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Abstract

The vortex method is applied to the calculation of a decaying homogeneous isotropic

turbulence of Reλ = 25, 50 and the results are compared with a spectral method

calculation. Vortex method calculations were accelerated by the use of a fast mul-

tipole method for periodic boundary conditions. The core spreading method and

particle strength exchange were selected as the viscous diffusion scheme. The effect

of spatial resolution was examined along with Reynolds number dependence and

the effect of spatial adaption of elements.
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1 Introduction

The simulation of turbulence requires the accurate prediction of the produc-

tion, transport, and dissipation of kinetic energy. In vortex methods, this is

made possible by properly calculating the stretching term and diffusion term

of the vorticity equation. Although vortex methods have made remarkable ad-

vancements in the past decade, they still face numerous challenges, especially

involving viscous diffusion schemes. The mesh-free nature of the pure La-

grangian vortex methods itself is a large advantage, but it is also the primary

source of this viscous diffusion problem. To solve these problems, numerous

viscous diffusion schemes have been proposed during the past quarter century,

along with spatial adaption schemes to handle the distortion of particles. It

is important to first validate these schemes in an environment, isolated from

mean shear and near wall effects, but still complex enough to represent general

turbulent behavior, i.e. the cascade and decay of kinetic energy. The homo-

geneous isotropic turbulence is an ideal test case in this sense, and has been

used to validate grid based direct numerical simulations (DNS) in the past.

We believe the same can be done for vortex methods, as the first step toward

developing a mesh-free but rigorous turbulence simulation.

Only a small number of vortex methods have been tested for the homoge-

neous isotropic turbulence, despite its significance. Cottet et al. [1] used the

vortex-in-cell for the viscous diffusion scheme and compared with a spectral

method for N = 1283 grid points. The evolution of the energy spectrum,

kinetic energy, dissipation, enstrophy and skewness were in excellent agree-

ment. However, their method requires the use of a grid for the stretching and

velocity calculations, leaving only the convection to be calculated using a La-
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grangian discretization. Totsuka & Obi [2] compared the spectral method with

the vortex method using the core spreading method and a Laplacian model

used in the moving particle semi-implicit (MPS) [3], which is similar to the

redistribution method in vortex methods. All calculations are preformed in

2-D and no spatial refinement is used in the core spreading method. They use

a particle insertion and merging technique for the MPS Laplacian method and

the energy spectrum agrees with the spectral method for this case. Since the

stretching term does not exist in the 2-D vorticity equation, their calculation

can be thought of as an assessment of the diffusion term only. It is necessary

to extend this to a 3-D flow and evaluate the balance between stretching and

dissipation, in order to validate both the cascade and dissipation of kinetic

energy in pure Lagrangian vortex methods.

The absence of vortex method applications to homogeneous isotropic turbu-

lence can be explained by its comparative inefficiency for this particular flow.

The calculation cost becomes high compared to spectral methods because vor-

tex methods do not benefit from periodic boundary conditions, whereas the

spectral methods enormously do. Even with the use of fast algorithms, the

speed of a N-body calculation is several orders lower than a grid based fast

Poisson solver as noted by Cottet et al. [1]. Though, the vortex method would

become advantageous for external flows, where the vorticity is confined to a

finite region near the wall.

In the present study, an acceleration technique for the Biot-Savart calculation

in a periodic domain is developed and validated. With the help of this ac-

celeration technique, the 3-D isotropic turbulence is calculated using a pure

Lagrangian vortex method. A spectral method calculation using the same

number of elements N , Reynolds number Reλ and initial condition, is used as
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reference. The particle strength exchange (PSE) and core spreading method

(CSM) are selected as viscous diffusion schemes for the vortex method to con-

sider both possibilities. This study first concentrates on the time evolution

of the kinetic energy spectrum, where the reproducibility of the energy cas-

cade is examined. Our focus then moves on to the decay of kinetic energy

and enstrophy. The velocity derivative skewness and flatness are also exam-

ined to ascertain the soundness of higher order statistics. Subsequently, the

dependence on spatial resolution and Reynolds number is studied, in order

to generalize our observations. Following that, we observe the spectral energy

transfer from a different perspective by plotting all terms of the energy spec-

trum equation. Finally, the effect of spatial adaption is investigated for both

viscous diffusion schemes.

2 Numerical Method

2.1 Viscous Diffusion

The extension of vortex methods to viscous flows has not been a straightfor-

ward task, and the diversity of methods has become quite large. The random

vortex method (RVM) by Chorin [4] uses a stochastic interpretation of the

diffusion equation. It has served an important role in the early development of

viscous diffusion schemes, but its slow convergence rate prompted the develop-

ment of alternative methods. The core spreading method (CSM) by Kuwahara

& Takami [5] or Leonard [6] uses a deterministic approach, which changes the

standard deviation of the Gaussian distribution of vorticity to match the fun-

damental solution of the diffusion equation. A straightforward implementation
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of this method lacks convergence due to the fact that the ever-expanding Gaus-

sian distribution moves with the velocity at its center. Local spatial refinement

[7] can circumvent this problem, though this will introduce a large amount of

error without careful consideration [8][9].

The particle strength exchange (PSE) by Degond & Mas-Gallic [10] redis-

tributes the strength among vortex elements by solving the integral equation

of the Laplacian operator. The location of elements are used as quadrature

points, thus requires them to be nearly uniform for an accurate calculation.

In highly strained fields this is impossible without frequent regridding, which

will sacrifice the grid-free nature and also accumulate numerical diffusion error

without careful selection of the interpolation scheme [11]. The vortex redis-

tribution method (VRM) by Shankar & van Dommelen [12] also redistributes

the strength of vortex elements but by solving an underdetermined system of

equations to equate the truncated Taylor series of the new distribution with

that of the exactly diffused vorticity. Although, restrictions of particle nonuni-

formity are not as severe as the PSE, it is obvious that a sufficient number

must exist in the neighborhood. The insertion and merging of particles is still

an open area of research, as is the case with splitting and merging particles in

CSMs.

In most cases a vortex element has three properties, vortex strength, core ra-

dius, and velocity. The CSM changes the core radius, PSE and VRM change

the vortex strength to account for diffusion. The diffusion velocity method by

Ogami & Akamatsu [13] modifies the velocity instead, where the diffusion ve-

locity becomes the product of −ν/ω and the gradient of vorticity. For regions

of zero vorticity the −ν/ω becomes singular, so an algorithm which does not

increase the vorticity magnitude outside of the computational vorticity sup-
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port [14] is essential to this scheme. There exist many other ways to calculate

the viscous diffusion of vorticity using a semi-Lagrangian discretization, such

as the vortex in cell (VIC), free Lagrangian, triangulated, and moving least

squares (MLS). The present study focuses on pure Lagrangian schemes (with

remeshing in some cases), thus semi-Lagrangian methods are out of scope.

In particular, we will focus on two of these viscous diffusion schemes -the PSE

and CSM-. The PSE is favorable in the sense that, it permits the use of higher

order kernels, does not require viscous splitting, and is a straightforward so-

lution to the governing integral equation. It has also been successfully imple-

mented in many applications. On the other hand, the CSM has the potential

of becoming a pure Lagrangian scheme, despite its reputation it once suffered

from. Unlike, other viscous diffusion methods the CSM does not require the

use of any kind of mesh whatsoever, even for spatial adaption. Furthermore,

the spatial adaption can be performed in a less ambiguous manner compared

to the VRM.

The PSE and CSM contrast with each other in many aspects, starting from

the physical property it changes, to the way it handles spatial adaptation of

elements. It is worth investigating how these differences affect the performance

of the vortex method for the homogeneous isotropic turbulence. The details

of the vortex blob method for the two schemes are discussed below.

Both the CSM and PSE are ways to discretize the viscous diffusion equation

Dωi

Dt
= ν∇2ωi, (1)
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where the Green’s function solution is

ωi =
γj

(4πνt)d/2
exp

(
− r2

ij

4νt

)
. (2)

ω is the vorticity, ν is the kinematic viscosity, γ is the vortex strength,

rij = |xi − xj| is the distance vector, x is the position vector, and d is the

dimensionality of the problem. The subscript i stands for the target elements,

while j stands for the source elements. The vortex blob method uses a smooth-

ing function ζσ to discretize the diffusion equation. In this case the vorticity

at an arbitrary point can be expressed as

ωi =
∑

j

γjζσ (rij) . (3)

A common choice for the smoothing function is the Gaussian distribution

ζσ =
1

(2πσ2)d/2
exp

(
− r2

ij

2σ2

)
. (4)

By substituting (4) into (3), it can be seen that changing the variance of the

Gaussian distribution according to

σ2 = 2νt (5)

will result in the heat kernel (2). σ is often referred to as the core radius of the

vortex blob, and represents the physical length scale of the vortex elements.

The PSE solves an integral equation for the Laplacian operator

∇2ωi =
2

σ2

∑

j

ησ (rij) (ωj − ωi) (6)

where the PSE kernel is

ησ =
1

(2πσ2)d/2
exp

(
− r2

ij

2σ2

)
. (7)

The Gaussian smoothing function (4) and Gaussian PSE kernel (7) are iden-

tical. So by assuming σ2 = 2νt the PSE kernel will also reduce to the heat
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kernel. However, unlike the CSM we do not change σ, but substitute (6) and

(7) into (1) to obtain the rate of change of the vortex strength

Dγi

Dt
=

∑

j

(
Vjγj − Viγi

) 2ν

σ2

1

(2πσ2)d/2
exp

(
− r2

ij

2σ2

)
, (8)

where V is the volume of the vortex element.

In a numerical sense, calculating the exponential function for a N-body calcu-

lation is time consuming, and the Gaussian function is not the only choice for

the smoothing function. They only need to satisfy certain moment properties

[15]. The high order algebraic function by Winckelmans [16] is second order,

and has a simple algebraic form. We will use this for the smoothing function

and PSE kernel, which have the form

ζσ =
15

8π

σ4

(r2
ij + σ2)7/2

, (9)

ησ =
105

8π

σ6

(r2
ij + σ2)9/2

. (10)

2.2 Fast Multipole Method

The Biot-Savart equation

ui =
N∑

j=1

γjgσ ×∇G, (11)

and the stretching term

Dγi

Dt
= γi · ∇ui

= γi · ∇
N∑

j=1

γjgσ ×∇G (12)

=
N∑

j=1

γjgσ ×∇∇G · γi,
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are calculated using the fast multipole method(FMM) in order to reduce the

complexity from O(N2) to O(N). G is the Green’s function of the Laplace

equation. gσ is the cutoff function, which is defined by gσ =
∫ ρ
0 ζsd−1ds, where

ζ
( |x|

σ

)
= 2d−1πσdζσ(x), and d is the dimension. For our case

G =
1

4πrij

, (13)

gσ =
r2
ij + 5/2σ2

(r2
ij + σ2)5/2

r3
ij. (14)

For the FMM equations, we will adopt the conventions used by Cheng et al.

[17]. By doing so, the Green’s function can be approximated by the multipole

expansion

N∑

j=1

G ≈ 1

4π

p∑

n=0

n∑

m=−n

r−n−1
i Y m

n (θi, φi)︸ ︷︷ ︸
Si





N∑

j=1

ρn
j Y −m

n (αj, βj)︸ ︷︷ ︸
Mj





, (15)

and also the local expansion

N∑

j=1

G ≈ 1

4π

p∑

n=0

n∑

m=−n

rn
i Y m

n (θi, φi)︸ ︷︷ ︸
Ri





N∑

j=1

ρ−n−1
j Y −m

n (αj, βj)︸ ︷︷ ︸
Lj





. (16)

We define the operators S, M , R, L to simplify the equations in the following

steps. Using these operators, (11) can be written as

ui≈ 1

4π

p∑

n=0

n∑

m=−n





N∑

j=1

γjMj



×∇Si, (17)

ui≈ 1

4π

p∑

n=0

n∑

m=−n





N∑

j=1

γjLj



×∇Ri. (18)

Similarly, (12) can be written as
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Fig. 1. Flow of periodic FMM calculation

Dγi

Dt
≈ 1

4π

p∑

n=0

n∑

m=−n





N∑

j=1

γj∇Mj



× (γi · ∇Si) , (19)

Dγi

Dt
≈ 1

4π

p∑

n=0

n∑

m=−n





N∑

j=1

γj∇Lj



× (γi · ∇Ri) . (20)

The cutoff function does not appear in these equations since they are used to

calculate the effect of the far field, for which it would have negligible effect.

The entire calculation process requires an efficient method for indexing and

bookkeeping of the particles and boxes in each level. For the indexing and

bookkeeping we adopt the method by Gumerov & Duraiswami [18].

The calculation of homogeneous isotropic turbulence assumes periodicity in

all directions. In the present study the FMM is modified to include the effect

of periodic images. The flow of calculation is basically the same as the FMM,

except for the few steps being added to account for the periodic images. A

schematic of the flow of calculation is shown in Fig. 1. The heavy black line

represents the original domain without periodic images.
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Fig. 2. (a) Cputime of Biot-Savart calculation. (b) L2 norm error of Biot-Savart

calculation.

Steps 1 and 2 are identical to that of the original FMM. The usual FMM

does not calculate step 3 because there will be no non-neighboring boxes to

calculate the multipole to local translation. Step 4 groups the boxes outside

the original domain. Step 5 represents the multipole to local translation at

the coarsest level. Step 6 is the local to local translation, and step 7 is the

multipole to local translation for the remaining boxes. Step 8 is the local

to local translation, which brings us down to the coarsest level in a usual

FMM. Steps 9 and 11 are different from the multipole to local translation of

a standard FMM, in the sense that it requires the calculation of remaining

boxes outside of the original domain. Steps 10, 12 and 13 are identical to the

corresponding sequences in a standard FMM.

The most time consuming parts of the FMM are the multipole to local trans-

lation in step 11, and the direct calculation in 13 , and this does not change

for the periodic FMM. In other words, the additional cost of considering the

periodic images is negligible compared to these steps. In a similar manner

to the original FMM, steps 2, 10, and 11 are calculated more than once for

calculations using more box divisions. Additionally, steps 4, 6, and 7 can be

11



calculated more than once to consider more periodic image boxes. Step 5 in

Fig. 1 considers Nbox = 1.5 periodic image boxes in one direction. By calcu-

lating Step 5 for a box twice as large, we can consider the effect of Nbox = 3.5

images and so on.

The Biot-Savart calculation is performed to evaluate the cpu-time for different

element numbers. The cpu-time of the Biot-Savart calculation for one time step

is plotted against the number of elements in Fig. 2. The L2 norm error between

the direct calculation and FMM calculations are also shown. The number of

elements is changed from 103− 105. With the use of the FMM the complexity

is reduced from O(N2) to O(N), while the L2 norm remains below 10−4.

2.3 Spectral Method

The spectral Galerkin method with primitive variable formulation is used in

the present study. When the pressure term is eliminated by considering the

pressure Poisson equation in wave space, we have

ûn+1
k = ûn

k −∆tνk2ûn
k −∆t ̂(un · ∇un)k + ∆t

k

k2

[
k · ̂(un · ∇un)k

]
. (21)

This is the actual equation which we solve, where ûk is the velocity in wave

number space, k is the wave number vector. A pseudo-spectral method was

used to compute the convolution sums, and the aliasing error was removed

by the 3/2-rule. The time integration was performed using the fourth order

Runge-Kutta method for all terms. No forcing was applied to the calculation,

since it would be difficult to do so in vortex methods.
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3 Homogeneous Isotropic Turbulence

The objective of this calculation is to verify the accuracy of the stretching and

diffusion in vortex blob methods by directly comparing them with a spectral

method. We do not intend to make any new findings about the flow field

itself, but rather validate the performance of vortex methods by making use

of the unique properties of this flow. The homogeneous isotropic turbulence

does not involve global shear, strain, rotation, nor near wall effects, but it does

involve a typical energy cascade from large to small scales. Therefore, we can

isolate the viscous diffusion error from Lagrangian distortion and near wall

effects, and at the same time validate the balance between the stretching and

diffusion. Just because the convergence of the Euler equation and diffusion

equation have separately been proved, does not mean we can take for granted

that the energy cascade will be calculated correctly, because there will always

be numerical errors. We would like to shed some light on how many blobs are

actually necessary to resolve a calculation of a certain Reynolds number using

vortex methods.

3.1 Initial Condition

The initial condition was generated in Fourier space as a solenoidal isotropic

velocity field with random phases and a prescribed energy spectrum

E ∼ k4 exp

(
−2k2

k2
p

)
, (22)

and Fourier transformed to physical space [21]. kp = 4 is the peak wave num-

ber. The grid points are equally spaced and the calculation domain is [0, 2π]3.

The resulting initial velocity field has a Gaussian distribution and zero mean.
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The spectral method calculation uses this initial condition directly.

The initial condition of the vortex method is generated as follows. First, the

vortex elements are placed at the center of a box having grid points at all

corners. The vorticity at the center is calculated from the velocity at the

corners using a forth order central difference method. The strength of the

vortex elements were calculated from this vorticity by solving a system of

equations for (3) by using a method described in section 3.7. The core radius

of the vortex elements are set to 2π/N and the overlap ratio is 1.

The vortex method calculation is performed without the use of a grid. The

velocity and stretching term calculation are performed by the periodic FMM.

The diffusion is calculated by either updating the cutoff radius or vortex

strength for the CSM and PSE, respectively. The PSE calculation is embed-

ded in the direct calculation part of the periodic FMM stretching routine.

The position, vortex strength and cutoff radius are updated by a second order

Adams-Bashforth method. Vortex elements are convected according to the pe-

riodic boundary condition, so if an element moves out from one side it comes

in from the opposite side. For the energy spectrum calculation of the vortex

method, the velocity on the grid is calculated using the Biot-Savart law, and

then transformed to wave number space.

The accuracy of this initialization procedure is confirmed by comparing the

energy spectrum before and after the initialization. If this error turns out to be

negligible compared to the error in the vortex method itself, we can say that

our measures for initialization and energy spectrum calculation are adequate

for the present investigation.

In Fig. 3 the kinetic energy spectrum before and after the initialization pro-
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Fig. 3. Energy Spectrum Before and After Initialization

cedure are shown for different spatial resolution. The total error involved in

steps 2 and 4 are small enough to produce a strict correspondence with the pre-

scribed energy spectrum for a range of E(k) that spans 10 digits. It is shown

in the following section that the errors associated with the vortex method

calculation itself are much larger than this.

3.2 Periodic Boundary Condition

The homogeneous isotropic turbulence is calculated using periodic boundary

conditions in all directions, for both the spectral method and vortex method.

The spectral method solves the Navier-Stokes equation in Fourier space (21),

and considers the periodic boundary conditions exactly. On the other hand, the

periodic FMM shown in section 2.2, is an approximation, where the accuracy

can be controlled by adjusting the number of periodic image boxes Nbox and

the order of multipole expansion p. We must first validate the periodic FMM

and show that the errors are indeed permissible.

We will first examine how the accuracy of the periodic boundary approxima-
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Fig. 4. Schematic of the Periodic Image Boxes

Fig. 5. Periodic Approximation Error

tion is affected by the number of particles and the number of periodic image

boxes (without the FMM). This is done by placing Np particles with random

coordinates and random vortex strength within a [−π, π]3 domain and copying

them to the periodic image boxes, as shown in Fig. 4. The calculation is for

velocity. The calculation with maximum Nbox is used as reference to examine

how the difference increases as Nbox decreases. Results are shown in Fig. 5.

The relative velocity difference is calculated by

√√√√ 1

Np

Np∑

i

(
ui − uref

i

)2
, (23)

where uref
i is the velocity for maximum Nbox. The Nbox was increased as much

as the memory permits, so the maximum value differs for different Np. Also,

Np is extremely small compared to the actual isotropic turbulence calcula-

tion, though the difference in Np seems to have little effect on the results.
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Fig. 6. Periodic FMM Error

Furthermore, the fact that distant periodic images have less impact on the

total velocity does not change, even if the image boxes are distributed on a

single dimension as shown in Fig. 4. Note that the calculation itself is com-

pletely 3-D, but the periodic images are distributed in only one dimension.

We tested for this 1-D case first, then extended to a 3-D case, where the pe-

riodic images surround the original domain completely in all 3 dimensions.

The total number of boxes is 2Nbox + 1 for the 1-D case, as to where the 3-D

case has (2Nbox + 1)3 boxes. Due to memory limitations, the maximum Nbox

becomes quite small for the 3-D case, even for calculations with such small Np.

Nevertheless, the relative velocity difference decays at a rate proportional to

N2
box for all cases, and for some cases the round-off error becomes visible. The

velocity difference for the 3-D case is slightly smaller than that of the 1-D.

The FMM requires the shifting of multipole moments to larger boxes, in order

to consider a larger portion of periodic images. However, shifting multipole

moments to larger boxes accumulates the translation error. These FMM cal-

culations are compared with the direct calculation using the same number of

image boxes in order to assess the FMM error. The results are plotted in Fig.
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6 along with the replot of Np = 4(3-D) in Fig. 4. Note that the FMM calcula-

tion uses the direct calculation with the corresponding Nbox as the reference,

which have an error of their own as shown in Fig. 6 with circles. For instance,

when Nbox is small, the difference between the direct calculation and FMM is

small, though the direct calculation for small Nbox is not a credible reference.

Contrary, when Nbox is large the direct calculation is quite accurate, but the

FMM starts to diverge from the direct calculation, due to the error caused

by the excessive shifting of multipole moments. The actual error of the peri-

odic FMM is the sum of the two errors shown in Fig. 6. Thus, calculating the

periodic FMM up to Nbox = 15.5 seems like the best choice.

3.3 Energy Spectra and Statistics

The transfer and dissipation of kinetic energy determines the shape of the

energy spectrum. Therefore, if the vortex method is unable to calculate either

of these correctly, it would immediately result in a discrepancy in the energy

spectrum. We will first present the results of a calculation having an initial

Reλ of 25 and number of elements N = 643. The time increment is ∆t =

0.005 for all calculations including the spectral method. This corresponds to

a quarter of the Kolmogorov time scale, and the Courant number u∆t/∆x

never exceeds 0.5. No spatial refinement is performed for these calculations.

The effect of spatial refinement will be considered for the PSE and CSM

separately in sections 3.6 and 3.7, respectively.

The kinetic energy, enstrophy and velocity derivative moments are calculated

from

18



10
0

10
1

10
2

10
−4

10
−2

10
0

10
2

k

E
(k
)

initial

SGM

PSE

CSM

10
0

10
1

10
2

k

initial

SGM

PSE

CSM

Fig. 7. Kinetic Energy Spectra for Reλ = 25, N = 643. (a) Spectra at t/T = 2. (b)

Spectra at t/T = 4.

K =
1

2
u2

i , (24)

ζ = ω2
i , (25)

Fn =
(∂u1/∂x1)n

(∂u1/∂x1)2
1
2
n
. (26)

Also, the integral scale, Taylor’s micro scale, micro scale Reynolds number,

and eddy turnover time have the following relation.

L =
π

2u′2

∫
k−1E(k)dk (27)

λ =
√

15νu′2/ε (28)

Reλ = u′λ/ν (29)

T = L/u′. (30)

where u′ = 2
3
K. The kinetic energy spectra for different times are shown in

Fig. 7. The time t/T is in eddy turnover units, where T = 0.25. ’SGM’, ’PSE’,

and ’CSM’ stand for the spectral Galerkin method, particle strength exchange,

and core spreading method, respectively. Note that the scaling of the vertical

axis is different from Fig. 3, indicating that the initialization error is negligible

for these calculations.
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Fig. 8. Statistical Properties for Reλ = 25, N = 643. (a) Kinetic energy. (b) Enstro-

phy. (c) Skewness. (d) Flatness.

All energy spectra start out from the prescribed initial spectrum, and rapidly

cascade the energy down to the higher wave numbers at the earlier stages of

the calculation. Once the higher wave numbers contain a certain amount of

energy, the entire spectrum gradually decays. At t/T = 2 the three methods

behave quite similarly. However, at t/T = 4 the CSM spectrum is about two

orders of magnitude larger than the other two. Also, the PSE shows a jump

at the tail of the spectrum. For these calculations the Kolmogorov scale is

η ≈ 0.05 and the wave number corresponding to this scale is k ≈ 20. It can be

seen that the PSE is very close to matching the SGM up to this wave number.
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The energy spectrum alone is insufficient for the justification of our methods.

The errors accumulating in the vortex method calculation become clear in the

following time evolution plots. In Fig. 8 the time evolution of kinetic energy,

enstrophy, velocity derivative skewness and flatness are shown. Their initial

values are the same, but gradually diverge. The kinetic energy and enstrophy

are known to show self-similar behavior at the final period of isotropic decay.

This should result in a linear gradient at the end of these log-log plots. For

the kinetic energy, only the SGM shows such behavior. The PSE fails to decay

the kinetic energy properly at later time steps. The CSM decays only slightly,

until the calculation starts to diverge at t/T ≈ 3. For the enstrophy, the PSE

shows self-similar behavior, whereas the CSM does not even decrease. The

skewness and flatness of the velocity derivative behave similarly for the PSE

and SGM. The CSM is able to reproduce the initial drop in the skewness

but behaves strangely just prior to the blow up. Judging from the results

of forced simulations for similar Reλ by Jimenez et al. [22] and also Pumir

[23] the skewness and flatness should reach the values somewhere in between

0.45 − 0.49 and 3.5 − 4.0, respectively. In this sense, the PSE estimates the

velocity derivative moments quite well, while the flatness of the CSM prior to

the blow up seems to be considerably small compared to the above mentioned

criteria.

3.4 Spatial Resolution and Reynolds Number Dependence

So far, our knowledge of the performance of vortex methods is limited to

a certain Reynolds number, and certain spatial resolution. One would natu-

rally think that increasing the spatial resolution while retaining the Reynolds
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Fig. 9. Kinetic Energy Spectra at t/T = 2. (a) Reλ = 25, N = 64. (b) Reλ = 25,

N = 128. (c) Reλ = 50, N = 64. (d) Reλ = 50, N = 128.

number would reduce the discretization errors in the calculation. Adversely,

there should exist a maximum Reynolds number for which the vortex method

can accurately calculate for a given number of elements. These two issues are

inextricably linked, and should be investigated simultaneously.

The Reynolds number of the flow is doubled by quadrupling the strength of

the prescribed energy spectrum in (22). Hence, the initial velocity fluctuation

is doubled and the viscosity is unchanged. Also, the time increment is halved

to account for the increase in the velocity magnitude in high Reλ cases.
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The kinetic energy spectra for 4 different cases are shown in Fig. 9. We have

mentioned earlier that the Kolmogorov wave length is k ≈ 20 for Reλ = 25.

For Reλ = 50 it is k ≈ 30. The spectrum of the PSE diverges from the SGM at

a wave number higher than the Kolmogorov wave number for all calculation

conditions except Reλ = 50, N = 64. Furthermore, increasing the spatial

resolution shifts the bifurcation point of the PSE to a higher wave number.

On the other hand, it is difficult to tell from these plots whether or not the

CSM results are improved for higher spatial resolution calculations.

The decay of kinetic energy for the 4 different cases are shown in Fig. 10.

The CSM calculation diverges at t/T ≈ 3 for all 4 conditions. For the most

poorly resolved case (c), the PSE also diverges at around the same time.

At this Reλ and N even the SGM should be slightly under-resolved but it

does not diverge. These results indicate that the vortex methods require more

computation elements compared to spectral methods, in order to calculate

high Reynolds number flows stably. It is also clear that the results of the PSE

do not improve when the spatial resolution is increased.

By looking at the four cases of Reλ = 25, 50 and N = 643, 1283 in a compre-

hensive manner, the following observations can be made. Firstly, the CSM is

indeed valid for a short time t/T = 2 and predicts the energy spectrum, kinetic

energy and enstrophy decay, and also the initial drop of the velocity deriva-

tive skewness reasonably well during this finite time length. The length of this

time is independent of Reλ and N , since all calculations diverge at t/T = 3.

Therefore, it is suspected that the divergence occurs when the overlap ratio

σ/∆x exceeds a certain limit, since its value is kept equal for all calculation

conditions. Hence, the overlap ratio is bounded by a minimum and maximum

value, and requires further investigation to ascertain the presence of an opti-
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Fig. 10. Kinetic Energy Decay. (a) Reλ = 25, N = 64. (b) Reλ = 25, N = 128. (c)
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mum range. This optimum range can then be used to obtain the frequency of

spatial adaption in CSMs. This issue will be considered further in section 3.7

along with the effect of spatial adaption.

Another comprehensive observation is that the PSE agrees well with the SGM

for large time steps and for most configurations except the most poorly re-

solved case (Reλ = 50, N = 643). Furthermore, the PSE yields higher accu-

racy when the spatial resolution is increased, and for these cases it matches

the energy spectrum of the SGM up to the Kolmogorov wave number for a

significantly long time. This fact alone, demonstrates the high accuracy of
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the PSE vortex method. Though, a few problems remain unsolved. We have

shown that the insufficient decay rate of the kinetic energy in PSE calculations

persists for all calculation conditions. Based on the observations of the 2-D

isotropic turbulence calculation [2], where the decay rate of the kinetic energy

matched that of the 2-D spectral method, we suspect the problem is for the

vorticity stretching term calculation, which is unique to a 3-D calculation. In

the next section we will evaluate the spectral energy transfer, in order to look

at the stretching term error from a different perspective.

3.5 Spectral Energy Transfer

Our main concern is how accurately the vortex method can predict the en-

ergy cascade. Plotting the energy spectra is one way to observe this. A more

straightforward procedure to evaluate the spectral energy transfer would be

to plot each term in the energy spectrum equation. In an isotropic turbulence

the pressure terms drop out to yield,

∂E

∂t
(k, t) = T (k, t)− 2νk2E(k, t). (31)

The first term on the right hand side is the transfer term, which expresses the

amount of energy being transferred between the wave numbers. The second

term is the dissipation term, which accounts for the energy being dissipated

at that particular wave number. The balance of these two determine the rate

of change in kinetic energy contained in each wave number.

The terms of the energy spectrum equation for Reλ = 25, N = 643 at t/T = 2

are plotted in Fig. 11. It is impossible to plot for later times because the

CSM diverges shortly after this time. Plots (a)-(c) show the balance of the 3
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Fig. 11. Energy Spectrum Equation Budget. (a) SGM. (b) PSE. (c) CSM.

terms for each method. Although, there are some quantitative discrepancies

between the 3 plots, the qualitative behavior is quite similar. The transfer term

T is negative at lower wave numbers and positive at higher wave numbers,

indicating that the energy is being cascaded to smaller scales. At the higher

wave numbers the dissipation term has a negative peak and indicates that

the kinetic energy is dissipated at smaller scales. We cannot neglect the fact

that Fig. 11 (c) shows a large quantitative discrepancy between the CSM and

the other two methods. Investigating the terms of energy spectrum equation

has reveled further problems in the CSM, but does not clarify the insufficient

decay rate of the PSE.
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Fig. 12. Statistics of the Particle Distribution. (a) Mean & RMS. (b) Skewness &

Flatness.

3.6 Spatial Adaption in PSE

As the vortex method calculation proceeds, the vortex elements become more

and more disordered. This has a detrimental effect not only on the PSE diffu-

sion calculation, but also the velocity and stretching calculations. We will first

examine the particle density distribution throughout the flow field by making

use of the FMM box structure. The FMM can identify and index all particles

in the vicinity of any given particle. Since this box structure is what we use for

the velocity, stretching and PSE diffusion calculations, monitoring the particle

density using this method shows us the direct relation between the magnitude

of Lagrangian distortion and the error caused by it.

We will consider the case for Reλ = 25 and N = 643, for which the FMM

divides the domain into 84 boxes. One box contains an average of 64 particles,

so if we consider particles in the 26 neighboring boxes the total should be 27×
64 = 1728. This value differs between dense regions and sparse regions, and

our concern is exactly how large this difference is, and how this changes as the

calculation proceeds. Fig. 12 shows the mean, standard deviation, skewness,
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Fig. 13. Kinetic Energy Spectra for PSE with remeshing. (a) Spectra at t/T = 2.

(b) Spectra at t/T = 4.

and flatness of the particle density distribution. The mean value is always 1728,

since the total number of particles does not change. The standard deviation is

0 for the initially uniform distribution, and grows rapidly at the earlier stages

of the calculation. Though, the increment becomes moderate at later stages

and the final value is still less than 1% of the mean. The skewness fluctuates

between −0.5 and 0.5, and the flatness jumps at the first few time steps

but remains close to 3 otherwise, which is common for an initially uniform

distribution subject to random movement.

Next, we will use a standard remeshing technique to maintain the uniformity

of particles. The M ′
4 function is used as the interpolation formula.

M ′
4(x) =





0 if |x| > 2

1
2
(2− |x|)2(1− |x|) if 1 ≤ |x| ≤ 2

1− 5x2

2
+ 3|x|3

2
if |x| ≤ 1

(32)

The remeshing is performed every 10 times steps, which corresponds to
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Fig. 14. Statistical Properties for PSE with remeshing. (a) Kinetic energy. (b) En-

strophy. (c) Skewness. (d) Flatness.

t/T=0.2. Judging from Fig. 12, the standard deviation of the particle den-

sity distribution should remain less than 0.1% of the mean. The kinetic en-

ergy spectra for the remeshed PSE at Reλ = 25 and N = 643 are shown in

Fig.13. The PSE without remeshing and SGM are also plotted as reference.

The remeshed PSE no longer shows the jump at the tail of the spectrum. At

t/T = 2 it matches the SGM up to the highest wave numbers. At t/T = 4

the remeshed PSE slightly over-predicts a broad band of the spectrum, but is

much closer to the SGM than the PSE without remeshing.

The time change of statistical values for the remeshed PSE are plotted in
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Fig. 14. The decay of kinetic energy has improved slightly at the end but

is still different from that of the SGM. This supports our assumption that

this error is caused by the error in stretching calculations, and has nothing to

do with Lagrangian distortion of particles. Furthermore, when the remeshing

is performed the velocity derivative skewness shows strange behavior at the

end. After all, the homogeneous isotropic turbulence is a flow field with mini-

mum Lagrangian distortion effects. For this particular flow, the only effect of

remeshing seems to be the suppression of the noise at the tail of the energy

spectrum, and a small improvement in the kinetic energy decay.

3.7 Spatial Adaption in CSM

The CSM is able to calculate accurately for a limited time, and diverges af-

ter that. This behavior is not only well known, but is also mathematically

predictable [24]. The core radius eventually becomes too large for a sufficient

spatial resolution of the local fluid motion. However, the CSM is known to

converge if spatial refinement is performed either globally [8] or locally [9]. In

our case, we could not use splitting methods since the calculation cost would

become overwhelming for an already spatially well resolved simulation.

One way to perform spatial refinement without increasing the number of el-

ements would be to use the radial basis function interpolation [8] for smaller

sized blobs to reproduce the vorticity field. We have applied this method by

solving a system of equations given by (3) for the initial core radius σ = 2∆x.

The BICGSTAB method without preconditioning is used for the iteration, and

calculated until the L2 norm error was less than 10−4. The FMM box structure

was also used to calculate (3) efficiently inside the BICGSTAB iteration. At
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Fig. 15. Kinetic Energy Spectra for CSM with spatial adaption. (a) Spectra at

t/T = 2. (b) Spectra at t/T = 4.

this point we have not found a way to significantly accelerate this procedure

any further, and one spatial adaption step takes the same amount of time as

5 vortex method time steps. Hence, if we perform the spatial adaption every

5 time steps, it will double the total calculation time.

The kinetic energy spectra with spatial adaption are shown for Reλ = 25

and N = 643 are shown in Fig. 15, along with the CSM without spatial

adaption and SGM. The spatial adaption is performed every 10 time steps.

’CSM(remesh)’ denotes the CSM with spatial adaption. At t/T = 2 the CSM

with spatial adaption under-estimates the higher wave numbers. However,

as the calculation proceeds, the spectrum of the CSM with spatial adaption

becomes closer to the SGM. This is completely different from the CSM without

spatial adaption, which diverges at t/T ≈ 4.

Next, the kinetic energy, enstrophy, velocity derivative skewness, and flatness

are shown in Fig. 16 for the same calculations. The CSM with spatial adaption

almost completely matches the SGM. These results are quite encouraging, and

it is fair to say that the core spreading method with spatial adaption is indeed
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Fig. 16. Statistical Properties for CSM with spatial adaption. (a) Kinetic energy.

(b) Enstrophy. (c) Skewness. (d) Flatness.

a very accurate viscous diffusion scheme.

Finally, the growth of the core radius is shown for the cases with and without

spatial adaption in Fig. 17. The initial core radius is 2π/64 ≈ 0.1 and nearly

doubles by the time t/T = 10 without spatial adaption. However, with the

spatial adaption, the core radius increases merely 1%. We will not conduct a

thorough investigation of the frequency of spatial adaption or the optimum

overlap ratio range. Though, we will note that such an investigation is impor-

tant and maybe inevitable in the future of pure Lagrangian vortex methods.
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4 Conclusions

The vortex method is applied to the calculation of a decaying homogeneous

isotropic turbulence of Reλ = 25, 50 and the results are compared with a

spectral method calculation. The core spreading method and particle strength

exchange were selected as the viscous diffusion scheme, and the effect of spatial

adaption was examined. The following conclusions are drawn from the results

of our calculations.

For the particle strength exchange, the kinetic energy spectrum agrees well

with the spectral method up to the dissipation wave number. The number of

elements required however, seems to be much larger than that of the spec-

tral method. Also, the use of remeshing has minimal effect in an isotropic

turbulence, where the vortex elements remain evenly distributed.

The results of the core spreading method are only valid until t/T ≈ 2 without

spatial adaption. However, the use of the radial basis function interpolation for

spatial adaption proved to be very effective. It not only keeps the calculation
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from diverging, but allows the core spreading method to calculate the kinetic

energy decay at an accuracy close to the spectral methods.

The overall conclusion corresponding to our initial objective is that the vortex

method can reproduce the energy cascade of an isotropic turbulence correctly

if the following conditions are satisfied. The spatial resolution must be satisfac-

tory. If the PSE is used no spatial adaption is required for this flow. However,

if the core spreading method is used, the spatial adaption must be performed.
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