and n = 1 with the den-
sity, temperature and q-profile given in figure 13 the damping rate of the
TAE mode in the m=2,3 gap is calculated. Figure 14 shows the benchmark
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of LIGKA, CAS3D-K and analytical formulae in form of a mass isotope scan
as performed in JET experiments [19]. The variation of isotope mass changes

vA ∼
√

1/mi and also the damping rate γ/ω ∼
√

(βeme/mi) [16]. Acceptable
agreement is found. The differences however between CAS3D-K and LIGKA
can be contributed to the missing of E‖ and/or background FLR effects in the
drift-kinetic CAS3D-K (although the non-ideal parameter λ which controls
the radiative damping, is relatively small in this case). The modes structure is
found to be an almost pure TAE mode and no mode conversion in the plasma
centre was obtained. The damping rate is roughly an order of magnitude lower
than the PENN prediction and the measured damping rate [19]. The scaling

with
√

(1/mi) however is reproduced. The reason for this difference might be

the following one: PENN solves a 6-th order differential equation (fast com-
pressional wave is kept) whereas LIGKA solves a 4-th order system (fast wave
is filtered out by keeping A‖ only). In the TAE frequency range with almost
pure shear Alfvén wave physics, the fast wave plays a vanishing role. How-
ever, it is known that a 6th order system allows spurious solutions which are
very hard to control, especially at the magnetic axis. Thus although LIGKA
captures not the same comprehensive physics as PENN it is far better suited
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to the the TAE damping problem due to its 1-d finite element discretisation
and Fourier decomposition in the other two coordinates. The lack of a vacuum
region in LIGKA cannot explain the crucial difference: PENN identifies mode
conversion in the plasma centre as the most important damping mechanism.
However, in order to further validate LIGKA with experimental data, LIGKA
is about to be extended with a vacuum region.
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Fig. 14. Benchmark of CAS3D-K and LIGKA against analytical formulae

4.3.2 Continuum damping at the edge

When comparing with experimental data it has to be kept in mind that there
is a relatively high uncertainty in the measured edge density profiles. There-
fore it cannot be distinguished reliably if the gap is open or closed.
If the density at the edge is slightly changed within the experimental error
bars (see dashed line in figure 13) the gap is closed at the edge and the mode
hits the continuum. The eigenfunction is shown in figure 15. On can see a
coupling to the KAW wave very close to the edge. The damping rate increases
significantly to 0.7%. That means that damping at the plasma edge is found
to be the dominant damping mechanism, in agreement with reference [22].
The maximum value of k⊥%i ≈ 0.28. Thererfore the FLR expansion is justified
here.
It has to be kept in mind that LIGKA is a fixed boundary code with no vac-
uum region. Therefore some important physics at the plasma-vacuum bound-
ary might be missed. LIGKA has to be improved in this respect in order to
determine if the discrepancy to other codes and the experiment is due this
simplifiction at the edge.
Furthermore, the present version of LIGKA cannot deal with X-point config-
urations. Since there is a relatively strong dependence on the edge details it
is expected that the damping rates change quantitatively due to a stronger
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coupling to neighbouring poloidal harmonics near the plasma edge resulting
most probably in rather higher than lower damping rates. However, it will
not change the qualitative result that the main damping comes from the edge
region and not from mode conversion in the plasma centre.

Fig. 15. Eigenfunction for the closed gap case (left) and magnified edge region (right)

4.3.3 Radiative Damping

The last damping mechanism investigated is radiative damping. It is controlled
by the non-ideal parameter λ

λ =
4mS%i

rmε̂3/2

√
3

4
+

Te

Ti
(19)

with S = rq′(r)/q(r) being the magnetic shear, ε̂ = 5rm/2R0 and rm the radial
location of the gap surface. If λ increases the coupling of the TAE mode and
the KAW increases and short wavelength features of the KAW ’tunnel’ into
the TAE. This tunnelling takes place at the location of the gap, where the
TAE is close to the continuum.
For benchmarking, an equilibrium based on the JET discharge #38573@5.0s
with the profiles described in reference [22] is chosen. By changing the ion
temperature, the ion gyroradius is varied from 1mm up to 5.5mm. The re-
sulting damping rate is plotted in figure 16. For comparison the damping rate
calculated with a simple code based on the reduced kinetic model (RKM) [22]
are also shown. For this test case the equilibrium was simplified to a shifted-
circle geometry.
Very good agreement was found, despite the fact that the RKM model also
includes a simple model for collisional damping which is missing in LIGKA.
This is in agreement with the estimate that collisional damping gives only
relatively small correction in this case.
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Three corresponding eigenfunctions are shown in figures 16 and 17 for the
gyroradii % = 1mm, 3mm (experimental case) and 5.5mm. It can be seen how
the KAW tunnels with increasing gyroradius more and more into the TAE
near the gap location. A similar behaviour, however less strong, was found
with the RKM code. This fact may explain the slightly stronger dependence
of the damping rate on the gyroradius found by LIGKA.
For the mode in figure 17, the maximum value of k⊥%i ≈ 0.2. Thus also here
the FLR expansion is well justified.
In addition to the previous section, it should be mentioned that in this case
the gap is open. Both codes were used to calculate a damping rate also for
a closed gap situation by slightly changing the density profile at the edge.
The RKM code found a considerable higher damping rate 0.5%, [22] and also
LIGKA found 0.72%. Again, in agreement with previous statements, damping
at the edge is found to be dominant for a closed gap.
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(right)
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5 Conclusions

After numerous improvements and extensions since the first version in 2003,
LIGKA is now benchmarked against analytical results and other numerical
codes in the most important limits and for all key-physics elements: the ideal-
MHD limit, the reduced kinetic model, fast particle drive, Landau damping,
continuum damping and radiative damping.
The benchmarks with PENN were not successful so far. This could have the
following reasons: unlike PENN, LIGKA is no antenna-code with a proper
vacuum region. Therefore LIGKA might miss some important phyiscs at the
plasma edge. Furthermore, LIGKA looks for eigenfunctions of a certain plasma
configuration whereas PENN has driven modes as solutions. It has to be in-
vestigated if these two different concepts contribute to the difference in the
results. An extension of LIGKA into a proper antenna code will help to clarify
this point.
However, for open gap cases where edge effects are not important, LIGKA
cannot find any mode conversion in the plasma centre. This result is in agree-
ment with analytical estimates, CASTOR-K and the ’reduced kinetic model’
code and therefore contradicts the PENN results. As pointed out at the end
of chapter 4.3.1, LIGKA’s physics model is better adopted to shear Alfvén
problems and therefore its equations are easier to solve numerically. Since also
good agreement with analytical and simple kinetic models in the appropriate
limits is found, LIGKA’s results should be more robust and reliable for this
particular problem.
As occasionally indicated before, there are numerous improvements of LIGKA
on the way: the most important improvements will be an extension to the
low-frequency-sound-wave regime, an extension for the vacuum region and a
parallel matrix solver to allow for more poloidal harmonics as required for
medium and high-n modes.
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