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Abstract 
 
We present a finite element analogue to the second-order, finite difference scheme for the 
solution of the heat diffusion equation in strongly magnetised plasma given in Ref.[1]. 
Compared to standard finite element or finite difference formulations it strongly reduces the 
pollution of perpendicular heat fluxes by parallel ones even without resorting to field-aligned 
coordinates. We present both bi-linear and bi-quadratic versions of this scheme as well as a 
fourth-order extension of the original difference scheme of Ref.[1]. In the second part of the 
paper we address the formulation of the boundary conditions at walls with an oblique 
incidence of field lines and the treatment of the coordinate singularity at 0=r in cylindrical, 
or topologically equivalent coordinates with the reduced-pollution finite difference scheme. 
All tests shown indicate that both the finite-difference and the finite-element versions of the 
scheme should substantially alleviate the requirement for field-alignment of the coordinates 
over the realistic range of ⊥χχ /|| in toroidal magnetic confinement devices. 
 

1. Introduction 
 
In reference [1] we presented a 2nd order correct finite difference scheme for the solution of 
the heat conduction equation in strongly magnetised plasmas, which reduces significantly the 
pollution of perpendicular heat transport by numerical errors in the evaluation of the parallel 
one. Although a choice of the coordinate system aligned as well as possible with the magnetic 
flux surfaces or field lines remains indicated for a number of reasons outlined in the 
following, the scheme developed was shown to be tolerant to the violation of this 
requirement, even for completely unaligned coordinates, and values of the heat conductivity 
ratio up to ⊥χχ /// =109 in plane and 1012 in periodic cylinder geometry.  We compared the 
scheme with other schemes at hand of well-known 2-d test cases [1,2] in Cartesian 
coordinates, and showed 3-d applications to the problem of transport across magnetic islands 
and regions of ergodic field lines utilizing a combined finite difference – Fourier 
representation in cylinder coordinates.   
 
A major criticism to the scheme was that is was not apparent how it could be utilized in the 
frame of a finite element representation, like used in most nonlinear MHD codes. We present 
in this paper such a formulation for bi-linear and bi-quadratic basis functions, and give also 
the extension of the finite difference version to 4th order accuracy. In the second part we 
address two practical problems arising from the implementation of the physically proper 
boundary conditions at material walls and from the singularity arising at the axis in cylindrical 
or topologically equivalent coordinates. Unless indicated otherwise, we use the nomenclature 
and the labelling of grid points as in Fig.1 of Ref.[1] throughout this paper.    



2. Generalisation of the scheme  
 
2.1. Finite element formulation  

 
The difference scheme described in Ref. [1] and further developed below in this paper has 
been shown to be successful even in cases of extremely anisotropic heat transport problems. 
One main application for such a scheme are non-linear MHD simulations, where tolerance of 
a scheme to misalignment between coordinate and magnetic field lines would become a 
particular asset. As most of the existing non-linear MHD codes (see e.g.  [2,3]) are based, 
however, on a finite element approach it is desirable to develop also a finite element scheme 
with similar properties as our finite difference formulation. 
 
In a finite element framework the stationary heat conduction equation with constant heat 
diffusivities is reformulated as  
 
 ( ) ∫∫∫∫∫ =∇⋅∇+∇⋅⋅∇−=⋅∇−=⋅∇ ⊥⊥ ijijijijijijijijij dVQvdVTvndVTbbvndVqvdVqv χχχ ))((||        
(1) 
 
(for simplicity Dirichlet boundary conditions have been used) with the test functions vij. The 
temperature is approximated by a linear combination of local expansion functions 
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and – in the usual case of conforming elements – derivatives are expressed through 
differentiation of the expansion functions. Calculations in Ref. [2] have shown, however, that 
this scheme requires high order elements to give satisfactory results for ⊥χχ /|| -ratios 
approaching realistic values.  
 
To ensure a proper description of the heat flux parallel to the magnetic field lines already with 
lower-order finite elements, we investigated the use of a hybrid approach, defining a quantity 

||
~q  through 

0)~( || =∇⋅−∫ ijij dVTbqc                                                                                                           (3) 
 
taking the test functions cij and the expansion functions for ||

~q  as one order lower than the 
local basis functions for the temperature ijν . Instead of a separate representation of the two 
components of the heat flux T∇||χ , projected point wise onto b  this implies a finite element 
representation of //

~q  like a scalar quantity. As usual in hybrid finite element schemes, the 
corresponding expansion and test functions for  //

~q  are discontinuous at the element borders. 
The difference between the two representations corresponds to a truncation error contribution 
of the same order as the one implied by the choice of elements forT , and should hence not 
dominate its error scaling. On the other hand this special treatment of the parallel heat flux 
appears essential for allowing the parallel temperature gradient to vanish exactly for 

./|| ∞→⊥χχ    The choice bears analogy to our finite difference treatment, where it was found 
essential to define both components of the heat flux vector //q  in the same grid points and 



express them through the same temperature grid values to greatly reduce numerical errors 
associated with anisotropy. The heat transport equation is then formulated like: 
 

( ) ∫∫∫∫∫ =∇⋅∇+⋅∇−=⋅∇−=⋅∇ ⊥⊥ ijijijijijijijijij dVQvdVTvndVqbvndVqvdVqv χχχ ||||
~)(  (4) 

 
 
We have implemented this scheme using both bilinear and bi-quadratic test functions ijv  for 
T over quadrilateral elements, using Gaussian integration of appropriate order to evaluate the 
integrals. The expansion functions ijc  of ||

~q  in the two cases become constants or bilinear 
functions, respectively.   We compared our hybrid approach with the standard one with 
conforming finite elements, using an own code for the bilinear case, and results of Ref. [2] 
covering up to bi-quintic finite elements. As test case we use the NIMROD test problem, 
already used by us in Ref. [1], which allows an analytic solution:  taking a 2-d magnetic field 
configuration derived from a flux function as ψ∇×= zeB , and choosing a heat source 
satisfying ( ) ( yxyxQ ,, 2ψχ ∇−= ⊥ ) , ensures, together with appropriate boundary conditions, 
that the true solution will be a constant on field lines, irrespective of the value of ⊥χχ ///  [2]. 
The functional form chosen for ( ) ( )yxTyx ,,,ψ  in our case is ( ) ( yx )ππ cossin ⋅ , over the 
interval 5.0,5.0 ≤≤− yx , together with Dirichlet boundary conditions. The relative errors 
quoted refer to the temperature value at the centre: 1)0,0( 1 −−T , corresponding also to the 
magnetic axis. Fig. 1 shows the results for the NIMROD test problem with the lowest order 
implementation of the above scheme. As for the finite difference scheme, the numerical errors 
are found not depend on ⊥χχ /|| and are similar to those of our second order accurate finite 
difference scheme. 
 
Results shown in Figs 1 a –c correspond to ⊥χχ /|| -ratios of 103, 106 and 109, respectively.  
Already for the lowest value of this ratio, both the bi-linear and the bi-quadratic versions of 
the hybrid scheme have errors which are one to two orders of magnitude smaller than their 
conforming counterparts. For ⊥χχ /|| = 106 conforming bilinear elements become totally 
unacceptable. Bi-linear hybrid elements perform already better than bi-quadratic conforming 
ones and bi-quadratic hybrid better than conforming bi-cubic ones. This trend is further 
increased going to higher values of ⊥χχ /|| , as the error for the hybrid element calculations 
practically does not change between 106 and 109, whereas it increases strongly for the 
conforming element cases.  
 
 

2.2 A fourth order finite difference formulation 
 
The finite difference scheme described in Ref. [1] is accurate to second order only. It can be 
readily extended to fourth order; however, as we show here for the case of Cartesian 
coordinates in two dimensions. It is based on an expansion of the temperature up to third 
order in each direction: 
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where we define – as in Ref. [1]- the temperatures at the grid points and the heat fluxes at 
intermediate grid points. Again we use the freedom of adding terms leading to higher order 
(5th and above) corrections to ensure that both components of the parallel heat flux are defined 
in the same grid points. This leads to the expression  
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for the parallel heat flux and to 
 

{ }
( )
( )

( )
( )

{ }
( )
( )
( )

( ) ⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−+−+

−+−−

−+−−

−+−

Δ
+

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−++

−−++

−−++

−−+

Δ
=⋅∇

−−+−−+++

−+++−−+−

−+++−−+−

−−+−−+++

−−+−−+++

−+++−−+−

−+++−−+−

−−+−−+++

||
2/3,2/3

||
2/3,2/3

||
2/3,2/3

||
2/3,2/3

||
2/1,2/3

||
2/1,2/3

||
2/1,2/3

||
2/1,2/3

||
2/3,2/1

||
2/3,2/1

||
2/3,2/1

||
2/3,2/1

||
2/1,2/1

||
2/1,2/1

||
2/1,2/1

||
2/1,2/1

||
2/3,2/3

||
2/3,2/3

||
2/3,2/3

||
2/3,2/3

||
2/1,2/3

||
2/1,2/3

||
2/1,2/3

||
2/1,2/3

||
2/3,2/1

||
2/3,2/1

||
2/3,2/1

||
2/3,2/1

||
2/1,2/1

||
2/1,2/1

||
2/1,2/1

||
2/1,2/1

,

||

27

9

243

,0

9

27

243

0,
384

1

jijijiji

jijijiji

jijijiji

jijijiji

y

jijijiji

jijijiji

jijijiji

jijijiji

x
ji

qqqq

qqqq

qqqq

qqqq

y
e

qqqq

qqqq

qqqq

qqqq

x
e

q

                (7) 

 
for its divergence. 

We have tested this fourth-order scheme again for the above test case proposed by the 
NIMROD team. To avoid the problem of the specification of additional (unphysical) 
boundary conditions for the 4th order scheme, we reduce the formulation to the second-order 
one described in Ref. [1] over the outermost two grid cells. Fig. 2 gives the results for values 
of  ⊥χ χ/||  = 106 and 109 for both the second and the fourth order scheme, showing the 
expected improvement by the latter (except for the lowest resolution case, where the fourth-
order schemes error is dominated by the implementation of the boundary conditions).  The 
discretisation error for both schemes is again independent of the ratio ⊥χ χ/|| . For the higher 
numbers of grid points and high values of ⊥χ χ/||  , the fourth order scheme becomes, however, 
very susceptible to round-off errors, requiring improved (16 instead of 8-byte) precision to 
realize its potential accuracy.   



 

3. Treatment of general boundary conditions and coordinate 
singularities 

 
The test cases presented in Ref. [1] used Dirichlet boundary conditions, and were formulated 
in either Cartesian coordinates or in cylindrical coordinates using, in the latter case a Fourier 
description in both poloidal (θ-) and axial (z-) direction. Complications arise in the more 
general case, when prescriptions involving the conductive heat flux have to be applied at the 
boundary, or if cylindrical (or topologically equivalent) coordinates are used in 2 or 3-d finite 
difference formulations including the point 0=r . In this section we demonstrate that the 
developed finite difference scheme is able to deal with such realistic boundary conditions. 
 

3.1. Realistic boundary conditions for magnetised plasmas 
 
 In the general case flux surfaces or field lines will cross the computational boundary. The 
boundary conditions to be applied in that case will be of a mixed (Robin-) type and will 
typically be dominated by the physics of the parallel heat flux. In particular, if the walls are 
assumed to correspond to material surfaces the boundary conditions will be given by the well-
known Bohm-type condition [4,5]: 
 

wBseew ebTkcnTbneb ⋅=∇⋅⋅− |||| δχ ,                                                                                (8) 
where we is the unit vector perpendicular to the wall, pointing outward, b the unit vector 
along the field lines, ||δ the so-called sheath transmission factor and cs the ion sound speed. 
For field lines nearly tangent to the walls the much smaller perpendicular heat transport has 
also to be included to remove the singularity otherwise arising for 0=⋅ web . We therefore 
write, in the general case the boundary condition in the form  

)()1/( || ⊥⊥⊥ +⋅=∇⋅−∇⋅−⋅− εδχχ weffw ebTTeTbeb                                                      (9) 

where ⊥= χδδ Bseff kc// , and ⊥ε is a usually small number characterising the heat flux into the 
wall perpendicular to field lines. 
 
The above boundary conditions are of Robin type, which relate derivative and function values 
at the same grid point. As in our scheme the gradients are defined in the intermediate grid 
points only, we express them at the boundary points ),( ji  by: 
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A useful test example is given by the magnetic field configuration used in Fig. 3, which 
shows a poloidal cut through the separatrix- limited plasma of a divertor tokamak, whose 
divertor plates coincide with sections of the rectangular computational boundary. For 
generality, a geometry with two X-points, lying on non-coincident magnetic flux surfaces, is 
chosen. A heat source, spatially constant over the whole computational domain was assumed 



for this test case. This formulation, together with the above-mentioned boundary conditions, 
and realistically high values of ⊥χχ ///  results in the formation of a thin, nearly flux-surface 
aligned boundary layer (the “scrape-off layer” [6] -SOL) along the inner separatrix.  In codes 
addressing specifically transport in the edge region ([7-9]), this zone would typically be 
treated using coordinates aligned with the flux-surfaces. Using simple cylindrical 
coordinates ϕ,, zr , with ϕ  the (ignorable) toroidal coordinate is therefore a realistically 
severe test case for our present scheme.  
 
Realistic values of heat conductivity in the edge region of tokamak plasmas correspond to 
ratios of ⊥χχ /||  in the range of 108. As we make use of the toroidal symmetry which reduces 
the problem to a 2d geometry, an effective heat conductivity ratio 

( ) )/(/ 22222
|| ϕχχ BBBBB zrzr +++⋅⊥  enters actually into the calculations as a measure of the 

anisotropy. The poloidal to toroidal field ratio ( ) )/( 22222
ϕBBBBB zrzr +++  in a given tokamak 

varies over space (in particular vanishing at the axis and the stagnation point on the 
separatrix) and depends also on operating parameters. For the case shown here, its value at a 
reference point taken at the intersection of the outside separatrix with the mid-plane was 0.11. 
 
 
The temperature distribution calculated like this is shown in Fig. 3 in the form of iso-
contours. They show the expected formation of two scrape-off layers around the two 
separatrix flux surfaces. The vanishing of the effective heat conductivity ratio 

( ) )/(/ 22222
|| ϕχχ BBBBB zrzr +++⊥ in the proximity of the stagnation points causes there visibly 

significant temperature gradients along the flux surfaces open towards the wall.  (At the lower 
stagnation point, even a local maximum of T arises, which is, however, a - numerically 
correct - consequence of our unphysical assumption of a spatially constant heat source also 
outside the separatrix). 
 
A cross-sectional cut of the temperature profile across the 0=z  plane shows (Fig. 4) that the 
scrape-off layer region is the numerically most demanding region of the calculations. In fact, 
a minimum number of grid points is required to resolve it, as otherwise oscillations arise. This 
is clearly a strong argument for using a coordinate system allowing grid meshing in this 
region (or using a non-structured grid), which would of course be the case if flux surface 
coordinates were to be used.    
 
Without an adapted grid, use of a higher order scheme for this problem is not advantageous. 
The existence of the scrape-off layer introduces – albeit over a limited space region – a 
characteristic dimension perpendicular to flux surfaces which has to be resolved by a 
sufficient number of grid points. This annihilates most of the potential benefit of a higher 
order scheme, as one cannot use it to increase significantly the grid interval.    

 

3.2. Use of cylindrical coordinates including the r = 0 coordinate singularity 
 

In practice, even for the above 2-d example one would therefore use a coordinate system 
which is aligned at least approximately with the magnetic flux surfaces. Apart from 
advantages deriving from a better separation of parallel and perpendicular heat fluxes, this 
would allow also to apply meshing around critical flux surfaces, like – for the above example 
- around the separatrix region. Such coordinate systems share with cylinder coordinates (taken 



now in r, θ, z, with z substituting the toroidal direction) the property that a coordinate 
singularity appears at r = 0. To clarify the issues arising form this coordinate singularity we 
can use polar coordinates ( )θ,r , with the point r = 0 inside the computational region. The 
corresponding parallel heat fluxes, defined again at the intermediate grid points, are given by: 
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The divergence of the heat flux (except in the central point) is defined by: 
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These expressions show, of course, a singular behaviour at the central points r1, j = r = 0. To 
eliminate this singularity, we derive the equation for r =0 from integration of the heat flux 
equation over the volume inside r1/2 

qrdrd
r

⋅∇∫ ∫
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θ
2

0 0
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That way we find the following result for the equation for 0=r : 
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A simple, but severe test for this procedure can be constructed considering both circular 
coordinate and flux surfaces, but shifting the origin of the two with respect to the each other.  
For the present example we use a magnetic field described by the magnetic flux 
function: ( ) 23222 sin)1.0cos(),( θθθ rrr +−=Ψ   with magnetic field components defined by 

r
b

r
br ∂

Ψ∂
−=

∂
Ψ∂

= θθ
,1

, and a heat source given by ( )( ) 31,9 θrQ Ψ⋅=  , looking for a solution 

in the region ( )πθ 20,10 ≤≤≤≤ r . The boundary conditions at 1=r  are taken as Dirichlet 
conditions using the known analytical solution ( ) ( )θθ ,1, rrT Ψ−= . The consistency of this 
procedure is illustrated by the temperature profile taken at 0sin =θ  given in Fig. 5, which 
shows no visible influence of the coordinate singularity at 0=r on the solution.  The scaling 
of the error with grid size (Figure 6) is affected by several effects, in particular also by the 
intersection of the boundary by the field lines and the imposition of the analytical solution on 



it, which has stronger effect for high ⊥χχ /|| . Probably for this reason, the numerical error for 
a modest number of grid points is actually smaller in the case of higher ⊥χχ /|| , but 
approaches the results for lower values of ⊥χχ /||  if a sufficient number of grid points is 
taken.  
 
One prime reason for the choice of (approximately) aligned coordinates is the easy possibility 
of effective meshing. To illustrate this in the context also of the finite difference formulation 
in r,θ  (it had been shown in Ref.[1] already for the case of Fourier decomposition in the 
poloidal angle θ) in a simple model we consider a cylindrical 2-d plasma with flux surfaces 
given by θθ cos)1(02.0)(),( 22222 rrrrr s −+−=Ψ   producing a magnetic island at 6.0=sr . 
(Comparing these cases to the physically more realistic model of a single helicity resonant 
perturbation of an infinite aspect ratio, circular cross-section tokamak, which can also be 
treated as rigorously 2-d, one has to multiply the  values of ⊥χχ /||  used here by a factor of 
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ε , where q  and sq are the local and resonant values of the so-called safety factor 

θ

ϕε
B
B

q = , and ε  the local aspect ratio. This factor typically is of ( )210O  ).  The heat source 

used is 60450015000 23 +−= rrQ for 2.0≤r  and 0=Q beyond. In a radial cut through the 
O-point of the island (Fig. 7), the high parallel heat conductivity results in the formation of a 
plateau in the temperature profile, with very large radial second derivatives at its boundaries. 
Like in the problem of Figs. 3,4 these regions have to be well resolved, which can be 
accomplished with less effort if meshing in the corresponding regions of  r  is used. The plot 
of the global temperature profile shows hardly a dependence on the grid resolution, but a 
closer inspection of the near- separatrix region of the magnetic island, or a plot of the local 
error at the most sensitive point (Fig. 8) shows an improvement with grid number or meshing. 
As the thickness of the boundary layer forming around the island separatrix decreases with 
increasing ⊥χχ /|| , the resolution requirements, respectively the error increase with this 
parameter. 
 
 
4. Conclusions 
 
We have shown how to transfer the basic concept of the scheme presented in Ref. [1] for the 
treatment of the heat conduction problem in strongly magnetized plasmas also to a finite 
element formulation. The favourable properties regarding the suppression of pollution of the 
perpendicular by the parallel heat transport can be conserved, provided a proper hybrid 
formulation is used. Both the finite difference scheme of Ref. [1] and the finite element 
formulation of the present paper can be readily extended also to higher orders, albeit requiring 
in this case – for large values of ⊥χχ /||  and a large number of grid points –  the use of higher 
precision in the matrix solver.  
 
The favourable pollution properties, however, do not eliminate the need to resolve spatially 
well the regions with large second derivatives in T perpendicular to the flux surfaces, arising, 
in particular in boundary layers around the separatrix of divertor tokamaks, or around 
magnetic islands at resonant flux surfaces. This gives a strong motivation to use coordinates, 
at least approximately adapted to the flux surfaces, to allow localized fine-meshing of the 



grid. If, in addition, one coordinate line 1x is chosen so as to follow approximately the field 
lines, the effective ratio of  ⊥χχ /||  is reduced by a factor ( ) ( )BBxB ⋅∇×

21 . The benefit of our 
present scheme in the latter case is the greater tolerance to misalignment between B  and 1x∇ , 
making it well suited to nonlinear MHD codes - where it would be excessively cumbersome 
to adjust the coordinate system continuously to the magnetic field configuration - and to 
problems including regions of ergodised field lines. This feature has in fact been already 
exploited in Ref. [10], for the study of heat transport in the magnetic field of an infinite aspect 
ratio tokamak with circular plasma cross-section perturbed by several helical perturbations, 
using – in contrast to Ref. [1] - a 2-d grid and a Fourier representation of the perturbations in 
the 3rd direction. 
 
Appendix: Boundary conditions for heat conduction equation at a 
wall 
 
 
 
 
 
 
Figure Captions: 
 

 
 
Figure 1: Error scaling 1)0,0( 1 −−T with grid spacing hyx =Δ=Δ of different finite element 

schemes for the NIMROD test case, for values of ⊥χχ /|| = 103 (Fig.1a), 106 (1b) and 109 (1c). 
Shown are bi-linear conforming elements, using both results of our own code (full black 



squares) and those of the authors of Ref. [2] (open black squares), and results of Ref.[2] with 
bi-quadratic (open black triangles), bi-cubic (open black circles) and bi-quintic (open black 
diamonds) conforming elements, compared to the hybrid element schemes with bi-linear (red 
open squares) and bi-quadratic (red open circles) basis functions. 
 

 
Figure 2: Error scaling 1)0,0( 1 −−T  with grid spacing of the 2rd and 4th- order difference 

scheme for the NIMROD test case for different values of ⊥χχ /|| . For the second order 
scheme, the error is virtually independent of this ratio in the range 93 1010 − . For the fourth 
order scheme, round-off errors start becoming important for small grid intervals and high 
values of ⊥χχ /|| , if standard double precision is used. With improved precision the 
independence of the error from ⊥χχ /||  in the tested range is recovered. 
 



 
Figure 3: Temperature iso-contours (arbitrary units) in the poloidal cross-section of a divertor 
tokamak with assumed spatially constant heat source, computed with a second-order correct 
finite difference scheme and equidistant grid in zr, with 20481024×  grid points,  

8
|| 10/ =⊥χχ , 

34 10,10 −
⊥ == εδeff . The - spatially varying - ratio of the poloidal to toroidal 



magnetic field, determining the effective value of ⊥χχ /|| in the two dimensions is  
( ) 11.0)/( 22222 =+++ ϕBBBBB zrzr  at the outer outboard separatrix at the midplane 

( 0,22.2 == zr ) . The locations of the two inner and outer separatrices at the outboard 
midplane are indicated by the vertical lines. 
 

 
Figure 4: Radial temperature profile at 0=z for the case shown in Fig. 3, for computational 
grids with 256128×  and 20481024× , respectively. Zoom shows the proximity of the 
intersection with the two separatrices, where the largest nd2   derivatives of the temperature 
occur. A sufficient number of grid points over this region is needed to suppress local 
oscillations of the solution. 

 



 
Figure 5: Temperature profile across the 0sin =θ line for a test example computed in 
cylindrical θ,r -coordinates, with circular flux surfaces displaced with respect to the 
coordinate origin. Case shown refers to 15050× grid points in ,,θr respectively, 
and

9
|| 10/ =⊥χχ . 

 
 

 



Figure 6: Scaling with grid size of the error for the test case of Fig.5 at the location of 
temperature maximum, for

963
|| 10,10,10/ =⊥χχ , for fixed ratio of radial to azimuthal grid 

points ( )31=θNNr . 
 

 
Figure 7: Radial cut of the temperature distribution for a magnetic field configuration with an 
island, for the θ -value of the O-point ( )0=θ , for

6
|| 10/ =⊥χχ . The results are overlayed for 

two grid resolutions without meshing, with == θNNr  128 and 1024, respectively and a case 
using radial meshing, with 128=rN  and 1024=θN . 
 



 
Figure 8: Scaling of error (measured at 0,49.0 == θr , where it is maximum) with radial grid 
size, for 

6
|| 10/ =⊥χχ and 810 , with and without radial meshing, for a constant value 

of 1024=θN . 
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