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1 Introduction

In the companion paper [1], we proposed a generalization of the Petviashvili iteration

method for finding stationary solitary waves u(x) of scalar and vector Hamiltonian equations

with arbitrary form of nonlinearity:

−M u+ F (x, u) = 0, u(|x| → ∞) → 0, (1.1)

where M is a self-adjoint differential operator and, in the vector case, the nonlinear term

must satisfy a condition ∂Fi/∂uj = ∂Fj/∂ui. (Recall that the original Petviashvili method

[2] was proposed for scalar equations with power-law nonlinearity F (x, u) = up.) A common

form of operator M (in the scalar case) is

M = µ−∇2, (1.2)

where µ is the propagation constant of the solitary wave. Thus, the generalized Petviashvili

method, that obtains solutions with a specified propagation constant, can be applied to the

same class of equations as the well-known imaginary-time evolution method (ITEM) (see,

e.g., [3]–[6]) that is used to find solitary waves with a specified power.

In the present work we extend the results of [1] as follows. In Section 2, we establish

a mathematical relation between the generalized Petviashvili method and the ITEM. This

discussion will also set the stage for the main result of this work, presented in Section 3.

There, we develop the ideas behind the original and generalized Petviashvili methods [7, 1]

and propose a new technique that we refer to as the mode elimination. This technique

can be used to obtain nonfundamental (see below) solitary waves, which the methods of

[1]–[6] cannot obtain (the iterations would diverge). However, since alternative methods

of obtaining nonfundamental solitary waves exist [3, 8], we see the main use of the mode

elimination in that it can considerably accelerate convergence of various iteration methods.

The corresponding examples are presented in Section 4, and the summary of our results is

given in Section 5.

2 Convergence rates of the Petviashvili and the imaginary-

time evolution methods

In this Section, we will compare the convergence properties of the generalized Petviashvili

method [1] with those of the accelerated ITEM proposed in Ref. [6]. This discussion will

highlight a feature of the generalized Petviashvili iteration scheme that will be important

when we present our main result — the mode elimination technique — in the next Section.

Of the two versions of the ITEM (with power and amplitude normalizations) considered

in [6], we will focus on the one with power normalization, because its linearized operator

can be readily compared with that of the generalized Petviashvili method. In order not to
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obscure the main ideas by technical details, we restrict our presentation to the case of a

single real-valued equation (1.1) with M given by Eq. (1.2), i.e., to:

∇2u+ F (x, u) = µu . (2.1)

It is well-known that the convergence of an iteration method is determined by the

properties of the linearized iteration equation. Namely, let un be the solution obtained at

the nth iteration, and let the “error” ũn be defined as

ũn = un − u, |ũn| ≪ |u| . (2.2)

As will be shown below, it satisfies a linearized iteration equation of the form

ũn+1 = (1 + ∆τ L) ũn , ∆τ > 0 , (2.3)

where L is the linear operator that results when the iteration method is linearized on the

background of the solitary wave u, and ∆τ is an auxiliary scaling parameter. From a

conceptual point of view, the presence of ∆τ emphasizes the analogy of iteration methods

with numerical methods of solving time-dependent differential equations (see, e.g., [9]);

from a practical point of view, it can be used to ensure (in certain cases) or optimize the

convergence of the method, as we will discuss later on.

Let us begin with general remarks regarding the convergence rate of the linearized

iteration equation (2.3). Suppose that the eigenfunctions of L form a complete set in an

appropriate functional space, so that ũn can be expanded over them. Let the minimum and

maximum eigenvalues of L be Λmin and Λmax. Then the convergence rate of the iteration

method can be defined as log(1/R), where the convergence factor R is the maximum (in

magnitude) eigenvalue of the operator on the r.h.s. of (2.3):

R = max {|1 + Λmax∆τ |, |1 + Λmin∆τ |} . (2.4)

Clearly, R < 1 needs to hold in order for the iterations to converge, which implies

Λmax ≤ 0 and 1 + Λmin∆τ > −1 . (2.5)

Moreover, if Λmax = 0, then the corresponding eigenfunction of L needs to be a translational

eigenmode (if it exists) of the linearized Eq. (2.1), which only shifts the solution in space

and hence does not affect the convergence of the method. The smaller the convergence

factor R, the faster the convergence. It can be readily shown [6] that the minimum value

of R occurs at

∆τ∗ =
−2

Λmin + Λmax
(2.6)

(recall that Λmin < Λmax < 0) and equals

R∗ =
1− (Λmax/Λmin)

1 + (Λmax/Λmin)
. (2.7)
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Therefore, the closer the ratio (Λmax/Λmin) to 1, the faster the convergence of the itera-

tion method. Below we will compare the possible values of this ratio for the generalized

Petviashvili method and the accelerated ITEM. To that end, we first need to cast the

linearizations of these methods into the form of Eq. (2.3).

Let L0 denote the nonlinear operator of Eq. (2.1) (or, more generally, of the stationary

wave equation whose solution we are looking for), so that that equation is rewritten as

L0u = 0 . (2.8)

Let L be the corresponding linearized operator, so that

L0(u+ ũ) ≡ L0u+ Lũ = Lũ , for any |ũ| ≪ |u| . (2.9)

Note that for Hamiltonian wave equations, L is always self-adjoint. With these notations,

the generalized Petviashvili method is [1]:

un+1 − un =

(

N−1(L0u)n − γ
〈un, (L0u)n〉

〈un, Nun〉
un

)

∆τ , (2.10)

where

γ = 1 +
1

α∆τ
. (2.11)

Here and below, the inner product between two real-valued functions is defined in a standard

way:

〈f, g〉 =

∫ ∞

−∞
f(x)g(x) dx .

For the positive definite and self-adjoint operator N in (2.10), we take the simplest form

used in [1]:

N = c−∇2 , (2.12)

where the constant c is given by Eq. (3.11) of [1]. The constant α in Eq. (2.11) above is

such that

Lu ≈ αNu (2.13)

in a certain least-square sense; a formula for computing this constant at each iteration can

be found in either of Eqs. (3.12) or (3.15) of [1], but will not be needed here. Following

the steps of a calculation found at the beginning of Section 2 of [1], it is straightforward to

show that the linearized form of the generalized Petviashvili method is:

ũn+1 − ũn =

(

N−1Lũn − γ
〈u,Lũn〉

〈u,Nu〉
u

)

∆τ . (2.14)

Next, the accelerated ITEM of Ref. [6] is:

un+1 =

[

P

〈ûn+1, ûn+1〉

]
1

2

ûn+1, (2.15)

ûn+1 − un = K−1
(

∇2un + F (x, un)− µnun
)

∆τ, (2.16)
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µn =
〈∇2un + F (x, un),K

−1un〉

〈un,K−1un〉
, (2.17)

where P =
∫∞
−∞ u2dx is the specified power of the solitary wave. The positive definite and

self-adjoint operator K is referred to as the acceleration operator for the ITEM [3, 6]. For

simplicity, we take K to have the same form (2.12) as the operator N in the generalized

Petviashvili method, with the c being now an arbitrary positive constant. The linearized

form of ITEM (2.15)–(2.17) is [6]:

ũn+1 − ũn =

(

K−1Lũn −
〈u,K−1Lũn〉

〈u,K−1u〉
K−1u

)

∆τ . (2.18)

Thus, the “primordial” operator in the linearized equations of both the generalized Petvi-

ashvili method and the accelerated ITEM has the form:

L̂ = (c−∇2)−1L . (2.19)

With L being the linearized operator of (2.1), the continuous spectrum of L̂ is an interval

(or, when F (x, u) is a periodic function of x, a union of intervals), one of the end points of

which is λ = −1 (see, e.g., [6] and references therein). This eigenvalue of L̂ corresponds to

the eigenvalue λ = −∞ of L. Then a possible spectrum of L̂ is shown in Fig. 1a.

Even though the first terms on the r.h.s.’s of (2.14) and (2.18) have the same form

(2.19), the eigenvalues of the corresponding operators L are different for two reasons. First,

the values of c in operators N and K are, in general, different, which makes different the

eigenvalues of the corresponding L̂’s. Second, the nonlocal terms (involving inner products)

in (2.14) and (2.18) modify the eigenvalues of L̂ in different ways. We now consider this

latter issue in more detail.

In regards to the operator of the linearized Petviashvili method (2.14), we recall a fact

[1] that is important for our discussion both here and in the next Section. Namely, the role

of the nonlocal term in that operator is to (nearly) eliminate from ũn+1 the eigenfunction

of L̂ = N−1L whose profile is close to that of the solitary wave u, while leaving the other

eigenfunctions and their eigenvalues (nearly) unchanged. This is ensured by taking the

constant γ and the operatorN to satisfy (2.11) and (2.12), respectively. The adverb “nearly”

is used above to account for the fact that relation (2.13) for Eq. (2.1) with a general

nonlinear function F (x, u) holds only approximately. It is exact only for wave equations

with power-law nonlinearity [7], for which the original Petviashvili method was proposed [2].

However, the special choice of the constant c in (2.12), as noted after that equation, makes

the approximation in (2.13) sufficiently accurate at least near the “core” of the solitary

wave.

Continuing with the discussion about the effect of the nonlocal term in (2.14) on the

eigenvalues of the corresponding operator L, let us suppose that u is a fundamental solution

of the nonlinear wave equation. (E.g., in the case of Eq. (2.1), the fundamental solution,
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unlike nonfundamental ones, has no nodes1. For a more general Eq. (1.1) where the

operator M is different from ∇2, fundamental solutions may have nodes (as, e.g., the lump

solution of the Kadomtsev-Petviashvili equation [10]); in that case, their distinguishing

feature is that they have one “main” hump, while the nonfundamental solutions usually

have several “main” humps.) Then the “u-like” eigenfunction of operator N−1L mentioned

in the previous paragraph (see also (2.13)) corresponds to the largest eigenvalue, λ1, of that

operator; see Fig. 1a. Since this eigenfunction is eliminated by the nonlocal term at each

iteration, then the resulting spectrum of the operator on the r.h.s. of (2.14) is as shown

in Fig. 1b. Thus, for this operator, Λmax ≈ λ2 and Λmin ≈ λmin; the reason for using

“≈” instead of “=” is that relation (2.13) holds approximately, as we noted above. Now, if

λ2 < 0 and the step size ∆τ satisfies a condition

1 + λmin∆τ > −1 , (2.20)

then according to (2.5), the generalized Petviashvili method converges to u. As a sidenote,

we mention that for equations with power-law nonlinearity, L is known [11] to have only

one positive eigenvalue, and hence the Sylvester inertia law (see, e.g., Theorem 7.6.3 in [12])

guarantees that λ1 is the only positive eigenvalue of L̂ = N−1L.

Now let us consider the linearized operator L in (2.18) for the ITEM (2.15)–(2.17). In

[6], we showed that the set of discrete eigenvalues of this L is the union of two sets: (i) the

roots of a function

Q(Λ) =
∑

j

|〈u, ψj〉|
2

λj − Λ
+

∫

continuum

|〈u, ψ(λ)〉|2 dλ

λ− Λ
, (2.21)

where ψj is the eigenfunction of L̂ corresponding to the eigenvalue λj , and also (ii) the

set of those λj for which 〈u, ψj〉 = 0. This is shown schematically in Fig. 1c, with ψ3 there

satisfying 〈u, ψ3〉 = 0. (Note that Q(Λ) does not need to be defined for the continuum

eigenvalues Λ.) Thus, for the operator L in (2.18), Λmin ≥ λmin and Λmax > λ2.

The consideration of the two preceding paragraphs shows that even when the acceler-

ation operators N and K in (2.14) and (2.18) are the same (i.e., have the same c), one

cannot, in general, make a definite statement on whether the ratio (Λmax/Λmin), and hence

the convergence rate, is greater for the generalized Petviashvili method or for the acceler-

ated ITEM. Moreover, the fact that the values of c in N and K are generally different,

and hence so are the eigenvalues λj of the corresponding two L̂’s, further obstructs the

comparison of the convergence rates of the two methods. The only two statements that can

be made here are the following. (i) For equations (2.1) with arbitrary nonlinearity, if the

ITEM converges to a fundamental solution, then we expect that in most cases (see below),

so does the generalized Petviashvili method. (ii) For equations (2.1) with power-law non-

linearity F (x, u) = up, the Petviashvili method with the optimal choice of ∆τ converges to

the fundamental solution faster than does the optimally accelerated ITEM (2.15)–(2.17).

1By nodes in D > 1 spatial dimensions, we mean sets of points of dimension less than D where u(x) = 0.
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To justify statement (i), first recall that for fundamental solitary waves,

(Λmax)Petviashvili ≈ λ2 < (Λmax)ITEM , (2.22)

as long as the value c in the operator (2.19) is taken to be the same for both methods.

Next, if the ITEM converges, then according to (2.5), (Λmax)ITEM < 0, thereby implying

that λ2 < 0. However, by the Sylvester inertia law, the sign of λ2 does not depend on

the actual value of c (as long as c > 0). Therefore, with a possible exception of those

cases where λ2 is close to zero, the left part of (2.22) yields (Λmax)Petviashvili < 0, which

means that the generalized Petviashvili method converges. To prove statement (ii), first

note that operator L in this case satisfies the conditions of Theorem 4 of Ref. [6], so that

c = µ is the optimal value for K and (Λmin)ITEM = λmin (= −1). Next, in the Petviashvili

method for the equation with F (x, u) = up, N =M [2, 1] and hence c = µ as well, whence

(Λmin)Petviashvili = λmin. Thus, in this case,

(Λmin)Petviashvili = (Λmin)ITEM. (2.23)

Combining Eq. (2.23) and inequality (2.22), where now the sign “≈” must be replaced with

“=”, one concludes that (Λmax/Λmin) should be greater for the Petviashvili method; hence

statement (ii) follows.

A simple example illustrating statement (ii) is the stationary nonlinear Schrödinger

equation in one dimension:

uxx + u3 = u, |u| → 0 as |x| → ∞, (2.24)

for which the ITEM with the parameters c = µ (= 1) and ∆τ = 1.5, corresponding to the

optimal acceleration, converges to the accuracy of 10−10 in 33 iterations. The Petviashvili

method (2.10) with ∆τ = 1.5, alpha = 2 (as in the original Petviashvili method; see [1]),

and γ given by (2.11), converges to the same accuracy in 19 iterations. Here both methods

start with the initial condition u0 = e−x2

. In our numerical experiments of finding the

fundamental solutions of non-power-law equations (not covered by the above statement

(ii)), we also observed that the generalized Petviashvili method is faster than the optimally

accelerated ITEM (2.15)–(2.17); see, e.g., Example 3.1 in [1]. (The ITEM with amplitude

normalization [6] can still be faster than the generalized Petviashvili method.)

However, in a situation where both methods converge to a nonfundamental solitary wave,

the optimally accelerated ITEM can be faster than the generalized Petviashvili method. As

an example, let us revisit the equation with a double-well potential:

uxx + V (x)u− u3 = µu, V (x) = 6
(

sech2(x− 1) + sech2(x+ 1)
)

, (2.25)

considered in Example 3.2 of [1]. We will focus on its anti-symmetric solution (see Fig. 2a)

with the propagation constant µ = 1.43 and the corresponding power P ≡
∫∞
−∞ u2 dx = 10.
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This solution is nonfundamental since it has a node; the fundamental solution in this case

is a two-humped pulse with its maxima located near the maxima of the potential. The solid

and dashed lines in Fig. 2b show the evolutions of the error norm, defined as

En =

(

〈un − un−1, un − un−1〉

〈un, un〉

)1/2

, (2.26)

for the generalized Petviashvili method and the optimally accelerated ITEM, respectively.

In both cases, the parameter ∆τ was emprically optimized (see (2.6)) to yield the maximum

convergence rates; the respective values are ∆τ∗ ,Petviashvili = 1.6 and ∆τ∗, ITEM = 0.7. Also,

in the case of the generalized Petviashvili method, the value c = 5.04 was algorithmically

computed [1], while for the ITEM, c = 1.5 was empirically found to yield the optimal

convergence rate. As the initial condition for both these methods, we took u0 = 2x e−x2

.

As seen from Fig. 2b, the optimally accelerated ITEM is about one and a half times faster

than the generalized Petviashvili method. The reason behind this can be understood by

looking at the spectra of the corresponding operators L̂ in (2.19) with the above values

c = 1.5 for the accelerated ITEM (Fig. 3b) and c = 5.04 for the generalized Petviashvili

method (Fig. 3c). Namely, when one starts with an anti-symmetric initial condition (as

we did above), the symmetric eigenmodes corresponding to λ2k+1, k = 0, 1, . . . do not

contribute to the error ũn. Then from (2.7) and Figs. 3b,c,

R ITEM <
1− (λ2, c=1.5/λmin, c=1.5)

1− (λ2, c=1.5/λmin, c=1.5)
=

1− 0.41

1 + 0.41
= 0.42,

R Petviashvili ≈
1− (λmax continuum, c=5/λmin, c=5)

1 + (λmax continuum, c=5/λmin, c=5)
=

1− 0.28

1 + 0.28
= 0.56,

and hence the corresponding numbers of iterations to reach the accuracy of 10−10 can be

estimated as:

nmax, ITEM ≈
−10 ln 10

lnR ITEM
= 26, nmax, Petviashvili ≈

−10 ln 10

lnR Petviashvili
= 40.

These estimates are in very good agreement with the numbers of iterations (25 and 37,

respectively) reported in Fig. 2b. Note also that the empirically found optimal values of

∆τ∗ reported above agree with Eq. (2.6) and the spectra shown in Figs. 3b,c.

3 Mode elimination technique for improving convergence of

iteration methods

Here we develop the ideas of Ref. [1] and extend the generalized Petviashvili method so

that it could be employed for two additional purposes: (i) obtaining certain nonfunda-

mental solutions of stationary nonlinear wave equations; and (ii) accelerating convergence

of iterations methods. We emphasize that the technique we propose can be applied to

any iteration method and to single and coupled equations as well. For simplicity of the

presentation, below we illustrate it for single equations of the form (2.1).

8



We begin with the observation that in most cases (with Eq. (2.25) being a notable

exception), the generalized Petviashvili method would not converge to a nonfundamental

solution of a given wave equation. The reason for that can be understood from the following

simple example. Consider an equation

uxx + (6sech2x+ u2)u = µu . (3.1)

When the amplitude of u is small, (3.1) has two solutions: the fundamental, {u(1) ≈

ǫ sech2x, µ(1) ≈ 4 }, and the nonfundamental, {u(2) ≈ ǫ sechx tanhx, µ(2) ≈ 1 }, where

ǫ ≪ 1. Then the operator obtained by the linearization of Eq. (3.1) on the background of

the nonfundamental solution,

L ≈ ∂2x + 6sech2x− µ(2), (3.2)

has two largest eigenvalues: λ1 ≈ µ(1)−µ(2) ≈ 3 > 0 and λ2 ≈ µ(2)−µ(2) = 0, with the cor-

responding eigenfunctions being approximately u(1) and u(2). As we noted in Section 2, the

nonlocal term in the linearized iteration equation (2.14) nearly eliminates the eigenfunction

of operator L̂ = N−1L which is “similar” to the background solution u(2). However, the

eigenfunction of L̂ corresponding to the eigenvalue λ1 > 0 of L̂ is not eliminated, and hence,

according to the discussion found before Eq. (2.20), the generalized Petviashvili method

will not converge to solution u(2).

The above example suggests a simple way in which the generalized Petviashvili method

(2.10) can be modified so that it would converge to a nonfundamental solution u (given, of

course, an initial condition close to u). In the general form, this modified method is

un+1 − un =



N−1(L0u)n − γ
〈un, (L0u)n〉

〈un, Nun〉
un −

Junst
∑

j=1

γ
(j)
unst

〈φ
(j)
unst, (L0u)n〉

〈φ
(j)
unst, Nφ

(j)
unst〉

φ
(j)
unst



∆τ,

(3.3)

where γ and N are defined as in (2.11) and (2.12), φ
(j)
unst are the functions that approximate

the eigenmodes of operator (N−1L) with positive eigenvalues (excluding the background

solution u), Junst is the number of such eigenmodes, and

γ
(j)
unst = 1 +

1

α
(j)
unst∆τ

, α
(j)
unst =

〈φ
(j)
unst, Lφ

(j)
unst〉

〈φ
(j)
unst, Nφ

(j)
unst〉

. (3.4)

Here α
(j)
unst, defined analogously to (2.13):

Lφ
(j)
unst ≈ α

(j)
unstNφ

(j)
unst , (3.5)

is computed according to Eq. (3.12) of [1]. In the context of the example in the previous

paragraph, Junst = 1 and φ
(1)
unst = u(1).

Following the lines of the analysis of Section 2 in Ref. [1], it is straightforward to show

that in method (3.3), (3.4), the components of the error ũn “aligned along” the modes φ
(j)
unst,
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j = 1, . . . , Junst, are nearly eliminated at every iteration; this is guaranteed by the form of

the coefficients γ
(j)
unst. Therefore, in what follows, we refer to method (3.3) as the mode

elimination method. In Section 4 below, we will present the results of applying this method

to a two-dimensional equation of the form (3.1) to obtain its nonfundamental solutions.

Remark It is clear that the success of the mode elimination method hinges upon the

knowledge of the “unstable” eigenmodes φ
(j)
unst. However, in many cases, an approximate

knowledge of φ
(j)
unst may suffice.

We now show how the mode elimination technique can be used to accelerate convergence

of iteration methods. The reason that a given method converges slowly is, according to (2.7),

that the ratio Λmax/Λmin is small. Since for an appropriately chosen operator N , |Λmin| =

O(1) (see, e.g., Figs. 3b,c), then for a slowly convergent method, the eigenvalue |Λmax| must

be small. Then if one can eliminate the corresponding eigenmode, similarly to how it is

done in (3.3), one essentially replaces (Λmax)old with (Λmax)new < (Λmax)old (< 0). Then

the ratio Λmax/Λmin increases and so does the convergence rate of the iteration method.

The practical issue here is how to find the mode, φslow, which slows down the convergence.

Fortunately, this is rather easy to do using the following observation. For ∆τ < ∆τ∗, where

∆τ∗ is defined in (2.6), the factor (1+Λslow∆τ) ≡ (1 +Λmax∆τ), which governs the decay

of φslow, is the largest among such factors for all the eigenmodes of (N−1L). Then after

some iterations, the content of the error ũn ≡ un−u becomes dominated by the eigenmode

φslow, and hence

φslow ∝ (un − un−1) . (3.6)

The elimination of the function (un − un−1) is carried out in exactly the same way as in

(3.3), yielding the method:

un+1 − un =

[

N−1(L0u)n − γ
〈un, (L0u)n〉

〈un, Nun〉
un − γslow, n

〈φslow, n, (L0u)n〉

〈φslow, n, Nφslow, n〉
φslow, n

]

∆τ,

(3.7)

where

φslow, n = un−un−1, γslow, n = 1+
s

αslow, n∆τ
, αslow, n =

〈φslow, n, Lφslow, n〉

〈φslow, n, Nφslow, n〉
. (3.8)

Note the coefficient s in (3.8), which we will comment on in the next paragraph. We will

also provide examples that demonstrate the efficiency of the accelerated Petviashvili method

(3.7), (3.8) and its extensions to other iteration methods, in the next Section.

Similarly to the analysis of Ref. [1], one can show that the role of coefficient s in (3.8)

is to control how much of the mode φslow, n is subtracted at each iteration. We found

empirically that in most cases, it is beneficial for the convergence rate to subtract not the

entire φslow, n-component from un but only part of it, usually somewhere between 40% and

80% (i.e., use s ∼ 0.4–0.8). (However, even using the value s = 1 leads to a significant

increase in convergence rate compared to the corresponding non-accelerated method when
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the latter is slow.) The justification of using 0 < s < 1 (or, alternatively, 1 < s < 2) rather

than s = 1, is based on the same considerations, found before Eq. (3.6), which led us to

propose the accelerated method (3.7). Namely, to uphold those considerations, φslow, n is

to remain the most slowly decaying eigenmode of (N−1L) at every iteration. In the case

where the entire amount of it is subtracted at the (n+1)st iteration, it is not obvious (and

probably not true) that the error ũn+2 at the next iteration would consist mainly of the

mode φslow, n+1 ≡ un+1 − un, which will be subtracted at the (n+2)nd iteration. However,

if only s · 100% of mode φslow, n is subtracted, this mode can still remain the most slowly

decaying as long as

|(1− s) · (1 + Λslow∆τ)| > |1 + Λnext∆τ |, (3.9)

where Λslow is the eigenvalue corresponding to φslow, n, and Λnext is the eigenvalue corre-

sponding to the next most slowly decaying mode. Yet, for s not too small, the l.h.s. of (3.9)

is still considerably less than |1 + Λslow∆τ |, and hence the convergence rate of the original

iteration method is increased.

To conclude this Section, we compare our mode elimination technique for convergence

acceleration with the Steffensen’s method (see, e.g., [13]), which is based on applying the

Aitken’s acceleration algorithm every given number of iterations. The idea of the Stef-

fensen’s method is the following. Suppose one has three consecutive iterative solutions un,

un+1, un+2 about which one knows that they satisfy

ũn+2(x)

ũn+1(x)
≈
ũn+1(x)

ũn(x)
for all x, (3.10)

where ũn is the error defined in (2.2). Using these solutions, one applies the Aitken’s

algorithm:

un+3 ≡ uAn = un −
(un+1 − un)

2

un+2 − 2un+1 + un
, (3.11)

and then proceeds to computing the next few iterations un+4, . . . , un+naccel+2 with the

original iteration method, where naccel ≥ 3. Then one uses un+naccel
, un+naccel+1, un+naccel+2

to compute uAn+naccel
by (3.11) with n → n + naccel, and so on. In [14], this method was

successfully used to accelerate the convergence of the original Petviashvili method for the

nonlinear Schrödinger equation in 3 spatial dimensions.

Aitken’s algorithm (3.11) systematically reduces the error (uAn − u) only when (3.10)

holds sufficiently well, which occurs under the same condition (3.6) that must hold in order

for the mode elimination method to work. However, the sense in which (3.6) is to hold

is drastically different for these two acceleration techniques. For the mode elimination, it

suffices if (3.6) holds approximately near the “core” of the solitary wave, since φslow enters

Eqs. (3.7), (3.8) via the inner products with functions that are essentially nonzero only

in that spatial region. On the contrary, for the Steffensen’s method, (3.10) has to hold

pointwise and, in particular, far away from the “core” of u(x). In the latter spatial region,

the denominator of (3.11) is nearly zero, and hence even a small ripple in un, un+1, or
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un+2 can result in a large distortion of uAn . This was indeed observed in our numerical

experiments, except in the cases where |Λmax| ≪ |Λnext|, where |Λnext| is defined after

(3.9). Thus, we expect our mode elimination technique and the Steffensen’s method to

be competitive in those latter cases, but expect the mode elimination technique to have

superior performance over that of the Steffensen’s method when there are more than one

eigenmodes with Λ ≈ Λmax. This expectation is borne out by Examples 4.2 and 4.3 reported

below.

4 Examples of the mode elimination technique

Below we illustrate the application of the mode elimination technique to obtaining nonfun-

damental solitary waves and to accelerating convergence of iteration methods for Eq. (2.1).

In Ref. [8], we already showed by extensive simulations that this technique can greatly

accelerate convergence of a class of universally-convergent iteration methods for both sin-

gle and coupled equations. (Method (4.4) presented below is a particular member of that

class.) Therefore, here we will focus on clarifying the role of parameter s in Eq. (3.8) for

optimizing the convergence rate and also on demonstrating the applicability of the mode

elimination technique to various classes of iteration methods.

Example 4.1 Here we will demonstrate that method (3.3), (3.4) can be used to obtain

nonfundamental solitary waves when approximate information about the unstable eigen-

modes of (N−1L) is available. We will also compare the performance of this method with

that of a universally-convergent method proposed in [8].

Equation

∇2u+ V0(sech x sech y)
2u+ u3 = µu, V0 = 20 (4.1)

is a two-dimensional counterpart of Eq. (3.1). Since the potential well in (4.1) is sufficiently

deep (V0 ≫ 1), this equation admits several nonfundamental solutions. Below we report the

details of finding the first of them which corresponds to µ = 8 and is shown in Fig. 4. For

this solution, we expect the generalized Petviashvili method to have one unstable eigenmode

(in addition to the mode approximated by u that may possibly also be unstable), and

approximate this eigenmode by

φunst = e−
1

2
(r/W )2 , r2 = x2 + y2 . (4.2)

The width W in (4.2) is found iteratively from the formula

W 2
n =

2

3

〈un, x
2un〉

〈un, un〉
, (4.3)

in deriving which we assumed that u ∝ xφunst. Starting with the initial condition u0 =

2x e−(x2+y2), method (3.3), (3.4) with a nearly optimal ∆τ = 0.7 took about 50 iterations

to reach the accuracy of 10−10. Thus, the generalized Petviashvili method with mode
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elimination (3.3), (3.4) converges to this nonfundamental solution, while the generalized

Petviashvili method (2.10) without the mode elimination diverges.

We also obtained the same solution by a method based on the “squared” operator

(N−1L):

un+1 − un = −

[

(N−1LN−1L0u)n − Γn
〈un, (LN

−1L0u)n〉

〈un, Nun〉
un

]

∆τ. (4.4)

(The name “squared” comes from the fact that (N−1L)2 appears in the linearized version

of (4.4).) In [8], we showed that this method belongs to a family of universally-convergent

methods (i.e., methods which can converge to any nonfundamental solution of a given

equation provided that the initial condition is sufficiently close to that solution) for either

of the following choices of Γn: Γn = 0 or

Γn = 1−
1

(〈un, (LN−1Lu)n〉 / 〈un, Nun〉) ∆τ
. (4.5)

Note that this Γn is defined similarly to γn in the generalized Petviashvili method (see Eqs.

(2.11) and (3.4)). Since we are looking for a nonfundamental solution of (4.1), then using

the value for Γn given by (4.5) as opposed to Γn = 0 will not eliminate the mode with

the maximum eigenvalue (see the discussion after Eq. (3.2)), and hence will not speed up

the convergence of the iterations. Therefore, in the remainder of this Example we report

the results for method (4.4) with Γn = 0. Starting with the same initial condition as

above, this method with the operator N computed as in [1] and with a nearly optimal

∆τ = 0.5 took about 190 iterations to converge to the accuracy of 10−10. Thus, the mode

elimination method (3.3), (3.4) is several times faster than the squared-operator method

(4.4) for finding the first nonfundamental solution of (4.1). (We also observed that method

(3.3), (3.4) is less sensitive to the choice of initial conditions than method (4.4).) However,

when we additionally included the step of eliminating the slow mode, as in Eqs. (3.6)–

(3.8), into both methods, the difference in their convergence rates was significantly reduced.

Namely, the convergence of method (3.3), (3.4), which has already been quite rapid, was

not improved by this additional step (and the number of iterations remained around 50),

while the squared-operator method now took about 70 iterations to converge.

We also applied both methods to finding the second nonfundamental solution of (4.1),

which has the shape similar to A(1 −Br2) e−(r/C)2 with r2 = x2 + y2 and A,B,C = const

(see Fig. 7 below). For this solution we found, through experimentation, that one needs

to include five unstable modes into (3.3). For the respective optimal ∆τ ’s, the generalized

Petviashvili method with mode elimination (3.3), (3.4) was found to be about 50% faster

than the squared-operator method (4.4). However, this advantage in the convergence rate

is offset by the increased complexity arising from the need to guess the number and profiles

of unstable modes and then to estimate their parameters (namely, the widths). Therefore,

we conclude that the mode elimination method may be more efficient than the squared-

operator method for finding the lowest-order nonfundamental solitary waves, as long as
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some reasonable guess about the unstable modes can be made. However, for finding second-

and higher-order nonfundamental solutions, method (4.4) appears to be easier to implement

and hence more practical.

Example 4.2 In this and the next two Examples, we demonstrate the efficiency of the

convergence acceleration technique based on the mode elimination, as in (3.7) and (3.8),

for three different iteration methods. In this Example, we apply this technique to the

generalized Petviashvili method.

We look for the fundamental solitary wave of an equation arising in the theory of non-

linear photonic lattices:

∇2u+ V0(cos
2 x+ cos2 y)u+ u3 = µu . (4.6)

for three choices of the potential amplitude and the propagation constant:

(a) : V0 = 4, µ = 4.95; (b) : V0 = 4, µ = 6.5; (c) : V0 = 0, µ = 1 .

In case (a), the propagation constant is close to the edge of the continuous spectrum band,

and the solitary wave occipies many “sites” of the potential, while in case (b), the propa-

gation constant is sufficiently far away from the band edge, and the solitary wave is well

localized. (The profiles of the corresponding solutions are similar to those of the top and

bottom solutions shown in Fig. 3 of [1].) Case (c) is that of the nonlinear Schrödinger

equation in two spatial dimensions. In all cases, we apply three methods: the generalized

Petviashvili method (2.10) without any acceleration, the same method with the Aitken’s

acceleration (3.11) performed after every third iteration (naccel = 3), and the mode elimi-

nation method (3.7), (3.8) with various values of s (see the paragraph including Eq. (3.9)).

The initial condition in all cases is u0 = 1.5 e−(x2+y2), and the step size ∆τ = 1.

In case (a), the generalized Petviashvili method (2.10) takes about 950 iterations to

converge to the accuracy of 10−10. When the mode elimination technique is applied, starting

at the moment when the error becomes less or equal to some small value (we chose 10−2), the

convergence occurs in about 180 iterations, i.e. more than five times as fast. The evolution

of the error is shown in Fig. 5 by the thick solid line for the choice s = 1; for smaller values

of s up to 0.4 which we tried, the error evolution is similar (and the convergence is slightly

faster). The characteristic feature of this error evolution is that it is nonmonotonic and

rather irregular. This irregularity is somewhat abated for s < 1, in agreement with our

discussion in Section 3. Now, when we attempted to apply the Aitken’s acceleration to

the generalized Petviashvili method, we observed quick divergence of the so “accelerated”

method. We actually tried various values of naccel and ∆τ but were unable to make the

iterations converge. The reason for this is explained at the end of Section 3. In fact, by

monitoring the error ũn at every iteration, we observed that it contains many nonlocalized

modes, so that the condition (3.10) of applicability of the Aitken’s acceleration is clearly

violated in this case.
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The corresponding results for case (b) are also shown in Fig. 5. There, the mode elimina-

tion technique accelerates the convergence of the generalized Petviashvili method by about

a factor of four. The error evolution is much smoother than in case (a). This appears to be

correlated with the fact, which follows from our monitoring of the error, that the latter is

dominated by a single eigenmode. Consequently, condition (3.10) is now satisfied, and the

Steffensen’s method (i.e., the generalized Petviashvili method with Aitken’s acceleration)

also converges; see the dotted line in Fig. 5. Let us note that the irregular behavior of the

error of the Steffensen’s method at low values of the error leads to a rather high sensitivity

of the total number of iterations to the initial condition. For example, we verified that if the

acceleration is started when the error reaches 10−3 instead of 10−2, the Steffensen’s method

converges to the accuracy of 10−10 in about 30 iterations.

The error evolutions for case (c) are shown in Fig. 6. The convergence acceleration in this

case (as, actually, also in case (b)) is not of practical importance because the convergence of

the non-accelerated generalized Petviashvili method (2.10) is quite fast (see the thin solid

line in Fig. 6). Therefore, below we discuss the results for this method accelerated by the

mode elimination technique for the sole purpose of highlighting this technique’s dependence

on the parameter s. The error evolution of method (3.7), (3.8) with s = 1, where the

acceleration is started when the error becomes less or equal to 10−3, is very irregular (see

the thick solid line in Fig. 6), and as a result, the accelerated method takes more iterations

to converge than the non-accelerated one. Moreover, the evolution of the error also strongly

depends on the initial condition and on when the acceleration is started. For example, when

we began the acceleration at the moment of the error reaching 10−2 or 10−4, rather than

10−3, the convergence occurred in about 190 or 100 iterations, respectively. In both cases,

the error evolution curves were irregular, with several “ups and downs”. However, when

we used values 0.4 < s < 0.8 instead of s = 1, the behavior of the accelerated iterations

greatly improved. The optimal case of s = 0.7 is shown in Fig. 6 by the medium solid line.

Both the sensitivity to the “starting moment” of the acceleration and the irregularity of

the error evolution are suppressed for s < 1, in agreement with the discussion in Section

3. We also applied the Steffensen’s method to this case and found it to converge in about

the same number of iterations as the mode elimination method with the optinal s; see the

dotted line in Fig. 6.

Example 4.3 In this and the following Examples, we show that the mode elimination

technique can be used to accelerate convergence of other iterative methods. In this Example,

we apply this technique to the squared-operator method (4.4), which can converge [8] to

any given nonfundamental solitary wave of the underlying stationary wave equation. It

should be noted that in [8], the efficiency of the so accelerated squared-operator methods

(referred to there as modified squared-operator methods) was amply demonstrated for a

number of single and coupled stationary wave equations, both Hamiltonian and dissipative.
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In all simulations reported in [8], the value of the parameter s in (3.8) was taken to equal 1.

Therefore, below we will focus on the dependence of the error evolution on the parameter

s.

We apply the squared-operator methods with and without mode elimination to finding

the second nonfundamental solution of Eq. (4.1). This solution for µ = 3 is shown in Fig. 7.

In all cases considered below, we used the initial condition u0 = (1−2r2) e−r2 , r2 = x2+y2

and the step size ∆τ = 0.3 (nearly optimal). As the method without mode elimination, we

used (4.4). The method with mode elimination is then a straightforward modification of

methods (3.7), (3.8) and (4.4):

un+1 − un = (4.7)

−

[

(N−1LN−1L0u)n − Γn
〈un, (LN

−1L0u)n〉

〈un, Nun〉
un − Γslow, n

〈φslow, n, (LN
−1L0u)n〉

〈φslow, n, Nφslow, n〉
φslow, n

]

∆τ,

where, similarly to (3.8):

φslow, n = un−un−1, Γslow, n = 1−
s

Aslow, n∆τ
, Aslow, n =

〈φslow, n, LN
−1Lφslow, n〉

〈φslow, n, Nφslow, n〉
.

(4.8)

In both cases, with and without mode elimination, we found empirically that the methods

with Γn given by (4.5) require the initial condition to be closer to the exact solution than

do the corresponding methods with Γn = 0. On the other hand, the former methods were

significantly faster than those with Γn = 0. Therefore, we initially used methods (4.4) or

(4.7) with Γn = 0, and when the error reached a small value (we chose 5 ·10−3), switched Γn

to the expression (4.5). The corresponding error evolutions for the accelerated method (4.7)

with s = 1 and s = 0.7 (optimal) are shown by the thick and medium lines, while for the

non-accelerated method (4.4) without mode elimination, the error evolution is shown by the

thin line. Note that the behavior of the accelerated method with s < 1 compared to that

behavior with s = 1 follows the same trends as observed in Example 4.2. Namely, the error

evolution for the schemes with s < 1 is smoother and much less sensitive to the moment

when the acceleration starts. Overall, the mode elimination is found to accelerate the

convergence by a factor between three and four, depending on the choice of the parameter

s. Finally, we note that the Steffensen’s method in this case does not converge.

Example 4.4 In this last Example, we show that the convergence acceleration technique

based on mode elimination can also be applied to the ITEM. Here we chose to present

the results for the version of this method (2.15)–(2.17) with power normalization, but the

technique can be used as well for the ITEM with amplitude normalization [6].

For the stationary wave equation (2.1) written in an equivalent form:

L0u ≡ L00u− µu = 0, (4.9)

the ITEM (2.15)–(2.17) with mode elimination can be written as follows:

un+1 =

[

P

〈ûn+1, ûn+1〉

]
1

2

ûn+1, (4.10)
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ûn+1 − un =

[

K−1(L0u)n − γslow, n
〈φslow, n, (L0u)n〉

〈φslow, n, Kφslow, n〉
φslow, n

]

∆τ . (4.11)

Here K is a positive definite self-adjoint operator with constant coefficients (as, e.g., in

(2.12)),

(L0u)n = L00un − µnun, µn =
〈L00un,K

−1un〉

〈un,K−1un〉
, (4.12)

and

φslow, n = un − un−1, γslow, n = 1 +
s

αslow, n∆τ
, αslow, n =

〈φslow, n, Lφslow, n〉

〈φslow, n, Kφslow, n〉
.

(4.13)

We apply the methods without and with mode elimination — (2.15)–(2.17) and (4.10)–

(4.13), respectively, — to Eq. (4.6) with V0 = 4 and P = 1.94, whose solution looks similar

to the top solution in Fig. 3 of [1]. The corresponding propagation constant µ = 5.01 is

close to the bandgap edge, and the ITEM without mode elimination converges slowly; see

the thin line in Fig. 9. In all simulations, we took ∆τ = 1 and the operator K of the

form (2.12) with c = 1, which yielded the (nearly) optimal convergence rate of the ITEM

(2.15)–(2.17). The error evolutions for the ITEM (4.10)–(4.13) with mode elimination are

shown in Fig. 9 by the thick and medium lines. As in Examples 4.2 and 4.3, the scheme

with mode elimination provides a severalfold improvement to the convergence rate of the

ITEM. Also as in those Examples, the error evolution with s < 1 is more regular than that

with s = 1.

Thus, from the last three examples, we conclude that in those cases when the iterations

converge slowly and their acceleration is highly desirable, the mode elimination method

provides a considerable improvement of the convergence rate (by a factor of several times).

Taking s < 1, so that only part of the mode (un−un−1) would be eliminated, usually results

in smoother convergence; however, the choice s = 1 still yields a considerable improvement

of the convergence rate in comparison with that of the non-accelerated iteration method. For

these slowly convergent cases, the Steffensen’s method, based on the Aitken’s acceleration,

often diverges.

Remark In those cases when the step size ∆τ is nearly optimal, the error is expected

to be dominated by two eigenmodes, corresponding to Λmax and Λmin, since

(1 + Λmax∆τ) ≈ −(1 + Λmin∆τ) (4.14)

for this ∆τ (see (2.4) and (2.6)). Then it seems logical that one would need to eliminate

both of these eigenmodes, which are proportional to (un − un−2) and (un − 2un−1 + un−2),

respectively. We found, however, that although this does result in a smoother error evolution

than the elimination of just the single mode (un − un−1), it does not yield any consistent

improvement of the convergence rate compared to the latter case.
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5 Summary

In this work, we obtained the following results.

In Section 2, we compared the linearized operators of the generalized Petviashvili method

and the ITEM with power normalization. In particular, we showed that while the “primor-

dial” part of those operators has the same form (2.19), their nonlocal parts involving the

inner products are different, leading to the eigenvalues of the corresponding operators being

different. In our simulations we observed that the generalized Petviashvili method converges

to fundamental solitary waves faster than does the ITEM (although we could prove this

rigorously only for equations with power-law nonlinearity). On the other hand, in those

(rare) cases when both methods converge to a nonfundamental solitary wave, we produced

an explicit example where the ITEM is faster.

In Section 3, we proposed a new technique, which we referred to as the mode elimina-

tion. One application of this technique is that it can obtain nonfundamental solitary waves,

for which the generalized Petviashvili method would otherwise diverge. The corresponding

iteration scheme is given by Eqs. (3.3) and (3.4). In Example 4.1 in Section 4, we demon-

strated that this technique can be superior to an alternative, squared-operator, technique

[8] when applied to finding lowest-order nonfundamental solutions. However, for finding

higher-order solutions, the technique of Ref. [8] appears to be more practical.

As a more important application for the mode elimination technique, we showed that

it can accelerate the convergence of various iteration methods. This acceleration is most

significant (by a factor of several times) in those cases when it is most needed, i.e., when

the convergence of the non-accelerated method is slow. The iteration schemes implementing

this technique are: Eqs. (3.7), (3.8) for the generalized Petviashvili method; Eqs. (4.7),

(4.8) for a squared-operator method (see also Ref. [8]); and Eqs. (4.10)–(4.13) for the ITEM

with power normalization.
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Figure 1: Schematics of the spectra of the operators found on the r.h.s.’es of (2.19) (a),

(2.14) (b), and (2.18) (c). The circles show the location of discrete eigenvalues. The cross

on the right of panel (b) indicates the disappearance of the eigenvalue compared to panel

(a). The thick dashed line in panel (c) shows a sample function of Eq. (2.21). The left edge

of the continuous spectrum is located at Λ = −1. It is assumed that 〈u, ψ3〉 = 0; see text

after (2.21).
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Figure 2: (a): The anti-symmetric solution of Eq. (2.25) with µ = 1.43 (P = 10).

(b): Error evolutions, starting with an anti-symmetric initial condition, for the generalized

Petviashvili method (solid line) the optimally accelerated ITEM (dashed line).
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Figure 3: The actual spectra of the linearized operator L of Eq. (2.25) (a) and of the

operators N−1L, where N is given by (2.12), with c = 1.5 (b) and c = 5.04 (c). The

operator in (b) has a very short interval of continuous spectrum between −1 and −0.95.
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Figure 4: The first nonfundamental solution of Eq. (4.1) with µ = 8.
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Figure 5: The evolution of the error in cases (a) and (b) of Example 4.2. Thin solid: non-

accelerated method (2.10) for case (a); thick solid: method (3.7), (3.8) with s = 1 for case

(a); thin dashed: non-accelerated method (2.10) for case (b); thick dashed: method (3.7),

(3.8) with s = 1 for case (b); thick dotted line: Steffensen’s method for case (b).
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Figure 6: The evolution of the error in case (c) of Example 4.2. Thin solid: non-accelerated

method (2.10); thick solid: method (3.7), (3.8) with s = 1; medium solid: method (3.7),

(3.8) with s = 0.7; thick dotted line: Steffensen’s method.

−5
0

5

−5

0

5
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

XY

U

Figure 7: The second nonfundamental solution of Eq. (4.1) with µ = 3.
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Figure 8: The evolution of the error in Example 4.3; in all cases, the application of (4.5)

and/or acceleration is begun when the error norm reaches 5 · 10−3. Thin line: method (4.4)

(no mode elimination); thick line: method (4.7) with s = 1; medium line: method (4.7)

with s = 0.7.
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Figure 9: The evolution of the error in Example 4.4. Thin line: optimally accelerated

(with respect to parameter c in operator K, see text) ITEM (2.15)–(2.17) without mode

elimination. Thick and medium lines: ITEM (4.10)–(4.13) with mode elimination with

s = 1 (thick) and s = 0.7 (medium). The application of mode elimination begins at the

first iteration.
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