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Abstract
An algorithm is presented for solving a diffusion equation on a curved surface coupled to diffusion
in the volume, a problem often arising in cell biology. It applies to pixilated surfaces obtained from
experimental images and performs at low computational cost. In the method, the Laplace-Beltrami
operator is approximated locally by the Laplacian on the tangential plane and then a finite volume
discretization scheme based on a Voronoi decomposition is applied. Convergence studies show that
mass conservation built in the discretization scheme and cancellation of sampling error ensure
convergence of the solution in space with an order between 1 and 2. The method is applied to a cell-
biological problem where a signaling molecule, G-protein Rac, cycles between the cytoplasm and
cell membrane thus coupling its diffusion in the membrane to that in the cell interior. Simulations
on realistic cell geometry are performed to validate, and determine the accuracy of, a recently
proposed simplified quantitative analysis of fluorescence loss in photobleaching. The method is
implemented within the Virtual Cell computational framework freely accessible at www.vcell.org.
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Introduction
Recently, there has been increased attention to numerical approaches to diffusion on arbitrary
surfaces, particularly in the context of applications to cell biology [1,2]. Indeed, cellular
metabolism and signaling are mediated in part by trans-membrane receptors that can diffuse
in the cell membrane [3]. Because the cell shape is generally irregular, modeling these processes
as well as the analysis of experimental data (see the application in part II) requires an accurate
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approximation of diffusion on an arbitrary curved surface. As in the flat space, a reaction-
diffusion system on a surface S⊂R3 is governed by mass conservation:

(1)

where Ci is the concentration of the i-th membrane species, Ji = −Di gradS Ci is the diffusive
flux density of this species, Di is the diffusion coefficient, and the source term Ri describes the
effect of all reactions on the i-th species. The differential operators divS and grad S are defined
on S and the second-order differential operator divS(gradS) ≡ ΔS that appears in Eqs (1) is the
Laplace-Beltrami operator (LBO) [4], which is a generalization of the Laplacian on
manifolds1.

Spatial discretization of LBO for solving Eqs (1) numerically is generally more involved than
in the flat case. While algorithms based on LBO discretization on triangulated surfaces [5] are
relatively simple and fast, they involve unstructured grids and therefore may have a lower order
of accuracy (see references in [5]). Better accuracy can be achieved by methods that embed
the original two-dimensional (2D) problem into a three-dimensional (3D) space [1,2,6]. In
[1], 2D diffusion on a surface is approximated by diffusion in an annular 3D domain consisting
of all the points within a small, on the order of the mesh spacing h, distance from S, and the
problem is solved on a uniform Cartesian grid. The papers [2,6] use another approach,
originally introduced in [7]. In this approach, the initial data on the surface is extended smoothly
into the 3D volume using a level set method (so that the surface S is a zero level set) and the
equations are modified to exclude diffusive fluxes between the level sets. The adapted
equations are solved in [6] on a uniform Cartesian grid, while spatial discretization in [2] is
based on a particle representation of the implicit surfaces (the particle methods were previously
used in [8] for solving diffusion in the lumen of the endoplasmic reticulum). Both methods
[1,2] achieve second order convergence in space and time. An additional advantage of the
methods based on level sets is that they can be extended to accurate discretization of nonlinear
differential operators on surfaces. They also are suited well for problems involving moving
membranes. Recently, the ideas of [7] have been further developed in [9] and applied in the
context of phase field approximation in [10].

In biological applications, surfaces might not be given but rather need to be inferred from image
data. The algorithms of [1,2] were used in conjunction with standard (albeit elaborate) methods
for generating level set functions from image data for the purpose of constructing
discretizations. The problem of recovering a smooth surface from pixilated data is currently
an area of active research in the context of computer graphics [11]. A number of interesting
approaches have been proposed. They usually involve an iterative process requiring significant
user input, and therefore may not be easily automated. In addition, as these techniques are
designed primarily for visualization purposes, they may be hard to apply in a way that
guarantees convergence of surface metrics as the grid is refined.

Conservation of mass is important for computational modeling in cell biology. While the
method of [6] is nonconservative, in [2] mass conservation is enforced through global rescaling,
and the discretization scheme in [1] is fully conservative. Problems in which diffusion on the
surface is coupled to diffusion in the enclosed volume often arise in cell biology. While [2]
contains simulations of diffusion in the lumen and on the surface of the same geometry, the
extension of methods of [1] and [2] to coupling with diffusion in the embedding space has not
been published. Coupling to dynamics in the volume can be achieved by Monte Carlo type
methods which were also used for simulating diffusive processes on surfaces [12,13]. This

1Although this implies uniform Di, the algorithm described in the paper is applicable to non-uniform Di as well.
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technique, however, has a slow convergence rate and requires an exact, analytically defined,
surface.

In this paper, we present a numerical algorithm for solving Eqs (1) on arbitrary pixilated
surfaces, which allows for coupling to a reaction-diffusion system in the volume within a fully
conservative discretization scheme. Its development has been motivated by the need to include
a capability of modeling surface diffusion in the Virtual Cell computational framework (VCell)
[14], a general-purpose tool designed for experimental cell biologists (as well as theorists) to
test their hypothesis and models. It allows a user to couple cellular chemical kinetics, diffusion-
advection transport and electrophysiological properties of membranes into a system of time-
dependent partial differential equations (PDEs) in two or three dimensions and solve the system
numerically on arbitrary geometry [15,16]. After extensive testing (a selection of tests is
described in detail in section 1.5 of part I), the proposed method has been incorporated into
VCell and is now freely accessible at www.vcell.org.

Our algorithm, as detailed in part I, is relatively simple and performs at low computational
cost. As an example, in the application of part II of this paper, a computation of 45 time steps
performed on the grid of 10,830 surface and 96,390 volume mesh nodes yielding acceptable
accuracy takes 85 seconds (all computations were performed on a Windows compute node
with an Intel Xeon 2.8 GHz CPU); the same simulation on the grid of 97,504 surface and
2,438,920 volume nodes takes 86 minutes. In both cases, the computation time includes
geometry processing and meshing. Consistently with the way VCell handles volume diffusion,
Eqs (1) are discretized using a finite volume (area) scheme to guarantee mass conservation.
The method applies to arbitrary pixilated surfaces inferred from segmented experimental
images. This data format is familiar to cell biologists and can be obtained by accessible image
processing tools. While the method neither requires nor produces an explicit smooth watertight
surface, it allows the user to improve accuracy by refining the mesh as needed. In the example
cited above, the relative error is estimated to be in the range of few percent, acceptable in
biological applications for all practical purposes. Convergence studies in sections 1.4 and 1.5
indicate an order of convergence in space between 1 and 2.

The paper consists of two parts. The key ideas of the method – to approximate LBO locally
with the Laplacian on a tangential plane, and then apply a finite volume discretization scheme
based on a Voronoi decomposition – are described in part I, along with the analysis of
convergence and a representative selection of tests used to validate the algorithm. In part II,
we present an application of the algorithm to a concrete cell-biological problem. The
application involves modeling of fluorescence loss in photobleaching (FLIP) on realistic cell
geometry in the situation where a signaling molecule called Rac cycles between the cell interior
and the cell membrane, and therefore the surface diffusion of Rac is coupled to its diffusion in
the cytoplasm. A simplified way of analyzing FLIP data was proposed in [17] to infer a rate
of dissociation of Rac from the membrane. The modeling study presented here helps validate
the procedure and assess its accuracy.

Part I. Numerical Algorithm
1.1 Diffusion on a curved surface

Consider a volumetric domain Ω and assume that a regular orthogonal grid of size h is imposed
on a box containing Ω. A pixilated approximation of Ω is given by Ωh, the union of the volume
elements with centers in Ω. The boundary of Ωh is a stepwise surface Sh which is composed
of rectangular facets with side length h, as illustrated in Fig. 1. The centers of these facets
comprise a set of nodes {ri, i = 1, …, NS} ⊂ R3 on Sh. These are the points at which jump
conditions for volume PDEs and other membrane interactions are evaluated in VCell. For this
reason, it is convenient to solve for the concentrations of membrane molecules at exactly the
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same points, because it facilitates coupling with the volume variables. Even though the points
{ri} do not necessarily lie on S, our algorithm uses these points to approximate the solution of
Eq (1) on S. We utilize a finite volume discretization scheme, which is used frequently in
transport problems and guarantees that numerical errors do not violate mass conservation
[18].

Whereas the distances from the approximate nodes to the true surface converge to zero as h
tends to zero, the surface area of Sh does not converge to the area of S, and neither do geodesic
distances between nodes on Sh converge to geodesic arc lengths on S. To obtain a convergent
solution to the PDE, our algorithm first calculates convergent approximations of the normals
to the surface at the staircase points, and then uses them to approximate LBO locally by the
Laplacian on a tangential plane.

Let  be the point in S that is closest to ri. If the locations of all points  were known and
the geodesic distances between any pair of them could be computed, one could apply the finite
volume method by partitioning the surface S into a set of surface elements {Mi}, each

surrounding , and integrating Eqs (1) over each patch, i. e.

(2)

where ∂Mi is the boundary of the i-th surface element, and n is an outward normal to ∂Mi
tangential to the surface (see Fig 2) [19]. The index enumerating variables is omitted in Eq (2)
for simplicity. One way of partitioning S into regions {Mi} is the Voronoi decomposition
[20], in which the region Mi is comprised of all points on S that are closer to the i-th node than
to any other node. The Voronoi decomposition is convenient for approximating the contour

integral  in Eq (2) since the shared borders between adjacent Voronoi cells are
always orthogonal to the geodesic curves connecting the nodes of these cells, and therefore,
flux densities are easily approximated based on concentration values at the nodes and the arc
length between nodes.

We apply a similar approach in the case of unknown  by integrating the equation on a set
of locally planar Voronoi polygons centered at the approximate points {ri}. To construct these

polygons, we first approximate the normal vector to S at each surface point  based on the
known points {ri} on Sh. For this, we consider contours γ1 and γ2 on two mutually orthogonal
slices of Sh crossing at node ri, as shown in Fig.1. In each slice, the tangent to the surface at

point  is approximated by finite differences using two nearby nodes that are apart from ri
by k steps along the corresponding stepwise contour. The number of steps k is chosen in a way
that guarantees convergence as h→0; it depends on local curvature and increases with
decreasing mesh size. The fastest convergence to the correct tangents is achieved with k=O
(h−q) where q, which is less than 1, depends on the particular method used for computing the
tangent (see Appendix for details). Finally, the unit normal vector Ni at the i-th node is
determined as the normalized cross-product of the two tangent vectors along both contours.

Once the normal Ni is computed, a polygon centered at ri is constructed in the plane Πi that is
orthogonal to Ni. A set of nodes in a certain neighborhood of ri is projected onto Πi. In the
current implementation, this neighborhood includes all the nodes rj whose corresponding facets
have at least one common point with the facet of ri. The projections rj̃ = rj − Ni(Ni · (rj − ri))
and the point ri form a set of co-planar points to which a two-dimensional Voronoi
decomposition is applied (Qhull (www.qhull.org), a publicly available library, is used for this
computation). The procedure yields the natural neighbors of the node ri and a polygon centered
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at the i-th node. Since Ni converges to the exact normal to the surface at , the planar Voronoi
polygons constructed for the nodes ri converge to the curved Voronoi cells centered around

. The planar distances between ri and its projected neighbors approximate the geodesic
distances dij between the corresponding points on S shown on Fig 2, and the length of each
side of the polygon approximates the geodesic length sij. Because the procedure does not
automatically guarantee that dij = dji and sij = sji, these quantities are symmetrized:

 and . One can show that the order of convergence of

 and  is the same as that of Ni.

Eq (2) is approximated on the new set of polygons as follows. The area of the i-th surface

element, Ai, is approximated as . The expression 
approximates the total diffusive flux entering the i-th Voronoi cell, where G(i) is the set of
indexes enumerating Voronoi cells having common borders with the i-th cell (the natural
neighbors of node i). Other terms of Eq (2) are integrated over the area of a Voronoi cell using
a first-order approximation, which yields the following spatial discretization of Eqs (1):

(3)

where from now on, dij and sij are used to designate  and  for simplicity. Mass
conservation is easily verified by summing up equations (3) over all Voronoi cells. Partitioning
into Voronoi polygons also facilitates mesh regularity, given a relatively uniform distribution
of the nodes{ri}, which arises from the uniform meshing of the volume.

Eq (3) is discretized in time using a first order backward Euler scheme with an explicit treatment
of the reaction term. Let  represent the computed solution at time t, and  be the reaction
term evaluated at time t, then the solution Ci at time t + Δt is found by solving:

(3a)

The resulting sparse linear system is solved iteratively using a preconditioned conjugate
gradient method with an incomplete LU preconditioner.

In summary, our algorithm includes the following steps:

i. find approximations for unit normals Ni at all computational nodes {ri, i = 1, …,
NS};

ii. for each ri, find the orthogonal projections of its neighbors rj onto the tangential plane,
i.e. rj̃ = rj − λNi, where λ = Ni · (rj − ri).

iii. after computing a Voronoi decomposition for ri and its neighbors projections rj̃, find
lengths dij and sij.

iv. compute the symmetrized distances  and the

area ; use these values in Eqs (3a);

v. solve Eqs (3a) to advance the solution in time.
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1.2. Coupling between surface and volume variables
The coupling of surface diffusion with a reaction-diffusion system in the volume is important
in cell-biological applications where proteins diffusing inside the cell can bind to the membrane
whereas membrane-bound proteins can dissociate and become free to diffuse in the cytoplasm
(see part II for an example). Because in our method computational nodes on the surface arise
from the meshing of a volumetric computational domain, it is relatively straightforward to
couple membrane diffusion to the processes in the bulk. Still, care must be exercised to ensure
full compatibility of the volume and surface solvers such that they preserve mass conservation.

To solve the reaction-diffusion equations in the volume, VCell utilizes a structured orthogonal
grid [16]. This facilitates automatic sampling of cell geometry, particularly when it is based
on experimental microscope images, where we can only tell whether a square pixel in the image
lies inside or outside the cell, and also allows one to move easily from one-dimensional to two-
to three-dimensional simulations. However, a ‘staircase’ approximation of a cell membrane
that results from this kind of spatial discretization, in addition to problems discussed above in
the context of surface diffusion, also creates difficulties for the accurate description of
membrane fluxes, because the surface area of the ‘staircase’ does not converge to that of a real
smooth membrane when the mesh is refined. A “flux correction” method of effective smoothing
[16] was adopted in the Virtual Cell to circumvent this problem.

Briefly, in the presence of the cell membrane S, a reaction-diffusion equation for a species
concentration u, ut = ▽(D▽u) + R, where D is a diffusion coefficient and R is a reaction term,
is subject to membrane jump conditions: −(D▽u)+N = j+, −(D▽u)−N = j−, where N is the
outward normal to the membrane S, + and − denote the inside and outside of the cell, and j+,
j− are inward and outward membrane flux densities that can be due to (un)binding processes
as well as due to a cross-membrane flow (in the latter case, j+ = j−). Because the flux densities
specified in the jump conditions are meant to be normal to the real membrane, the corrected
(inward) flux density across the i-th staircase membrane element is j+ cos θi where θi is the
angle between N and the normal to the i-th staircase facet. Hence the corrected flux across this
membrane element will be j+h2 cos θi , where h2 is the area of the staircase facet. In our practical
implementation, it was the “corrected” area ai = h2 cosθi of the membrane element which was
stored and used for calculating membrane fluxes. Because it is different from the Voronoi cell
area Ai used to solve the surface reaction-diffusion equations (1), this inconsistency would
obviously violate mass conservation when surface and volume variables are coupled.

Mass conserves automatically if the same surface area is used for evaluating membrane fluxes
and reaction rates at the membrane. One possible strategy is a time-splitting approach where
membrane variables are updated in two separate sub-steps, first due to diffusion and then due
to reactions. This would allow one to keep the Voronoi areas Ai for the surface diffusion,
whereas the corrected area ai would be used for all other processes: membrane reactions,
boundary fluxes etc. In an alternative approach, which avoids time-splitting, the Voronoi areas
Ai are used for all purposes, including calculating membrane fluxes. This method tested for a
coupled problem (see section 1.5) yields an order of convergence between 1 and 2, same as
for the surface diffusion alone. In addition, the test with the uncoupled volume diffusion shows
that replacing ai with Ai does not affect the order of convergence and in fact decreases the
magnitude of the error. Therefore, this approach has been incorporated in the algorithm.

1.3. Boundary conditions
As mentioned above, in VCell, the domain of interest Ω is placed in a rectangular box. Solving
equations (1) on a closed surface contained entirely in the box does not require boundary
conditions. In the case of an open surface, which intersects with the walls of the box (such as
the cylindrical surface of the test example in section 1.5), boundary conditions need to be
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specified at the intersection, as either a given concentration, or normal flux. One problem with
the open surface is that the standard Voronoi decomposition might not produce closed polygons
for the nodes at the surface edge. Also, care must be exercised to ensure that the flux through
the sides of the Voronoi polygons representing the edge of the surface is approximated
correctly.

To close the polygons at the surface edge, temporary fictitious neighbors of the nodes at the
boundary are added in a way that allows for the standard decomposition to be applied without
any change. The flux boundary conditions are implemented in the spirit of the “flux correction”
approach as described in section 1.2 by taking into account that the flux enters the surface in
the direction of the vector τ × Ni, where τ = (Nboundary × Ni ) / | Nboundary × Ni |, with Ni and
Nboundary being the outward normals to the surface at the i-th boundary node and to the box
wall, respectively.

1.4 Convergence studies
Convergence of the numerical solution often follows from the local consistency of a
discretization scheme. In applying our algorithm to surfaces approximated by a staircase, the
sampling noise induces a divergent local truncation error as illustrated in Fig. 3 for diffusion
on a sphere. Indeed, the local truncation error due to spatial discretization is given by τi = (D
(ΔS − Lh)C)i where C is the exact solution to the problem Ct = DΔSC and the operator Lh is
defined as (see Eq (3))

(4)

The truncation error can be rewritten as  with

(5)

where Δij is the triangle with base sij and node ri (Fig. 2). Because of the sampling noise, the
error in distances sij and dij that enter Eq (3) is O(hq) with q<1 (see Appendix). It then follows
from (5) that

which leads to a diverging truncation error: . Nevertheless, the
solution converges with an order greater than 1, as illustrated in Fig. 4 for the sphere test
problem and by other numerical tests in section 1.5. Below we discuss the physics underlying
this transformation.

Define the solution error z = (C − Ch) where Ch is a finite volume approximation of the exact
solution C obtained on a given set of computational nodes  by replacing ΔS with the
operator Lh. The solution error relates to the truncation error through the equation [18],

(6)

The solution of Eq (6) can be written as a convolution of the truncation error with a smooth
non-negative Green's function ψ,

(7)
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The terms summed in (7) are significantly non-zero in the region of the size  centered at
the i-th node. For Dt>>h2, the sum in (7) contains a large number of terms with alternating
signs, which makes it possible for the solution error to become convergent2. One source of
sign alternation is the flux consistency (mass conservation) of the numerical scheme [21],
ηjk = −ηkj, which results in gaining of at least one additional order of accuracy relative to the
order of the truncation error [22]. In addition, the sign of ηjk alternates rapidly. These
oscillations, which originate from the approximation of normals based on the staircase surface
Sh, lead to an additional partial cancellation of the error. Our numerical experiments in 2D
indicate that this cancellation results in a gain of another half an order of accuracy. We therefore
conclude that the overall convergence in space is expected to be of the order greater than 1.
Consistent with this conclusion, test results in the next section show convergence of the solution
with an order between 1 and 2.

1.5 Numerical Tests
A selection of numerical tests presented in this section illustrates the overall accuracy of the
algorithm. In each test, a 3D box [−L, L]3 containing a given analytical surface is meshed
uniformly to produce an orthogonal grid with n3 points and spatial step h = 2L/(n − 1). The
diffusion coefficient in Eq (1) is set to 1 and the equation is integrated over the time interval
[0, T] using a first-order backward Euler time discretization scheme. The resulting sparse linear
system is solved by the GMRES iterative method with a preconditioner based on incomplete
LU factorization. This is implemented by using PCGPAK (Scientific Computing Associates,
New Haven, CT).

In this subsection, we are concerned with a spatial discretization error. To ensure its dominance
in the overall error, the tests have been run with a sufficiently small fixed time step (Δt=10−4

was used in all the tests since a further reduction of the time step had a negligible effect on the
total error; to illustrate a computational cost, a simulation of 1000 time steps for a sphere test
problem (see below) run on an Intel Xeon 2.8 GHz node for the grid of 39,696 surface and
1,061,208 volume points takes 45 minutes of CPU time).

The following error norms are computed from the local errors zi = (C − Ch)i:

, ∥ z ∥∞ = max | zi |. The corresponding relative errors,
E1, E2, and E∞ are computed by multiplying the norms by 1/∥C∥2.

Diffusion on a sphere—In this example, the algorithm is tested against an exact solution
on a sphere of radius 1. In the case of one variable and no source term, a general solution of
Eq (1), which in spherical coordinates {θ, ψ} takes the form

is , where  are the
associated Legendre polynomials. Several low-order terms are used to construct an
asymmetrical solution,

Fig. 4a shows the solution obtained on a 182×182×182 grid (L=2.2, h=0.012) at T=0.1. The
corresponding error distribution and the relative error plots are shown in Figs. 4b and 4c,
respectively.

2For Dt less than or on the order of h2, the error z is dominated by the smallness of time and is tτi=O(hq+1).
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Diffusion on a surface of revolution with varying curvature—It is generally true that
biological applications involve domains with irregular shapes. This test is designed to study
how well the algorithm performs on a surface with varying curvature. The idea is to use a
surface of revolution and axisymmetric initial conditions to recast the problem into an
equivalent one-dimensional diffusion-advection problem. The algorithm is then tested against
a highly accurate numerical solution of the equivalent 1D problem which is regarded as “exact”.

Let S be a closed surface obtained by revolving a given smooth curve around the z-axis in
R3. The surface is parametrized by two normal coordinates: s, the length of a geodesic line
along a meridian from one of the poles on the z-axis, and ψ, the angular coordinate along the
parallel. S is then defined by r = r(s) where r is the distance between the point on the surface
and the axis of symmetry (a radial coordinate), and the axisymmetric (i.e. independent of ψ)

diffusion on S is described by a one-dimensional PDE, .

If the curve used to obtain S is defined in polar coordinates ρ and θ, so that z = ρ(θ) cos θ and
r = ρ(θ)sin θ, then equation above becomes

where C ≡ C(θ,t)) and . The surface used in the test is produced by revolving
the curve ρ(θ) = 1.5 − 0.5 cos(8θ), and the size of the box is L=2. The “exact” solution is

obtained with the initial conditions  and shown in Fig. 5 for T=5 along
with the spatial error distribution and the corresponding convergence plots.

Diffusion on a cylinder (open surface)—Unlike the previous examples which involve
closed surfaces, this test deals with the case of an open surface intersecting the walls of the
box where boundary conditions need to be specified. In VCell, either a given concentration
(Dirichlet boundary conditions) or normal flux density (Neumann boundary conditions) are
accommodated. In this test, zero flux boundary conditions are imposed on a circular cylinder
of radius 1 placed in a box of size L=1.5. The cylinder is parametrized as x(θ, ξ) = ξ, y(θ, ξ) =
cos θ, z(θ, ξ) = sin θ for −L ≤ ξ ≤ L and −π ≤ θ < π. With this parametrization, the surface

diffusion equation takes the form, , and the exact solution used in
the test is given by C(ξ, θ, t)= e−(π2 + 1)t · sin πξ · sin θ. The results obtained for this test problem
are illustrated in Fig. 6.

Coupling of diffusion on a sphere with diffusion in the volume—Here we study
how the coupling of surface (CS) and volume (CV) variables affects accuracy of the algorithm.
The test is performed against an exact solution of a system of two coupled PDEs,

where ∂Ω is a sphere with radius 1, and the first (volume) equation is subject to the membrane
jump condition: −N▽CV|dΩ = CS −CV|∂Ω where N is the outward normal. The system describes
a molecular species that can diffuse in the volume, bind to, and dissociate from, the membrane,
and once bound to the surface can undergo surface diffusion.

The search for an analytical solution is facilitated by using spherical coordinates ρ, θ and ψ,
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where , and , and by seeking
the solution in the form CV = f(ρ)CS. The following exact solution has been used in the test:

with  and k=1.527338738. The convergence of the numerical solution
is illustrated in Fig 7.

Part II. Application to Cell Biology
2.1 Biological background and methods

In this section, we describe a cell-biological application which involves realistic 3D modeling
of membrane diffusion coupled to diffusion in the cytosol. The problem concerns a small
mobile protein Rac implicated in a number of processes including regulation of the actin
cytoskeleton and cell migration. This protein exists both in the cytosol and cell membrane
[23,24]. Binding to the membrane correlates with Rac activation and initiation of downstream
signaling, whereas cytosolic Rac is thought to be mainly inactive. The processes that mediate
Rac activation and binding to the membrane constitute an area of active research. In a recent
study [17], a method of estimating parameters of the in vivo Rac binding to the membrane was
proposed. In this method, measurements of fluorescence loss in photobleaching (FLIP) were
analyzed with a nonspatial (compartmental) model. Based on this model, a simple fitting
procedure was designed to estimate parameters of the Rac interaction with the membrane. Here,
realistic simulations are used for validating the procedure and assessing the accuracy of the
method.

In the experiments3 [17], cells (NIH3T3 fibroblasts) were transfected with a genetic material
encoding synthesis of Rac fused to a green fluorescent protein, GFP-Rac. The FLIP protocol
was then applied, which involves continuous bleaching of GFP-Rac by a laser beam
everywhere in the cell except for the small masked region at cell periphery. Simultaneously,
fluorescence loss was recorded in the bleached and unbleached regions using a confocal
microscope. A schematic of the experimental setup and a sample of typical experimental data
are shown in Fig. 8 (courtesy of Kostas Moissoglu and Martin Schwartz). Although
measurements in both regions were made in the same focal layer, the profiles of cell geometry
(Fig. 9) were such that the signal in the bleached region came mainly from the cytosol whereas
the fluorescence intensity recorded in the masked region was a mixture of signals from the
unbleached membrane and cytosol. There are two processes contributing to the signal decay
in the unbleached area: membrane diffusion of Rac and dissociation of Rac from the membrane
followed by diffusion in the cytosol to the bleached region.

To obtain an estimate of the dissociation rate from the FLIP data, a simple two-step fitting
procedure was designed based on the following observations: (i) in all experiments, the signal
decay in the bleached region was fitted well (within a few-percent error) to a two-exponential

3The idea and design of the experiments belong to K. Moissoglu and M. Schwartz; the experiments were performed by K. Moissoglu in
Schwartz' laboratory, U. Virginia.
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function; (ii) loss of fluorescence from the unbleached membrane caused by the membrane
diffusion alone is described well by a single exponential function [17]; (iii) the cytosolic
diffusion of Rac over the width of the unbleached region is assumed to be much faster than
interaction with the membrane and photobleaching. Based on the latter assumption, one can
apply a compartmental approximation and introduce the surface density of GFP-Rac in the
unbleached membrane domain, c1, and the concentration of fluorescent GFP-Rac in the
bleached cytosol, c2.

First, based on observation (i), the normalized fluorescence decay in the bleached region was
fitted to a two-exponential function:

(8)

by varying parameters a, b, α, β constrained by a, b, α, β > 0 and a + b = 1. At the second step,
the normalized fluorescence in the unbleached area was fitted to a three-exponential function.
This function is derived (see Supplementary Text in [17] for derivation details), by taking into
account that both the membrane and cytosol contribute to the signal in the unbleached region.
Denoting the unbleached membrane area and cytosol volume that contribute to the signal by
s and v, respectively, one obtains cunbleached, norm (t) = rc1,norm (t) + (1 − r)c2,norm (t) where
c1, norm (t) = c1 (t) / c1 (0) and the additional parameter r = s(s + vc2 (0) / c1(0))−1 ranges from
0 at s = 0 (all the signal comes from the cytosol) to 1 at v = 0 (the signal comes solely from the
membrane). In the compartmental approximation, c1 is described by the equation dc1 / dt = −
(koff + kdiff)c1 + konc2 with kon, koff standing for membrane association and dissociation rate
constants, respectively, and kdiff being a rate of decay caused by Rac membrane diffusion alone.
Using (8), this equation is readily solved to yield

where γ = koff + kdiff (it is also taken into account that initially dc1/dt = 0 and kdiff = 0 because
the system is at equilibrium before photobleaching).

By taking all of the above into account, one arrives at the function,

(9)

where  that
was used at the second step to fit the normalized fluorescence in the unbleached area by varying
parameters γ and r in the range γ >0 and 0<r<1; at this step, parameters a, b, α, β were kept
constant at values obtained from the initial fitting of the signal in the bleached region to Eq
(8). Parameter koff was then determined as koff = γ − kdiff with kdiff estimated in a separate
experiment [17]. Parameter r can be viewed as a qualitative indicator of the fraction of the
membrane-bound Rac r0 = S(S + Vc2(0) / c1(0))−1 (V and S are the cytosol volume and
membrane area, respectively), which is however quantitatively different from r. Note that if a
local surface-to-volume ratio of the unbleached region, σ = s / v, is known, one can back
calculate the ratio koff / kon from parameter r, koff / kon = σ(1−r) / r, and thus estimate kon.

2.2 3D model and computations
To validate the method outlined in section 2.1, a full spatial model is solved using the algorithm
described in Part I of this paper. The idea is to model realistically both the experimental
conditions and data collection. For given koff and r, 3D simulations are used to generate “data”.
One can then subject the “data” to the fitting procedure as described above to see how close
the recovered parameter estimates are to the values built in the model. Of particular interest is
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the extent to which the assumption of fast diffusion of Rac in the cytosol affects the accuracy
of parameter estimates.

The model is formulated in terms of a spatiotemporal distribution of the surface density of
GFP-Rac, c1(x, t), in the cell membrane dΩ and the GFP-Rac concentration, c2(x, t), in the
cytosol Ω. It is important to solve the problem on realistic cell geometry taken from
experimental images4 in order to mimic faithfully the data collection and to account for
inhomogeneity of bleaching in z-direction and for the effect of the excluded volume of the
nucleus. The simulated cell (Fig. 9) with the cytosol volume V =16,051 μm3 and the plasma
membrane surface area S = 8407 μm2 was placed in a 3D computational domain, (0, Lx)x(0,
Ly)x(0, Lz), with Lx = 83.49 μm, Ly = 79.65 μm, and Lz = 9.5 μm.

Governing equations of the model are:

(10)

and the boundary condition for the variable c2 is D2 (∂c2 / ∂N) |dΩ = Rbind where N is the
outward normal. No boundary conditions are needed for c1 because dΩ is closed. In Eqs (10),
D1 and D2 are the diffusion coefficients in the membrane and in the cytosol, respectively. The
first equation is defined only for x∈ dΩ and ΔS is the Laplace-Beltrami operator as defined in
Part I of the paper.

The rates of photobleaching are Ri, bleach = −V (x)ci (x, t), i = 1,2, where the spatially dependent
rate constant V (x) = Vmaxf(z)(1−Θ(x, y)) accounts for the inhomogeneity of photobleaching
performed with a confocal microscope, f(z) = h2 /(h2 + z2), and mimics shielding of the
unbleached region: Θ(x, y) equals 1 for the points under the mask and zero otherwise. In
simulations, Vmax = 1 s−1, h = 3 μm and the masked region is shown in Fig 9. The rate of
binding to the membrane, which enters the first equation in (10) and the boundary condition
for c2, is Rbind = −koffc1 (x, t) + konc2 (x, t) where x ∈ dΩ.

Before bleaching, the system is in equilibrium, and the initial distributions are uniform: c1(x,
0) ≡ c1 (0), c2 (x,0) ≡ c2 (0). It is convenient to introduce the ratio q of the number of membrane-
bound Rac molecules and the number of Rac molecules in the cytosol, q = r0 /(1−r0), then
c1(0) / c2(0) = qV/S and kon = koff S/qV. The algorithm used to solve the model (10) numerically
on the geometry of Fig. 9 utilizes uniform orthogonal meshing as described in part I of the
paper. Simulations have been run with a 0.05-s time step on 96,390 volume grid points and
10,830 surface grid points. Average numerical error of c1(x, t) and c2(x, t) is estimated to be
within 2-4%.

As in real experiments, we first estimate kdiff for a particular mask size (arc length 42 μm,
average width 4 μm) used in simulations. For this, the first equation in (10) has been solved
separately with Rbind = 0 and D1 = 0.25 μm2/s (in real experiments, a special molecular
construct that does not dissociate from the membrane and has diffusive properties similar to
those of Rac was used [17] ). The normalized fluorescence in the unbleached portion of the

membrane dω (Fig 9) is  where . Fitting to a one-
exponential function yields kdiff = 0.0352 s−1 (Fig 10).

The FLIP experimental protocol was then simulated by solving the full model (10) with
parameters koff and q, representative of those obtained in the experiments [17], and values of

4The images were provided by K. Moissoglu and M. Schwartz, U. Virginia.
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D2 around 20 μm2/s. This is an appropriate range for the diffusion coefficient of a cytosolic
protein of the GFP-Rac size (∼50 kDa), according to estimates and recent measurements
[26]. The normalized fluorescence acquired from the portion of the bleached region ω1 (Fig
9), proximal to the unbleached domain, is calculated as

 where . The normalized signal
recorded from the unbleached region (ω2 and dω) is modeled as

where . For the mask used in the simulations, s = 151 μm2 and v2 = 182
μm3. Finally, the fitting procedure is applied to I1(t) and I2(t) as described above to obtain
estimates of koff and r = (1+v2S / Vsq)−1 = (1+ 0.6313/ q)−1 . These estimates are then compared
with values built in the model.

2.3 Results
A series of numerical experiments have been performed for all permutations of the parameter
values: koff = 0.03, 0.05, 0.07 (s−1), q = 0.4, 1.0, 2.5 (the corresponding r's are 0.387, 0.612,
0.798), which are representative of ranges typically observed in the experiments, and the
following values of the diffusion coefficient in the cytosol: D2 = 10, 15, 20, 25, 30 (μm2/s).
Interestingly, as in the real experiments, the simulated normalized signal in the bleached region,
I1(t), was fitted well (within 1-2% error) to the two-exponential function in all cases, see Fig
11, which illustrates the simulation outcome and results of the fitting in the case of koff = 0.05,
q = 1.0 (r = 0.612) and D2 = 20 μm2/s.

The results of all simulations are summarized in Fig 12 (and in Table 1) where each pair of
recovered estimates of koff and r is represented by a point in a two-dimensional parameter
space. A symbol of the point indicates a particular value of the diffusion coefficient D2 for
which those estimates were obtained as described in the figure legend. The figure also includes
the points (shown as filled diamonds) that represent the “true” parameters values listed above,
so that a deviation from these points indicates how accurate the estimates are.

As expected, the recovered parameters tend to converge to the “true” values as diffusion in the
cytosol becomes faster, and even in the case of slow diffusion, the estimates of koff and r
qualitatively follow the real values for any given D2. Quantitatively, however, koff is
significantly underestimated in the case of high-affinity binding to the membrane (large q and
r). This is because tight binding effectively slows down diffusion in the cytosol (similar effects
are discussed in [27,28]). Not surprisingly, the estimate is skewed most of all when the high-
affinity binding is combined with large koff because this case is the exact opposite of the
situation where the cytosolic diffusion is fast compared to the rate of unbinding. Conversely,
the estimates of koff are more precise at low-affinity binding to the membrane (small q , r).
Note that the “direction”, in which the estimate deviates from the true value, rotates as q (r)
decreases so that the method tends to overestimate koff in the “corner” of small koff and q (r).
Unlike koff, the values of parameter r are always overestimated by the method with the least
relative error obtained in the large koff - large q (r) “corner” of the parameter space.

These observations are important for a correct interpretation of results obtained from the
analysis of the FLIP data with the method of [17]. As an example, consider two Rac mutants
that have the same unbinding rate around 0.07 s−1 but different binding affinities corresponding
to r values of 0.4 and 0.8. According to Fig 12, the fitting procedure can recover an estimate
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of koff at r =0.8 of up to 30% (at D2 = 10 μm2/s) smaller than that at r = 0.4. The results in Fig.
12 therefore give an idea of a systematic error caused by the assumption of fast diffusion. Using
this approach, one can create a table of systematic errors of the method, similar to Table 1, for
comparing any two mutants with various binding affinities.

Concluding Remarks
In this paper, we described and analyzed an algorithm for simulating diffusion on a curved
surface, coupled to diffusion in the embedding space. The method is implemented within the
Virtual Cell, a general-purpose tool for modeling cell-biological phenomena, thus adding a
capability of modeling membrane diffusion coupled to processes inside and outside the cell.
The method applies to arbitrary geometries obtained from experimental images. The image
processing step is not a part of the algorithm. This separation from fully automated steps, such
as geometry meshing and numerical solvers, is important in the context of an overall VCell
design. Currently, VCell operates on segmented images provided by the user, because this
standard data format is familiar to cell biologists and can be obtained by accessible image-
processing tools. Our method, therefore, was developed for pixilated surfaces obtained from
segmented images. It does not require a smooth watertight surface. Rather, the centers of the
staircase facets are used directly as computational nodes, allowing for the fully conservative
coupling of surface diffusion to processes in the embedding space. Because the nodes do not
lie on the true surface, the approximated normals include oscillating sampling errors
(“quantization” noise). While this noise leads to a diverging truncation error, the solution
converges with an order between 1 and 2, due in part to mass conservation built in the algorithm.

A relatively low order of convergence of the method can be improved in the future by adapting
our solver to the cases in which smoother surfaces are available as an input, either because a
smoothing procedure has been applied, or because the image is highly resolved. In those cases,
a more accurate approximation of normals could be achieved. Also, the computational nodes
might be located closer to the true surface than in the case of a staircase approximation. The
algorithm presented in this paper can still be applied by replacing the current method of
computing normals with a more accurate approximation. Arc lengths would be calculated with
higher accuracy, and the overall accuracy of the algorithm would improve. It is important to
bear in mind, though, that biological data are at best within 5-10% error, and the present method
produces results in this error range on a relatively coarse mesh. Thus, the benefit of gaining
accuracy should be weighed against development effort and computational cost.

In part II of the paper, the method is applied to simulate fluorescence loss in photobleaching
in the geometry of a real cell. This modeling study validates assumptions that underlie a simple
and fast analysis of FLIP data proposed in [17] for inferring parameters of the protein-
membrane interaction.
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Appendix . Computation of Normal Vectors
Because the normal vector N at a given node ri is a cross-product of two noncollinear vectors
in the tangential plane at this node, the problem reduces to approximating the tangential vectors.
In our algorithm, we approximate the tangents to the contours obtained by dissecting the surface
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at ri in the two Cartesian directions, as shown in Fig. 1 of the main text where the contours are
the “staircases” γ1 and γ2.

Consider one of them (Fig. A1). The set of nodes {Ri} on this contour is always a subset of
{ri}. The tangent vector τi at a given node Ri can be approximated using its local neighbors,
Ri+k and Ri−k, that are k steps apart from Ri,

(A1)

The optimal choice of k in (A1) minimizes the total error in τi that includes the truncation error
due to the finite difference approximation, and the sampling error. We use p = ∫ǀdxǀ + ǀdyǀ to
parametrize the original smooth contour R0(p). Let R0(pi) be the point on this contour closest
to Ri. With the notation: Δp= kh , ξ+ =Ri+k − R0 (pi + Δp) , and ξ− =Ri−k − R0 (pi − Δp) ,

(A2)

Because ǀ ξ+ ǀ, ǀξ− ǀ= O(h) and  , the total error

. The minimum of the error is then achieved when Δp = O
(h1/3 ) and k ≡ Δp / h = O(h−2/3 ) . More precisely, we choose k and Δp as k = (ρ / h)2/3 and
Δp = ρ2/3h1/3 , where ρ is the local radius of curvature on the original smooth curve. With the
optimal choice of k, the error converges to zero as O(h2/3).

In general, ρ and the optimal k vary from node to node. We estimate ρ(Ri ) ≡ ρi by the radius
of a circle circumscribed in the triangle [Ri−k, Ri, Ri+k] with k = h−2/3 ,

provided it does not exceed half the dimension of the contour,  , otherwise
ρi =d/2. The accuracy of the normal vector N is determined by the accuracy of τ and therefore
has the same order, O(h2/3).

In the case of open surfaces, the tangents at the boundary points are approximated with accuracy
 because the scheme is not centered. This yields an optimal k =

(ρ / h)1/2. Since in our tests, both k = (ρ / h)2/3 and k = (ρ / h)1/2 produced results of comparable
accuracy for closed surfaces, the algorithm implemented in the VCell uses k = (ρ / h)1/2 for all
nodes. All the test results in section 1.5 were obtained with this algorithm.
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Figure 1.
A “staircase” approximation Sh of a sphere obtained by orthogonal meshing of the volume.
Similar pixilated surfaces (step-wise curves in 2D) arise from microscope images. The centers
of the staircase facets comprise a set of computational nodes on the surface. γ1 and γ2 are
stepwise contours obtained by dissecting Sh in two Cartesian directions.

Novak et al. Page 17

J Comput Phys. Author manuscript; available in PMC 2008 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
A control area Mi with the boundary ∂Mi. Solid lines delineate a triangle Δik referred to Eq (5).
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Figure 3.
Divergence of the truncation error for the sphere test problem (section 1.5) in L1 (circles),
L2 (triangles), and L∞ (squares) norms. The local truncation error, calculated as τ =
−DLhCexact(t+Δt) + (Cexact(t+Δt)−Cexact(t))/Δt with Lh defined in (4), is dominated, for
sufficiently small Δt, by the truncation error due to spatial discretization, D(ΔS−Lh) Cexact. The
results are obtained with Δt =10−4, small enough to ignore the effect of the time discretization
error (see section 1.5): ∥τ∥1=O(h−0.2), ∥τ∥2=O(h−0.3), and ∥τ∥∞==O(h−0.8).
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Figure 4.
Diffusion on a sphere: (a) numerical solution of the diffusion equation; (b) distribution of the
absolute error of this solution for T=0.1 obtained with h =0.012 and Δt=10−4; (c) relative error
as a function of h in L1, L2, and L∞ norms, respectively.
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Figure 5.
Diffusion on a surface of revolution: (a) numerical solution of the diffusion equation obtained
at T=5 with h = 0.025 and Δt=10−4; (b) corresponding distribution of the absolute error; (c)
relative error as a function of h in L1, L2, and L∞ norms, respectively.
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Figure 6.
Diffusion on a cylindrical surface: (a) numerical solution of the diffusion equation obtained at
T=0.1 with h=0.019 and Δt=10−4; (b) corresponding distribution of the absolute error; (c)
relative error as a function of h in L1, L2, and L∞ norms, respectively.
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Figure 7.
Diffusion on a sphere coupled to diffusion in the volume: (a) numerical solution for the surface
variable obtained at T=0.1 with h=0.014 and Δt=10−4; (b) distribution of the absolute error for
this solution; (c) corresponding relative error as a function of h in L1, L2, and L∞ norms,
respectively.

Novak et al. Page 23

J Comput Phys. Author manuscript; available in PMC 2008 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
Experimental setup and typical data (courtesy of K. Moissoglu and M. Schwartz): (a) a
schematic of the experimental setup; (b) a typical sample of the experimental data.
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Figure 9.
Cell geometry and regions of interest: (a) cell geometry built from the stack of segmented
confocal images of X-Y slices (smoothing is applied for visualization purposes only using the
method of [25]); the nucleus is treated as excluded volume; the unbleached portion of the
membrane dω (mask) is shown in black; (b) the cytosolic volume ω1 in the bleached area from
which fluorescence is “measured” is shown in white; the dark gray region is the unbleached
cytosolic volume ω2 under the mask, which contributes to the signal in the unbleached area.
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Figure 10.
Signal decay in the unbleached membrane in the case of a protein that does not dissociate from
the membrane: (a) a series of snapshots from a simulation with the mask arc length of 42 μm
and the average width 4 μm (Vmax = 1 s−1, h = 3 μm, D1 = 0.25 μm2/s); (b) normalized
fluorescence recorded in the masked region of the membrane dω is fitted to a one exponential
function Aexp(−kdiff t) with kdiff = 0.0352 s−1.
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Figure 11.
Simulated “data” and an outcome of fitting for a representative parameter set: (a) a series of
snapshots of fluorescence distribution in the membrane (top panel) and in the confocal z-slice
(0<z<h) inside the cell (bottom panel) from the FLIP simulation with koff = 0.05 s−1, q = 1.0
(r = 0.612) and D2 = 20 μm2/s; (b) normalized fluorescence I1(t) is recorded in the bleached
region ω1 and fitted to a two-exponential function, Eq (8), with α = 0.5786 s−1, β =0.0855
s−1, a = 0.94 and b = 0.06; (c) normalized signals from the unbleached membrane dω and the
unbleached cytosol ω2; the overall normalized fluorescence I2(t) is fitted to a three-exponential
function, Eq (9), to recover the estimates koff ≈ 0.0474 s−1 and q ≈ 1.18 (r ≈ 0.652).
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Figure 12.
Summary of results mapped onto the (koff, r) parameter space.
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Figure A1.
Contour γ1 from Fig. 2 of the main text.
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