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Abstract

In this paper we present a stable hybrid scheme for viscous problems. The hy-
brid method combines the unstructured finite volume method with high-order finite
difference methods in complex geometries. The coupling procedure between the two
numerical methods is based on energy estimates and stable interface conditions are
constructed. Numerical calculations show that the hybrid method is efficient and
accurate.

keywords Viscous problems, hybrid methods, finite difference, finite volume, coupling
procedure, stability, efficiency

1 Introduction

High order finite difference methods (HOFDM) provide an efficient approach when high
resolution is essential in a calculation. It is also clear that the unstructured finite volume
method (UFVM) is widely used for problems with complex geometries and nonlinear phe-
nomena. In computational physics, the computational domain is often for efficiency and
mesh generation reasons divided into multiple blocks, where either HOFDM or UFVM
can be used. If a stable and accurate coupling at the block interfaces is achieved we can
construct a very flexible and efficient computational method.

In [2], [11], [12] stable interface treatment between multiple domains was presented.
However only finite difference methods was used for all blocks. In [14] a hybrid method
which combines HOFDM and UFVM for hyperbolic problems on a rather simple geometry
was introduced. In [4], various versions of interface procedures for viscous problems in
one dimension were investigated. All these methods employ so called summation-by-parts
(SBP) operators and impose the boundary conditions weakly, see [1] and [13].�Dept. of Information Technology, Uppsala University, SwedenyDept. of Information Technology, Uppsala University and The Swedish Defence Research Agency,
Stockholm, Sweden
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In [15], it was shown how to couple the UFVM and HOFDM in a stable way for
hyperbolic problems. The energy method and a modification of the dual mesh in the UFVM
lead to stability. The present paper continues the study of stable interface treatment by
considering hybrid schemes for viscous problems. We also add the additional complexity
of a curvilinear mesh in the HOFDM region. The technique derived in this paper makes
it straight forward to apply the hybrid technique to the full Navier–Stokes equation.

The rest of the paper is organized as follows. In the next section we derive stable
boundary conditions for the continuous problem. Section 3 presents the two numerical
methods on a single domain. In Section 4 we derive the stable coupling procedure. In
Section 5 numerical experiments are performed. Conclusions are drawn in Section 6.

2 The continuous problem

Consider the model problemut + aux + buy = "(uxx + uyy); x; y 2 Ω; t > 0; (1a)u(x; y; 0) = f(x; y); x; y 2 Ω; (1b)�u + � �u�n = g(x; y; t); x; y 2 �Ω; t > 0; (1c)

The coefficients a, b and " are constants. In general, the coefficients � and � depend on x,y, and t.
Let the inner product for real valued functions u, v 2 Ω be defined by (u; v) =RR

Ω
uv dxdy and the corresponding norm kuk2 = (u; u). Applying the energy method

to (1) yields,kuk2t + 2"(kuxk2 + kuyk2) =� I�Ω

�
̄u2 � 2"u�u�n� ds: (2)

where n =
(dy;�dx)ds ; ds =

pdx2 + dy2; 
̄ = (a; b) � n; �u�n = (ux; uy) � n:
Substituting the boundary conditions (1c) into (2) we obtainkuk2t + 2"(kuxk2 + kuyk2) =

I�Ω

h� �
̄ +
2�� "�u2 +

2"� ugids
=� I�Ω

�
̄ +
2�� "��u� "� 1
̄ + 2�� "g�2ds

+

I�Ω

� "��2� 1
̄ + 2�� "�g2ds: (3)

This leads to immediately to

2



Proposition 2.1 The continuous problem (1) is strongly well posed if
̄ +
2�� " � 0 on �Ω: (4)

Remark When the solution can be estimated in terms of all types of data, the problem
(1) is called strongly well posed, see [5] for more details.

3 The discrete single domain problem

3.1 The finite volume method

The so-called edge-based finite volume method is used in this paper (see [3], [6], [8]–[9],
[13], and [18] for more details). The computational domain consists of non-overlapping
elements and the variables are stored at the nodes of the mesh. For each node, the control
volume that constitutes the dual grid is defined as a polygon with its vertices at the centers
of gravity of the surrounding triangles (or quadrilaterals) and at the midpoints of the sides,
see Figure 1.

In the finite volume method the unknown variable u in equation (1) is discretized by
the vector u = [u0; u1; : : : ; uN ]. ux, uxx, uy, and uyy denote the approximations of ux, uxx,uy and uyy, respectively. We define

ux � Dxu = (P )�1Qxu; uxx � DxDxu = (P )�1Qx(P )�1Qxu;
uy � Dyu = (P )�1Qyu; uyy � DyDyu = (P )�1Qy(P )�1Qyu;

where P is a positive diagonal matrix with the control volumes Ωi on the diagonal. In [13],
[15] it was shown that the matrices Qx and Qy have the components,

(Qx)ij =
dyj
2

= �(Qx)ji; (Qx)ii=2�Ω = 0; (Qx)ii2�Ω =
dyi
2
; (5)

(Qy)ij = �dxj
2

= �(Qy)ji; (Qy)ii=2�Ω = 0; (Qy)ii2�Ω = �dxi
2
: (6)

For the definition of dxj and dyj, see Figure 1. Moreover, equations (5) and (6) imply thatQx and Qy satisfyQx + (Qx)T = Y; Qy + (Qy)T = X; (7)

where the non-zero elements in Y and X are ∆yi, �∆xi and correspond to the boundary
points. Formulas (5)-(6) show that Dx and Dy are Summation-By-Parts (SBP) operators,
since

(u; vx) =

Z
Ω

uvx dxdy =

Z
Ω

(uv)x � uxv dxdy = �(ux; v) +

I�Ω

uvdy;
and

(u;vx)P = uTPvx = uTQxv = uT (�QTx + Y )v = �(ux;v)P + uTY v:
3



See [13] and [15] for more details.
On a grid point i at the boundary �Ω, let (Dnu)i denote an approximation of �u=�n,

i.e., ��u�n�i =
�
(ux; uy) � n� � �

(ux;uy) � ñ�i � �
(Dxu)i; (Dyu)i� � ñi = (Dnu)i; (8)

where ñi is the outward pointing normal defined by,ñi =
(dyi;�dxi)dsi ; dsi =

qdx2i + dy2i ; (9)

when proceeding counter-clockwise around the domain, see Figure 1(b).


iVi Vj
xy

�
i
dxjdyj

(a) in the interior

xy
dyidxi 
i
�
i~niVi

(b) on the boundary

Figure 1: The grid (solid lines) and the dual grid (dashed lines).

A semi-discrete approximation of Equation (1a) can be written,

ut + aDxu + bDyu ="�DxDxu + DyDyu�+P�1
�EB�TΓ

��̃uB + �̃(Dnu)B � g� (10)

where uB represents u on the boundary �Ω. EB is a projection matrix which maps the
values on the computational domain Ω to the outer boundary �Ω, that is, uB = EBu

and (Dnu)B = EB(Dnu). �̃ and �̃ are diagonal matrices where the discrete value of the
coefficients � and � are injected on the diagonal, respectively. Γ is a penalty matrix that
will be determined below by stability requirements (see [13] and [15]).

By multiplying (10) with uTP we obtain,

uTPut + auTQxu + buTQyu ="�uTQxDxu + uTQyDyu�
+uTBΓ

��̃uB + �̃(Dnu)B � g�: (11)
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In equation (11) we note thatauTQxu + buTQyu =
1

2

�auTY u + buTXu
�

=
1

2
uTBΛBuB; (12)

and

uTQxDxu + uTQyDyu
= �uT (Qx)TDxu� uTQTyDyu + uT �Y Dx + XDy�u
= ��Dxu�TP �Dxu�� �Dyu�P �Dyu�+ uTBSB(Dnu)B: (13)

In (12) and (13) we have introduced (see equations (8) and (9))
̄i = (a; b) � ñi; ΛB = diag(
̄idsi); SB = diag(dsi); i 2 �Ω

We finally obtain,ddtkuk2P+2"kDxuk2P + 2"kDyuk2P
=� uTBΛBuB + 2"uTBSBDnuB + 2uTBΓ

��̃uB + �̃(Dnu)B � g�
=� uTB(ΛB � 2Γ�̃)uB + uTB(2"SB + 2Γ�̃)(Dnu)B| {z }

(IL)

�2uTBΓg (14)

In order to obtain an estimate, the term (IL) in (14) must be removed, that is,

Γ = �"SB�̃�1: (15)

Applying the conditions (15) to (14) yieldsddtkuk2P + 2"kDxuk2P + 2"kDyuk2P =� uTB�ΛB + 2"SB�̃�1�̃�uB + 2"uTBSB�̃�1g
=
Xi2�Ω

h� �
̄i +
2�̃i;i�̃i;i "�u2i +

2"�̃i;iuigiidsi
=�Xi2�Ω

�
̄i +
2�̃i;i�̃i;i "��ui � "̃�i;i 1
̄i +

2�̃i;i�̃i;i "gi�2dsi
+
Xi2�Ω

� "̃�i;i�2� 1
̄i +
2�̃i;i�̃i;i "�g2i dsi: (16)

We have the following proposition.

Proposition 3.1 If condition (15) and
̄i +
2�̃i;i�̃i;i " � 0; i 2 �Ω; (17)

are satisfied, The problem (10) is strongly stable.

Remark: When the solution can be estimated in terms of all types of data, the problem
is called strongly stable, see [5] for more details.

Remark: The estimate (16) is completely similar to the continuous estimate (3).
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3.2 The finite difference method

For the finite difference approximations, the physical domain must be possible to smoothly
transform to a rectangular computational domain. (see Figure 2 ). We start by transform-
ing equation (1) to curvilinear form. Note that ux = �xu� + �xu� and uy = �yu� + �yu�,
where we have introduced the transformation x = x(�; �) and y = y(�; �) and the metric
relations,J�x = y�; J�y = �x�; J�x = �y�; J�y = x�;J = x�y� � x�y� = (�x�y � �y�x)�1 6= 0:

Interfa
e
u v

(a) The physical domain.

West East
Interfa
eNorth

u v
South � = 1� = �1� = �1 � = 0

� = 1

� = �1

�

�� = 0
(b) The computational domain.

Figure 2:

For simplicity we also introduce the notations,ã = aJ�x + bJ�y; b̃ = aJ�x + bJ�y;f̃ = J(�xux + �yuy) = J(ru � r�); g̃ = J(�xux + �yuy) = J(ru � r�):
It follows thatJ(aux + buy) = (ãu)� + (b̃u)�; J(uxx + uyy) = f̃� + g̃�; (18)

since ã� + b̃� = 0. Equation (1) transforms intoJut + (ãu)� + (b̃u)� = "(f̃� + g̃�): (19)

For reasons that will become obvious later, we split the terms (ãu)� and (b̃u)� in (19)
as (see [10] )

(ãu)� =
1

2
(ãu)� +

1

2
ãu� +

1

2
ã�u; (b̃u)� =

1

2
(b̃u)� +

1

2
b̃u� +

1

2
b̃�u:

The difference operators in the � and � directions on the right subdomain are denoted
by D� = (P�)�1Q� 
 I� and D� = I� 
 (P�)�1Q�, respectively. Note that the operators
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(P�)�1Q� and (P�)�1Q� are SBP operators since the matrices P� and P� are symmetric and
positive definite and,Q� + (Q�)T = B� = diag([�1; 0; :::0; 1]);Q� + (Q�)T = B� = diag([�1; 0; :::0; 1]): (20)

In matrix formulation we have�̃x = diag
�
(�x)i�; �̃y = diag

�
(�y)i�;�̃x = diag

�
(�x)i�; �̃y = diag

�
(�y)i�; J̃ = diag(Ji);Ã = diag(ãi); B̃ = diag(b̃i);F̃ = diag(f̃i); G̃ = diag(g̃i):

In the curvilinear coordinate system, the finite difference approximation of u at the
grid point (�i; �j) is a vector denoted uij. We organize the solution in the global vector
u = [u11; : : : ;u1l;u21; : : : ;u2l; : : : ;un1; : : : ;unl]T . u�, u� are approximations of u�, u� and
are approximated using the high-order accurate SBP operators for the first derivative that
were constructed in [2] and [7]. Moreover, on the boundary we define Dnu to be the
approximation of��u�n�i =

�
(ux; uy) � n�i =

�
(�xu� + �xu�; �yu� + �yu�) � n�i� �

(�̃xD�u + �̃xD�u)i; (�̃yD�u + �̃yD�u)i� � ñi = (Dnu)i; i 2 �Ω; (21)

with ñi =
(dyi;�dxi)dsi =

�
(y�d� + y�d�)i;�(x�d� + x�d�)i�dsi ;dsi =

qdx2i + dy2i =
q

(x�d� + x�d�)2i + (y�d� + y�d�)2i : (22)

By using the notation above, a semi-discrete approximation of (1) can be written,J̃ut+1

2
D�(Ãu) +

1

2
ÃD�u +

1

2

�I� 
 I��Ã�u+

1

2
D�(B̃u) +

1

2
B̃D�u +

1

2

�I� 
 I��B̃�u
="(D�F̃ + D�G̃) +

h�P���1 
 �P���1
i�EB�TΓ

��̃uB + �̃(Dnu)B � g� (23)

Here EB is a projection matrix which maps the values on the computational domain to the
outer boundary, that is, uB = EBu and (Dnu)B = EB(Dnu). The boundary conditions
have been introduced by using the penalty technique SAT, see [1], [13], and [15].

7



The energy method leads to

uT �P� 
 P��J̃ut+1

2
uT �Q� 
 P��Ãu +

1

2
uT Ã�Q� 
 P��u +

1

2
uT �P� 
 P��Ã�u+

1

2
uT �P� 
Q��B̃u +

1

2
uT B̃�P� 
Q��u +

1

2
uT �P� 
 P��B̃�u

="uT �Q� 
 P��F̃ + "uT �P� 
Q��G̃+

uTBΓ
��̃uB + �̃(Dnu)B � g� (24)

Remark: Notice that (P�
P�)J̃ is a norm if P� and P� are diagonal, see Lemma 1 in [12].
Now we can make use of the splitting technique to obtain,

1

2
uT �P� 
 P��Ã�u +

1

2
uT �P� 
 P��B̃�u =

1

2
uT �P� 
 P���Ã� + B̃��u = 0

since Ã� + B̃� = diag
�
(ã� + b̃�)i� = 0. We also need,

1

2
uT �Q� 
 P��Ãu +

1

2
uT Ã�Q� 
 P��u =

1

2
uT �B� 
 P��Ãu;

1

2
uT �P� 
Q��B̃u +

1

2
uT B̃�P� 
Q��u =

1

2
uT �P� 
 B��B̃u:

The viscous terms becomes,

uT �Q� 
 P��F̃+uT �P� 
Q��G̃
=� h�D�u�T �P� 
 P��F̃ +

�D�u�T �P� 
 P��G̃i| {z }
(Diss)

+ uT �B� 
 P��F̃ + uT �P� 
 B��G̃ (25)

As was shown above we have,F̃ = diag(f̃) = diag
�
[J(ux�x + uy�y)]i� = J̃�(�̃2x + �̃2y)D�u + (�̃x�̃x + �̃y �̃y)D�u�;G̃ = diag(g̃) = diag
�
[J(ux�x + uy�y)]i� = J̃�(�̃x�̃x + �̃y�̃y)D�u + (�̃2x + �̃2y)D�u�:

This implies that (Diss) in (25) becomes,

(Diss) =
�D�u�T (P� 
 P�)J̃�(�̃2x + �̃2y)D�u + (�̃x�̃x + �̃y�̃y)D�u�+�D�u�T (P� 
 P�)J̃�(�̃x�̃y + �̃y�̃y)D�u + (�̃2x + �̃2x)D�u�

=

� D�uD�u �T| {z }
w
T "

(P� 
 P�)J̃(�̃2x + �̃2y) (P� 
 P�)J̃(�̃x�̃x + �̃y�̃y)
(P� 
 P�)J̃(�̃x�̃x + �̃y�̃y) (P� 
 P�)J̃(�̃2x + �̃2y) #| {z }H � D�uD�u �| {z }

w

(26)

The following Lemma is proved in the Appendix.
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Lemma 3.2 The term (Diss) in equations (25) and (27) is positive semi-definite.

Via the previous analysis, equation (24) is rewritten asddtkuk2P�
P� J̃+2"�D�u�T (P� 
 P�)F̃ + 2"�D�u�T (P� 
 P�)G̃
=uT �B� 
 P��Ãu + uT �P� 
B��B̃u+

2"uT �B� 
 P��F̃ + 2"uT�P� 
 B��G̃+

2uTBΓ
��̃uB + �̃(Dnu)B � g� (27)

Note that � = const. at the West and East boundaries and that � = const. at the South
and North boundaries (see Figure 2). We haveñi =

�
(y�)i;�(x�)i�d�dsi ; dsi =

q
(x�)2i + (y�)2id�; i 2 West;ñi =

�
(y�)i;�(x�)i�d�dsi ; dsi =

q
(x�)2i + (y�)2id�; i 2 South;ñi =

�
(y�)i;�(x�)i�d�dsi ; dsi =

q
(x�)2i + (y�)2id�; i 2 East;ñi =

�
(y�)i;�(x�)i�d�dsi ; dsi =

q
(x�)2i + (y�)2id�; i 2 North: (28)

Consequently, the right-hand-side of (27) can be rewritten as

uT �B� 
 P��Ãu + uT �P� 
B��B̃u = uTBΛBuB;
uT �B� 
 P��F̃ + uT �P� 
 B��G̃ = uTBSB(Dnu)B; (29)

where

ΛB = diag(
̄idli); SB = diag(dli) (30)

with 
̄i = (a; b) � ñi;dli =

8>>><>>>:�pWi dsi d�pWi = diag(P�)i; i 2 West;�pSi dsi; d�pSi = diag(P�)i; i 2 South;pEi dsi; d�pEi = diag(P�)i; i 2 East;pNi dsi; d�pNi = diag(P�)i; i 2 North: (31)

The relations (28)–(31) inserted in (27) yieldsddtkuk2P�
P� J̃+2"�D�u�T (P� 
 P�)F̃ + 2"�D�u�T (P� 
 P�)G̃
=uTBΛBuB + 2"uTBSB(Dnu)B + 2uTBΓ

��̃uB + �̃(Dnu)B � g�
=uTB(ΛB � 2Γ�̃)uB + uTB(2"SB + 2Γ�̃)(Dnu)B| {z }IR �2uTBΓg (32)
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To cancel the term (IR) in equation (32), we require

Γ = �"SB�̃�1: (33)

By employing the same technique as in Section 3.1, we prove the following proposition.

Proposition 3.3 If condition (33) and
̄i +
2�̃i;i�̃i;i " � 0; i 2 �Ω; (34)

are satisfied, The problem (23) is strongly stable.

Remark: By inserting (33) and (34) into (32), we obtain an estimate that is completely
similar to (3) and (16).

4 Multiple Domains and Interface Conditions

Without loss of generality, we consider a computational domain which consists of two
subdomains. The unknown on the left subdomain is denoted by u and on the right sub-
domain by v, respectively. The same technique described in the previous section is used
here to discretize both u and v. The corresponding notations are also modified by adding
superscripts L and R in order to identify the left and right subdomains.

Since the outer boundary treatment has been already discussed, we will only focus on
the interface treatment. The coupling of u and v as well as the first derivatives DL

1 u andDR
1 v at the interface will be treated by using the various forms of the SAT technique.

4.1 The finite volume method

A semi-discrete approximation of (1) on the left part of the computational domain can be
written,

ut + aDLxu + bDLy u ="�DLxDLxu + DLyDLy u
�
+�PL��1�ELI �TFL

1

�
uI � vI�+�PL��1�ELI �TFL

2

�
(DLnu)I + (DRn v)I�+�PL��1�DLn�T �ELI �TFL

3

�
uI � vI�+ PenL

1 ; (35)

where PenL1 is the penalty term that imposes the outer boundary conditions weakly. The
other three penalty terms on the right hand side will be used to couple the left subdomain
calculation to the right subdomain calculation. Note that (DLnu)I + (DRn v)I is small and
proportional to the truncation error. uI and vI are vectors which represent u and v (v
is the discrete finite difference solution that will be presented below) on the interface,
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respectively. ELI is a projection matrix which maps the values on the left computational
domain to the interface, that is, uI = ELI u and (DLnu)I = ELI (DLnu). FL

1 , FL
2 , and FL

3

are penalty matrices that will be determined below by stability requirements. DRn v is an
approximation of �v=�n which will be derived in the next section.

By multiplying (35) with uTPL we obtain,ddtkuk2PL + 2"(kDLxuk2PL + kDLy uk2PL) =� uTI ΛLI uI + 2"uTI SLI DLnuI
+ 2uTI FL

1

�
uI � vI�

+ 2uTI FL
2

�
(DLnu)I + (DRn v)I�

+ 2
�DLnu)TI FL

3

�
uI � vI�

+ BTL: (36)

where BTL collects the outer boundary terms (see section 3.1) and

ΛLI = diag[(a; b) � ñLi dsLi ]; SLI = diag(dsLi ); i 2 Interface:
4.2 The finite difference method

A semi-discrete approximation of (1) on the right subdomain can be written,J̃vt+1

2
DR� (Ãv) +

1

2
ÃDR� v +

1

2

�I� 
 I��Ã�v+

1

2
DR� (B̃v) +

1

2
B̃DR� v +

1

2

�I� 
 I��B̃�v
="DR� F̃ + "DR� G̃+h�PR� ��1 
 �PR� ��1

i�ERI �TFR
1 (vI � uI)+h�PR� ��1 
 �PR� ��1

i�ERI �TFR
2

�
(DRn v)I + (DLnu)I�+h�PR� ��1 
 �PR� ��1

i�DRn �T �ERI �TFR
3 (vI � uI) + PenR:

(37)

Here PenR is the penalty term for the outer boundary conditions on the right part of the
computational domain. ERI is a projection matrix which maps the values on the right
computational domain to the interface, that is, vI = ERI v and (DRn v)I = ERI (DRn v).

The energy method leads toddtkvk2PR� 
PR� J̃+2"�DR� v
�T

(PR� 
 PR� )F̃ + 2"�DR� v
�T

(PR� 
 PR� )G̃
=vTI PR� (Ãv)� 2"vTI PR� SRI DRn vI+

2vTI FR
1 (vI � uI)+

2vTI FR
2

�
(DRn v)I + (DLnu)I�+

2FR
3

�DRn v
�TI (vI � uI) + BTR; (38)
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where BTR collects the outer boundary terms (for details see section 3.2) and

ΛRI = diag[(pRi d�)ãi]; SRI = diag(pRi dsRi ); pRi d� = diag(PR� )i; i 2 interface:
4.3 Stable interface treatment

Combining (36) and (38) we haveddtkuk2PL+
ddtkvk2PR� 
PR� J̃ + 2"kDLxuk2PL + 2"kDLy uk2PL

+2"�DR� v
�T

(PR� 
 PR� )F̃ + 2"�DR� v
�T

(PR� 
 PR� )G̃
=� uTI ΛRI uI + 2"uTI SLI (DLnu)I + 2uTI FL

1

�
uI � vI�

+ 2uTI FL
2

�
(DLnu)I + (DRn v)I�+ 2

�DLnu)TI FL
3

�
uI � vI�+ BTL

+ vTI ΛRI v � 2"vTI SRI (DRn v)I + 2vTI FR
1 (vI � uI)

+ 2vTI FR
2

�
(DRn v)I + (DLnu)I�+ 2

�DRn v
�TI FR

3 (vI � uI) + BTR
=xTI MIxI + BTL + BTR (39)

where
xI =

�
uI vI (DLnu)I (DRn v)I �T

and M 0I =

26664 �ΛLI + 2FL
1

�FL
1
� FR

1
0 0�FL

1
� FR

1
ΛRI + 2FR

1
0 0

0 0 0 0

0 0 0 0

37775 ;M 00I =

26664 0 0 FL
2

+ FL
3

+ "SLI FL
2
� FR

3

0 0 �FL
3

+ FR
2

FR
2

+ FR
3
� "SRIFL

2
+ FL

3
+ "SLI �FL

3
+ FR

2
0 0FL

2
� FR

3
FR

2
+ FR

3
� "SRI 0 0

37775 ;MI = M 0I + M 00I :
(40)

A sufficient condition for MI to be a negative semi-definite matrix is that M 0I is a negative
semi-definite matrix and M 00I = 0. If the conditions

ΛLI = ΛRI ; FL
1 � ΛRI =2; FR

1 = FL
1 � ΛRI ; (41)

are satisfied, M 0I is a negative semi-definite matrix. Moreover, the relationsSLI = SRI ; FL
2 + FL

3 + "SLI = 0; �FL
3 + FR

2 = 0; FR
2 + FR

3 � "SRI = 0 (42)

lead to M 00I = 0.
We have now proved the main proposition of this paper
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Proposition 4.1 The hybrid method (35) and (37) have a stable interface treatment if the
conditions (41) and (42) hold.

Recall that for i 2 Interface,

ΛLI = diag[(a; b) � (dyi;�dxi)]; ΛRI = diag[pRi d�(a; b) � ((y�)i;�(x�)i)]; (43)SLI = diag
�qdx2i + dy2i �; SRI = diag

�pRi d�q(x�)2i + (y�)2i �: (44)

Remark The specific SBP operators that are based on diagonal norms are given in [7],
[16]. The standard second-order diagonal norm is PR� = d� � diag(1=2; 1; : : : ; 1; 1=2)). And
the fourth- and sixth-order diagonal norm are,

1h
2666666666664

17
48

59
48

43
48

49
48

1
. . .

3777777777775 ; 1h
266666666666666664

13649
43200

12013
8640

2711
4320

5359
4320

7877
8640

43801
43200

1
. . .

377777777777777775
(45)

respectively.
When the second-order diagonal norm is used on the right subdomain x = const. on

the interface, we do not need to change the control volume since the conditions ΛLI = ΛRI
in (41) and SLI = SRI in (42) will be satisfied automatically (see [15] for more details).

However, the vertices of each old dual grid close to the interface consist of the center of
the triangles and the midpoint of the edge at the interface. This implies that the relations
ΛLI = ΛRI and SLI = SRI are not satisfied automatically when curvilinear interfaces or high
order SBP operators are used. We need to modify the control volume for the UFVM to
guarantee the conditions (41) and (42). To do this, we must move the position of the
vertex i 2 interface at the interface, which is determined by the following relationsdxi = pRi d�(x�)i; dyi = pRi d�(y�)i: (46)

Relation (46) should be understood as follows: adjust the left hand side (that produces
the dual grid) to the given value of the right hand side. Notice that if (46) is satisfied, (43)
and (44) follow.

We take the following example and show how to deal with the interface. Let us choose
a curved interface (see Figure 3) of the formx = x(0; �) = 0:3 sin(2��); y = y(0; �) = �; 0 � � � 1:

13



The interface is discretized using 11 points and each line segment has equal length. If we use
a fourth-order accurate SBP operator to approximate the first derivative in equation (46),
the new modified dual grid points will be located as in Figure 3. Instead of the original
control volumes (see Figure 4(a)), the new control volumes (see Figure 4(b)) should be
used in order to guarantee the stability of the hybrid scheme.
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Interface 

Figure 3: The black ’o’ represents the midpoints of the interface and the red ’x’ represents
the new modified dual grid points.
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(a) the original control volume
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(b) the modified control volume

Figure 4: The control volume connected to point 3 at the interface.
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5 Numerical Calculations

The model problem tested below is writtenut + aux + buy = "(uxx + uyy) + F; (47)

with suitable initial data and boundary data. F is the forcing function. In the test we
use a = 1, b = 1, and " = 0:1. In order to estimate the accuracy of the schemes, an exact
solution u = sin(2�(x+ y� 2t)) has been chosen. The initial data, boundary data and the
forcing function F are adjusted to fit the exact solution.

To test the efficiency and accuracy of these schemes, we define the rate of convergence,q, on the computational domain asq =
log10

�jju� v(1)jj2=jju� v(2)jj2�
log10

�pN (1)=pN (2)
� ;

where u is the exact solution. v(1) and v(2) are the corresponding numerical solutions on
meshes with N (1) and N (2) nodes (including boundary nodes), respectively. We use the
classical fourth-order Runge-Kutta method for the time integration. A small time-step is
used to minimize the temporal error.

5.1 Single domains and basic accuracy

We start by using the UFVM on unstructured triangle meshes (see Figure 5(a)). The
convergence rates are presented in Table 1. Due to symmetry of the triangle meshes,
second order accuracy is obtained.
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(a) An unstructured mesh with 704 nodes.
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(b) A Cartesian mesh with 33� 33 nodes.

Figure 5:
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Points log10-Err q

182 �1:09 �
704 �1:70 2:06
1607 �2:07 2:07
2807 �2:32 2:06
4357 �2:52 2:09
11139 �2:94 2:07

Table 1: Convergence rates of approximations to ut + ux + uy = 0:1(uxx + uyy) on a single
domain [�1; 0]� [0; 1] by using the UFVM. Unstructured meshes are used.

Table 2 shows the convergence rates for both UFVM and HOFDM on Cartesian meshes
in one computational domain. The nodes of the Cartesian meshes (see Figure 5(b)) are
refined from 81 to 66049. The convergence rates for the schemes with interior accuracy
of order 2, 4, 6 and boundary accuracy of order 1, 2, 3 are 2, 3, 4th order as shown in
[17]. Note that the same error are obtained by using the UFVM and the second order
HOFDM. This shows that the UFVM and the second order HOFDM are identical schemes
on Cartesian meshes.

Points UFVM HOFDM (2nd) HOFDM (3rd) HOFDM (4th)

log10-Err q log10-Err q log10-Err q log10-Err q

9� 9 �0:99 � �0:99 � �1:48 � � �
17� 17 �1:57 2:10 �1:57 2:10 �2:30 2:97 �2:25 �
33� 33 �2:17 2:06 �2:17 2:06 �3:16 2:98 �3:34 3:78
65� 65 �2:76 2:03 �2:76 2:03 �4:04 3:01 �4:47 3:86

129� 129 �3:36 2:02 �3:36 2:02 �4:94 3:01 �5:64 3:93
257� 257 �3:97 2:00 �3:97 2:00 �5:83 2:99 �6:83 3:96

Table 2: Convergence rates of approximations to ut + ux + uy = 0:1(uxx + uyy) on a single
domain [0; 0]� [1; 1] by using the UFVM and HOFDMs. Cartesian meshes are used.

Two more cases for the HOFDM have been tested. Table 3 displays the convergence
rate for the HOFDM on stretched meshes (see Figure 6(a)). The stretching coefficientssx = (hx)max=(hx)min = 2 in x-direction and sy = (hy)max=(hy)min = 3 in y-direction, wherehx and hy are the mesh sizes in x-, and y-directions, respectively. From Table 3 we find
that correct convergence rates are obtained.

Next, the HOFDM is tested on a sector of an annulus that is given by (see Figure 6(b))x(�; �) = r cos(�); y(�; �) = r sin(�); � = ��
4
�; r =

1

2
+

1

2
�:
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(a) A stretched mesh with 33� 33 nodes.
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(b) A curvilinear mesh with 33� 33 nodes.

Figure 6:

Points HOFDM (2nd) HOFDM (3rd) HOFDM (4th)

log10-Err q log10-Err q log10-Err q

9� 9 �0:90 � �1:21 � � �
17� 17 �1:46 2:03 �1:96 2:70 �1:77 �
33� 33 �2:06 2:09 �2:76 2:79 �2:78 3:49
65� 65 �2:66 2:05 �3:62 2:92 �3:88 3:75

129� 129 �3:27 2:03 �4:51 2:97 �5:03 3:86
257� 257 �3:87 2:01 �5:40 2:99 �6:28 3:92

Table 3: Convergence rates of approximations to ut + ux + uy = 0:1(uxx + uyy) on a single
domain [0; 0]� [1; 1] by using the HOFDM. Stretched meshes are used.
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Table 4 shows the convergence rate for all second-, third- and fourth-order HOFDM.

Points HOFDM (2nd) HOFDM (3rd) HOFDM (4th)

log10-Err q log10-Err q log10-Err q

9� 9 �1:22 � �1:78 � � �
17� 17 �1:82 2:16 �2:68 3:25 �2:59 �
33� 33 �2:41 2:06 �3:63 3:28 �3:77 4:12
65� 65 �3:01 2:03 �4:58 3:21 �4:89 3:78

129� 129 �3:61 2:02 �5:51 3:12 �6:02 3:81
257� 257 �4:21 2:01 �6:43 3:08 �7:17 3:84

Table 4: Convergence rates of approximations to ut + ux + uy = uxx + uyy on a single
domain by using the HOFDM. Curvilinear meshes are used.

5.2 Multiple domains

In this section we will illustrate the stability and efficiency of the hybrid scheme on multiple
domains. The testing is processed as follows,

1. Applying the UFVM on an unstructured mesh in all subdomains;

2. Using the UFVM on the same mesh in a subdomain and the HOFDM on structured
mesh(es) in the other subdomain(s);

3. Adjusting the number of grid points in the subdomain until we obtain a similarL2-error in all subdomains.

First we calculate on two subdomains with a linear interface at x = 0 (see Figure
7(a)). Table 5 shows the convergence rate of UFVM and second and fourth order accurate
HOFDM. The convergence rate for the UFVM is 2 on unstructured symmetrical meshes.
The log10 L2-error is �3:30 for the UFVM on the finest mesh with 50138 points. We only
need a mesh with 28852 points for the hybrid method (UFVM+HOFDM(4th)) to obtain
the same error level.

Next, we test the hybrid method on two subdomains with a smooth curved interface
(see Figure 7(b)). In the result shown in Table 6, we see that in the fourth order case the
hybrid scheme is efficient since only one fifth of the nodes are required for the HOFDM.
The error levels are almost same as with a linear interface. The solution and the error are
presented in Figure 8. The wave propagates from left to the right via the curved interface
without reflection. We conclude that the curved interface does not introduce more error
and reflections compared with the linear interface.

Next we will test the hybrid schemes on a computational domain [�1; 1]� [�1; 1] with
four sub-domains (see Figure 9). On the subdomain [�1; 0]� [�1; 0] excluding an ellipse,
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(a) with a linear interface. 702 nodes are used on
the left domain and 21� 21 nodes are used on the
right domain.
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(b) with a curved interface. 597 nodes are used on
the left domain and 21 � 21 nodes are used on the
right domain.

Figure 7: Hybrid mesh with two subdomains

UFVM (Whole domain) Hybrid(UFVM+HOFDM(2nd)) Hybrid(UFVM+HOFDM(4th))

Points log10-Err q Points log10-Err q Points log10-Err q

360 �1:09 � 292(182 + 110) �1:09 � � � �
1425 �1:70 2:06 1124(704 + 420) �1:69 2:05 977(704 + 273) �1:73 �
3133 �2:07 2:07 2537(1607 + 930) �2:07 2:16 2072(1607 + 465) �2:07 2:06
5588 �2:32 2:06 4447(2807 + 1640) �2:32 2:05 3545(1807 + 738) �2:32 2:13
8779 �2:52 2:09 6907(4357 + 2550) �2:52 2:08 5428(4357 + 1071) �2:53 2:26

22389 �2:94 2:07 17619(11139 + 6480) �2:94 2:06 13164(11139 + 1863) �2:93 2:09
50138 �3:30 2:03 39621(25101 + 14520) �3:30 2:03 28852(25101 + 3751) �3:30 2:15

Table 5: Convergence rates of approximations to ut + ux + uy = 0:1(uxx + uyy) on two
subdomains with a linear interface. UFVM is used on the left domain and HOFDM is
used on the right domain.

UFVM Hybrid(UFVM+HOFDM(2nd)) Hybrid(UFVM+HOFDM(4th))

Points log10-Err q Points log10-Err q Points log10-Err q

360 �1:09 � 271(160 + 110) �1:00 � � � �
1425 �1:70 2:06 1017(597 + 420) �1:62 2:16 870(597 + 273) �1:64 �
3133 �2:07 2:07 2236(1306 + 930) �1:98 2:14 1771(1306 + 465) �1:99 2:26
5588 �2:32 2:06 3942(2302 + 1640) �2:24 2:10 3040(2302 + 738) �2:26 2:26
8779 �2:52 2:09 6217(3667 + 2550) �2:43 1:87 4738(3667 + 1071) �2:44 1:95

22380 �2:94 2:07 15709(9229 + 6480) �2:86 2:13 11092(9229 + 1863) �2:85 2:18
50138 �3:30 2:03 35226(20706 + 14520) �3:21 2:03 24457(20706 + 3751) �3:22 2:19

Table 6: Convergence rates of approximations to ut + ux + uy = 0:1(uxx + uyy) on two
subdomains with a curvilinear interface. UFVM is used on the left domain and HOFDM
is used on the right domain.
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(a) solution at T = 1:0.
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Figure 8: log10(L2�error) = �2:22 on the left subdomain with 2302 nodes and log10(L2�error) = �2:39 with 738 nodes for ut + ux + uy = 0:1(uxx + uyy). A curved interface is
used.
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Figure 9: A hybrid mesh with four sub-domains.
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the UFVM was used. On the three other subdomains, the HOFDM was used. The finite
difference and the finite volume solutions are co-located at the interfaces y = 0 and x = 0.
Table 7 shows the convergence rate by using the hybrid scheme. The solution and error
are shown in Figure 10. The efficiency of the hybrid scheme with the 4th order HOFDM
is clearly seen.

UFVM (Whole domain) Hybrid(UFVM+HOFDM(2nd)) Hybrid(UFVM+HOFDM(4th))

Points log10-Err q Points log10-Err q Points log10-Err q

733 �1:09 � 550 �1:11 � � � �
(187 + 121+
121 + 121)

2809 �1:70 2:09 2020 �1:71 2:14 1412 �1:75 �
(697 + 441+ (697 + 273+
441 + 441) 273 + 169)

6389 �2:07 2:07 4451 �2:08 2:15 2723 �2:09 2:43
(1568 + 961+ (1568 + 465+

961 + 961) 465 + 225)
11205 �2:32 2:05 7826 �2:34 2:07 4538 �2:35 2:22

(2783 + 1681+ (2738 + 738+
1681 + 1681) 738 + 324)

17424 �2:52 2:08 12156 �2:54 2:16 6936 �2:56 2:43
(4353 + 2601+ (4353 + 1071+
2601 + 2601) 1071 + 441)

44447 �2:94 2:06 30721 �2:96 2:07 15285 �2:96 2:21
(11038 + 6561+ (11030 + 1863+

6561 + 6561) 1863 + 529)
99923 �3:30 2:04 68405 �3:32 2:07 32945 �3:32 2:27

(24482 + 14641+ (24482 + 3751+
14641 + 14641) 3751 + 961)

Table 7: Convergence rates of approximations to ut + ux + uy = 0:1(uxx + uyy) on four
sub-domains.
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(a) solution at T = 1:0.
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Figure 10: A four sub-domain case.
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5.3 Application to heat distribution around rods

Finally we will exemplify our technique by computing the steady heat distribution around
a set of rods. Consider the problem,Tt + aTx + bTy = "(Txx + Tyy); �1 � x; y � 1; t > 0; (48)

with a initial condition T = T1, and the boundary conditionsT = Tb; (a; b) � n̂ < 0; �T�n̂ = 0; (a; b) � n̂ � 0;
at the far-field boundary. n̂ is the unit outward pointing normal. At the ith rod we specify
the temperature T = Ti. For the temperatures we used Tb = T1 = 1, T1 = 2:0, T2 = 0:1,T3 = 1:5, and T4 = 0:5. In our test, we used a = 1, b = 1 and " = 0:1. The steady state
solution is presented in Figure 11. One can clearly see the advantage with this technique.
The near-field around the rods is captured and the far-field part is efficiently handled.

6 Conclusions and future work

A stable and efficient hybrid method for viscous problems that combines the unstructured
finite volume method with the high-order finite difference method has been developed.
The hybrid method can be applied to complex geometries with any type of interfaces. The
calculations verify that the hybrid method is efficient, accurate and truly stable.

The technique developed in this paper makes it straight forward to apply the hybrid
technique to the full Navier-Stokes equations. It also makes it possible to use two existing
separate Navier-Stokes solver (one based on UFVM and one on HOFDM) and construct
a significantly more efficient hybrid code suitable for aerodynamic and aeroacoustic source
to signal type problems.

Appendix

Proof : The matrix H in equation (26) can be written in component form,

H =

26666666664
a1 b1

. . .
. . .an bnb1 
1

. . .
. . .bn 
n

37777777775 (49)
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Figure 11: The temperature distribution around four rods.
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whereai =
�
(PR� 
 PR� )J̃(�̃2x + �̃2y)�i;i > 0;bi =
h
(PR� 
 PR� )J̃(�̃x�̃x + �̃y�̃y)�i;i; i = 1; : : : ; n
i =
�
(PR� 
 PR� )J̃(�̃2x + �̃2y)�i;i > 0: (50)

For an arbitrary vector x = [x1; : : : ; xn; y1; : : : ; yn]T , we have

xTHx =

� x1y1

�T � a1 b1b1 
1

� � x1y1

�
+ � � �+ � xiyi �T � ai bibi 
i � � xiyi �+ � � �+� xnyn �T � an bnbn 
n � � xnyn � (51)

The eigenvalues of an arbitrary 2� 2 matrix on the right-hand-side of (51) is�i1;2 =
ai + 
i

2
�s�ai + 
i

2

�2 � (ai
i � b2i ); ; i = 1; : : : ; n (52)

Since ai, 
i are positive andai
i � b2i =
�
(PR� 
 PR� )J̃�i;i�(�̃2x + �̃2y)i;i(�̃2x + �̃2y)i;i � (�̃x�̃x + �̃y�̃y)2i;i�

=
�
(PR� 
 PR� )J̃�i;i(�̃y�̃x � �̃x�̃y)2i;i > 0; (53)�i1;2 is non-negative, which imply that H is a positive semi-definite matrix.

We have proved the lemma. �
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