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Abstract

A preconditioner defined by an algebraic multigrid cycle for a damped Helmholtz
operator is proposed for the Helmholtz equation. This approach is well-suited
for acoustic scattering problems in complicated computational domains and with
varying material properties. The spectral properties of the preconditioned systems
and the convergence of the GMRES method are studied with linear, quadratic, and
cubic finite element discretizations. Numerical experiments are performed with
two-dimensional problems describing acoustic scattering in a cross section of a car
cabin and in a layered medium. Asymptotically the number of iterations grows
linearly with respect to the frequency while for lower frequencies the growth is
milder. The proposed preconditioner is particularly effective for low-frequency
and mid-frequency problems.

Key words: Algebraic Multigrid Method, Finite Element Method, GMRES,
Helmholtz Equation, Preconditioner

1 Introduction

Acoustic scattering problems have applications in many disciplines. These
problems can be typically modeled using wave equation and often it is suf-
ficient to consider only time-harmonic solutions which are described by
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the Helmholtz equation (reduced wave equation). For numerical simula-
tion the equations can be discretized using the finite difference method or
the finite element method, for example. The solution of resulting systems
of linear equations can be a computationally challenging problem.

During the past few decades, numerical methods for acoustics have been
under active research. Finite element method has emerged as a generic tool
for discretizing the Helmholtz equation in complex geometries. A recent re-
view [1] offers a glance at research efforts in this field. The efficiency of these
methods still often limits the feasible size of scattering problems in mid-
frequency and high-frequency regime. Particularly the finite element phase
shift (pollution) error necessitates finer discretizations for high-frequency
problems [2]. The finite element method have been used successfully for
interior problems like scattering in a car cabin [3] as well as for exterior
problems. Since the paper [4] the research on the construction of absorbing
boundary conditions and absorbing layers at the truncation boundary of
the exterior domain has been active; see [1] and references therein.

The resulting systems of linear equations from the discretization of the
Helmholtz equation are non-Hermitian and indefinite. Furthermore, for
mid-frequency and high-frequency problems, the systems can be extremely
large. These reasons make them a challenge for the current solvers. Of-
ten it is feasible to use direct methods for solving these systems for two-
dimensional problems, but three-dimensional problems lead to systemswhich
cannot be solved by thesemethodswith affordable computing effort. Hence,
it is necessity to use iterative methods such as the GMRESmethod [5] or the
BICGSTAB method [6]. However, these methods require a good precondi-
tioner for the discretized Helmholtz equations in order to have reasonably
fast convergence.

Various preconditioners and iterative solution techniques have been pro-
posed for the discrete Helmholtz equation. Several domain decomposition
methods have been proposed; see [7,8,9,10,11], for example.Multigridmeth-
ods have been considered in [12,13,14]. With multigrid methods, it is dif-
ficult to define a stable and sufficiently accurate coarse grid problems and
smoothers for them. For problems in homogenousmedium, domain imbed-
ding/fictitious domain methods in [15,16,17] have been fairly effective. An
incomplete factorization preconditioner has been considered in [18], for ex-
ample, and in [19] a tensor product preconditioner is used. An alternative
iterative approach for solving the Helmholtz equation has been proposed
in [20] and further studied in [21]. The basic idea is to find a time-periodic
solution to the wave equations using a controllability method, which leads
to preconditioned conjugate gradient iterations for initial data.

In this paper, we consider shifted-Laplacian preconditioners which are ob-
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tained from the Helmholtz operator by adding damping. The Laplace oper-
ator was proposed as a preconditioner for the Helmholtz equation in [22].
A shifted-Laplacian preconditioner obtained by changing the sign of the ze-
roth order term in theHelmholtz operator was described in [23]. As a gener-
alization the Laplacian with a complex shift was studied in [24]. Following
this approach a multigrid preconditioner based on a damped Helmholtz
operator was considered in [14]. There, the scattering problems were posed
in a rectangular domain, they were discretized using low-order finite dif-
ferences, and a geometric multigrid method was used. This paper extends
this approach for general shaped domains using linear, quadratic, and cu-
bic finite element discretizations. Particularly quadratic and cubic finite ele-
ments help to reduce the number of unknowns in order to reach prescribed
accuracy, as they have much smaller interpolation and phase shift errors
than linear basis functions [2]. Our preconditioner is based on an algebraic
multigrid method which can be constructed fully algebraically when the
matrix for the zeroth-order terms is also available.

There is a wide range of applications for acoustic scattering in the industry
and sciences. In many applications the aim is to reduce the noise level. As
an example of such a problem we consider the noise in a car cabin; see also
[3]. Geophysical surveys employ acoustic/elastic backscattering from dif-
ferent layers to reconstruct a model for the subsurface. These problems lead
to very large-scale scattering problems. We consider a three layer wedge
model [19,14] in our numerical experiments. Acoustic scattering simula-
tions have also many applications in medicine, sonar, and sound prepro-
duction, for example.

This paper is organized as follows. In Section 2 we describe the Helmholtz
model problem and its discretization. The iterative solution and precondi-
tioning based on shifted-Laplacian preconditioners are discussed in Section
3. The algebraic multigrid method employed in the preconditioning is de-
scribed in Section 4. Then numerical results are presented in Section 5 and
finally, conclusions are given in Section 6.

2 Scattering problem and finite element discretization

Under suitable assumptions onmedium, acoustic scattering can be described
by the wave equation

c2∇ · 1
ρ
∇p− 1

ρ

∂2p

∂t2
=0, (1)
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where p (x, t) is pressure field, ρ (x) is the density of the material, c (x) is
the speed of sound and t is time. For a time-harmonic pressure p (x, t) =
u (x) e−iωt, where ω is angular velocity and i =

√
−1, (1) leads to theHelmholtz

equation

−∇ · 1
ρ
∇u− k2

ρ
u=0, (2)

where k (x) = ω/c (x) is the wave number. In inhomogeneous medium the
wave number k varies depending on location as the sound speed c varies.

We consider three types of boundary conditions. In order to describe them,
we decompose the boundary Γ = ∂Ω into three non-overlapping parts Γd,
Γs, and Γa such that Γ = Γd ∪ Γs ∪ Γa. Some of these boundary sets can be
empty. The first type of boundary is sound-soft which is described by the
Dirichlet boundary condition

u = g (x) on Γd, (3)

where g describes the sound source, for example, an incident field. The sec-
ond type is the impedance boundary condition

∂u

∂n
= iγku on Γa, (4)

where γ (x) is an absorbency coefficient in the range [0, 1] describing the
amount of absorption on the boundary Γa. The specific case γ = 0, leading
to a Neumann boundary condition, corresponds to a sound-hard boundary
without any absorption.

Exterior problems are truncated into a bounded domain Ω with Γs as the
truncation boundary. The boundary condition on Γs should let outgoing
waves propagate out of the domain without any reflection, as the Sommer-
feld radiation condition describes. Such a perfect absorbing boundary con-
dition is a non-local operator which is computationally difficult. Instead, it
is usual to approximate it by a local operator [4]. Here we use a first-order
absorbing boundary condition

∂u

∂n
= iku on Γs. (5)

For the weak formulation of the Helmholtz equation, we define the test
function space

V =
{

v ∈ H1 (Ω) : v = 0 on Γd

}

(6)
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and the solution space

Vg =
{

v ∈ H1 (Ω) : v = g (x) on Γd

}

. (7)

Now the weak form of (2) reads: Find u ∈ Vg such that

∫

Ω

1

ρ

(

∇u · ∇v − k2uv
)

dx−
∫

Γa

1

ρ
(iγkuv) ds−

∫

Γs

1

ρ
(ikuv) ds = 0 (8)

for all v ∈ V .

For a finite element discretization, we define a triangulation given by a set
of non-overlapping triangles Kh, such that Ωh =

⋃

τ∈Kh
τ . Here h denotes

the diameter of the largest triangle and Ωh is an approximation of Ω. An
example of a coarse triangulation (also called mesh) for a cross section of a
car cabin is shown in Figure 1.

For the finite elements of order m a discrete test function space is

Vh =
{

v ∈ H1 (Ωh) : v |τ∈ Pm, ∀τ ∈ Kh, v = 0 onΓd,h

}

, (9)

where Pm denotes polynomials of orderm. A discrete solution space Vg,h is
obtained similarly by approximating g on Γd,h instead of zero. In the follow-
ing, we consider linear, quadratic, and cubic finite elements, that is, m = 1,
2, or 3. We use Lagrangian basis functions for the spaces Vh and Vg,h. Let
the vector u contain the nodal values of u. Then using the discrete spaces
instead of V and Vg in (8) and integrating over the discrete counterparts of
the domain and boundaries, we obtain a system of linear equations

Au = f , (10)

whereA is a sparse matrix and f is a non-zero vector due to the inhomoge-
nous Dirichlet boundary condition. The approximation properties of such
finite element discretizations for the Helmholtz equation have been studied
in [2]. For an algebraic definition of the preconditioner described in Section
3, we define a mass matrix like M which includes the term k2/ρ, that is, it
corresponds to the integral

∫

Ωh

k2

ρ
uhvh dx, (11)

where uh ∈ Vg,h and vh ∈ Vh. Furthermore, we define the matrixK = A+M

which contains the rest of the terms in the weak form.
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3 Iterative solution and shifted-Laplacian preconditioner

The matrixA in (10) is indefinite and symmetric, but not Hermitian. Hence,
the generalized minimal residual (GMRES) method [5] and the BICGSTAB
method [6] are suitable iterative methods for the solution of the system (10).
For these and other applicable iterative methods, see [25], for example. At
each iteration, the GMRES method minimizes the norm of the residual vec-
tor on a Krylov subspace associated to the iteration. This is a desirable prop-
erty leading to amonotonic reduction of residual norm over iterations, but a
disadvantage is that a basis for the Krylov subspace needs to be formed and
stored. Due to this the computational cost of the GMRES methods grows
quadratically with iterations and the memory requirement grows linearly.
With the BICGSTAB method the computational cost grows linearly and the
memory requirement is independent of number of iterations, but conver-
gence can be erratic and slower than with the GMRES method. In the nu-
merical experiments we use the GMRES method.

For medium- and large-scale scattering problems, the system (10) is badly
conditioned, which leads to a very slow convergence of Krylov subspace
methods when applied directly to the system (10). In order to improve the
conditioning and the speed of convergence, we use a right preconditioner
denoted by B. This leads to a preconditioned system

AB
−1
ũ = f . (12)

Once ũ is solved from this system, the solution u is obtained as u = B
−1
ũ.

Our aim is to find such a preconditionerB that the matrixAB
−1 is well con-

ditioned and that vectors can be multiplied by B
−1, that is, solve systems

with B, with a small computational effort. These properties would lead to
a fast convergence of the iterative method and to a small overall computa-
tional cost.

In 2004, Erlangga, Vuik, and Oosterlee suggested in [24] to construct a pre-
conditioner BSL by discretizing a shifted-Laplace operator

BSL = −∇ · 1
ρ
∇− (β1 + β2i)

k2

ρ
, (13)

where we have added the density ρ (x) in the operator. Using the notations
defined in Section 2, the preconditioner can be defined algebraically as

BSL = K− (β1 + β2i)M. (14)

By choosing β1 = 1 and β2 to be positive, BSL is the original Helmholtz
operator with some additional damping. Such damping leads to good con-

6



ditioning of AB
−1
SL and it is easier to solve systems with BSL than with A

[24]. In [14], Erlangga, Oosterlee, and Vuik approximated the inverse of the
shifted-Laplacian preconditioner BSL using one cycle of a geometric multi-
grid method; see [26], for example. We denote such multigrid based pre-
conditioners by BMG. This leads to a good conditioning of AB

−1
MG for low-

frequency problems, while the number of BICGSTAB iterations appeared
to grow linearly with frequency for high-frequency problems. They also
showed that this preconditioner is well suited for problems with a highly
varying speed of sound. In this paper, we replace the geometric multigrid
method with a more generic algebraic multigrid method described in Sec-
tion 4.

For the GMRESmethod, convergence estimates can be derived based on the
spectrum of a matrix and its non-normality [5,25]. Similarly to [24,14], we
study numerically the spectrum of the preconditioned matrices. For small
problems, it is possible to compute the spectrum, while for larger prob-
lems we can only approximate it. The GMRES method forms the basis for a
Krylov subspace using the Arnoldi iteration. After m iterations it has gen-
erated anm×m upper Hessenberg matrix which is usually denoted byHm.
The eigenvalues of Hm approximate the eigenvalues of the system matrix.

4 Algebraic multigrid method

The preconditionerBMG is based on an algebraic multigrid (AMG) method
which approximates the multiplication by the inverse of BSL. We use an
AMGmethod introduced by Kickinger in [27] with modifications proposed
in [28]. This method uses a graph based on the system matrix to construct
coarse spaces. Furthermore, it eliminates the degrees of freedom associated
to the Dirichlet boundaries after forming the matrices for the coarse spaces.
Under these choices, the AMG method can be constructed in such a way
that the coarse problems coincide with the ones obtained using a geometric
multigrid method on a hierarchical linear finite element mesh.

The AMG initialization procedure is described by Algorithm 1. For linear fi-
nite elements, the initial graph G0 is the graph defined by the sparse matrix
BSL. Alternatively it can be seen as the graph defined by the triangulation.
For quadratic and cubic elements, the graph is defined by a refined trian-
gulation in which quadratic elements are divided into four triangles, and
cubic elements are divided into nine triangles. The reason not to use di-
rectly the graph defined by BSL for higher-order elements is that the coars-
ening procedure would coarsen the graph too much, leading to a slower
convergence, that is, to not so well conditionedAB

−1
SL. The nodes (vertices)

in the graph G0 associated with the Dirichlet boundaries are marked. On
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Figure 1. A mesh for a cross-section of a car cabin. Gray nodes are selected to next
coarse level.

the coarser graphs also the nodes which were marked as Dirichlet nodes on
the finer graphs are marked.

The nodes onto a coarser graphGk+1 are chosen from the nodes ofGk as fol-
lows. Find the node inGk which has the smallest degree, that is, the smallest
number of edges associated to it. If there are several such nodes, choose the
first one according to the used node numbering. This node is included onto
the graph Gk+1. Eliminate this node and all its neighbors from the graph
Gk. There is one exception to this: if the node has a Dirichlet marked neigh-
bor then the neighbor is not eliminated from Gk. This increases the stability
of the procedure by making sure that there are sufficiently many Dirichlet
nodes selected to the coarse levels. Repeat this procedure until there are
no nodes left in Gk. Figure 1 shows an example of this coarsening strategy
when all boundaries are of Dirichlet type.

After choosing the nodes on Gk+1, they are numbered following their order
on Gk. Then the restriction matrixRk is defined by

(Rk)ij =



























1 for a fine node j which is a coarse node i,
1

k
for a fine node j which is a neighbor of coarse

node i and has k neighboring coarse nodes,

0 otherwise,

where fine and coarse refers to the graphs Gk and Gk+1, respectively. The
edges of the coarse graph Gk+1 are formed using the restriction matrix Rk.
Each coarse graph node corresponds to a row in the restriction matrix and
there is an edge between two nodes if and only if the corresponding rows
of the restriction matrix have a non-zero element in the same column.

The prolongation matrix is the transpose of the restriction matrix, and a
coarser grid system matrix is constructed by Galerkin method, that is, the
fine grid matrix is multiplied by Rk from the left side and by RT

k from the
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Algorithm 1 AMG initialization
Input: Matrix B0, initial graph G0, the maximum size of the coarsest system nc

1. k = 0
2. Do while the size of Bk is greater than nc

3. Select the set of coarse nodes from the graph Gk

4. Form the restriction matrix Rk

5. Create the graph Gk+1

6. Calculate the next system matrix Bk+1 = RkBkR
T
k

7. Eliminate the rows and columns of Bk marked in the graph Gk

8. Eliminate the columns of Rk marked in the graph Gk

9. Eliminate the rows ofRk marked in the graph Gk+1

10. k=k+1
11. End do
12. Eliminate the rows and columns of Bk marked in the graph Gk

13. Factorize Bk

Algorithm 2 Recursive algorithm for the AMG cycle.
Input: Matrix Bl, approximate solution xl, right-hand side vector fl
Output: Improved approximate solution xl

1. If on the coarsest level, that is, l = k
2. Solve xl from Blxl = fl

3. Else
4. Presmooth xl = xl + Sl(xl, fl)
5. Restrict the residual fl+1 = Rl(fl −Blxl)
6. Set xl+1 = 0 and call µ times the cycle for the next level l + 1
7. Prolong the correction xl = xl +R

T
l xl+1

8. Post-smooth xl = xl + Sl(xl, fl)
9. End if

right side. The AMG cycle described by Algorithm 2 is a usual multigrid
cycle given here in the general µ-cycle form. The choices µ = 1 and µ =
2 correspond to V-cycle and W-cycle, respectively. When the algorithm is
used in preconditioning it is called with the approximate solution x0 being
zero.

5 Numerical results

5.1 Model problems with homogenous medium

Weuse two different model geometries with homogenousmedium: the unit
square and a cross section of a car cabin. Figure 2 shows typical solutions
for these geometries. The same problem in the unit square was considered
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Figure 2. In the left plot a solution for the unit square problem. In the right plot the
solution for the car cabin problem with the wave number k = 18.3 which corre-
sponds to the frequency f ≈ 1kHz.

also in [14]. It has a point source at the middle and the absorbing boundary
condition (5) is posed on all boundaries. The car cabin problem with a non-
convex geometry resembles more real-world applications. The height of the
car cabin is 1.5 m and its width is 3m. The noise source is modeled using the
Dirichlet boundary condition (3) with g = 1 on the wall behind pedals and
on other boundaries the impedance boundary condition (4) with γ = 0.2 is
used. The meshes for the car cabin problem were generated using Netgen
[29] by refining a coarse mesh depicted in Figure 1.

5.1.1 Eigenvalue study

We study the eigenvalues for both problems by computing both the full
spectrum and Arnoldi approximations discussed in the end of Section 2.
First we consider the Helmholtz problem with k = 20 in the unit square
domain discretized on a 31 × 31 structured mesh. Figures 3 and 4 demon-
strate the influence of β2, that is, the amount of damping to the spectrum of
AB

−1
SL. We use the values β2 = 0.5 and β2 = 1.0. In these and all following

results we have β1 = 1. Figure 3 shows that with the Neumann boundary
condition the real parts of the eigenvalues are between zero and one with
both β2s, while the density of eigenvalues near zero is higher with β2 = 1.0.
The differences are more pronounced with the absorbing boundary condi-
tion. With a smaller β2, the matrix AB

−1
SL is closer to identity and this is

seen as tighter clustering around one in Figure 4. The spectrum of AB
−1
SL is

very similar with quadratic and cubic elements to one with linear elements
shown in these figures.

Next we study the quality of the AMG approximations of the inverse of
the discrete shifted-Laplacians. For this we use one W-cycle based on one
presmoothing and postsmoothing iteration performed by the underrelaxed
Jacobi with the relaxation parameter chosen according to Table 2. Figure
5 plots the spectrums of BSLB

−1
MG for linear and quadratic finite elements

with β2 = 1.0. With linear elements the eigenvalues are more clustered
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Figure 3. The eigenvalues ofAB
−1
SL with β2 = 1.0 in the left plot and β2 = 0.5 in the

right plot for the unit square with the Neumann boundary condition discretized
using linear finite elements.
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Figure 4. The eigenvalues ofAB
−1
SL with β2 = 1.0 in the left plot and β2 = 0.5 in the

right plot for the unit square with the absorbing boundary condition discretized
using linear finite elements.

around one than with quadratic elements which indicates that the AMG
approximation of the inverse is better with linear elements.

Figure 6 depicts the eigenvalues of AB
−1
MG with the Neumann and absorb-

ing boundary conditions togetherwith their Arnoldi approximations. These
plots show that with quadratic elements some of the eigenvalues have near
zero or even negative real parts, while for linear and cubic elements the
real parts are clearly positive. This shows up as higher number of iterations
with quadratic elements in Section 5.1.2.

For the car cabin problem with k = 15, similar plots of eigenvalues are
given in Figure 7. The figures show that the spectrums are fairly similar for
the unit square and car cabin problems. This suggest that the quality of the
AMG preconditioner is not particularly sensitive to the geometry.

11



-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.5  0.6  0.7  0.8  0.9  1  1.1

Im
ag

in
ar

y

Real

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1

Im
ag

in
ar

y

Real

Figure 5. The eigenvalues of BSLB
−1
MG for the unit square problem with the ab-

sorbing boundary condition. The left and right plots are computed using linear
and quadratic elements, respectively.

Table 1
The number of elements and nodes in the car cabin meshes.

n. of refinements, nr 0 1 2 3 4 5 6

elements 82 328 1312 5248 20992 83962 335872

nodes, linear 62 205 737 2785 10817 42625 169217

nodes, quadratic 205 737 2785 10817 42625 169217 674305

nodes, cubic 430 1597 6145 24097 95425 379777 1515265

5.1.2 Performance analysis

We mainly use the car cabin problem to study the performance of the iter-
ative solver while we also report some results for the unit square problem.
Figure 2 shows usual time-harmonic scattering patterns for these problems.
Table 1 describes the different meshes used with the car cabin problem.

The preconditioner B
−1
MG is defined by one algebraic multigrid cycle de-

scribed in Section 3. Our aim is to choose the parameters defining the pre-
conditioner in such a way that the overall performance is optimal. We use
the value β1 = 1 while for β2 we examine the values 0.5 and 1.0. There are
several choices related to the AMG method. Our smoother is the underre-
laxed Jacobi iteration with the relaxation parameter ω chosen according to
Table 2. These relaxation parameters minimize the overall solution time in
numerical tests. We use the W-cycle in the AMGmethod as it leads to faster
solution times than the V-cycle in experiments.

In Table 3, the number of iterations are reported for the unit square prob-
lem.We have chosen thewave numbers k and themesh step sizes h to be the
same as in [14]. Their discretization was performed using a finite difference
method and they employed a tuned geometric multigrid method instead
of the AMG method used here. Furthermore, they used the BICGSTAB
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Figure 6. For the unit square problem the eigenvalues of AB
−1
MG are marked with

◦ and their Arnoldi approximations with ×. The left and right plots are based on
β2 = 1.0 and β2 = 0.5, respectively. The discretizations have been performed using
linear (plots on the top), quadratic (plots in the middle), and cubic (plots on the
bottom) finite elements.

method with a slightly more strict stopping criterion. The number of it-
erations required here are higher. When excluding quadratic elements we
need up to 1.5 times more iterations with k = 40while the difference grows
with k. Nevertheless the results in here and in [14] suggest that for higher
frequencies the number of iterations roughly doubles when the frequency
is doubled. The AMGpreconditioner leads to particularly good results with
cubic finite elements.

The convergence results for the car cabin problem are presented in Tables 4–
6. In these tables, the wave number doubles from a row to the next and the
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Figure 7. For the car cabin problem discretized with linear elements the eigenval-
ues of AB

−1
MG marked with ◦ and their Arnoldi approximations marked with ×.

The left and right plots are based on β2 = 1.0 and β2 = 0.5, respectively.

Table 2
The optimal choice of the Jacobi relaxation parameter ω for different finite elements
and different values of β2 found by extensive numerical experiments.

β2 ω

linear quadratic cubic

0.5 0.4 0.5 0.4

1.0 0.8 0.5 0.7

Table 3
The number of iterations for the unit square problem for different element types
when the iterations are terminated once the norm of the residual is reduced by the
factor 10−6.

element type β2 k = 40 k = 50 k = 80 k = 100 k = 150

linear 1.0 43 51 76 93 137

0.5 37 47 82 111 210

quadratic 1.0 67 80 120 150 232

0.5 72 93 180 249 > 250

cubic 1.0 45 56 83 103 149

0.5 31 37 59 77 126

mesh step size h is halved from a column to the next. This leads to constant
khs on diagonals. Along them, we can again observe that for higher fre-
quencies the number of iterations roughly doubles when the wave number
is doubled. The lower triangles of the tables correspond to discretizations
which do not have sufficiently high number of nodes per wavelength to
capture the oscillatory behavior of solutions. This shows up as unusually
high number of iterations. Based on these results, the value β2 = 0.5 leads
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Table 4
For the car cabin problem discretized with linear elements, the number of GM-
RES iterations required to reduce the norm of the residual by the factor 10−6 as a
function of the number of refinements nr and the wave number k.

β2 = 1.0 β2 = 0.5

k ↓,nr → 0 1 2 3 4 5 6 0 1 2 3 4 5 6

2 11 11 11 11 11 10 10 8 12 13 13 13 12 12

4 19 19 18 18 17 16 15 13 14 15 15 15 14 14

8 32 35 34 34 34 32 30 20 25 22 21 21 21 20

16 40 84 65 63 65 64 59 32 58 52 43 35 34 35

32 8 125 184 130 127 133 127 7 144 172 124 91 75 73

64 4 9 366 409 264 262 270 4 13 433 408 279 194 148

Table 5
For the car cabin problem discretized with quadratic elements, the number of GM-
RES iterations required to reduce the norm of the residual by the factor 10−6 as a
function of the number of refinements nr and the wave number k.

β2 = 1.0 β2 = 0.5

k ↓,nr → 0 1 2 3 4 5 6 0 1 2 3 4 5 6

2 14 15 27 27 23 21 20 13 14 26 26 22 20 19

4 18 18 32 31 27 25 24 14 15 30 29 25 23 21

8 27 25 45 45 39 37 35 20 19 39 39 33 30 29

16 41 58 86 72 61 56 53 30 38 75 58 49 44 41

32 26 74 291 154 113 99 93 21 54 245 146 99 75 73

64 177 29 370 > 500 265 195 172 156 24 336 > 500 263 177 145

to much faster convergence on higher wave numbers.

With a large number of iterations, the time spent in forming the basis vec-
tors in the GMRESmethod takes a larger part of the CPU time. This effect is
seen in Table 7 which reports the time spent in different parts of the solver
for three problems. These results were obtained with a computer which has
Intel Core Duo U2500 processor.
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Table 6
For the car cabin problem discretized with cubic elements, the number of GMRES
iterations required to reduce the norm of the residual by the factor 10−6 as a func-
tion of the number of refinements nr and the wave number k.

β2 = 1.0 β2 = 0.5

k ↓,nr → 0 1 2 3 4 5 6 0 1 2 3 4 5 6

2 14 12 12 13 12 12 12 16 15 15 15 15 15 15

4 20 18 17 17 17 16 15 20 17 17 16 16 16 16

8 38 33 31 32 32 30 29 33 25 23 22 22 21 21

16 82 63 58 62 61 57 52 77 56 46 37 36 38 34

32 200 169 128 126 127 121 111 193 195 123 87 70 70 69

64 221 > 500 360 261 260 255 237 250 > 500 459 234 161 149 137

Table 7
The time spent in the solver with the car cabin problem discretized using quadratic
elements on the nr = 6mesh. The AMG uses W-cycle and β2 = 1.0.

wave number GMRES CPU time % of time

k iterations in seconds spent in AMG

2 83 63 72.8%

8 96 71 70.0%

32 263 256 46.6%

5.2 Wedge problem with inhomogenous medium

The wedge problem is defined by three layers with different speed of sound
c in the rectangle 600 × 1000m2, as shown in Figure 8. This model prob-
lem was considered in [14,19]. Meshes for different frequencies were con-
structed with Comsol Multiphysics mesh generator in such a way that the
mesh step size h was approximately one tenth of one wavelength, that is,
h ≈ λ/10. The wedge model has a point source at the middle of the top
boundary. The first-order absorbing boundary condition is posed on all
boundaries. A coarse mesh for the frequency f = 5Hz and the solutions
for the frequencies f = 30Hz and f = 50Hz are shown in Figure 8.

The performance results for different frequencies are presented in Table 8.
According to these iteration counts, the convergence with β2 = 0.5 is about
15% faster than with β2 = 1.0 with linear elements and over 40% faster
with cubic elements. We need again more iterations when compared to the
results in [14], but our finite element discretizations have three advantages
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Figure 8. The plot on the left shows the mesh for the frequency f = 5Hz and the
definition of the problem. On the middle and right the solutions for f = 30Hz and
f = 50Hz, respectively, are shown.

Table 8
For the wedge problem the number of GMRES iterations required to reduce the
norm of the residual by the factor 10−6 as a function of the frequency.

element type f = 5Hz f = 30Hz f = 50Hz

linear, β2 = 1.0 24 97 148

linear, β2 = 0.5 17 83 124

cubic, β2 = 1.0 24 105 171

cubic, β2 = 0.5 19 62 97

over the finite differences used in there: we can accurately model the in-
terface between layers, we can use coarser meshes with cubic elements,
and we can use coarser mesh where the speed of sound is higher. Figure
9 plots the eigenvalues of the preconditioned system for the low frequency
f = 5Hz with β2 = 1.0 and β2 = 0.5.

6 Conclusions

We have studied a preconditioner based on an algebraic multigrid (AMG)
approximation of the inverse of a shifted-Laplacian for the Helmholtz equa-
tion. This is a generalization of the preconditioner proposed by Erlangga,
Oosterlee, and Vuik in [14]. They used finite difference discretizations on
rectangular domains and a geometrical multigrid. With our finite element
discretizations and the AMGmethodwe can solve problems in complicated
domains and use higher-order finite elements. A big advantage of the AMG
method is that the solver does not need hierarchical meshes nor operators
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Figure 9. The eigenvalues of AB
−1
MG marked with ◦ and their Arnoldi approxima-

tions marked with × for the wedge problem with the frequency f = 5Hz dis-
cretized using linear elements. The left and right plots are based on β2 = 1.0 and
β2 = 0.5, respectively.

discretized on different meshes. When the matrix for the zeroth-order term
in a discretized Helmholtz equation or the mass matrix for a constant wave
number problem is also available, the preconditioner can be constructed
fully algebraically. Thus, in this case the preconditioned iteration can be
seen as a “black box solver”.

The numerical results demonstrated the capability to solve efficiently prob-
lems in complicated domains and varying wave numbers using the pro-
posed preconditioner. Furthermore, the preconditioner was shown to be
effective with linear, quadratic, and cubic finite elements. The proposed ap-
proach is especially well-suited for low-frequency andmid-frequency prob-
lems while for high-frequency problems the number of iterations roughly
doubles when the frequency is doubled. The same behavior was also ob-
served in [14].
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