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Abstract

We present an arbitrary Lagrangian-Eulerian (ALE) discretization of the equations of
resistive magnetohydrodynamics (MHD) on unstructured hexahedral grids. The method is
formulated using an operator-split approach with three distinct phases:electromagnetic dif-
fusion, Lagrangian motion, andEulerian advection. The resistive magnetic dynamo equa-
tion is discretized using a compatible mixed finite element method with a 2nd order accu-
rate implicit time differencing scheme which preserves the divergence-free nature of the
magnetic field. At each discrete time step, electromagnetic force and heat termsare calcu-
lated and coupled to the hydrodynamic equations to compute the Lagrangian motion of the
conducting materials. By virtue of the compatible discretization method used, the invari-
ants of Lagrangian MHD motion are preserved in a discrete sense. When the Lagrangian
motion of the mesh causes significant distortion, that distortion is corrected witha relax-
ation of the mesh, followed by a 2nd order monotonic remap of the electromagnetic state
variables. The remap is equivalent to Eulerian advection of the magnetic fluxdensity with
a fictitious mesh relaxation velocity. The magnetic advection is performed using anovel
variant of constrained transport (CT) that is valid for unstructured hexahedral grids with
arbitrary mesh velocities. The advection method maintains the divergence free nature of
the magnetic field and is second order accurate in regions where the solutionis sufficiently
smooth. For regions in which the magnetic field is discontinuous (e.g. MHD shocks) the
method is limited using a novel variant of algebraic flux correction (AFC) which is local
extremum diminishing (LED) and divergence preserving. Finally, we verify each stage of
the discretization via a set of numerical experiments.

Key words: Magnetohydrodynamics, Resistive MHD, Electromagnetic diffusion, Mixed
finite element methods,H(Curl) andH(Div) - conforming methods, Discrete differential
forms, Vector finite elements, Operator-splitting, Electromagnetic advection, Constrained
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1 Introduction

We are interested in the simulation of magnetohydrodynamicevents and electrome-
chanical devices in three dimensions. Our primary goal is a numerical method that
solves, in a self-consistent manner, the equations of electromagnetics (primarily
statics and diffusion), heat transfer (primarily conduction), and non-linear mechan-
ics (motion, elastic-plastic deformation, and mechanicalcontact). Example appli-
cations for these simulations include magnetic flux compression generators, metal
forming, and electromagnetic launchers. In this paper, we focus on the numeri-
cal discretization of electromagnetic diffusion in an arbitrary Lagrangian-Eulerian
(ALE) fashion [1] for the purposes of computing~J×~B forces and~J ·~E resistive en-
ergy losses for coupling to hydrodynamic and thermal calculations in an operator
split fashion. All computational results were obtained by incorporating ALE elec-
tromagnetics into a well-known ALE hydrodynamic code, ALE3D, which has been
successfully used in a wide variety of computational physics applications including
[2], [3],[4], [5], [6],[7], and [8]. In this paper, the discretization of the hydrodynam-
ics is not discussed in detail.

In multiphysics ALE hydrodynamic codes, an operator split method is typically
employed where separate physics packages are run sequentially and update their
variables in the Lagrangian frame. When the Lagrange motion of the mesh causes
significant mesh distortion, that distortion is corrected with an equipotential relax-
ation of the mesh, followed by a 2nd order monotonic remap of field quantities.
This remap is equivalent to advection of field quantities through the mesh with a
fictitious effective velocity determined by the amount of mesh relaxation. In our
proposed ALE formulation of MHD, we will employ an operator-split method with
three distinct steps:

• Electromagnetic Diffusion– Solve the equations of electromagnetic diffusion in
the Lagrangian frame at one discrete time step for fixed materials.
• Lagrangian Motion– Move mesh nodes according to~J×~B forces assuming a

d~B
dt = 0 “frozen in flux” condition.

• Eulerian Advection– Only required if mesh is relaxed, advect (or transport) mag-
netic state variables to new mesh while preserving the divergence-free nature of
the magnetic flux density.

While much progress has been made in obtaining numerical algorithms for coupled
advection / diffusion of magnetic fields [9], [10], there areseveral key obstacles to
be overcome for a fully three dimensional ALE finite element implementation on
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general unstructured hexahedral grids. One issue is the need to numerically pre-
serve the divergence-free constraint of the magnetic flux density,~B [11]. Failure to
reproduce this fundamental physical property in any numerical discretization can
lead to the nonphysical acceleration of conducting materials due to the presence of
fictitious magnetic charge. Methods for maintaining a divergence-free velocity field
for incompressible flow, such as Lagrange multiplier constraints, penalty methods,
elliptic projection (divergence cleaning), and relaxation-based elliptic projection
(divergence damping), can in principle be applied to magnetic fields. However,
more efficient and elegant approaches are based on the fact that~∇ ·~B = 0 is not ar-
bitrary, but is in fact a consequence of Ampere’s law. If Ampere’s law is discretized
in a particular manner, then~∇ · ~B = 0 is satisfied exactly without any additional
effort, and this is the basis of constrained transport methods [12], [13]. Our pro-
posed algebraic constrained transport discussed in Section 5.1 is a generalization
of constrained transport for unstructured ALE simulations.

For our applications, an additional issue is the need to reproduce MHD shock fronts
without introducing spurious oscillations in the magneticfield. Various flux limiters
have been advocated for fluid dynamics, with the goal of limiting non-physical os-
cillations without introducing excessive artificial diffusion. These flux limiters can
in principle be applied to magnetic fields, but care must be taken to not destroy the
above mentioned divergence constraints. Some proposed methods and comparisons
of various approaches can be found in [14], [15], [16], [17],[13], [18], [19], [20].
Our proposed algebraic flux correction discussed in Section5.4 limits an interme-
diate edge-based voltage in a manner that enforces a local extremum diminishing
property on the magnetic flux. This algebraic flux correctionis an intermediate step
in the algebraic constrained transport algorithm and hence~∇ ·~B= 0 is still satisfied
exactly.

In this paper we review magnetic diffusion in the Lagrangianframe of a deforming
region, and we argue that a mixed finite element method employing H(Curl) and
H(Div) basis functions [21] is ideally suited for discretization of this partial dif-
ferential equation. The algebraic constrained transport method and algebraic flux
limiter are built upon the same topological curl operator that is used in the discrete
diffusion equation. Computational experiments are performed to confirm the sec-
ond order convergence of the method for smooth fields, and to quantify the ability
to conserve energy and preserve discontinuities for strongly shocked problems.

2 Electromagnetic Diffusion

The first step in our three part ALE formulation is to solve theequations of electro-
magnetic diffusion. We begin with a discussion of the relevant equations without
material motion, then we discuss electromagnetic diffusion in moving materials.
We assume a charge-free three dimensional domainΩ with a surface boundaryΓ
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and an outwardly directed surface normal direction ˆn. The domainΩ consists of
a set of materials, each specified by the values of their material properties which
define their equation of state.

Here we write Maxwell’s equations in terms of~E and~B,

ε
∂~E
∂t

= ~∇× 1
µ
~B−σ~E− ~Js (1)

∂~B
∂t

=−~∇×~E (2)

~∇ · ε~E = 0 (3)
~∇ ·~B = 0 (4)

with the constitutive relations

~D = ε~E, ~B = µ~H (5)

For our purposes, the magnetic permeabilityµ, the electric permittivityε, and the
electric conductivityσ are free to be tensor valued functions of time and position.
The term~Js is an independent current source included for generality and may not
exist for all problems.

Consider solving Maxwell’s equations within a good conductor, the following con-
dition holds

ε
∂~E
∂t
≪ σ~E (6)

and under this condition it is reasonable to neglect the displacement current term
altogether. Neglecting displacement current results in diffusion rather than elec-
tromagnetic waves, and hence the numerical discretizationis no longer required
to resolve electromagnetic waves. Many problems of interest involve a combina-
tion of good conductors and air/vacuum regions, and clearly(6) is not valid in air.
However, for our specific applications electromagnetic waves in the air are not im-
portant, and the displacement current term is still neglected, resulting in quasi-static
magnetic fields in the air.

Both the electric field intensity~E and the magnetic flux density~B can be expressed
in terms of potentials

~E =−~∇φ− ∂~A
∂t

(7)

~B=~∇×~A (8)

whereφ is a scalar potential and~A is a vector potential. Note that in (7), we see a
specific decomposition of the total electric field

~E = ~Eirr +~Eind (9)
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where~Eirr =−~∇φ is the irrotational component of~E and~Eind =−∂~A
∂t is the induced

eddy current component of~E due to a time varying magnetic vector potential.

Using the potentials from (7) and (8), we can rewrite Ampere’s law (1) as

~∇× 1
µ
~∇×A =−σ

∂~A
∂t
−σ~∇φ+ ~Js (10)

Note that (10) is a second order vector diffusion equation for the vector potential
~A. At present the scalar potentialφ is not specified, so in order to reduce ambiguity
we enforce the gauge condition

~∇ ·σ~A = 0 (11)

This gauge is equivalent to the Coulomb gauge~∇ ·~A = 0 in regions whereσ is
constant, but it is different in regions whereσ is inhomogeneous. Taking the diver-
gence of (10),enforcing the gauge condition of (11), and assuming the independent
current is divergence-free, yields

~∇ ·σ~∇φ = 0 (12)

which is a Poisson equation for the scalar potentialφ. Therefore, ifφ satisfies Pois-
son’s equation, then the gauge condition of~A is also satisfied for all time if it is
satisfied initially.

Equations (12) and (10) form a complete system for determining the scalar poten-
tial φ and the vector potential~A in the domainΩ for all time given a collection of
voltage and current sources (e.g. the~A-φ potential formulation of [22]). Alterna-
tively, we can formulate a system with the vector state variable~B in place of~A by
incorporating Faraday’s law (2) and taking into account ourdecomposition of the
electric field (9) to write (10) as a set of two coupled equations

σ~Eind =~∇× 1
µ
~B+σ~∇φ− ~Js (13)

∂~B
∂t

=−~∇×~Eind (14)

The two formulations (10) and (13)-(14) are equivalent, theformer is preferred for
analytical analysis while the latter is more amenable for numerical implementation
of advection, as discussed in more detail in Section 5.
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3 Dynamo Equation

We now consider electromagnetic diffusion in moving materials. We first consider
the Eulerian case in which the material positions and field components are defined
with respect to the fixed laboratory coordinate system. Let~x = {x1,x2,x3} ∈ E
denote the label of a point in Euclidean spaceE where the motion takes place. The
coordinate system ofE is called thespatialor laboratorysystem. Let each point in
the material be labeled with~X = {X1,X2,X3} ∈M . The coordinate system ofM is
thematerial system. We assume there exists a time dependent, bijective mapping
which relates these two different labels of the same point,

~x =~x(~X, t), ~X = ~X(~x, t) (15)

While not necessary, it is common to have these two coordinatesystems be equal
at timet = 0, the undeformed state. Let a vector field defined with respect to the
laboratory frame be denoted with a prime, e.g.F ′(x, t), and the same vector field
defined with respect to the material frame be unprimed, e.g.F(X, t). In an Eulerian
representation, the fields and operators of a partial differential equation (PDE) are
functions of the fixed laboratory frame; in a Lagrangian representation the fields
and operators of a PDE are functions of the moving material frame.

Faraday’s law (2) can can be written in integral form as

d
dt

Z

Ω(t)
~B′ ·da′ =−

I

Γ(t)
~E′ ·dl′

where the surfaceΩ(t) is moving with the material. The material derivatived~F ′
dt of

any flux-type quantity~F is defined as

d
dt

Z

Ω(t)
~F ′ ·da′ =

Z

Ω(t)

d~F ′

dt
·da′

and, as shown in [23] and [24], a careful derivation gives

d~F ′

dt
=

∂~F ′

∂t
−~∇×~v′×~F ′+~v′(~∇ ·~F ′) (16)

where the velocity of a material point~X on the surface of integration is~v′ = d~x/dt.
This material derivative agrees with the so-called total derivative

d~F ′

dt
=

∂~F ′

∂t
+~v′ · (~∇⊗~F ′)

only for the special case of rectilinear motion. Combining (16) with (13)-(14) yields
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the dynamo equation

∂~B′

∂t
=−~∇× 1

σµ
~∇×~B′+~∇×~v×~B′ (17)

where the source terms~Js andσ~∇φ have been discarded for clarity. The first term
on the right is diffusion, the second term is advection, and the ratio of these is the
magnetic Reynolds numberMRe= vL

λ whereL is the characteristic size andλ≡ 1
σµ

is the magnetic diffusivity. For problems in whichMRe≈ 1 and the velocity is such
that advection and diffusion have opposite signs, we have near equilibrium∂~B′

∂t ≈ 0
and time integration of the dynamo equation requires special care. However, for
advection or diffusion dominated problems it is acceptableto employ an operator-
splitting of the equation. Let the dynamo equation be represented as

∂~B
∂t

= Lσ(~B)+Lv(~B)

where the operatorLσ denotes electromagnetic diffusion and the operatorLv de-
notes magnetic advection and consider the two separate equations

∂~Bσ
∂t

= Lσ(~Bσ)

∂~Bv

∂t
= Lv(~Bv)

Let Sσ denote the electromagnetic diffusion time integration operator that takes the
field~Bσ from a discrete time stepn to time stepn+1, and letSv denote the magnetic
advection time integration operator that takes~Bv from a discrete time stepn to time
n+ 1. The generic operator splitting of the dynamo equation is then given by the
composition

~Bn+1 = [Sσ ◦ Sv]~Bn

For this simple operator splitting the time accuracy isO(∆t), but numerous alter-
natives exist that areO(∆t2) or better. The advantage of operator splitting is that
different time integration can be used forSσ andSv. For example several small ex-
plicit steps can be used for the advection operationSv while a single large implicit
step is used for the diffusion calculation ofSσ, a process referred to as sub-cycling.
Another key advantage is in terms of software; it is relatively straight forward to add
an additional physics “package” to a multi-physics code if the multi-physics code
is based on operator splitting. This is the case for ALE3D. Our approach for the
dynamo equation is to perform diffusion in the Lagrangian system using implicit
time integration, followed by updating the momentum equation in the Lagrangian
system explicitly, followed by an optional mesh relaxationand advection step if the
mesh becomes too distorted.
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3.1 Material Frame

If ~A is a vector in the material coordinate systemM and~a is the same vector in the
laboratory systemE , then the components of these vectors are related by

ai =
∂xi

∂X j A
j

However, electromagnetic fields and fluxes do not simply transform as vectors. As
shown in [23] and [24], voltage and flux are invariants with respect to the deforma-
tion transformation

Material (Lagrangian) Laboratory (Eulerian)

~E ·d~x = (~E′+~v′×~B′) ·d~x′

~B·d~a = ~B′ ·d~a′
(18)

Differential arc length and surface area elements transform according to

d~x= JTd~x′ (19)

d~a= |J|J−1d~a′ (20)

where our definition of the Jacobian matrix isJi j = ∂Xj/∂xi. As a consequence, the
electric field intensities and magnetic flux densities transform in a dual manner in
order to maintain the invariance property of (18)

~E = J−1(~E′+~v′×~B′) (21)

~B=
1
|J|J

T~B′ (22)

In the material system the dynamo equation becomes

∂~B
∂t

=−∇× 1
σµ

∇×~B (23)

where it is understood that theCurl operator is with respect to the material coordi-
nate system. Thus the form of the diffusion equation is invariant to material motion
when the fields and operators are defined in the material frame. For the special case
of a perfectly conducting material this equation gives∂~B

∂t = 0, the frozen-in-flux
theorem. The operator splitting of the dynamo equation is particularly simple in the
material frame: the first step is diffusion of the fields, the second step is to move the
mesh nodes according to the resulting~J×~B force while maintainingd~B

dt = 0 dur-
ing the mesh motion. When a mixedH(Curl) - H(Div) discretization is used for
the equations, this latter step means that the magnetic degrees-of-freedom, which
represent the net fluxes through each face of the mesh, are constant.
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3.2 Mixed Variational Formulation and Time Discretization

Our particular mixed variational formulation is derived from a combination of
methods originally presented in [25] and [22]. Our goal is toobtain a numerical
formulation where the primary discrete field is the magneticflux density as found
in the ~B field formulation of [25] and where the discrete time integration is per-
formed using a generalized Crank-Nicolson method as found inthe~A-φ potential
formulation of [22]. The advantage of the~B formulation of [25] becomes apparent
during the advection phase of the ALE formulation, as magnetic flux is the best
electromagnetic quantity to use for magnetic transport [26]. The advantages of the
~A-φ potential formulation of [22] are that it can be up to 2nd order accurate in time,
and voltage sources can be explicitly added to a problem by specifying them as
essential boundary conditions on the additional elliptic PDE, making this method
well suited for coupling to an external RLC circuit model.

We begin by decomposing the electric field in Ampere’s law (1)according to (9).
Now we multiply Ampere’s law (1) by a 1-form test function~W1 ∈ H(Curl) and
integrate over the three dimensional problem domainΩ to obtain the variational
form

Z

Ω
~∇× 1

µ
~B· ~W1 dΩ =

Z

Ω
σ(~Eirr +~Eind) · ~W1dΩ+

Z

Ω
~Js · ~W1dΩ (24)

Now we perform integration by parts on (24), apply the Gauss divergence theorem
and move the resulting surface integral term to the right hand side to obtain

Z

Ω

1
µ
~B·~∇× ~W1 dΩ = (25)

Z

Ω
σ(~Eirr +~Eind) · ~W1dΩ+

Z

Ω
~Js · ~W1dΩ+

I

Γ
n̂× 1

µ
~B· ~W1 dΓ

Now we assume that the fields~E and~B are known at discrete time intervals denoted
by the subscript integern. We apply a generalized trapezoidal approximation for the
time derivative of the magnetic field such that

~Bn+1 = ~Bn +(1−α)∆t
∂~B
∂t
|n +α∆t

∂~B
∂t
|n+1 (26)

The averaging parameterα determines the nature of the numerical time integration
such that

α =



















0 Explicit, 1st Order Accurate Forward Euler

1/2 Implicit, 2nd Order Accurate Crank Nicolson

1 Implicit, 1st Order Accurate Backward Euler
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Applying this discretization to Faraday’s law (2), we obtain

~Bn+1 = ~Bn−∆t~∇×
(

(1−α)~Eind
n +α~Eind

n+1

)

(27)

Now we substitute~B on the left hand side of (25) with the expression for~Bn+1 from
(27), moving all quantities at time stepn to the right hand side of the equation to
obtain

α∆t
Z

Ω

1
µ
~∇×~Eind

n+1 ·~∇× ~W1 dΩ = (28)
Z

Ω

1
µ
~Bn ·~∇×W1 dΩ− (1−α)∆t

Z

Ω

1
µ
~∇×~Eind

n ·~∇× ~W1 dΩ

−
Z

Ω
σ(~Eirr

n+1 +~Eind
n+1) · ~W1 dΩ−

Z

Ω
~Js · ~W1 dΩ−

I

Γ
n̂× 1

µ
~B· ~W1 dΓ

where we have added the time step subscriptn+1 to the fields~Eirr and~Eind on the

right hand side. We introduce a secondary variable,~̃B, defined as

~̃Bn≡ ~Bn− (1−α)∆t~∇×~Eind
n (29)

Now we rewrite (28) in terms of our new secondary variable~̃B while making the
substitution~Eirr =−~∇φ, and after rearranging terms we obtain

Z

Ω
σ~Eind

n+1 · ~W1dΩ+
Z

Ω
α∆t~∇×Eind

n+1 ·~∇× ~W1 dΩ = (30)
Z

Ω

1
µ
~̃Bn ·~∇× ~W1 dΩ+

Z

Ω
σ~∇φn+1 · ~W1 dΩ−

Z

Ω
~Js · ~W1 dΩ

−
I

Γ
n̂× 1

µ
~B· ~W1 dΓ

The natural and essential boundary conditions for (30) are

Natural n̂× 1
µ
~B = 0 “Neumann′′

Essentialn̂×~Eind = 0 “Dirichlet ′′
(31)

In other words, the tangential magnetic field~H is the natural boundary condition
while the tangential induced electric field~Eind is the essential boundary condition.
Recall that theessentialboundary condition is a constraint that is enforced manu-
ally, whereas thenatural boundary condition is satisfied in the variational (weak)
sense. In general, the inhomogeneous versions of these two boundary conditions
require vector valued functions~gN(Γ) and~gD(Γ) such that
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n̂× 1
µ
~B=~gN on ΓN

n̂×~E =~gD on ΓD

Note that the variational formulation of (30) is incompletedue to the presence of
theφn+1 term on the right hand side. In order to fully define the problem, we must
add an additional variational equation to define the scalar potential. To do this, we
multiply (12) by a scalar 0-form test functionW0∈H(Grad) and integrate over the
domainΩ

Z

Ω
(~∇ ·σ~∇φ) W0 dΩ = 0

and employ Green’s first scalar identity to obtain
Z

Ω
σ~∇φ ·~∇W0 dΩ =

I

Γ
n̂·σ~∇φ W0 dΓ (32)

for all test functionW0. For this variational equation, thenatural and essential
boundary conditions are

Natural n̂·σ~∇φ = 0 “Neumann′′

Essential φ = 0 “Dirichlet ′′
(33)

In other words, the normal component of the conduction current σ~Eirr is the natural
boundary condition while the surface scalar potential (or voltage)φ is the essential
boundary condition. In general, the inhomogeneous versions of these two boundary
conditions require scalar valued functionsgN(Γ) andgD(Γ) such that

n̂·σ~∇φ = gN on ΓN

φ = gD on ΓD

3.3 Mixed Finite Element Discretization

We assume the three dimensional domainΩ has been partitioned into a set of dis-
crete hexahedral elementsΣi , the union of which forms the finite element meshΩh.
Furthermore, we assume the surface boundaryΓ has been partitioned into the sets
ΓN andΓD, denoting surfaces to which either a Neumann (Natural) or Dirichlet
(Essential) boundary condition is applied.

We will discretize the variational form of the coupled magnetic dynamo equations
of (30) and (32) using a mixed finite element method. In the context of Galerkin
approximations, the choice of the finite element space playsa crucial role in the
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stability and convergence of the discretization. For the case of Maxwell’s equa-
tions, mixed finite element methods which useH(Curl) andH(Div) conforming
spaces to model the electric field intensities and magnetic flux densities respec-
tively are preferred over traditional nodal vector spaces since they eliminate spuri-
ous modes in eigenvalue computations and they prevent fictitious charge build-up
in time-dependent computations. Furthermore, as shown in [27], theH(Curl) and
H(Div) conforming methods satisfy the transformation propertiesof (21) and (22)
in a discrete sense, making them well suited for an ALE treatment of MHD. For
further information regarding the use ofH(Curl) andH(Div) finite elements (aka
vector finite elements, “edge” and “face” elements, discrete differential forms) for
Maxwell’s equations, the reader is referred to [22], [28], [27], [29], [30], [25] [31].

In our proposed ALE formulation the scalar potentialφ will be discretized on el-
ement nodes (i.e. a discrete 0-form field of polynomial degree p = 1), the electric
field will be discretized on element edges (i.e. a discrete 1-form field of polynomial
degreep = 1) and the magnetic flux density~B will be discretized on element faces
(i.e. a discrete 2-form field of polynomial degreep = 1). For a hexahedral element
in the Lagrangian frame we have

φ(~X, t)≈
8

∑
i=1

vi(t)W
0
i (~X), W0 ∈ H(Grad) (34)

~E(~X, t)≈
12

∑
i=1

ei(t)~W
1
i (~X), ~W1 ∈ H(Curl) (35)

~B(~X, t)≈
6

∑
i=1

bi(t)~W
2
i (~X), ~W2 ∈ H(Div) (36)

where the integer superscript on the basis function is the degree of the discrete dif-
ferential form. For the case of (34), the degrees of freedomvi(t) are time dependent
voltages at element nodes and the basis functions are unit-less. For the case of (35),
the degrees of freedomei(t) are time dependent induced voltages along element
edges and the basis functions have units of inverse distance. Finally, for the case
of (36), the degrees of freedombi(t) are time dependent magnetic fluxes through
element faces and the basis functions have units of inverse area.

We employ the finite element library FEMSTER [32], [22] for computation of the
local “mass”, “stiffness”, and “derivative” matrices, where γ denotes an arbitrary
symmetric tensor function of time and space (for material constitutive relations)
and the superscriptl = 0,1,2,3 denotes the degree of the form
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M l (γ)i j =
Z

Ω
γWl

i Wl
j dΩ (37)

Sl (γ)i j =
Z

Ω
γdWl

i ·dWl
j dΩ (38)

Dl(l+1)(γ)i j =
Z

Ω
γdWl

i ·Wl+1
j dΩ (39)

Note that thed operator denotesGradient, Curl, or Divergence, for l = 0,1,2 re-
spectively. The “mass” matricesM and the “stiffness” matricesS are square and
map l -forms to l -forms, the “derivative” matricesD are rectangular and mapl -
forms to(l +1)-forms. It can be shown that

Dl(l+1) = M l+1K l(l+1) (40)

Sl =
(

K l(l+1)
)T

M l+1K l(l+1) (41)

(42)

whereK l(l+1) is a “topological derivative” matrix. This matrix is the discretization
of the exterior derivative operatord from differential geometry,dWl =W(l+1). This
matrix depends upon the mesh connectivity, but is independent of the nodal coor-
dinates. It does not involve an integral over the element, and it does not involve any
material properties. While seemingly abstract, it is enormously valuable in practice.
Given anl -form quantityX with basis function expansion

X =
n

∑
i=1

xiW
l
i , (43)

and an(l +1)-form quantityY with basis function expansion

Y =
n

∑
i=1

yiW
(l+1)
i , (44)

the exterior derivative (Gradient, Curl, Divergencefor l = 0,1,2 respectively) is
given by

y = K l(l+1)x. (45)

It can be shown that
K12K01 = 0 (46)

K23K12 = 0 (47)

which are the discrete versions ofd(dWl ) = 0. In terms of standard vector calculus,
these matrix relations correspond to the identities~∇×~∇ f = 0 and~∇ ·~∇× ~F = 0,
respectively. These identities are satisfied in the discrete sense, exactly (to machine
precision), for any mesh and any order basis function. While FEMSTER supports
arbitrary order elements, basis functions, and quadratures, only linear basis func-
tions will be employed here.
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Using the matrix notation previously defined, we can now write the fully discrete
formulation of the magnetic dynamo equation in the Lagrangian frame as

S0vn+1 = g0 (48)
(

M1(σ)+α∆tS1(µ−1)
)

eind
n+1 =(D12(µ−1))T b̃n +D01(σ)vn+1− f1−g1 (49)

bn+1 = b̃n−α∆tK12en+1 (50)

b̃n+1 = bn+1− (1−α)∆tK12en+1 (51)

wherev is an array consisting of the time dependent voltage degreesof freedom
from the scalar potential solve of (34) for every node in the mesh,eind is an array
consisting of the time dependent induced voltage degrees offreedom of (35) for
every edge in the mesh,b is an array consisting of the time dependent magnetic
flux degrees of freedom of (36) for every face in the mesh,f1 is a volume current
source term andg1 is a surface source term. Note that the face based arrayb̃, the
discrete analog of the secondary variable we introduced in (29), is the only state
variable required to be known at timen. This is a critical feature of our discretiza-
tion; it means the only state variable that needs to be remapped during our Eulerian
advection phase in Section 5 is this face based time averagedflux.

Note that in (49) the rectangular derivative matricesD12(µ−1) andD01(σ) are dis-
crete versions of theCurl and Gradient defined with respect to the Lagrangian
frame (i.e. they have metric information encoded in them by virtue of the mass ma-
trix). As such, they will change as the mesh is moved by~J×~B forces. Furthermore,
the discrete divergence constraints on the fields are given by

(

D01(σ)
)T

e= 0 (52)

K23b = 0 (53)

and from the identities (46) and (47) these constraints are implicitly satisfied for all
time, assuming the initial conditions and the source terms are divergence free.

4 Lagrangian Motion

In this section we review methods for coupling the electromagnetic force and heat
terms to the equations of Lagrangian motion. This phase of the calculation can be
viewed as the Lagrangian treatment of the advection operator Lv of the magnetic dy-
namo equation. Given an electromagnetic force, we move the mesh nodes accord-
ing to this force, keeping the magnetic degrees-of-freedom(face fluxes) constant.
The new node locations affect the basis functions, so while the magnetic degrees-
of-freedom are constant the magnetic field is in fact properly advected. We begin
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with the general continuum equation of motion derived from Newton’s second law.
In a co-moving (or Lagrangian) reference frame, this is given by

ρ
∂2~u
∂t2 = ~∇ ·←→S +~F (54)

whereρ is the material mass density,~u is the displacement vector,
←→
S is the Cauchy

stress tensor, and~F is an independent volumetric body force density. The varia-
tional form of (54) is constructed by multiplying by a test vector~w and integrating
over the entire domainΩ

∂2

∂t2

Z

Ω
ρ~u·~w dΩ =

Z

Ω

(

~∇ ·←→S
)

·~w dΩ+
Z

Ω
~F ·~w dΩ (55)

If the test vector~w is considered to have units of distance, then each term in the
above equation has units of work; hence this variational method is often referred
to as the method of virtual work. For a valid variational method, each component
of the test vectorwi must be a fully continuous function, i.e.wi ∈ H(Grad), and
the stress tensor must satisfy certain symmetry conditions. Integration by parts is
employed to yield

∂2

∂t2

Z

Ω
ρ~u·~w dΩ =

Z

Γ
(
←→
S · n̂) ·~w dΓ−

Z

Ω

←→
S : (~∇⊗~w) dΩ+

Z

Ω
~F ·~w dΩ (56)

wheren̂ is the outward normal of the surfaceΓ. The common boundary conditions
are thedisplacement(Dirichlet, essential) condition~u = ~d on Γ and thetraction
(Neumann, natural) condition

←→
S · n̂ =~t on Γ. Furthermore, we decompose the

stress tensor into a sum of deviatoric and hydrostatic components such that

Si j = τi j −Pδi j (57)

whereP is the hydrostatic pressure defined to be the mean of the principle stresses
P = 1

3Sii , andδi j is the Kronecker delta. The deviatoric stress componentsτi j are
primarily determined by a material’s constitutive models while the hydrostatic com-
ponents are determined by the material’s equation of state (EOS), i.e. a material’s
pressure as a function of energy or temperature.

4.1 Computation of Electromagnetic Force

There are multiple options for coupling the electromagnetic force to the elastic
equation of motion (54). The conceptually simplest approach is to compute~F =
~J× ~B and use this as the body force in (55). As shown in [23], the~J× ~B body
force density is equivalent to the divergence of a Maxwell stress tensor plus a term
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involving the divergence of~B such that

~J×~B =
1
µ
~B· (~∇⊗~B)−~∇(

|B|
2µ

) = ~∇ ·←→T −~B(~∇ ·~B)

Under the good conductor approximation of (6) (i.e. ignoring energy stored in dis-
placement current), the Maxwell stress tensor (MST) is given by

Ti j =
1
µ

(

BiB j −
1
2

δi j BkBk

)

(58)

Provided that~∇ ·~B= 0 (implying no forces due to the presence of magnetic charge),
then the~J×~Bbody force and the MST approach will yield identical accelerations of
a conducting body. It is interesting to point out the similarities between the Cauchy
stress tensor decomposition of (57) and the Maxwell stress tensor of (58). The
MST consists of a deviatoric component1

µBiB j and a pressure component consist-

ing of the principle Maxwell stresses12δi j BkBk. For MHD problems, the mean of
the principle Maxwell stress terms is equivalent to the magnetic pressure1

2µ|~B|2.
The deviatoric components of the MST can add an effective “magnetic strength”
to materials that might otherwise have no strength. This gives rise to the physi-
cal phenomena of shear Alfven waves, an example of which is given in Section 6.
From a discretization standpoint it is very straightforward to implement the MST
approach. We simply evaluate the components of (58) at element quadrature points
in the Lagrangian frame at the discrete time leveln+1 via the face based represen-
tation of (36) and add these values to the corresponding component of the Cauchy
stress tensor in the discretization of (56). This is consistent with the time center-
ing of the hydrodynamic variables in ALE3D, where the Cauchy stress divergence
terms (which are used to compute accelerations) are known atthe discrete time step
n+1, since stress rates are integrated atn+ 1

2.

4.2 Computation of Resistive Energy Loss

Due to the resistive nature of the coupled magnetic dynamo equations of (13) and
(14), the energy stored in the magnetic fields is subject to dissipation due to Joule
heating. To account for this energy loss, we need to compute aresistive energy loss
term and couple this to the equation of state describing our material models. This
can be accomplished by computing the resistive energy loss density

eσ = ~J ·~E = σ~E ·~E = σ(~Eind−~∇φ) · (~Eind−~∇φ) (59)

Again, from a discretization standpoint it is very straightforward to implement the
resistive energy loss term. We simply evaluate the term of (59) at element centroids
at the discrete time leveln+ 1 via the edge based representation of (35) and the
node based representation of (34) and add these values to existing zonal energies at
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time n+1, which is consistent with the time centering of energy density variables
in ALE3D.

5 Eulerian Advection

The ALE3D code performs an optional equipotential relaxation of the mesh. This
is important for problems with gross deformation of the mesh, it prevents the mesh
from becoming tangled. If relaxation is performed, fields defined on the “old” mesh
must be remapped to the “new” mesh. This remapping is equivalent to Eulerian ad-
vection, but with a fictitious mesh velocity~vm. It is interesting to note that it is
possible to implement a pure Eulerian formulation as a Lagrange step followed
by a complete remap step in which the mesh snaps back to its original configu-
ration at every time step. We consider only new grids which are “nearby” in the
sense that only small perturbations of the grid are allowed (i.e. the mesh nodes
should not travel farther than one mesh element in any one relaxation step). This is
known as the continuous remap approximation (CRA). This is in contrast to gen-
eral remapping methods (a.k.a. interpolation methods, see[33]) whose goal is to
remap quantities between two arbitrary grids. Under the CRA, the nodes of the old
mesh are displaced to new locations; the topology (or connectivity) of the mesh
does not change. Furthermore we restrict the relaxation process to interior mesh
nodes, keeping all boundary nodes fixed. A key point is that the divergence of the
magnetic flux density should be preserved during the advection process, this is re-
ferred to as constrained transport or constrained interpolation. The definition of the
Maxwell stress tensor assumes a zero divergence field, so if the advection step does
not preserve divergence then some additional post processing (projection, filtering)
would be required to prohibit unlimited growth of magnetic monopoles and the
resulting non-physical forces.

5.1 Constrained Transport of Magnetic Flux

Once again we assume the frozen flux condition (the diffusionof the fields has
already been computed) and now our goal is to compute the rateof change of the
magnetic flux density due to advective “transport” caused bythe mesh motion. In
essence, we are holding the magnetic field~B fixed in space and letting the mesh
relax around it; this is opposite in sense to advecting a magnetic field across a fixed
Eulerian mesh (as is the case with the original CT method of [12]). The change in
magnetic flux density due to mesh relaxation is therefore

∂
∂t

~B =−~∇×~vm×~B (60)
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wherevm denotes the mesh velocity. It is imperative that this process maintain the
solenoidal nature of the~B field by satisfying the constraint

~∇ ·~B = 0.

Now consider an arbitrarily oriented surfaceSwith differential surface aread~a. We
integrate (60) over the surfaceS

Z

S

∂
∂t

~B·d~a =−
Z

S

~∇× (~vm×~B) ·d~a

Now we apply Stokes’ theorem to obtain

∂Φ
∂t

=−
I

C
(~vm×~B) ·d~x (61)

whereΦ denotes total magnetic flux through the surfaceS, andC represents the
boundary of the surfaceSwith differential arc lengthd~x. Equation (61) states that
a voltage in a circuit loopC is induced by a time rate of change of flux through this
loop due to the motion of the mesh across the “frozen-in”~B field.

Now suppose the surfaceS, in the presence of a fixed background~B field, moves
arbitrarily (including distortion, stretching, re-orientation, etc . . . ) in a time∆tm.
We can approximate the time derivative for the magnetic flux using a simple finite
difference

∂Φ
∂t
≈ Φnew−Φold

∆tm
whereΦold is the flux through the original surfaceSat timet andΦnew is the flux
through the surfaceS at timet + ∆tm. We know from a Taylor series analysis that
this simple finite difference will be second order accurate if ∂Φ

∂t is known at time
t + 1

2∆tm. This provides us with a numerical method for computing the new flux

Φnew≈Φold−∆tm

I

C
(

~u
∆tm
×~B) ·d~x = Φold−

I

C
(~u×~B) ·d~x (62)

where~u = ∆tm~vm is the displacement of the surfaceS. Stated another way, we can
approximate the flux through the new surface by “measuring” the voltage in the
closed circuit loopC. This approximation is most accurate if the location of the loop
C is halfway between the old face and the new face. See Figure 1 for a depiction of
this.

5.2 Algebraic Constrained Transport on 3D Unstructured Grids

Let~xold denote the positions of the mesh nodes after a Lagrangian time step and
let~xnew denote the mesh nodes after one mesh relaxation step. We define the nodal
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Fig. 1. Schematic diagram depicting the relationship between magnetic flux through two
arbitrary faces and the corresponding time rate of change of magnetic flux.

displacement as

~u≡~xnew−~xold (63)

Furthermore, we define an intermediate nodal position~xmid as

~xmid =~xold +
1
2
~u (64)

Since the topology (or connectivity) of a mesh is constant for all time, there is a
one to one correspondence between mesh entities such as edges and faces at the
old, intermediate and new locations. This allows us to definean intermediate mesh
with unique edges and faces, topologically identical to theold and new faces. These
intermediate quantities differ geometrically from their old and new counterparts by
virtue of the nodal positions~xmid. A schematic representation of this is shown in
Figure 2.

Now suppose we have calculated the magnetic flux density~B in a Lagrangian time
step via the proposed method of (50). Recall that~B is a 2-form and is approximated
by 2-form basis functions according to the expansion

~Bold ≈
6

∑
i=1

bold
i

~W2,old
i (65)

The degrees of freedombold
i in this expansion carry the units of magnetic flux; this

implies that we know the magnetic flux through every face in the Lagrangian (or
old) mesh. Our goal is to compute new values of the magnetic flux bnew

i which will
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Fig. 2. Schematic diagram depicting a simple two element mesh with one face displaced.
Topologically speaking, the old and new meshes are identical. They differ geometrically by
the location of the nodes in space. The voltage update circuit is depicted in dashed-green
and corresponds to a set of four edges, determined by the four intermediate nodes, which
forms the boundary of an intermediate face.

allow us to represent the magnetic flux density on the new meshas

~Bnew≈
6

∑
i=1

bnew
i

~W2,new
i (66)

where~W2,new
i denote the basis functions for the new mesh (which are known once

the locations of the new mesh nodes are computed).

Using (62) as a starting point, we can compute the flux througha given face in the
new mesh by

bnew
i = bold

i +∆bi (67)

The flux change∆bi we are adding to each face in the old mesh is computed by
numerically integrating the voltage along the closed circuit pathC, defined by 4
intermediate edges, which in turn are defined by the four intermediate nodes~xmid

associated with each face. Specifically, we can compute the flux change as

∆bi =−
4

∑
j=1

(

~xmid
j+1−~xmid

j

)

·





(~u j ×~B|~x=~xmid
j

)+(~u j+i×~B|~x=~xmid
j+1

)

2



 (68)

where the indexj is cyclic (modulo 4). A detailed schematic representation of this
is shown in Figure 3. Each term in the sum of (68) is a line integral of the voltage
along one of the intermediate edges. This integral is computed with the trapezoid
rule. A critical point is that this computation requires evaluation of the magnetic
flux density~B at the intermediate nodes; this process will be discussed indetail in
the next section.

The flux update of (68) relies on defining a circulation aroundthe four intermediate
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Fig. 3. Schematic diagram detailing the process of computing the update voltagealong
the closed circuitC defined by four intermediate edges. Given the values of~u×~B at each
intermediate node, a voltage contribution from each intermediate edge can be computed.
The appropriately signed sum of each edge contribution is the flux changefor the face.

edges. The direction of the circulation will determine the sign of ∆b. Either of both
directions can be used; however, it is imperative that the choice is made consis-
tently in order to computebnew

i for each face. On a general unstructured grid, it can
become difficult to enforce such a rule, especially if one hasno control over the
source of the mesh topology. As such, a more robust (and ultimately more reveal-
ing) method for updating the fluxes can be obtained by considering the rectangu-
lar topological derivative matrixK12 of (45) (described in detail in [27] and [22])
which is a sparse rectangular matrix representing an incidence map between edges
and faces of a mesh. The first step is to introduce an edge basedarraye′ represent-
ing the edge based flux contributions defined by a line integral along that edge. For
every edge in the mesh, we have

e′j =
(

~xmid
b −~xmid

a

)

·
(

(~ua×~B|~x=~xmid
a

)+(~ub×~B|~x=~xmid
b

)

2

)

(69)

where the generic integersa andb denote the unique integer IDs of the intermediate
mesh nodes associated with edgej such thata < b. Therefore, the direction of the
line integral is uniquely defined according to a global standard like that originally
proposed in [27] (i.e. the line integral path is always from the node with low integer
ID to the node with high integer ID). We can now write the flux update in terms of
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global mesh arrays as
bnew= bold−K12e′ (70)

Written in this form, it is clear that the flux update method will preserve the solenoidal
nature of the magnetic field. Taking the discrete divergenceof (70) yields

K23bnew= K23bold +K23(K12e′) = 0 (71)

Therefore, the divergence-free constraint is satisfied to machine precision for every
mesh relaxation step. Compare the flux update of (70) to the discrete Faraday’s law
of (50).

5.3 Patch Recovery Process for Nodal Magnetic Field Representation

In order to compute the edge based voltage contributions of (69), we need to evalu-
ate the~B field at the points~xmid. By virtue of the continuous remap approximation,
the points~xmid are guaranteed to lie inside (or possibly on) an upwind element of
the old (or Lagrangian) mesh. An example of this is depicted in Figure 4.

Fig. 4. Schematic diagram depicting the upwind locations of the intermediate mesh nodes
~xmid

i =~xold
i + 1

2~ui . In this example,~xmid
1 and~xmid

2 lie in element 2 of the old mesh while~xmid
3

and~xmid
4 lie in element 3 of the old mesh

Once the upwind elements are known for each intermediate node, we can use a
finite element representation to evaluate~B inside of the upwind element at the lo-
cation of the intermediate node~xmid. However, we cannot use the face representa-
tion of (36) since, by construction, this representation istangentially discontinuous
across element boundaries. Instead, we perform a type of patch recovery to obtain
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a fully continuous (or smooth) representation of~B which we will denote as~Bavg.
We define the smooth representation as

~Bavg =
8

∑
i=1

3

∑
j=1

bavg
i, j

~Vi, j (72)

This representation has 24 degrees of freedom, corresponding to three vector com-
ponents located at each of the 8 element nodes, and is fully continuous at element
boundaries. This nodal vector field representation is equivalent to the tri-linear in-
terpolation commonly used for FEM discretization of fluid velocities. The vector
valued basis functions~Vi, j can be viewed as 3 sets of 0-form (or scalar nodal) basis
functions, one for each component of the vector field.

There are several options for computing the degrees of freedombavg
i, j for this repre-

sentation. The simplest and most efficient method is to first compute a cell centered
value of the magnetic field for every element in the mesh usingthe face based rep-
resentation of (36), then to apportion a volume weighted average of this value to
each node. This is a cumulative process, any given node will receive a contribution
from every element it is connected to. This cumulative nodalvalue is then divided
by a “nodal volume.” A more robust, and hence computationally expensive method
is to employ the so called Hodge star matrix (see [22] for further details) and solve
the following linear system for each component of the averaged nodal values

M0bavg
i = (H03)Tbcc

i (73)

whereM0 denotes a 0-form mass matrix,H03 is a rectangular Hodge matrix which
maps node-centered 0-form quantities to cell-centered 3-form quantities andbcc

denotes the cell centered evaluation of the face based representation of (36). In
practice, we have found that the simple volume averaging method is sufficient for
our needs and is the method we employ for our advection results in Section 6.

5.4 Algebraic Flux Correction for Magnetic Shocks

The transport method of Section 5.2 is second order accurateand will therefore
exhibit non-monotonic solution behavior (aka spurious oscillations, “ringing”, or
overshoots and undershoots) for solutions with discontinuities or shock fronts. We
must impose a form of limiting that will suppress the non-monotonic solution be-
havior. Limiting schemes for the scalar advection equationare prevalent and well
understood as a result of many years of research in the computational fluid dynam-
ics (CFD) community [34]. Nevertheless, the design of genuinely multidimensional
schemes for finite element discretizations on unstructuredmeshes has proved to be
a particularly challenging task [20]. Furthermore, to our knowledge there is no
published method for limiting the vector valued magnetic advection equation on a
general unstructured grid.
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The limiting procedure can be interpreted as reducing a highorder numerical method
to first order accuracy in the vicinity of a sharp discontinuity while maintaining the
high order accuracy in the remaining regions where the solution is smooth. This
requires a numerical procedure for detecting a shock (i.e. a“smoothness sensor”)
and a procedure for limiting (or reducing the order of) the advection update method
by the proper amount to prevent spurious overshoots and undershoots. The theoret-
ical foundations of this process were originally developedfor 1D finite difference
solutions to scalar conservation laws [35], [36], where thenotion of a Total Varia-
tion Diminishing (TVD) method was introduced in order to guarantee a monotonic
solution. As pointed out in [20], the generalization of the TVD criterion to finite
element discretizations on 3D unstructured grids is the so called local extremum di-
minishing (LED) criterion [37]. The LED criterion is an algebraic statement which
enforces the rule that local solution maxima cannot increase (thereby preventing
spuriousovershoots) and local minima cannot decrease (thereby preventing spu-
rious undershoots). In this section, we follow the algebraic approach of [20] of
modifying the discrete magnetic transport method so as to render the discretization
local extremum diminishing.

Suppose we apply a limiting (or correction) term to the localface flux update equa-
tion (67) of the form

blim
i = bold

i +θi∆bi

where the correction termθi has been introduced for each face flux. Whenθi = 1,
no limiting is performed and the flux update method is second order accurate. Now
suppose we had a shock detector or smoothness sensor which could tell us whether
or not the resulting face flux would result in a spurious overshoot or undershoot in
the computation of~B. Our goal then is to compute the value ofθi which would cor-
rect the flux update and prevent this from happening. However, we are immediately
confronted with a problem. We cannot simply change the valueof each face based
flux independently, as this will clearly destroy the discrete divergence free property
which we have worked so hard to obtain.

The key to overcoming this obstacle is to limit the edge basedvoltages rather than
the face based fluxes. We therefore propose a divergence preserving limited update
method of the form

blim = bold−K12(θe′) (74)

Since we are limiting (or correcting) independent edge based voltages, the update
of (74) is guaranteed to be divergence preserving to machineprecision. The general
rule of thumb is that the edge based voltages which border theshock front are the
ones responsible for the spurious overshoots / undershootsin the magnetic flux and
must therefore be limited. However, in order to determine which edges are on the
shock front and how much they need to be limited by, we need information from
the face based fluxes, since we are ultimately concerned withobtaining a limited
value of the discrete magnetic flux density~B which is a face based quantity. An
overview of this process is presented in Figure 5.
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Fig. 5. Consider a patch of element faces in the presence of a discontinuous magnetic field
oriented out of the page. In this example, the top four corner faces haveunit magnetic flux
while the remaining faces have no flux. If the nodes bordering the discontinuity were to
move in the direction indicated, the unlimited flux update method would generate spurious
overshoots in the three faces bordering the shock front (indicated with circles). These are
the faces that require flux correction. To compute the divergence preserving flux correction,
we limit the voltages on the edges which border the shock front.

Fig. 6. Topological data structure used to
detect discontinuities in face based fluxes.
Note that the top and bottom faces are not
used.

Fig. 7. Topological data structure used to
detect discontinuities in edge based volt-
ages.

The details of the process can be broken down into four steps:

• Step 1– Compute the unlimited flux change via (70)
• Step 2– Compute the face limited flux change via Algorithm 1
• Step 3– Loop over limited faces to determine the edges which lie along the shock

front and compute the edge limiting factor via Algorithm 2
• Step 4– Compute the edge limited flux change by taking the limited curl via (74)
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We begin by computing the unlimited flux change via the algebraic constrained
transport update of (70). Next, we compute a face limited fluxchange∆̄b by search-
ing the topological data structure of Figure 6 using the method outlined in Algo-
rithm 1. In other words, we check to see if the unlimited flux change will result in an
overshoot or undershoot by searching all of the connected faces; if so, then we sim-
ply compute the limited value to be the maximum/minimum connected value of the
data structure. The resulting limited flux changē∆b could be used in the algebraic
constrained transport update of (70) and it would result in aproperly limited~B field;
however the resulting discrete~B field would no longer be divergence free. There-
fore, the next step is to determine which edges in the limitedfaces are responsible
for the over/undershoots. In logicalu-v (or reference) space, we can decompose a
face into two sets of edges: the two edges parallel to the local u direction and the
two edges parallel to the localv direction. Given a face that lies on the border of
shock front, our goal is to compute which edge in each of thesetwo sets requires
limiting. This is accomplished by computing the “edge curl”using the topological
data structure of Figure 7 according to the method outlined in Algorithm 2. Edges
which border the shock front will have a large “edge curl” relative to the opposite
edge in logical space. Once the limited edges have been identified, we calculate the
edge limiting factor

θ j =
∆bi− ∆̄bi

∑nlim
i=1 Ki, je′j

(75)

Once this value has been computed for each limited edge, we can then compute
the edge limited flux change via (74). Note that all of the information required for
the data structures depicted in Figure 6 and Figure 7 is encoded in the topological
derivative matrixK12 of (45), since this purely topological quantity is simply an
incidence map which designates the connectivity between edges and faces.

6 Numerical Verification Experiments

In this section we present a series of numerical experimentswhich are designed
to verify the individual components of our operator split discretization of MHD.
For the first two examples of Section 6.1 and Section 6.2, we need to solve the
linear system of (49) where the right hand side consists of anedge based finite
element mass and stiffness matrix. For these examples we usea simple diagonally
scaled pre-conditioned conjugate gradient (PCG) method which is sufficient for
most applications. However we should point out that more advanced and efficient
methods for solving linear systems arising from mixed finiteelement discretizations
usingH(Curl) andH(Div) basis functions exist, such as those employed in [25].
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Algorithm 1 : Face Based Shock Detection and Flux Correction

for i = 1 to NumFacesdo
//Compute the area of the old and new faces given their nodal coordinates
Aold

i = ComputeFaceArea(OldNodes);
Anew

i = ComputeFaceArea(NewNodes);
|B|old = bi

Aold
i

|B|new= bi+∆bi
Anew

i
//Initialize the max and min values
Max= Min = |B|old

for j = 1 to 4 do
for k = 1 to NumConnectedFacesdo

//Calculate local face extrema connected to edgej
Acon

j,k = ComputeFaceArea(OldNodes);

|B|con =
b j,k
Acon

j,k

if |B|con > Max then
Max= |B|con

else if|B|con < Min then
Min = |B|con

end
end
//If face i is a local min or max, compute the limited value
if |B|new> Max then

blim
i = Max∗Anew

i ;
else if|B|new< Min then

blim
i = Min∗Anew

i ;
∆̄bi = blim

i −∆bi
end

6.1 Electromagnetic Diffusion in a Coaxial Cylinder at Rest

The purpose of this computational experiment is to verify the discrete electromag-
netic diffusion operatorLσ of our operator splitting of the dynamo equation. Since
we are ignoring the advection operator, we choose a simple test problem in which
the conducting materials are at rest (i.e.~v′ = 0). Furthermore, this test is designed
to validate our approach for treating electromagnetic diffusion in highly heteroge-
neous conducting regions (i.e. regions consisting of conductors immersed in insu-
lating vacuum like regions) using only a voltage source boundary condition. This
test problem was developed in the spirit of the first test problem from [25]; however
in this case we drive the problem with a voltage source boundary condition and we
have an analytic solution to compare with.

In this computational experiment we apply a 1V potential difference across the ends
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Algorithm 2 : Edge Based Shock Detection and Voltage Correction

for i = 1 to NumLimitedFacesdo
for j = 1 to 4 do

∆ej = 0
for k = 1 to NumConnectedFacesdo

//Compute the curl of~B around edgej
Acon

j,k = ComputeFaceArea(OldNodes);

|B|con =
b j,k
Acon

j,k

∆ej = ∆ej +K j,k ∗ |B|con

end
end
//Check for shock in localu-direction
∆eu = ComputeRatio(∆e1,∆e3);
//Check for shock in localv-direction
∆ev = ComputeRatio(∆e2,∆e4);

end

of a conducting coaxial cylinder and compute the steady state conduction current
and magnetic field via the mixed FEM formulation of Section 3.3. The electrical
resistance of the coaxial cylinder is given by

R=
l

σA
(76)

wherel is the length of the coaxial cylinder andA is the cross sectional surface area
of the coaxial cylinder determined by its inner radiusRi and outer radiusRo. The
potential difference across the coaxial cylinder will result in a steady state conduc-
tion current density~J = σ~∇φ whereφ is the scalar potential inside the conductor.
We fix the geometry and conductivityσ of the problem such that the total resistance
is 1 Ohmand the total conduction currentI = 1 Amp. To facilitate the magnetic
fields in the vacuum around the cylinder, the computational domain is a cylinder of
radiusRb = 2Ro and lengthl oriented along the ˆz direction, divided into two ma-
terial regions as shown in Figure 8. The cylinder is assigneda conductivity value
σc = 2S/m while the vacuum region is assigned a very small conductivity value
σvac = 10−7σc. The computational mesh consists of 5,760 hexahedral elements.

The steady state magnetic field will have azimuthal symmetrywhich can be deter-
mined analytically from Ampere’s law
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Fig. 8. Computational domain for conduct-
ing coaxial cylinder immersed in a vacuum
like material.

Fig. 9. Computed steady state electro-
magnetic fields for the conducting coaxial
cylinder problem.

Bθ(r)=
µIenc(r)

2πr
(77)

Ienc(r)=



















0 r ≤ Ri

I r2−R2
i

R2
o−R2

i
Ri ≤ r < Ro

I Ro < r

(78)

We can compute the total inductance in the computational region from an integral
of the energy stored in the magnetic field via

L =
πl
µI2

Z Rb

0
B2

θ(r)dr (79)

Given the resistanceR and the inductanceL of the computational region, we can
determine the exponential time dependence of the total current as it diffuses radially
into the cylinder

I(t) = I

(

1−exp(−t
R
L

)

)

(80)

For the scalar potential solve of (48), we apply the inhomogeneous Dirichlet bound-
ary conditionφ = +1 at the surfacez= 0 andφ = 0 at the surfacez= l . For the
discrete Ampere solve of (49), we apply the homogeneous Dirichlet boundary con-
dition n̂×~Eind = 0 over the entire surface of the problem domain. For both solves,
a simple diagonally scaled PCG method with a residual error tolerance of 10−10 is
used. We run the problem for a total timet f in = 3τ whereτ is one diffusion time
constant such thatτ = σµ(Ro−Ri)

2, this will ensure that the fields reach steady
state. We use a fixed time step∆t =

t f in
100. In Figure 9 we plot the scalar potential

as well as the steady state conduction current density~J = σ~E and magnetic field
~B. In Figure 10 we plot the analytic solution for the azimuthalmagnetic field as a
function of radius and compare it with our mixed FEM solution. In Figure 11 we
plot the total current as a function of time and compare it with our mixed FEM
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solution.

Fig. 10. Azimuthal magnetic field as a
function of radius.

Fig. 11. Total current as a function of time

6.2 MHD Wave Propagation in an Ideal Gas

In this computational experiment we verify the coupling of the electromagnetic
force to the equations of Lagrangian motion, which in turn will verify our La-
grangian treatment of the advection operatorLv. Our goal for this experiment is
to launch waves and verify their computed velocity. A simpleway to do this is to
fix the velocity of the wave to some desired value, then to scale the domain size
and total time for the problem such that the wave front just reaches the end of the
computational domain at timet = t f in. We consider the case of a rectangular “slab”
mesh (i.e. one element thick in thez-direction) of dimension 2Lx by 2Ly centered at
the originx = y = 0 representing an ideal gas. We use a simple gamma-law model
for the EOS of the gas given by

P = (γ−1)
ρ
ρ0

E (81)

For an ideal monatomic gas,γ = 5
3.

For reference, we first consider the case of a pure sound (or acoustic) wave. This
is a purely hydrodynamic calculation and does not involve any electromagnetic
properties. The sound speed is determined by the relation

vs =

√

γP
ρ

(82)

We choose a sound speedvs = 0.5m/s and an initial densityρ = 1.0. This deter-
mines the pressure which allows us to compute the energy for our EOS. We excite
the wave by applying a time dependent velocity perturbationto a face in the mesh
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Fig. 12. Psuedocolor plot of velocity wave at timet = t f in for the case of a pure sound (or
acoustic) wave. Since the initial velocity perturbation is oriented in thex-direction and the
ideal gas has no strength, the velocity perturbation travels in thex-direction via compression
waves at the sound speedvs. The computational domain is a single element thick “slab” of
dimension 2vst f in by 2vst f in.

that is normal thex-axis and located at the center of the mesh. Specifically, we have

~vper = Acos(ωt)x̂ (83)

which gives us a displacement perturbation equal to

~xper =
A
ω

sin(ωt)x̂ (84)

In order to keep the problem in the linear regime, we set the velocity perturbation
amplitude to beA = 10−2. For this experiment, the computational domain has di-
mensionsLx = Ly = vst f in. We set the total time to bet f in = 1s. This implies that the
perturbation velocity (and displacement) will oscillate for two full periods during
the simulation. Since the ideal gas has no strength (i.e. no restoring force orthogo-
nal to the velocity perturbation), the velocity perturbation should propagate outward
from the center of the mesh via compression and rarefaction waves traveling in the
x-direction at the sound speedvs as shown in Figure 12.

Now we consider the case of an MHD wave. We begin by applying aninitial mag-
netic field to the problem domain oriented in they-direction such that~B = Byŷ. For
this case, we add an electrical conductivity to the ideal gas. We set the conductivity
very high (σ = 108S/m) so that the conducting gas effectively has no electrical re-
sistance. This implies that our MHD diffusion equations areeffectively loss-less for
the time scales we are considering, meaning we are in the ideal MHD limit with the
frozen in flux condition. We apply the same time dependent velocity perturbation
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Fig. 13. Psuedocolor plot of velocity wave at timet = t f in for the case of an MHD wave,
consisting of a fast (or magnetosonic) wave and a shear (or Alfven) wave. This is accom-
plished by adding a~B field oriented in they-direction to the problem. The velocity pertur-
bation now travels in thex-direction via compression waves at the fast (or magnetosonic)
speedvf and in they-direction via shear waves at the Alfven speedvA. The computational
domain is a single element thick rectangular “slab” of dimension 2vf t f in by 2vAt f in.

in thex-direction to a face in the middle of the mesh. Because the magnetic field is
“frozen in” to the material, it will be dragged along with thematerial as it moves.
However, the~J×~B restoring force will work to resist this motion and effectively
add strength to the gas in the from of the Maxwell stress tensor. We now expect to
see two types of waves, a fast (or magnetosonic) compressionwave traveling in the
x direction at the speedvf and a shear Alfven wave traveling in they direction at
the speedvA as shown in Figure 13. The shear Alfven wave velocity is givenby

vA =
|~B|√ρ

(85)

while the fast (or magnetosonic) wave velocity is given by

vf =
√

v2
s +v2

A (86)

We fix the Alfven speed to bevA = 1.0m/s(which subsequently determinesBy) and
keep the sound speed fixed atvs = 0.5m/sas before; this implies the magnetosonic

speed will bevf =
√

5
2 m/s. For the linear solve of (49) we apply the homogeneous

Neumann boundary condition ˆn× 1
µ
~B = 0 to thex andy boundary planes (i.e. we

are enforcing the constraint~v×~B = 0 on the perimeter of the mesh). Since this is
a three dimensional problem (i.e. it has finite depth in thez-direction), we apply
the homogeneous Dirichlet boundary condition ˆn×~E = 0 on the top and bottom of
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the mesh defined by the planesz= zmin andz= zmax. The linear solve is performed
using a diagonally scaled PCG method with a residual error tolerance of 10−8.

Fig. 14. MHD wave problem with exaggerated displacement (scale factor of 300) to em-
phasize the features of the Lagrangian calculation. Note how the mesh lines are parallel to
the magnetic fields lines. The psuedocolor plot represents the magnitude of the magnetic
field, |~B|. Here we can more clearly see the components of the Maxwell stress tensorin ac-
tion. The pressure terms contribute to the peaks and nulls in the magnetic field magnitude
along they-direction due to compression waves while the deviatoric components give rise
to the shearing motion of the vector field along thex-direction.

In Figure 14 we plot the magnetic field vectors and magnitude along with the com-
putational mesh using an exaggerated displacement (scale factor of 300) to em-
phasize the characteristics of the Lagrangian calculation. Note how the mesh lines
move with the magnetic field. In addition, note how the magnetic field lines com-
press and expand in they-direction and undulate due to shearing motion in thex-
direction. In Figure 15 we track the velocity wave amplitudeto its first peak value
for six different spatial locations along the Alfven wave axis (they-axis). Note how
the velocity wave amplitude decays at a rate proportional to1√

r , in direct agree-
ment with the expected results for wave propagation in two dimensions (recall the
Green’s function for 2D wave propagation is proportional to1√

r ). The peak to peak
separation of the velocity wave amplitude at different points in time can be used to
measure the instantaneous numerical velocity of the wave asshown in Figure 16.
Note how the numerical Alfven wave travels at a non-constantrate which is slower
than the expected constant rate, indicating the effects of numerical dispersion.

Finally, we perform the Lagrangian MHD wave calculation on avery unstructured
mesh to test the robustness of the numerical method. In Figure 17 we compare the
final results at timet = t f in for both mesh types, indicating that the proposed method
can support MHD waves on highly unstructured grids with arbitrary connectivity.
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Fig. 15. Velocity wave amplitude as a func-
tion of time (up to first peak value) for six
different spatial locations along the Alfven
wave axis (y-direction) and a 1√

r fit to the
amplitude.

Fig. 16. Location of first peak value in ve-
locity space for six different spatial loca-
tions, providing a measure of the instanta-
neous Alfven velocity as well as numerical
dispersion.

Fig. 17. Comparison of Lagrangian MHD wave results at timet = t f in for the case of a
structured mesh (left) and a very unstructured mesh (right).

6.3 Eulerian Advection of Smooth Fields

The purpose of this computational experiment is to to demonstrate the second or-
der accuracy of the algebraic constrained transport methodof (70), and therefore
verify our Eulerian treatment of the advection operatorLv. We consider the case
of a “smooth” (i.e. infinitely differentiable) magnetic field initially projected onto a
significantly distorted mesh. We then let the mesh relax to equilibrium while apply-
ing the constrained transport update of (70) at each mesh relaxation step to update
the magnetic flux values. A sequence of images depicting thisprocess is shown in
Figure 18. We consider a solenoidal~B field that can be expressed as the curl of a
vector potential which represents a vector valued “Gaussian Hill” oriented in theẑ
direction (i.e. out of the page)
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~A= exp
(

−α(x2 +y2)
)

ẑ

~B=~∇×~A

The corresponding~B field will have non-zero ˆx andŷ components. We perform the
calculation on a sequence of refined meshes and at each mesh relaxation step, the
L2 finite element error is computed for each element, as shown in Figure 19. Note
that the convergence of the method indicates second order accuracy.

Fig. 18. A solenoidal magnetic field~B is projected onto an initially distorted mesh (left).
The mesh is then relaxed to equilibrium (right) via a sequence of steps (middle) while the
magnetic flux is updated using the algebraic constrained transport method.

Fig. 19. Convergence analysis of finite element error for the magnetic advection equation
using a coarse (144 element), medium (576 element) and fine (2,304 element) hexahedral
mesh. The maximumL2 error vs. mesh relaxation cycle is plottedleft while the maximum
L2 error vs. element size at the final cycle is plottedright on a log scale, indicating the
convergence rate is second order.

In addition, we compute the numerical energy stored in the magnetic fields at each
mesh relaxation step as

emag= bTM2(µ−1)b (87)

In Figure 20 we plot the measured magnetic energy at each meshrelaxation cycle
using three different limiting methods: no flux limiting (i.e. pure algebraic CT),
face based flux limiting (i.e. non-divergence preserving) and edge based flux limit-
ing (i.e. divergence preserving). Strict conservation of energy is not explicitly built
into the method, and Figure 20 shows that some energy is lost during advection,
even when no limiting is applied. The amount of lost energy isa function of the
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mesh, and as the mesh is refined the amount of lost energy decreases with second
order convergence. The fact that our advection method conserves magnetic flux
exactly and conserves magnetic energy approximately is consistent with the hydro-
dynamics advection in ALE3D which conserves momentum exactly and conserves
energy approximately. In Figure 21 we plot the total magnetic charge at each mesh
relaxation cycle using the same three limiting methods. As expected, the unlimited
and the edge limited algebraic CT method preserves the divergence of the~B-field
to machine precision, independent of the mesh distortion. Note also how the face
limited approach destroys the~∇ ·~B = 0 property as expected.

Fig. 20. Normalized magnetic energy at
each mesh relaxation step using three dif-
ferent limiting methods.

Fig. 21. Total magnetic charge at each
mesh relaxation step using three different
limiting methods.

6.4 Eulerian Advection of Discontinuous Fields

In these computational experiments we verify the algebraicflux correction method
by performing mesh relaxation over discontinuous fields andverifying that the LED
criterion is satisfied. We begin with a classic one dimensional advection problem
adapted for our ALE treatment of magnetic flux. The computational domain and
initial fields are depicted in Figure 22. We project onto the region two different ini-
tial vector fields. The first is a smooth Gaussian hill for reference purposes while
the second is a unit step function. We apply an initial mesh density gradient to the
computational domain such that one end has a high concentration mesh elements
while the other end has a low concentration of mesh elements.When mesh relax-
ation is applied, the mesh will flow from the high density region to the low density
region with the non uniform mesh velocity~vm until equilibrium is reached. This is
equivalent to advecting the initial data in the opposite direction−~vm. The results of
this calculation with and without algebraic flux correctionare shown in Figure 23.
Note how spurious oscillations occurs at the leading and trailing edge of the shock
front when no flux correction is applied. These results are indirect agreement with
numerical advection of a square pulse using the textbook second order accurate
Lax-Wendroff method. Note how the flux corrected result has succeeded in sup-
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pressing the oscillations by directly enforcing the LED criterion. Furthermore, note
that with and without flux correction, the results for the smooth function are are in
good agreement with the initial data. This indicates that the proposed algebraic flux
correction method does not introduce excess diffusion for smooth fields.

Fig. 22. Computational domain and initial field data for mesh relaxation over a smooth
“Gaussian-hill” vector field and a discontinuous vector field. In both cases, the mesh is
given an initial density gradient. When the mesh relaxation process is applied, the elements
will flow from the region of high density to low density. In the first case (left) the mesh
velocity will be from left to right while in the second case (right) the mesh velocity will be
from right to left.

Fig. 23. Computational results for algebraic constrained transport of magnetic flux with and
without algebraic flux correction for two different mesh velocity directions.

In Figure 24 we perform a similar experiment, except this time the computational
domain is an unstructured cylinder mesh with a radial step function. Again, we
apply an initial mesh density gradient to the computationaldomain. When mesh
relaxation is applied, the mesh will flow radially inward / outward from high den-
sity region to the low density region with the non uniform mesh velocity~vm until
equilibrium is reached. The results of this calculation with and without algebraic
flux correction are shown in Figure 25. For the case of radial expansion, note how
spurious undershoots in the magnetic flux density~B occur at the shock boundary
when no flux correction is applied while for the case of radialcompression spurious
overshoots occur. Note that in both cases, these spurious oscillations are suppressed
when algebraic flux correction is applied.
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Fig. 24. Computational domain and initial field data for mesh relaxation over discontinuous
vector field on an unstructured cylindrical mesh. In both cases, the mesh isgiven an initial
density gradient. In the first case (left) the mesh will flow radially outward while in the
second case (right) the mesh will flow radially inward.

Fig. 25. Computational results for algebraic constrained transport of magnetic flux on an
unstructured mesh with and without algebraic flux correction for two different mesh veloc-
ity directions.

6.5 Eulerian Treatment of MHD Wave Propagation

As mentioned previously, it is possible to implement a pure Eulerian formulation of
MHD by computing a Lagrange step followed by a complete remapstep in which
the mesh snaps back to its original configuration at every time step. This is how
ALE3D performs pure Eulerian calculations. In this sectionwe revisit the MHD
wave problem from Section 6.2 which was solved in a pure Lagrangian fashion
(i.e. the computational mesh flowed with the conducting material). Here we per-
form the same calculation using a pure Eulerian process, meaning that at every
time step, a Lagrange step is performed followed by an advective remap to the
original unperturbed mesh. In Figure 26 we compare values for the amplitude of
the magnetosonic wave at timet = t f in obtained in a pure Eulerian fashion against
the original Lagrangian results of Section 6.2. Note how thetwo are in excellent
agreement.
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Fig. 26. Comparison of magnetosonic wave amplitude along thex-axis at timet = t f in for
both Lagrangian and pure Eulerian calculations.

7 Conclusions

We have developed an arbitrary Lagrangian-Eulerian (ALE) discretization of resis-
tive MHD on 3D unstructured grids. The method was formulatedin an operator
split manner with three distinct phases. We have argued thatthe operator split-
ting of the magnetic dynamo equation is particularly simplein the material (or La-
grangian) frame, and therefore a mixed finite element discretization usingH(Curl)
andH(Div) basis functions is naturally suited for such a problem. Thisis accom-
plished by constructing rectangular topological derivative matrices which represent
the curl operator defined with respect to the material frame.We have employed the
methodology of the finite element library FEMSTER to performthis discretization
as it was designed specifically for these types of representations. Furthermore, we
have developed a mixed finite element formulation of the dynamo equation that has
a 2-form magnetic flux as its only state variable (making it amenable to advection),
is second order accurate in time and supports explicit voltage source boundary con-
ditions via an additional elliptic solve. For problems thatrequire mesh relaxation
and the subsequent remapping of state variables to the new mesh, via Eulerian ad-
vection, we have developed an algebraic constrained transport method which makes
use of the rectangular topological derivative matrix. As such, the method is valid
for 3D unstructured grids with arbitrary mesh velocity and is second order accurate
for smooth magnetic fields. For discontinuous magnetic fields (e.g. MHD shocks),
we have developed an algebraic flux correction method which limits an interme-
diate edge-based voltage in a manner that enforces a local extremum diminishing
property on the magnetic flux. This algebraic flux correctionis an intermediate step
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in the algebraic constrained transport algorithm and hence~∇ ·~B= 0 is still satisfied
exactly. Finally, we have presented a series of numerical verification experiments
which demonstrate the properties and accuracy of the proposed method.
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