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Abstract

We present an arbitrary Lagrangian-Eulerian (ALE) discretization efetjuations of
resistive magnetohydrodynamics (MHD) on unstructured hexaheddsl J he method is
formulated using an operator-split approach with three distinct phalsestomagnetic dif-
fusion, Lagrangian motigrandEulerian advectionThe resistive magnetic dynamo equa-
tion is discretized using a compatible mixed finite element method with a 2nd order acc
rate implicit time differencing scheme which preserves the divergeneenfiture of the
magnetic field. At each discrete time step, electromagnetic force and heataercecu-
lated and coupled to the hydrodynamic equations to compute the Lagrangian oidtie
conducting materials. By virtue of the compatible discretization method used,idué- in
ants of Lagrangian MHD motion are preserved in a discrete sense. Wadmagnangian
motion of the mesh causes significant distortion, that distortion is correctedcavrélax-
ation of the mesh, followed by a 2nd order monotonic remap of the electrotiagtete
variables. The remap is equivalent to Eulerian advection of the magnetiddhsity with
a fictitious mesh relaxation velocity. The magnetic advection is performed usiioged
variant of constrained transport (CT) that is valid for unstructureghedral grids with
arbitrary mesh velocities. The advection method maintains the divergerecedtare of
the magnetic field and is second order accurate in regions where the sauidficiently
smooth. For regions in which the magnetic field is discontinuous (e.g. MHDkshdtize
method is limited using a novel variant of algebraic flux correction (AFC) tvigdocal
extremum diminishing (LED) and divergence preserving. Finally, we yedfch stage of
the discretization via a set of numerical experiments.

Key words: Magnetohydrodynamics, Resistive MHD, Electromagnetic diffusion, Mixed
finite element methods] (Curl) andH (Div) - conforming methods, Discrete differential
forms, Vector finite elements, Operator-splitting, Electromagnetic advectmmst@ined
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1 Introduction

We are interested in the simulation of magnetohydrodynaweats and electrome-
chanical devices in three dimensions. Our primary goal israerical method that
solves, in a self-consistent manner, the equations ofrel@etgnetics (primarily
statics and diffusion), heat transfer (primarily condoig}i and non-linear mechan-
ics (motion, elastic-plastic deformation, and mechanccaitact). Example appli-
cations for these simulations include magnetic flux congoesgenerators, metal
forming, and electromagnetic launchers. In this paper, @gei$ on the numeri-
cal discretization of electromagnetic diffusion in an &doy Lagrangian-Eulerian
(ALE) fashion [1] for the purposes of computidg< B forces and’- E resistive en-
ergy losses for coupling to hydrodynamic and thermal catoahs in an operator
split fashion. All computational results were obtained bgarporating ALE elec-
tromagnetics into a well-known ALE hydrodynamic code, AICE3vhich has been
successfully used in a wide variety of computational prg/ajgplications including
[2], [3].[4], [5], [6].[7], and [8]. In this paper, the disetization of the hydrodynam-
ics is not discussed in detalil.

In multiphysics ALE hydrodynamic codes, an operator sphtimod is typically
employed where separate physics packages are run sedjyeani update their
variables in the Lagrangian frame. When the Lagrange mofidineomesh causes
significant mesh distortion, that distortion is correctdathvan equipotential relax-
ation of the mesh, followed by a 2nd order monotonic remapedd fuantities.
This remap is equivalent to advection of field quantitie®tigh the mesh with a
fictitious effective velocity determined by the amount ofgheelaxation. In our
proposed ALE formulation of MHD, we will employ an operatglit method with
three distinct steps:

e Electromagnetic Diffusior Solve the equations of electromagnetic diffusion in
the Lagrangian frame at one discrete time step for fixed nadder
e Lagrangian Motion— Move mesh nodes according do< B forces assuming a

d8 = 0 “frozen in flux” condition.

e Eulerian Advectior- Only required if mesh is relaxed, advect (or transport)-mag
netic state variables to new mesh while preserving the glarere-free nature of
the magnetic flux density.

While much progress has been made in obtaining numericalitidges for coupled
advection / diffusion of magnetic fields [9], [10], there aeveral key obstacles to
be overcome for a fully three dimensional ALE finite elemanpiementation on
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general unstructured hexahedral grids. One issue is tha toeeumerically pre-
serve the divergence-free constraint of the magnetic flmsitie B [11]. Failure to
reproduce this fundamental physical property in any nucaédiscretization can
lead to the nonphysical acceleration of conducting mdtedae to the presence of
fictitious magnetic charge. Methods for maintaining a djegrice-free velocity field
for incompressible flow, such as Lagrange multiplier caists, penalty methods,
elliptic projection (divergence cleaning), and relaxatlmased elliptic projection
(divergence damping), can in principle be applied to magrfetlds. However,
more efficient and elegant approaches are based on the &Ct 1B = 0 is not ar-
bitrary, but is in fact a consequence of Ampere’s law. If Amgxelaw is discretized
in a particular manner, the - B = 0 is satisfied exactly without any additional
effort, and this is the basis of constrained transport nutH®2], [13]. Our pro-
posed algebraic constrained transport discussed in &€egtlois a generalization
of constrained transport for unstructured ALE simulations

For our applications, an additional issue is the need tadkpre MHD shock fronts
without introducing spurious oscillations in the magnéeéd. Various flux limiters
have been advocated for fluid dynamics, with the goal of iimginon-physical os-
cillations without introducing excessive artificial diffion. These flux limiters can
in principle be applied to magnetic fields, but care must kerido not destroy the
above mentioned divergence constraints. Some proposémdsetnd comparisons
of various approaches can be found in [14], [15], [16], [ITB], [18], [19], [20].
Our proposed algebraic flux correction discussed in Seé&tidimits an interme-
diate edge-based voltage in a manner that enforces a locahexm diminishing
property on the magnetic flux. This algebraic flux correctsoan intermediate step
in the algebraic constrained transport algorithm and héhd&-= 0 is still satisfied
exactly.

In this paper we review magnetic diffusion in the Lagrandgrame of a deforming
region, and we argue that a mixed finite element method ermgdy(Curl) and
H (Div) basis functions [21] is ideally suited for discretizatioitlois partial dif-
ferential equation. The algebraic constrained transpethod and algebraic flux
limiter are built upon the same topological curl operatat il used in the discrete
diffusion equation. Computational experiments are peréatto confirm the sec-
ond order convergence of the method for smooth fields, anddatdy the ability
to conserve energy and preserve discontinuities for sly@igpcked problems.

2 Electromagnetic Diffusion

The first step in our three part ALE formulation is to solve ¢ggiations of electro-
magnetic diffusion. We begin with a discussion of the refévequations without
material motion, then we discuss electromagnetic diffusromoving materials.
We assume a charge-free three dimensional dofawith a surface boundarly



and an outwardly directed surface normal directioMfie domainQ consists of
a set of materials, each specified by the values of their magoperties which
define their equation of state.

Here we write Maxwell's equations in terms BfandB,

—

EE:DXL—JB—OE—JS (1)

0B L
—=—[0xE 2
3% =0 (2)
0.-eE=0 (3)
0-B=0 (4)

with the constitutive relations

D=¢E, B=pH (5)

For our purposes, the magnetic permeabilitghe electric permittivitye, and the
electric conductivityo are free to be tensor valued functions of time and position.
The termJs is an independent current source included for generalityraay not
exist for all problems.

Consider solving Maxwell’s equations within a good condudtee following con-
dition holds

—

oE .
SE < ok (6)

and under this condition it is reasonable to neglect thelaligment current term
altogether. Neglecting displacement current results ffuglon rather than elec-
tromagnetic waves, and hence the numerical discretizadiom longer required
to resolve electromagnetic waves. Many problems of intereslve a combina-
tion of good conductors and air/vacuum regions, and clgéjlys not valid in air.
However, for our specific applications electromagneticegaw the air are not im-
portant, and the displacement current term is still negtbatesulting in quasi-static
magnetic fields in the air.

Both the electric field intensiti and the magnetic flux densiB/can be expressed
in terms of potentials

E=—Op— — (7)
B=0OxA (8)

where@is a scalar potential anBl is a vector potential. Note that in (7), we see a
specific decomposition of the total electric field

E’ _ E‘irr + E’ind (9)



whereE™ = —[gis the irrotational component & andEnd = —%’3 is the induced
eddy current component & due to a time varying magnetic vector potential.

Using the potentials from (7) and (8), we can rewrite Ampelav (1) as

—

Ox -OxA=-0——aolep+J 10

X “ X at (p+ S ( )
Note that (10) is a second order vector diffusion equatiarttie vector potential
A. At present the scalar potentigis not specified, so in order to reduce ambiguity
we enforce the gauge condition

0-0A=0 (11)

This gauge is equivalent to the Coulomb gatﬁge& = 0 in regions where is
constant, but it is different in regions wheasas inhomogeneous. Taking the diver-
gence of (10),enforcing the gauge condition of (11), andragsg the independent
current is divergence-free, yields

0.-00p=0 (12)

which is a Poisson equation for the scalar potemgidliherefore, ifp satisfies Pois-
son’s equation, then the gauge conditionfoils also satisfied for all time if it is
satisfied initially.

Equations (12) and (10) form a complete system for detenygithe scalar poten-
tial @ and the vector potenti&l in the domairQ for all time given a collection of
voltage and current sources (e.g. #e potential formulation of [22]). Alterna-
tively, we can formulate a system with the vector state i in place ofA by
incorporating Faraday'’s law (2) and taking into account @ecomposition of the
electric field (9) to write (10) as a set of two coupled equadio

I
oE™M =[x ﬁB+0D(p—JS (13)
B . .

%—t:—DxE'”d (14)

The two formulations (10) and (13)-(14) are equivalent,frener is preferred for
analytical analysis while the latter is more amenable fonarical implementation
of advection, as discussed in more detail in Section 5.



3 Dynamo Equation

We now consider electromagnetic diffusion in moving maieriWe first consider
the Eulerian case in which the material positions and fieldmanents are defined
with respect to the fixed laboratory coordinate system.x et {x;,x2,x3} € £
denote the label of a point in Euclidean spacehere the motion takes place. The
coordinate system o is called thespatialor laboratorysystem. Let each pointin
the material be labeled witk = {X1,X2,X3} € ¢ . The coordinate system of is
the material system. We assume there exists a time dependent, bijectipping
which relates these two different labels of the same point,

X=X(X,t), X =X(Xt) (15)

While not necessary, it is common to have these two coordsystiems be equal
at timet = 0, the undeformed state. Let a vector field defined with resjoethe
laboratory frame be denoted with a prime, é§(x,t), and the same vector field
defined with respect to the material frame be unprimed FgX,t). In an Eulerian
representation, the fields and operators of a partial éiffeasl equation (PDE) are
functions of the fixed laboratory frame; in a Lagrangian espntation the fields
and operators of a PDE are functions of the moving mateiaahé.

Faraday’s law (2) can can be written in integral form as

3/ I§’-daf:—74 E . dlf
dt Jo) r)

where the surfac@(t) is moving with the material. The material derivati% of
any flux-type quantityF is defined as

=/
E/ If’.da“:/ d_F.da/
dt Jaq) Q) dt

and, as shown in [23] and [24], a careful derivation gives

dlfl_alf/ = =/ = =7
E—E—DXV,XF +V(O-F) (16)

where the velocity of a material poiiton the surface of integration ¥ = dx/dt.
This material derivative agrees with the so-called totaivdéve

dF’  oF’

P — . r =/
. P +V - (0®F)

only for the special case of rectilinear motion. Combinin@)(&ith (13)-(14) yields



the dynamo equation

B - 1l o = 5
H:_D><a1D><B’+D><V><B’ (17)

where the source terndg andoicp have been discarded for clarity. The first term
on the right is diffusion, the second term is advection, dr&dratio of these is the
magnetic Reynolds numbBtRe= "7'- wherelL is the characteristic size and= %1

is the magnetic diffusivity. For problems in whidhRe~ 1 and the velocity is such

that advection and diffusion have opposite signs, we haaeemjilibrium"a—*f' ~0
and time integration of the dynamo equation requires speai@. However, for
advection or diffusion dominated problems it is acceptadlemploy an operator-
splitting of the equation. Let the dynamo equation be represi as

—~ =Lo(B) +Ly(B)

where the operatdrs denotes electromagnetic diffusion and the operb{ode-
notes magnetic advection and consider the two separaté@ugia

0Bg

ot~ o(Bo)
0B
LBy

Let s denote the electromagnetic diffusion time integrationrafme that takes the
field By from a discrete time stapto time stem+ 1, and letsy denote the magnetic
advection time integration operator that talggrom a discrete time stepto time
n-+ 1. The generic operator splitting of the dynamo equatiohés tgiven by the
composition

I§n+1 = [Sg o8y B"

For this simple operator splitting the time accuracyig\t), but numerous alter-
natives exist that ar@(At?) or better. The advantage of operator splitting is that
different time integration can be used fqy and.ss,. For example several small ex-
plicit steps can be used for the advection operagipwhile a single large implicit
step is used for the diffusion calculationgf, a process referred to as sub-cycling.
Another key advantage is in terms of software; it is reldgigtraight forward to add
an additional physics “package” to a multi-physics codéé multi-physics code
is based on operator splitting. This is the case for ALE3Dt @proach for the
dynamo equation is to perform diffusion in the Lagrangiastesn using implicit
time integration, followed by updating the momentum ecuratn the Lagrangian
system explicitly, followed by an optional mesh relaxataom advection step if the
mesh becomes too distorted.



3.1 Material Frame

If Ais a vector in the material coordinate systemandd is the same vector in the
laboratory systenz, then the components of these vectors are related by

ai— aXi j
~oxi

However, electromagnetic fields and fluxes do not simplystiaim as vectors. As
shown in [23] and [24], voltage and flux are invariants witBgect to the deforma-
tion transformation

Material (Lagrangian  Laboratory (Eulerian)
E.dx = (E'+VxB)-d¥ (18)
B-dd = B -da

Differential arc length and surface area elements transtarcording to

dx=JTd¥ (19)
da= |39 1dd (20)
where our definition of the Jacobian matrixJis= 0X;/0x;. As a consequence, the

electric field intensities and magnetic flux densities tfams in a dual manner in
order to maintain the invariance property of (18)

E=J"YE'+V xB) (21)
— 1 —
B= mJT B (22)

In the material system the dynamo equation becomes

0B 1_ 4

—=-0Ox—0xB (23)

ot ou
where it is understood that ti&url operator is with respect to the material coordi-
nate system. Thus the form of the diffusion equation is ilavdrto material motion
when the fields and operators are defined in the material frearehe special case

of a perfectly conducting material this equation gi@s: 0, the frozen-in-flux
theorem. The operator splitting of the dynamo equationiisqudarly simple in the
material frame: the first step is diffusion of the fields, teeand step isﬁto move the
mesh nodes according to the resultihg B force while maintainind® = 0 dur-
ing the mesh motion. When a mixé¢{Curl) - H(Div) discretization is used for
the equations, this latter step means that the magnetieeegf-freedom, which
represent the net fluxes through each face of the mesh, astaobn



3.2 Mixed Variational Formulation and Time Discretization

Our particular mixed variational formulation is derivecrdn a combination of
methods originally presented in [25] and [22]. Our goal i©bdain a numerical
formulation where the primary discrete field is the magnitix density as found
in the B field formulation of [25] and where the discrete time intéigna is per-
formed using a generalized Crank-Nicolson method as fourtde@-¢ potential
formulation of [22]. The advantage of ttformulation of [25] becomes apparent
during the advection phase of the ALE formulation, as mdgrfktx is the best
electromagnetic quantity to use for magnetic transpori [PBe advantages of the
A-@potential formulation of [22] are that it can be up to 2nd eraecurate in time,
and voltage sources can be explicitly added to a problem bygifying them as
essential boundary conditions on the additional ellipfEP making this method
well suited for coupling to an external RLC circuit model.

We begin by decomposing the electric field in Ampere’s lawgdgording to (9).
Now we multiply Ampere’s law (1) by a 1-form test functiok® € H(Curl) and

integrate over the three dimensional problem donfaito obtain the variational
form

/axﬁg.\m dQ:/o(E‘”+Ei“d)-wld9+/i.wld9 (24)
Q Q Q

Now we perform integration by parts on (24), apply the Gauwssrgence theorem
and move the resulting surface integral term to the rightisde to obtain

/}ﬁ-ﬁxwldQ: (25)
ol

/o(E'" +E'”d)-W1dQ+/ Js-wldQ+7§ﬁ>< l—JB-WldF
Q Q r

Now we assume that the fiel@sandB are known at discrete time intervals denoted
by the subscript integer. We apply a generalized trapezoidal approximation for the
time derivative of the magnetic field such that

. _ 0B 0B
Bn+1: Bn+(1—G)AtE|n+GAtE|n+1 (26)

The averaging parameterdetermines the nature of the numerical time integration
such that
0 Explicit, 1st Order Accurate Forward Euler
a =4 1/2 Implicit, 2nd Order Accurate Crank Nicolson

1 Implicit, 1st Order Accurate Backward Euler



Applying this discretization to Faraday’s law (2), we obtai
Byt = Bn — A0 x ((1—0()E§]”d+aﬁ,inrf1) 27)

Now we substitutd on the left hand side of (25) with the expressionBar 1 from
(27), moving all quantities at time stepto the right hand side of the equation to
obtain

1o g = o
O(At/ 20 ENd O % WA dQ = (28)

1
uBanwldQ (1— O(At/ “OxEM.OxW!dQ
Q

o(E™, + ENd ) WL dQ—/J .wldg—fﬁx—s.wldr
- | oEl+EN) [ % i

where we have added the time step subseriptl to the fieldsE™ andE™ on the
right hand side. We introduce a secondary variablelefined as

B = Bn— (1— a)AtD x ENd (29)
Now we rewrite (28) in terms of our new secondary varid%lwhile making the
substitutionE™ = —C@, and after rearranging terms we obtain
/ oEIN, Wlda + / aAtD) x ENY -0 x Wi dQ = (30)
Q

1=
LB &) x W dQ+/oD<pn+1 W dQ — /Js WL dQ
Q

—%ﬁ L5t dr
T

The natural and essential boundary conditions for (30) are

Natural Ax iB = 0 “Neumanf
iy (31)
Essentialfi x ENY = 0 “Dirichlet”

In other words, the tangential magnetic fi¢ldis the natural boundary condition
while the tangential induced electric fidld"? is the essential boundary condition.
Recall that theessentiaboundary condition is a constraint that is enforced manu-
ally, whereas thaatural boundary condition is satisfied in the variational (weak)
sense. In general, the inhomogeneous versions of thesedawadary conditions
require vector valued functiorgy (') andgp (") such that

10



Note that the variational formulation of (30) is incomplelge to the presence of
the @1 term on the right hand side. In order to fully define the probleve must
add an additional variational equation to define the scadgerial. To do this, we
multiply (12) by a scalar 0-form test functiahi® € H(Grad) and integrate over the
domainQ

/(i-oicp)wodsz:o
Q

and employ Green’s first scalar identity to obtain
/oiq)- FWO dQ = }[ A oCWO dr (32)
Q r

for all test functionW®. For this variational equation, theatural and essential
boundary conditions are

Natural A-o0¢ = 0 “Neumanf
(33)
Essential @ = 0 “Dirichlet”

In other words, the normal component of the conduction cuw&™ is the natural
boundary condition while the surface scalar potential @tage)@is the essential
boundary condition. In general, the inhomogeneous vessibthese two boundary
conditions require scalar valued functiapg(l") andgp(I) such that

f- cﬁ(p: ononly
¢=gponlp

3.3 Mixed Finite Element Discretization

We assume the three dimensional dom@ihas been partitioned into a set of dis-
crete hexahedral elemerts the union of which forms the finite element me3p
Furthermore, we assume the surface bound@amas been partitioned into the sets
N andlp, denoting surfaces to which either a NeumanN@&t(ral) or Dirichlet
(Essentia) boundary condition is applied.

We will discretize the variational form of the coupled matineynamo equations
of (30) and (32) using a mixed finite element method. In thetextrof Galerkin
approximations, the choice of the finite element space agsucial role in the

11



stability and convergence of the discretization. For theecaf Maxwell's equa-
tions, mixed finite element methods which ud4€Curl) andH (Div) conforming
spaces to model the electric field intensities and magnebcdensities respec-
tively are preferred over traditional nodal vector spagesesthey eliminate spuri-
ous modes in eigenvalue computations and they prevenidigitharge build-up
in time-dependent computations. Furthermore, as show27h fheH (Curl) and
H (Div) conforming methods satisfy the transformation propedig®1) and (22)
in a discrete sense, making them well suited for an ALE treatnof MHD. For
further information regarding the use @ Curl) andH (Div) finite elements (aka
vector finite elements, “edge” and “face” elements, disctifferential forms) for
Maxwell's equations, the reader is referred to [22], [28F]} [29], [30], [25] [31].

In our proposed ALE formulation the scalar potentpavill be discretized on el-
ement nodes (i.e. a discrete 0-form field of polynomial degre- 1), the electric
field will be discretized on element edges (i.e. a discref@ i field of polynomial
degreep = 1) and the magnetic flux densiB/will be discretized on element faces
(i.e. a discrete 2-form field of polynomial degrpe= 1). For a hexahedral element
in the Lagrangian frame we have

8

(p(x,t)z_zvi(t)vv,o(X), WO € H(Grad) (34)
E(X,t)z_iq(t)wl(i), WL e H(Curl) (35)
é(X,t)zibi(t)v*viz(X), W2 € H(Div) (36)

where the integer superscript on the basis function is tgesgeof the discrete dif-
ferential form. For the case of (34), the degrees of freeddmare time dependent
voltages at element nodes and the basis functions areassitfror the case of (35),
the degrees of freedom(t) are time dependent induced voltages along element
edges and the basis functions have units of inverse dist&ntally, for the case

of (36), the degrees of freedobj(t) are time dependent magnetic fluxes through
element faces and the basis functions have units of inveese a

We employ the finite element library FEMSTER [32], [22] fomoputation of the
local “mass”, “stiffness”, and “derivative” matrices, wigey denotes an arbitrary
symmetric tensor function of time and space (for materiastitutive relations)

and the superscript= 0, 1, 2,3 denotes the degree of the form

12



M ()= [ Wi W o (37)

S'(y)j = [ vaw-awf do (38)

D'+ (y); :/dev\{' .v\/j|+1 dQ (39)

Note that thed operator denoteGradient Curl, or Divergencefor | =0,1,2 re-
spectively. The “mass” matricéd and the “stiffness” matriceS are square and

map |-forms tol-forms, the “derivative” matrice® are rectangular and mdp
forms to(l 4 1)-forms. It can be shown that

D|(|+1) -M |+1K|(|+1) (40)
q_ (K|(|+1))T WIREDUCES (41)
(42)

whereK (11 is a “topological derivative” matrix. This matrix is the digtization
of the exterior derivative operatdrfrom differential geometndW =W+ This
matrix depends upon the mesh connectivity, but is indepsnofethe nodal coor-
dinates. It does not involve an integral over the elememt jteaioes not involve any
material properties. While seemingly abstract, it is enarsipvaluable in practice.
Given anl-form quantityX with basis function expansion

C |
X = i;XN\/, : (43)
and an(l + 1)-form quantityY with basis function expansion
Y = iYiVVi(Hl), (44)
i=

the exterior derivativeGradient Curl, Divergencefor | = 0,1,2 respectively) is
given by

y =K'y, (45)
It can be shown that

Kk =0 (46)

KZ2k12=0 (47)

which are the discrete versionsaidW') = 0. In terms of standard vector calculus,
these matrix relations correspond to the identifies Cf = 0 andCl- O x E =0,
respectively. These identities are satisfied in the dis@ense, exactly (to machine
precision), for any mesh and any order basis function. WHHMBTER supports
arbitrary order elements, basis functions, and quadmstardy linear basis func-
tions will be employed here.

13



Using the matrix notation previously defined, we can noweniite fully discrete
formulation of the magnetic dynamo equation in the Lagrandiame as

SPvp1=¢° (48)
(M*(0)+aats'(u ™)) ey = (D 1) Tbn+ D (0)vnia — 1 —g'  (49)
bni1= Bn —0oAtK 129r1+1 (50)

E)n+1 = bn+1 - (1 - G>AtK 129r1+1 (51)

wherev is an array consisting of the time dependent voltage degrefrsedom
from the scalar potential solve of (34) for every node in tresme™ is an array
consisting of the time dependent induced voltage degreégefom of (35) for
every edge in the meshb,is an array consisting of the time dependent magnetic
flux degrees of freedom of (36) for every face in the mdslis a volume current
source term and! is a surface source term. Note that the face based aréhe
discrete analog of the secondary variable we introduce@9), (s the only state
variable required to be known at tinme This is a critical feature of our discretiza-
tion; it means the only state variable that needs to be reath@pring our Eulerian
advection phase in Section 5 is this face based time avefaged

Note that in (49) the rectangular derivative matriggé(u—1) andD% (o) are dis-
crete versions of th€url and Gradient defined with respect to the Lagrangian
frame (i.e. they have metric information encoded in themiby& of the mass ma-
trix). As such, they will change as the mesh is movedB forces. Furthermore,
the discrete divergence constraints on the fields are giyen b

(D%Y(0))' e=0 (52)
K#b=0 (53)

and from the identities (46) and (47) these constraintsmapdicitly satisfied for all
time, assuming the initial conditions and the source tenasiavergence free.

4 Lagrangian Motion

In this section we review methods for coupling the electrgnsic force and heat
terms to the equations of Lagrangian motion. This phaseeo€#thculation can be
viewed as the Lagrangian treatment of the advection opdratdf the magnetic dy-

namo equation. Given an electromagnetic force, we move #ghmodes accord-
ing to this force, keeping the magnetic degrees-of-freeffane fluxes) constant.
The new node locations affect the basis functions, so whéentagnetic degrees-
of-freedom are constant the magnetic field is in fact prgpadvected. We begin
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with the general continuum equation of motion derived froewitbn’s second law.
In a co-moving (or Lagrangian) reference frame, this is igilvg

%
P ot?

- —
—0- S+F (54)

wherep is the material mass densityis the displacement vectog> is the Cauchy
stress tensor, an is an independent volumetric body force density. The varia-
tional form of (54) is constructed by multiplying by a testt@ w and integrating
over the entire domaif

5 . Lo L
ﬁ/QpU-WdQ_/Q<D- S)-WdQJr/QF-WdQ (55)

If the test vectow is considered to have units of distance, then each term in the
above equation has units of work; hence this variationahotis often referred

to as the method of virtual work. For a valid variational neetheach component

of the test vectow; must be a fully continuous function, i.e; € H(Grad), and

the stress tensor must satisfy certain symmetry conditionsgration by parts is
employed to yield

2 —> — o -
O—Z/pU-WdQ:/(S-ﬁ)-WdF—/ S ®W)dQ+/F-WdQ (56)
ot¢ Jo r Q Q

wherenis the outward normal of the surfate The common boundary conditions
are thedisplacemen(Dirichlet, essential) conditiod = d on T and thetraction
(Neumann, natural) conditiors A=t onT. Furthermore, we decompose the
stress tensor into a sum of deviatoric and hydrostatic coreps such that

Sj = Tj — Pg; (57)

whereP is the hydrostatic pressure defined to be the mean of theijplerstresses
P= %Si, andgjj is the Kronecker delta. The deviatoric stress compormgniare
primarily determined by a material’s constitutive modelslethe hydrostatic com-
ponents are determined by the material’s equation of SED&S], i.e. a material’s
pressure as a function of energy or temperature.

4.1 Computation of Electromagnetic Force

There are multiple options for coupling the electromagnédirce to the elastic
equation of motion (54). The conceptually simplest apphnciado computeF =
J x B and use this as the body force in (55). As shown in [23], theB body
force density is equivalent to the divergence of a Maxwedst tensor plus a term
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involving the divergence d8 such that

JxB=-B-(OB)-0O(:)=0-T —B(0-B)
Under the good conductor approximation of (6) (i.e. igngremergy stored in dis-
placement current), the Maxwell stress tensor (MST) isrglwe

1 1
Tij = }—1 (BiBj - EéijBkBk) (58)

Provided thafl-B=0 (implying no forces due to the presence of magnetic charge)
then thel x B body force and the MST approach will yield identical accafiens of

a conducting body. It is interesting to point out the siniilas between the Cauchy
stress tensor decomposition of (57) and the Maxwell stressor of (58). The
MST consists of a deviatoric componef[Bi Bj and a pressure component consist-

ing of the principle Maxwell stress&lséij BxBk. For MHD problems, the mean of
the principle Maxwell stress terms is equivalent to the nmigrpressur%|l§|2.
The deviatoric components of the MST can add an effectivegtmeéic strength”
to materials that might otherwise have no strength. Thisgmise to the physi-
cal phenomena of shear Alfven waves, an example of whichvengin Section 6.
From a discretization standpoint it is very straightfordvém implement the MST
approach. We simply evaluate the components of (58) at elequadrature points
in the Lagrangian frame at the discrete time lavell via the face based represen-
tation of (36) and add these values to the corresponding cnem of the Cauchy
stress tensor in the discretization of (56). This is comsistith the time center-
ing of the hydrodynamic variables in ALE3D, where the Caudingss divergence
terms (which are used to compute accelerations) are knothe discrete time step
n-+ 1, since stress rates are integrated at%.

4.2 Computation of Resistive Energy Loss

Due to the resistive nature of the coupled magnetic dynamatems of (13) and
(14), the energy stored in the magnetic fields is subjectdsipiation due to Joule
heating. To account for this energy loss, we need to comprgsistive energy loss
term and couple this to the equation of state describing aienal models. This
can be accomplished by computing the resistive energy kessity

e =J-E=0E-E =0(E"—Dg)- (E™ - Do) (59)

Again, from a discretization standpoint it is very strafghivard to implement the
resistive energy loss term. We simply evaluate the term@f4belement centroids
at the discrete time level+ 1 via the edge based representation of (35) and the
node based representation of (34) and add these valuestmgxonal energies at
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time n+ 1, which is consistent with the time centering of energy dgngriables
in ALE3D.

5 Eulerian Advection

The ALE3D code performs an optional equipotential relaatf the mesh. This
is important for problems with gross deformation of the mésbrevents the mesh
from becoming tangled. If relaxation is performed, field&roed on the “old” mesh
must be remapped to the “new” mesh. This remapping is eaqnvéd Eulerian ad-
vection, but with a fictitious mesh veloci§,. It is interesting to note that it is
possible to implement a pure Eulerian formulation as a Laggastep followed
by a complete remap step in which the mesh snaps back to gmalriconfigu-
ration at every time step. We consider only new grids whigh“aearby” in the
sense that only small perturbations of the grid are allowed the mesh nodes
should not travel farther than one mesh element in any oagagbn step). This is
known as the continuous remap approximation (CRA). This iimtrast to gen-
eral remapping methods (a.k.a. interpolation methods[3&J¢ whose goal is to
remap quantities between two arbitrary grids. Under the CRAnbdes of the old
mesh are displaced to new locations; the topology (or cdivityy of the mesh
does not change. Furthermore we restrict the relaxationegsoto interior mesh
nodes, keeping all boundary nodes fixed. A key point is thatillergence of the
magnetic flux density should be preserved during the adwegtiocess, this is re-
ferred to as constrained transport or constrained intatjpol. The definition of the
Maxwell stress tensor assumes a zero divergence field,ls® @dvection step does
not preserve divergence then some additional post proxegsiojection, filtering)
would be required to prohibit unlimited growth of magnetiomopoles and the
resulting non-physical forces.

5.1 Constrained Transport of Magnetic Flux

Once again we assume the frozen flux condition (the diffusibthe fields has
already been computed) and now our goal is to compute thefateange of the
magnetic flux density due to advective “transport” causethieymesh motion. In
essence, we are holding the magnetic figlfixed in space and letting the mesh
relax around it; this is opposite in sense to advecting a ®etgfield across a fixed
Eulerian mesh (as is the case with the original CT method dj[The change in
magnetic flux density due to mesh relaxation is therefore

B=—0xVnxB (60)

IS JISY
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wherevy, denotes the mesh velocity. It is imperative that this preceaintain the
solenoidal nature of thB field by satisfying the constraint

-

U-B=0.

Now consider an arbitrarily oriented surfaSwiith differential surface aredd. We
integrate (60) over the surfa&

/—|§-da= —/ﬁ « (Vm x B) - d3
sot S
Now we apply Stokes’ theorem to obtain

O = f(mx8) ox (62)

where® denotes total magnetic flux through the surf&andC represents the
boundary of the surfac® with differential arc lengthdX. Equation (61) states that
a voltage in a circuit loog is induced by a time rate of change of flux through this
loop due to the motion of the mesh across the “frozerBifield.

Now suppose the surfa& in the presence of a fixed backgrouBdield, moves
arbitrarily (including distortion, stretching, re-origtion, etc ...) in a time\ty,.
We can approximate the time derivative for the magnetic feirgia simple finite
difference

oD pnew_ q)old

ot Aty
where®?'d js the flux through the original surfa@at timet and®"Vis the flux
through the surfac8 at timet + At,,. We know from a Taylor series analysis that
this simple finite difference will be second order accurat%% is known at time

t+ %Atm. This provides us with a numerical method for computing tee fAux

DIV, Ol —Atmf(— «B).dx — @od —f(ux B).dx  (62)
c Atm C

wherel = At is the displacement of the surfaBeStated another way, we can

approximate the flux through the new surface by “measurihg’voltage in the

closed circuit loof. This approximation is most accurate if the location of tigol

C is halfway between the old face and the new face. See Figuredldepiction of

this.

5.2 Algebraic Constrained Transport on 3D Unstructured Grid

Let X°'d denote the positions of the mesh nodes after a Lagrangiangiep and
let X"*" denote the mesh nodes after one mesh relaxation step. We tiefinodall
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Fig. 1. Schematic diagram depicting the relationship between magnetic flugthtow
arbitrary faces and the corresponding time rate of change of magnetic flux.

displacement as

0= xnew_ gold (63)
Furthermore, we define an intermediate nodal posititfias
id _ old , 1

Since the topology (or connectivity) of a mesh is constantafbtime, there is a
one to one correspondence between mesh entities such as autyéaces at the
old, intermediate and new locations. This allows us to defmatermediate mesh
with unique edges and faces, topologically identical todlldeand new faces. These
intermediate quantities differ geometrically from thdill and new counterparts by
virtue of the nodal positiong™d. A schematic representation of this is shown in
Figure 2.

Now suppose we have calculated the magnetic flux deBsitya Lagrangian time

step via the proposed method of (50). Recall thita 2-form and is approximated
by 2-form basis functions according to the expansion

6
éold ~ Zb?ldVVZ,old (65)
i=

The degrees of freedobﬁ’Id in this expansion carry the units of magnetic flux; this
implies that we know the magnetic flux through every face mlthgrangian (or
old) mesh. Our goal is to compute new values of the magne®dfIit which will
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®————@ Old Mesh / T
@ ——® New Mesh

Fig. 2. Schematic diagram depicting a simple two element mesh with one face ddplac
Topologically speaking, the old and new meshes are identical. They difftengtrically by
the location of the nodes in space. The voltage update circuit is depicteghedigreen

and corresponds to a set of four edges, determined by the four intetmeddes, which
forms the boundary of an intermediate face.

@—»—@ Displacement Vector

v V¥V Circuit Path

allow us to represent the magnetic flux density on the new rassh
6
gnewz Zb{lemv—(IiZ,new (66)
i=

whereW"*" denote the basis functions for the new mesh (which are knowe o

the locations of the new mesh nodes are computed).

Using (62) as a starting point, we can compute the flux thraugiven face in the
new mesh by

b= b'? + Ab; (67)
The flux changeAb; we are adding to each face in the old mesh is computed by
numerically integrating the voltage along the closed dirpath C, defined by 4
intermediate edges, which in turn are defined by the fouriméeliate nodeg™d
associated with each face. Specifically, we can computeukelfiange as

a () X Blg_gmia) + (Ujsi X Blg_mie)
Do=-Y (xﬂdl _xrj’md) - j . it (68)

=1

where the indeX is cyclic (modulo 4). A detailed schematic representatibtinis
is shown in Figure 3. Each term in the sum of (68) is a line irdgkgf the voltage
along one of the intermediate edges. This integral is coetpuith the trapezoid
rule. A critical point is that this computation requires kexion of the magnetic
flux densityB at the intermediate nodes; this process will be discussedtil in
the next section.

The flux update of (68) relies on defining a circulation arothedfour intermediate
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Fig. 3. Schematic diagram detailing the process of computing the update veltaye
the closed circui€ defined by four intermediate edges. Given the values»of at each
intermediate node, a voltage contribution from each intermediate edge camipaited.
The appropriately signed sum of each edge contribution is the flux cHante face.

edges. The direction of the circulation will determine tiggof Ab. Either of both
directions can be used; however, it is imperative that threcehis made consis-
tently in order to computb®"for each face. On a general unstructured grid, it can
become difficult to enforce such a rule, especially if one iasontrol over the
source of the mesh topology. As such, a more robust (andatikignmore reveal-
ing) method for updating the fluxes can be obtained by consigi¢he rectangu-
lar topological derivative matrii 12 of (45) (described in detail in [27] and [22])
which is a sparse rectangular matrix representing an incelenap between edges
and faces of a mesh. The first step is to introduce an edge basgd represent-
ing the edge based flux contributions defined by a line integoag that edge. For
every edge in the mesh, we have

. . g X g __gmid Up ¥ g __gmid
%Z(X’E"'d—??"’)(( _—— )Z( ki )> (69)
where the generic integeasandb denote the unique integer IDs of the intermediate
mesh nodes associated with edgauch that < b. Therefore, the direction of the
line integral is uniquely defined according to a global staddike that originally
proposed in [27] (i.e. the line integral path is always frdra hode with low integer
ID to the node with high integer ID). We can now write the fluxdage in terms of
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global mesh arrays as

phew _ b0|d _ K12€( (70)
Written in this form, it is clear that the flux update method pikeserve the solenoidal
nature of the magnetic field. Taking the discrete divergeri¢@0) yields

K23bnew: K23b0|d + K23(K 124) — O (71)

Therefore, the divergence-free constraint is satisfiedaomme precision for every
mesh relaxation step. Compare the flux update of (70) to tlreedesFaraday’s law
of (50).

5.3 Patch Recovery Process for Nodal Magnetic Field Reptaen

In order to compute the edge based voltage contribution83)f (ve need to evalu-
ate theB field at the point™d. By virtue of the continuous remap approximation,
the pointsx™d are guaranteed to lie inside (or possibly on) an upwind eferog
the old (or Lagrangian) mesh. An example of this is depiateéigure 4.

elem 3

elem 1 elem 2

Fig. 4. Schematic diagram depicting the upwind locations of the intermediate rodeh n
xmid — 014 2. In this exampleg]"™ andx]™ lie in element 2 of the old mesh whiig"
andx7d lie in element 3 of the old mesh

Once the upwind elements are known for each intermediate,nwd can use a
finite element representation to evaluBtéside of the upwind element at the lo-
cation of the intermediate nod®'d. However, we cannot use the face representa-
tion of (36) since, by construction, this representaticaigyentially discontinuous
across element boundaries. Instead, we perform a type cf patovery to obtain
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a fully continuous (or smooth) representationBivhich we will denote a82e.
We define the smooth representation as

8 3
Bavg b2V j (72)
i; le o

This representation has 24 degrees of freedom, correspptalthree vector com-
ponents located at each of the 8 element nodes, and is fulljncous at element
boundaries. This nodal vector field representation is edgmt to the tri-linear in-
terpolation commonly used for FEM discretization of fluidoaties. The vector
valued basis functior@ j can be viewed as 3 sets of O-form (or scalar nodal) basis
functions, one for each component of the vector field.

There are several options for computing the degrees ofdradd;° for this repre-
sentation. The simplest and most efficient method is to fuBthte a cell centered
value of the magnetic field for every element in the mesh uiedace based rep-
resentation of (36), then to apportion a volume weightedamee of this value to
each node. This is a cumulative process, any given nodeegiive a contribution
from every element it is connected to. This cumulative nedéle is then divided
by a “nodal volume.” A more robust, and hence computatigr@tpensive method
is to employ the so called Hodge star matrix (see [22] fotfardetails) and solve
the following linear system for each component of the avedatpdal values

M %9 = (H%)The (73)

whereM? denotes a 0-form mass matrkt?2 is a rectangular Hodge matrix which
maps node-centered O-form quantities to cell-centereari@-fquantities and°c
denotes the cell centered evaluation of the face basedsexpegion of (36). In
practice, we have found that the simple volume averagindnoteis sufficient for
our needs and is the method we employ for our advection eeisuection 6.

5.4 Algebraic Flux Correction for Magnetic Shocks

The transport method of Section 5.2 is second order accaratewill therefore
exhibit non-monotonic solution behavior (aka spuriousiliamns, “ringing”, or
overshoots and undershoots) for solutions with discoitteésuior shock fronts. We
must impose a form of limiting that will suppress the non-mwimmic solution be-
havior. Limiting schemes for the scalar advection equagienprevalent and well
understood as a result of many years of research in the catigmal fluid dynam-
ics (CFD) community [34]. Nevertheless, the design of geslyimultidimensional
schemes for finite element discretizations on unstructareshes has proved to be
a particularly challenging task [20]. Furthermore, to omowledge there is no
published method for limiting the vector valued magneticeadion equation on a
general unstructured grid.
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The limiting procedure can be interpreted as reducing adiiger numerical method
to first order accuracy in the vicinity of a sharp discontipuvhile maintaining the
high order accuracy in the remaining regions where the isolus smooth. This
requires a numerical procedure for detecting a shock (i:sm@othness sensor”)
and a procedure for limiting (or reducing the order of) theemdion update method
by the proper amount to prevent spurious overshoots and simugts. The theoret-
ical foundations of this process were originally develofmdlD finite difference
solutions to scalar conservation laws [35], [36], wherertbgon of a Total Varia-
tion Diminishing (TVD) method was introduced in order to gastee a monotonic
solution. As pointed out in [20], the generalization of théD criterion to finite
element discretizations on 3D unstructured grids is the#edlocal extremum di-
minishing (LED) criterion [37]. The LED criterion is an algeaic statement which
enforces the rule that local solution maxima cannot in@d#sereby preventing
spuriousovershootsand local minima cannot decrease (thereby preventing spu-
rious undershoots In this section, we follow the algebraic approach of [20] o
modifying the discrete magnetic transport method so asiderethe discretization
local extremum diminishing.

Suppose we apply a limiting (or correction) term to the Idaak flux update equa-
tion (67) of the form

b™ = b+ BiAb;

where the correction ter® has been introduced for each face flux. Wieegs- 1,
no limiting is performed and the flux update method is secaddroaccurate. Now
suppose we had a shock detector or smoothness sensor whidhealbus whether
or not the resulting face flux would result in a spurious olvect or undershoot in
the computation oB. Our goal then is to compute the valueBpfvhich would cor-
rect the flux update and prevent this from happening. How&weare immediately
confronted with a problem. We cannot simply change the vafueach face based
flux independently, as this will clearly destroy the diserdivergence free property
which we have worked so hard to obtain.

The key to overcoming this obstacle is to limit the edge basd#dges rather than
the face based fluxes. We therefore propose a divergenceryreslimited update
method of the form

blim _ bold . KlZ(eel) (74)

Since we are limiting (or correcting) independent edge thas#tages, the update
of (74) is guaranteed to be divergence preserving to maghawsion. The general
rule of thumb is that the edge based voltages which bordestibek front are the
ones responsible for the spurious overshoots / undershoibts magnetic flux and
must therefore be limited. However, in order to determinéctvledges are on the
shock front and how much they need to be limited by, we neeatnimhtion from
the face based fluxes, since we are ultimately concernedobitining a limited
value of the discrete magnetic flux densBywhich is a face based quantity. An
overview of this process is presented in Figure 5.
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Fig. 5. Consider a patch of element faces in the presence of a discargimagnetic field
oriented out of the page. In this example, the top four corner facesumivmagnetic flux
while the remaining faces have no flux. If the nodes bordering the discaytiwere to
move in the direction indicated, the unlimited flux update method would generaiewspu
overshoots in the three faces bordering the shock front (indicated ixilbes). These are
the faces that require flux correction. To compute the divergencerpieg flux correction,
we limit the voltages on the edges which border the shock front.

Fig. 6. Topological data structure used toFig. 7. Topological data structure used to
detect discontinuities in face based fluxesdetect discontinuities in edge based volt-
Note that the top and bottom faces are notges.

used.

The details of the process can be broken down into four steps:

e Step 1- Compute the unlimited flux change via (70)

e Step 2- Compute the face limited flux change via Algorithm 1

e Step 3- Loop over limited faces to determine the edges which liagthe shock
front and compute the edge limiting factor via Algorithm 2

e Step 4- Compute the edge limited flux change by taking the limitedhaar(74)
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We begin by computing the unlimited flux change via the alg&bconstrained
transport update of (70). Next, we compute a face limited¢hengeAb by search-
ing the topological data structure of Figure 6 using the metbutlined in Algo-
rithm 1. In other words, we check to see if the unlimited fluaiebe will result in an
overshoot or undershoot by searching all of the connectasfaf so, then we sim-
ply compute the limited value to be the maximum/minimum caetad value of the
data structure. The resulting limited flux chaniyecould be used in the algebraic
constrained transport update of (70) and it would resultiroperly limitedB field;
however the resulting discrefield would no longer be divergence free. There-
fore, the next step is to determine which edges in the linféeds are responsible
for the over/undershoots. In logicalv (or reference) space, we can decompose a
face into two sets of edges: the two edges parallel to the lodaection and the
two edges parallel to the localdirection. Given a face that lies on the border of
shock front, our goal is to compute which edge in each of thwsesets requires
limiting. This is accomplished by computing the “edge cw$ing the topological
data structure of Figure 7 according to the method outlineélgorithm 2. Edges
which border the shock front will have a large “edge curlatele to the opposite
edge in logical space. Once the limited edges have beerifiddntve calculate the
edge limiting factor

Abj — A_bi

= 75
STIK, & (7%)

j
Once this value has been computed for each limited edge, wé¢hea compute
the edge limited flux change via (74). Note that all of the infation required for
the data structures depicted in Figure 6 and Figure 7 is exttdthe topological
derivative matrixK 12 of (45), since this purely topological quantity is simply an
incidence map which designates the connectivity betwegasdnd faces.

6 Numerical Verification Experiments

In this section we present a series of numerical experim&hish are designed
to verify the individual components of our operator spléaetization of MHD.
For the first two examples of Section 6.1 and Section 6.2, vesl ite solve the
linear system of (49) where the right hand side consists oédge based finite
element mass and stiffness matrix. For these examples we sisgle diagonally
scaled pre-conditioned conjugate gradient (PCG) methodhwisi sufficient for
most applications. However we should point out that moreaaded and efficient
methods for solving linear systems arising from mixed fieleament discretizations
usingH (Curl) andH (Div) basis functions exist, such as those employed in [25].
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Algorithm 1 : Face Based Shock Detection and Flux Correction

for i = 1 to NumFaceslo
//Compute the area of the old and new faces given their nodaticw@ies
Ad = ComputeFaceArea (OldNodes;

A" = ComputeFaceArea(NewNode};
|B|O|d _ b

- A?Id
|B|new— bi+Aby

//Initialize the max and min values

Max= Min = |B|°!

for j=1to4do

for k=1to NumConnectedFace®

//Calculate local face extrema connected to efge
A?ﬁ(n = ComputeFaceArea (OldNodes;

|B|COI"I — %%{ﬁ

if |B|°°" > Maxthen

Max = |B|"
else if|B|*°" < Min then
Min = |B|®o"
end
end

//1f facei is a local min or max, compute the limited value
if |B|"®"> Maxthen
blim = Maxx A,
else if|B|"*W < Min then
_ blim = Min x AW
Ab; = b!im — Ab;
end

6.1 Electromagnetic Diffusion in a Coaxial Cylinder at Rest

The purpose of this computational experiment is to verifydiscrete electromag-
netic diffusion operatoks of our operator splitting of the dynamo equation. Since
we are ignoring the advection operator, we choose a simgig@teblem in which
the conducting materials are at rest (ife= 0). Furthermore, this test is designed
to validate our approach for treating electromagnetiaditin in highly heteroge-
neous conducting regions (i.e. regions consisting of cotmis immersed in insu-
lating vacuum like regions) using only a voltage source lolauy condition. This
test problem was developed in the spirit of the first test lgmokfrom [25]; however

in this case we drive the problem with a voltage source boynazandition and we
have an analytic solution to compare with.

In this computational experiment we apply\& fiotential difference across the ends
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Algorithm 2 : Edge Based Shock Detection and Voltage Correction

for i = 1to NumLimitedFacedo
for j=1to4do
Aej =0
for k =1 to NumConnectedFace®
//Compute the curl oB around edgg
‘J-:j’(n = ComputeFaceArea(OldNodes;

|B|on = %351
),
Nej = Aej + K o x |B|O"
end

end

//Check for shock in local-direction
Ae, = ComputeRatio (Aey,Ae3);
//Check for shock in local-direction
Ae, = ComputeRatio (Aey,Aey);

end

of a conducting coaxial cylinder and compute the steady standuction current
and magnetic field via the mixed FEM formulation of SectioB. 3 he electrical
resistance of the coaxial cylinder is given by

R= — (76)

wherel is the length of the coaxial cylinder ads the cross sectional surface area
of the coaxial cylinder determined by its inner radiRsand outer radiug,. The
potential difference across the coaxial cylinder will iégua steady state conduc-
tion current densityl = olJp wheregis the scalar potential inside the conductor.
We fix the geometry and conductivityof the problem such that the total resistance
is 1 Ohmand the total conduction curreht=1 Amp To facilitate the magnetic
fields in the vacuum around the cylinder, the computationatain is a cylinder of
radiusR, = 2R, and lengthl oriented along the direction, divided into two ma-
terial regions as shown in Figure 8. The cylinder is assigmednductivity value
oc = 2S/m while the vacuum region is assigned a very small condugtivaiue
Ovac = 10~ “o.. The computational mesh consists 0760 hexahedral elements.

The steady state magnetic field will have azimuthal symmetrngh can be deter-
mined analytically from Ampere’s law
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Fig. 8. Computational domain for conduct- Fig. 9. Computed steady state electro-
ing coaxial cylinder immersed in a vacuum magnetic fields for the conducting coaxial

like material. cylinder problem.
Bo(r) = Herdl”) @
0 r<r
lend1) ={ 1% R <r<R (78)
en R
I Ro<r

We can compute the total inductance in the computationamefigom an integral
of the energy stored in the magnetic field via

n R _,
L:ﬁﬁA B2(r)dr (79)
Given the resistancR and the inductancke of the computational region, we can
determine the exponential time dependence of the totadotias it diffuses radially
into the cylinder

I(t) =1 (1—exp(—t§)> (80)

For the scalar potential solve of (48), we apply the inhonnegeis Dirichlet bound-
ary conditiong = +1 at the surface =0 and@ = 0 at the surface = |. For the
discrete Ampere solve of (49), we apply the homogeneouslidai boundary con-
dition A x E"d = 0 over the entire surface of the problem domain. For bothesolv
a simple diagonally scaled PCG method with a residual erterance of 101 is
used. We run the problem for a total tirhg, = 3t wheret is one diffusion time
constant such that = op(R, — R;)?, this will ensure that the fields reach steady
state. We use a fixed time stép = tl%. In Figure 9 we plot the scalar potential

as well as the steady state conduction current dedsityoE and magnetic field
B. In Figure 10 we plot the analytic solution for the azimuthelgnetic field as a
function of radius and compare it with our mixed FEM solutitmFigure 11 we
plot the total current as a function of time and compare itvatr mixed FEM
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Fig. 10. Azimuthal magnetic field as a Fig. 11. Total current as a function of time
function of radius.

6.2 MHD Wave Propagation in an Ideal Gas

In this computational experiment we verify the coupling bé telectromagnetic
force to the equations of Lagrangian motion, which in turfl werify our La-
grangian treatment of the advection operdter Our goal for this experiment is

to launch waves and verify their computed velocity. A simphey to do this is to

fix the velocity of the wave to some desired value, then toestta¢ domain size
and total time for the problem such that the wave front juathes the end of the
computational domain at tinte= t¢j,. We consider the case of a rectangular “slab”
mesh (i.e. one element thick in tk@lirection) of dimension by 2L, centered at

the originx =y = 0 representing an ideal gas. We use a simple gamma-law model
for the EOS of the gas given by

P— (y— 1)%E 81)

For an ideal monatomic gag~ 3.

For reference, we first consider the case of a pure sound ¢aisic) wave. This
is a purely hydrodynamic calculation and does not involvg electromagnetic
properties. The sound speed is determined by the relation

yP
A L 82
V. o (82)

We choose a sound speeg= 0.5m/s and an initial density = 1.0. This deter-
mines the pressure which allows us to compute the energyfdeGS. We excite
the wave by applying a time dependent velocity perturbatios face in the mesh
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Fig. 12. Psuedocolor plot of velocity wave at time: t¢;, for the case of a pure sound (or
acoustic) wave. Since the initial velocity perturbation is oriented irktbgection and the
ideal gas has no strength, the velocity perturbation travels ix-thieection via compression
waves at the sound speed The computational domain is a single element thick “slab” of
dimension Rettin by 2vetfin.

that is normal the-axis and located at the center of the mesh. Specifically,ave h

which gives us a displacement perturbation equal to
A .

In order to keep the problem in the linear regime, we set ttecitg perturbation
amplitude to beA = 10~2. For this experiment, the computational domain has di-
mensiond x = Ly = Vdttin. We set the total time to b, = 1s. This implies that the
perturbation velocity (and displacement) will oscillate fwo full periods during
the simulation. Since the ideal gas has no strength (i.eestoning force orthogo-
nal to the velocity perturbation), the velocity perturbatshould propagate outward
from the center of the mesh via compression and rarefactawesvtraveling in the
x-direction at the sound spegglas shown in Figure 12.

Now we consider the case of an MHD wave. We begin by applyingigial mag-
netic field to the problem domain oriented in tadirection such thald = Byy. For
this case, we add an electrical conductivity to the ideal @é&sset the conductivity
very high @ = 168S/m) so that the conducting gas effectively has no electrical re
sistance. This implies that our MHD diffusion equationseffectively loss-less for
the time scales we are considering, meaning we are in theNti¢B limit with the
frozen in flux condition. We apply the same time dependeraoil perturbation
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Fig. 13. Psuedocolor plot of velocity wave at time: t¢j, for the case of an MHD wave,
consisting of a fast (or magnetosonic) wave and a shear (or Alfvevg.\ildis is accom-
plished by adding & field oriented in the/-direction to the problem. The velocity pertur-
bation now travels in th&-direction via compression waves at the fast (or magnetosonic)
speedvs and in they-direction via shear waves at the Alfven spegsdThe computational
domain is a single element thick rectangular “slab” of dimension by 2vatsin.

in thex-direction to a face in the middle of the mesh. Because the stagireld is
“frozen in” to the material, it will be dragged along with theaterial as it moves.
However, thel x B restoring force will work to resist this motion and effeetiy
add strength to the gas in the from of the Maxwell stress tellge now expect to
see two types of waves, a fast (or magnetosonic) compressioa traveling in the
x direction at the speed; and a shear Alfven wave traveling in tigalirection at
the speedp as shown in Figure 13. The shear Alfven wave velocity is givgn

_g
NG

while the fast (or magnetosonic) wave velocity is given by
Vi = \/V2+ V& (86)

We fix the Alfven speed to bex = 1.0m/s (which subsequently determinBg) and
keep the sound speed fixedvat= 0.5m/s as before; this implies the magnetosonic

speed will bevi = ﬁm/s For the linear solve of (49) we apply the homogeneous
Neumann boundary conditiamx‘%lﬁ = 0 to thex andy boundary planes (i.e. we
are enforcing the constraifitx B = 0 on the perimeter of the mesh). Since this is

a three dimensional problem (i.e. it has finite depth inzkrection), we apply
the homogeneous Dirichlet boundary conditior E = 0 on the top and bottom of

(85)
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the mesh defined by the planes z,in andz = znax The linear solve is performed
using a diagonally scaled PCG method with a residual erreraate of 108.
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Fig. 14. MHD wave problem with exaggerated displacement (scale fat&0Q) to em-
phasize the features of the Lagrangian calculation. Note how the mesh knparatlel to

the magnetic fields lines. The psuedocolor plot represents the magnitude roatimetic
field, |B|. Here we can more clearly see the components of the Maxwell stress ieaser
tion. The pressure terms contribute to the peaks and nulls in the magnetic fiehitudeg
along they-direction due to compression waves while the deviatoric components gave ris
to the shearing motion of the vector field along ¥direction.

In Figure 14 we plot the magnetic field vectors and magnitudegwith the com-
putational mesh using an exaggerated displacement (saetier fof 300) to em-
phasize the characteristics of the Lagrangian calculahiate how the mesh lines
move with the magnetic field. In addition, note how the maigriezld lines com-
press and expand in thedirection and undulate due to shearing motion inxhe
direction. In Figure 15 we track the velocity wave amplitudets first peak value
for six different spatial locations along the Alfven wavesafthey-axis). Note how
the velocity wave amplitude decays at a rate proportionstl/lzrtpin direct agree-
ment with the expected results for wave propagation in twaethisions (recall the
Green'’s function for 2D wave propagation is proportionaﬁ(). The peak to peak
separation of the velocity wave amplitude at different p®in time can be used to
measure the instantaneous numerical velocity of the wagh@sn in Figure 16.
Note how the numerical Alfven wave travels at a non-congtaetwhich is slower
than the expected constant rate, indicating the effectsimienical dispersion.

Finally, we perform the Lagrangian MHD wave calculation oveay unstructured
mesh to test the robustness of the numerical method. Iné&ijumwe compare the
final results at timé =ts;, for both mesh types, indicating that the proposed method
can support MHD waves on highly unstructured grids withtaaly connectivity.
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Fig. 15. Velocity wave amplitude as a func- Fig. 16. Location of first peak value in ve-
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different spatial locations along the Alfven tions, providing a measure of the instanta-
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Fig. 17. Comparison of Lagrangian MHD wave results at timetsi, for the case of a
structured mesHheft) and a very unstructured mesgiight).

6.3 Eulerian Advection of Smooth Fields

The purpose of this computational experiment is to to dertnatesthe second or-
der accuracy of the algebraic constrained transport medth@¢d0), and therefore
verify our Eulerian treatment of the advection operdt@arWe consider the case
of a “smooth” (i.e. infinitely differentiable) magnetic feeinitially projected onto a
significantly distorted mesh. We then let the mesh relax toligium while apply-

ing the constrained transport update of (70) at each meakatébn step to update
the magnetic flux values. A sequence of images depictingptioisess is shown in
Figure 18. We consider a solenoidafield that can be expressed as the curl of a
vector potential which represents a vector valued “Ganddill” oriented in theZ'
direction (i.e. out of the page)
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A=exp(—a(x*+y?))2

B=0OxA
The corresponding field will have non-zeroa andy'components. We perform the
calculation on a sequence of refined meshes and at each nheeshtion step, the

L2 finite element error is computed for each element, as showigure 19. Note
that the convergence of the method indicates second orderaay.
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Fig. 18. A solenoidal magnetic fiel is projected onto an initially distorted mesleff).
The mesh is then relaxed to equilibriunight) via a sequence of stepsiddle while the
magnetic flux is updated using the algebraic constrained transport method.
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Fig. 19. Convergence analysis of finite element error for the magnetectda equation
using a coarse (144 element), medium (576 element) and fine (2,304 elemeatiedral
mesh. The maximurh2 error vs. mesh relaxation cycle is plottedt while the maximum
L2 error vs. element size at the final cycle is plottgght on a log scale, indicating the
convergence rate is second order.

In addition, we compute the numerical energy stored in thgrmatc fields at each
mesh relaxation step as
€mag=b"M?(u )b (87)

In Figure 20 we plot the measured magnetic energy at each rakstation cycle
using three different limiting methods: no flux limiting €i. pure algebraic CT),
face based flux limiting (i.e. non-divergence preserving) adge based flux limit-
ing (i.e. divergence preserving). Strict conservationrargy is not explicitly built
into the method, and Figure 20 shows that some energy is lostgladvection,
even when no limiting is applied. The amount of lost energg fsinction of the
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mesh, and as the mesh is refined the amount of lost energyadesraith second
order convergence. The fact that our advection method cegsenagnetic flux
exactly and conserves magnetic energy approximately isistemt with the hydro-
dynamics advection in ALE3D which conserves momentum éxacid conserves
energy approximately. In Figure 21 we plot the total magnetiarge at each mesh
relaxation cycle using the same three limiting methods. eeted, the unlimited
and the edge limited algebraic CT method preserves the dimeegof theB-field
to machine precision, independent of the mesh distortiamteldlso how the face

limited approach destroys the- B=0 property as expected.

——No Flux Correction
Edge Based Flux Correction
—Face Based Flux Correction T T T

N L

/ ——No Flux Correction
Edge Based Flux Correction
Face Based Flux Correction ||

N}
=3
=}

53
=}

0.99

1=}
I=}

Normalized Energy

ol
©
®
153
=}

Total Magnetic Charge

—
—

o

0 50 100 150 200 250 300 350 400

Cycle 0 50 100 150 200 250 300 350 400

Cycle

Fig. 20. Normalized magnetic energy atFig. 21. Total magnetic charge at each
each mesh relaxation step using three difmesh relaxation step using three different
ferent limiting methods. limiting methods.

6.4 Eulerian Advection of Discontinuous Fields

In these computational experiments we verify the algeldhaxccorrection method

by performing mesh relaxation over discontinuous fields\andying that the LED

criterion is satisfied. We begin with a classic one dimerai@uvection problem
adapted for our ALE treatment of magnetic flux. The compateti domain and

initial fields are depicted in Figure 22. We project onto tbgion two different ini-

tial vector fields. The first is a smooth Gaussian hill for refece purposes while
the second is a unit step function. We apply an initial mestsig gradient to the
computational domain such that one end has a high concentraesh elements
while the other end has a low concentration of mesh elem#ftten mesh relax-
ation is applied, the mesh will flow from the high density myto the low density
region with the non uniform mesh veloci%, until equilibrium is reached. This is
equivalent to advecting the initial data in the oppositecion—vy,. The results of

this calculation with and without algebraic flux correctare shown in Figure 23.
Note how spurious oscillations occurs at the leading antingeedge of the shock
front when no flux correction is applied. These results adirect agreement with
numerical advection of a square pulse using the textbooknskeorder accurate
Lax-Wendroff method. Note how the flux corrected result hasceeded in sup-
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pressing the oscillations by directly enforcing the LEDemion. Furthermore, note
that with and without flux correction, the results for the sittofunction are are in
good agreement with the initial data. This indicates thajifoposed algebraic flux
correction method does not introduce excess diffusionrfoah fields.

Fig. 22. Computational domain and initial field data for mesh relaxation over atemo
“Gaussian-hill” vector field and a discontinuous vector field. In both gade mesh is
given an initial density gradient. When the mesh relaxation process is appkeglements
will flow from the region of high density to low density. In the first cagsft] the mesh
velocity will be from left to right while in the second cag@yht) the mesh velocity will be
from right to left.
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Fig. 23. Computational results for algebraic constrained transport afietiadlux with and
without algebraic flux correction for two different mesh velocity directions

In Figure 24 we perform a similar experiment, except thistiime computational
domain is an unstructured cylinder mesh with a radial stegtian. Again, we
apply an initial mesh density gradient to the computatiat@hain. When mesh
relaxation is applied, the mesh will flow radially inward /tavard from high den-
sity region to the low density region with the non uniform me=®locity Vi, until
equilibrium is reached. The results of this calculationrvand without algebraic
flux correction are shown in Figure 25. For the case of radiphasion, note how
spurious undershoots in the magnetic flux denBityccur at the shock boundary
when no flux correction is applied while for the case of rad@hpression spurious
overshoots occur. Note that in both cases, these spuriciiatisns are suppressed
when algebraic flux correction is applied.
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Fig. 24. Computational domain and initial field data for mesh relaxation ovesmlistious
vector field on an unstructured cylindrical mesh. In both cases, the mgateisan initial
density gradient. In the first caskeff) the mesh will flow radially outward while in the
second caseifiht) the mesh will flow radially inward.
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Fig. 25. Computational results for algebraic constrained transport ohetiaglux on an
unstructured mesh with and without algebraic flux correction for two diffemesh veloc-

ity directions.

6.5 Eulerian Treatment of MHD Wave Propagation

As mentioned previously, it is possible to implement a purkeEan formulation of
MHD by computing a Lagrange step followed by a complete restap in which
the mesh snaps back to its original configuration at everg step. This is how
ALE3D performs pure Eulerian calculations. In this sectwa revisit the MHD
wave problem from Section 6.2 which was solved in a pure Lagjean fashion
(i.e. the computational mesh flowed with the conducting nelde Here we per-
form the same calculation using a pure Eulerian processnimgdhat at every
time step, a Lagrange step is performed followed by an atectmap to the
original unperturbed mesh. In Figure 26 we compare valuegh® amplitude of
the magnetosonic wave at timhe- tsj, obtained in a pure Eulerian fashion against
the original Lagrangian results of Section 6.2. Note howttie are in excellent

agreement.
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Fig. 26. Comparison of magnetosonic wave amplitude along-dpds at timet = t¢i, for
both Lagrangian and pure Eulerian calculations.

7 Conclusions

We have developed an arbitrary Lagrangian-Eulerian (ALi&greétization of resis-
tive MHD on 3D unstructured grids. The method was formulatedn operator
split manner with three distinct phases. We have arguedtlieabperator split-
ting of the magnetic dynamo equation is particularly simplthe material (or La-
grangian) frame, and therefore a mixed finite element digetton usingH (Curl)
andH (Div) basis functions is naturally suited for such a problem. Thesccom-
plished by constructing rectangular topological denxatnatrices which represent
the curl operator defined with respect to the material fraMehave employed the
methodology of the finite element library FEMSTER to perfdhis discretization
as it was designed specifically for these types of represensa Furthermore, we
have developed a mixed finite element formulation of the dymaquation that has
a 2-form magnetic flux as its only state variable (making ieaable to advection),
is second order accurate in time and supports explicitgelsurce boundary con-
ditions via an additional elliptic solve. For problems tihauire mesh relaxation
and the subsequent remapping of state variables to the nety, wia Eulerian ad-
vection, we have developed an algebraic constrained toansethod which makes
use of the rectangular topological derivative matrix. Ashstthe method is valid
for 3D unstructured grids with arbitrary mesh velocity asdecond order accurate
for smooth magnetic fields. For discontinuous magneticgiéddg. MHD shocks),
we have developed an algebraic flux correction method whishsl an interme-
diate edge-based voltage in a manner that enforces a lotahaxm diminishing
property on the magnetic flux. This algebraic flux correctsoan intermediate step
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in the algebraic constrained transport algorithm and héhd&= 0 is still satisfied
exactly. Finally, we have presented a series of numeriadicetion experiments
which demonstrate the properties and accuracy of the pegpogthod.
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