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Abstract

The chemical master equation is solved by a hybrid method coupling a
macroscopic, deterministic description with a mesoscopic, stochastic model.
The molecular species are divided into one subset where the expected val-
ues of the number of molecules are computed and one subset with species
with a stochastic variation in the number of molecules. The macroscopic
equations resemble the reaction rate equations and the probability distribu-
tion for the stochastic variables satisfy a master equation. The probability
distribution is obtained by the Stochastic Simulation Algorithm due to
Gillespie. The equations are coupled via a summation over the mesoscale
variables. This summation is approximated by Monte Carlo and Quasi
Monte Carlo methods. The error in the approximations is analyzed. The
hybrid method is applied to three chemical systems from molecular cell
biology.

Keywords: master equation, reaction rate equations, stochastic simula-
tion algorithm, Monte Carlo method, Quasi Monte Carlo method, stochas-
tic chemical kinetics
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1 Introduction

In a well stirred chemical system, the chemical reactions are often modeled by the
reaction rate equations. These equations form a system of non-linear, coupled or-
dinary differential equations (ODEs). Such a macroscopic model provides a good
description of the time evolution for the concentrations of the chemcial species
of the system in many cases e.g. when the number of molecules of each kind is
large and in the absence of critical phenomena. On the other hand, the species

1



with low copy number are not well described by a deterministic and macroscopic
model since they are subject to random fluctuations which cannot be neglected
and in many cases have a great impact on the behavior of the system. In a bio-
logical cell, the underlying assumptions for the reaction rate equations are often
violated [1, 4, 24, 27, 30, 31, 33, 34]. At least some species are usually present
in low copy numbers. For example, mRNA usually exists in one or a few copies,
while transcription factors may be present in the range from ten to hundreds of
molecules. Yet other components could be active in large numbers and approach
macroscopic values. Thus, a realistic model must take the inherent randomness
into account and therefore need to be of stochastic nature. A disadvantage with
stochastic models is the increase in computational complexity compared to the
reaction rate equations. Another source of computational difficulties is the dif-
ferent scales both in time and in reaction rates.

One way to model coupled chemical reactions stochastically at a mesoscopic
level is to the use the Stochastic Simulation Algorithm (SSA) proposed by Gille-
spie [10]. This Monte Carlo algorithm yields a correct realization of the process,
but the computing time required to approximate the probability distribution of
the species in the system is often dictated by the reactions involving the molecules
with the largest copy numbers or the fastest reaction rates. They may well be the
components where the stochastic description is the least important. The conver-
gence rate is also slow for this method and it can be computationally cumbersome
to obtain detailed information of the probability distributions when the number
of different reacting molecules is large.

The underlying stochastic process is often assumed to be memory lacking or
Markovian. Then the time evolution of the probability distribution is described
by a difference-differential equation, the chemical master equation [9, 18]. One
molecular species corresponds to one spatial dimension in the equation. Analyti-
cal solutions of this equation are known only for very simple chemical systems and
numerical solution is necessary for realistic systems. Direct numerical solution
of the master equation suffers from the curse of dimensionality as the compu-
tational work and storage requirements grow exponentially with the number of
dimensions or reacting species. Consequently, this often limits the size of the
models to four or maybe five dimensions.

Different ways to avoid the exponential growth have been proposed, either by
approximations of the master equation [32] or dimension reduction by introducing
assumptions about the behavior of different components [34]. In the first case,
the master equation is approximated by the Fokker-Planck equation, a partial
differential equation derived from a truncated Taylor expansion of the master
equation [9, 18]. The discretized Fokker-Planck equation can be solved with fewer
variables compared to the master equation, but this approach is still limited by
an unfavorable rise in computational time with increasing number of species.
The second approach relies on some previous knowledge of the system in order
to reduce the dimension of the problem. While this can result in a considerable
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reduction of the complexity, a profound knowledge of the biological system is
required to introduce some simplifying assumptions. For moderate numbers of
reacting species, sparse grid methods are an alternative [15].

With SSA [10] the work grows linearly with the number of species but for
systems with different time scales the method is slow owing to the explicit time
stepping. By allowing more reactions to take place in a time step or assum-
ing approximate relations between the species, longer time steps are possible
[3, 11, 28, 29]. There are efficient numerical methods to solve ODEs and the fast
components are modeled by deterministic equations and other components are
treated with a stochastic model in [14, 19].

A separation of the chemical compounds into a subset of variables that can
be treated as normally distributed with a small variance and a subset of variables
that need a stochastic treatment is suggested in [22]. Equations are derived for
the expected values of the first subset. They can be solved given the proba-
bility density function (PDF) of the stochastic variables. This PDF satisfies a
Fokker-Planck equation and is solved by a finite volume scheme in [22] but the
dimension of the stochastic problem is then restricted to, say, five. Here, we apply
SSA to the stochastic part and compute the coupling to the deterministic part
using Monte Carlo and Quasi Monte Carlo summation [2, 12]. The equations for
the expected values are integrated in time by an unconditionally stable, implict
method. Hence, if the species in the fast reactions are treated macroscopically,
then the small time steps in SSA are avoided as in [14, 19]. Our method can be
regarded either as a means to introduce stochasticity in some components in the
reaction rate equations or as a way of improving the efficiency of SSA by reducing
the number of species in its system state vector.

In the next section, the nonlinear system of differential equations for the ex-
pected values and the master equation for the PDF of the stochastic variables
are derived. The solution algorithm for the coupled system is described in Sec-
tion 3. The errors in the solution are discussed and the computational work
is estimated in Section 4. Three systems in molecular biology are simulated in
Section 5 using our algorithm. In one example, the behavior of the macroscopic
model is sensitive to a parameter but addition of stochastic variables removes
this sensitivity. In another example, the full SSA simulation is compared to a
mixed macroscopic-mesoscopic model. The difference in the probability distribu-
tion of critical components is small while the savings in computational work are
significant. Finally, conclusions are drawn in the last section.

The notation in the paper is as follows. The i:th element of a vector v is
denoted by vi. If vi ≥ 0 for all i, then we write v ≥ 0. The `p-norm of v of

length N is ‖v‖p = (
∑N

i=1 |vi|p)1/p. The set of integer numbers is written Z and
Z+ denotes the non-negative integer numbers. In the same manner, R denotes
the real numbers and R+ is the non-negative real numbers.
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2 The system of equations

Assume that we have a chemical system with N active molecular species Xi, i =
1, . . . , N , and that xi denotes the number of molecules of substrate Xi. The
system has a state vector x ∈ ZN

+ , and a reaction r in the system is a transition
from a state xr to x so that xr = x + nr with nr ∈ ZN . Only a few components
of nr are nonzero. The probability of the reaction to occur per unit time is the
non-negative propensity wr(xr, t). The change in the state vector by a reaction
r can now be written

xr
wr(xr,t)−−−−→ x, nr = xr − x. (1)

The PDF p(x, t) for the system to be in the state x at time t satisfies the
chemical master equation [9, 18]. With a splitting of nr into two parts so that

nr = n+
r + n−r , n+

ri = max(nri, 0), n−ri = min(nri, 0),

the master equation for R reactions is

∂p(x, t)

∂t
=

R∑
r = 1

x + n−r ≥ 0

wr(x + nr, t)p(x + nr, t)−
R∑

r = 1

x− n+
r ≥ 0

wr(x, t)p(x, t). (2)

It follows from [8] that the total probability
∑

x∈ZN
+

p(x, t) is constant in time.

In order to reduce the computational complexity of solving (2), x is split in
[22] into two parts xT → (xT ,yT ) with x ∈ Zm

+ , y ∈ Rn, and N = m + n. In
the same manner, the transition vector nr is split nT

r → (mT
r ,nT

r ) for reaction
r. The dimensions of mr and nr are mr ∈ Zm

+ , nr ∈ Zn
+. The corresponding

stochastic variables are Xi, i = 1, . . . , m, and Yi, i = 1, . . . , n. The assumption
is that the stochastic variables Yi are mutually independent, independent of Xi,
and normally distributed with a small variance. Then the PDF of the full system
is written

p(x,y, t) = γnp0(x, t) exp(−
n∑

j=1

(yj − φj(t))
2

2σ2
j

), (3)

with the normalizing constant γn = (2π)−n/2
∏n

j=1 σ−1
j . Equations will be derived

for p0 and φ ∈ Rn such that p approximately fulfills (2).
The marginal PDF of p in (3) satisfies

p0(x, t) =

∫
p(x,y, t) dy,

where the domain of the integral is Rn. The scaling of p0 is such that the total
probability satisfies

∑

x∈Zm
+

∫
p(x,y, t) =

∑

x∈Zm
+

p0(x, t) = 1. (4)
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The expected value of Yk is

E[Yk] =
∑

x∈Zm
+

∫
ykp(x,y, t) dy = φk(t).

A differential-difference equation for p0 is derived in [22] assuming that σj ≤ σ
and that σ is small. Ignoring terms proportional to σ2 for a vanishing σ, the
equation is for R reactions

∂p0(x, t)

∂t
=

R∑
r = 1

x + m−r ≥ 0

wr(x + mr,φ(t), t)p0(x + mr, t)

−
R∑

r = 1

x−m+
r ≥ 0

wr(x,φ(t), t)p0(x, t).

(5)

This is a master equation for p0 with propensities depending on the expected
values φ. It follows from (5) that the total marginal probability

∑
x∈Zm

+
p0(x, t)

is constant (cf. (2)) as presupposed in (4).
The differential equation for φj, j = 1, . . . , n, is for a single reaction, R = 1,

dφj

dt
=
∑

x∈Zm
+

∫
yj

∂p

∂t
dy

=
∑

x+m−
r ≥0

wr(x + mr,φ(t), t)p0(x + mr, t)(φj − nrj)

−
∑

x−m+
r ≥0

wr(x,φ(t), t)p0(x, t)φj

= φj

∑

x∈Zm
+

∂p0(x, t)

∂t
− nrj

∑

x+m−
r ≥0

wr(x + mr, φ(t), t)p0(x + mr, t)

= −nrj

∑

x+m−
r ≥0

wr(x + mr,φ(t), t)p0(x + mr, t),

(6)

by (2), (5), the conservation of the total marginal probability, and after ignoring
small terms of O(σ2), see [22]. The equation is simplified by removing the shift
mr so that for R reactions

dφj

dt
= −

R∑
r=1

nrj

∑

x∈Zm
+

wr(x,φ(t), t) p0(x, t), j = 1, . . . , n. (7)

This system of differential-summation equations is equal to the reaction rate
equations for the chemical system when the distribution of all species is assumed
to be normal with small variances.

5



Suppose that the mesoscopic X participates in only the first ρ reactions. Then
mr = 0, r = ρ + 1, . . . , R, and the right hand side in (5) is reduced to

ρ∑
r = 1

x + m−r ≥ 0

wr(x + mr, φ(t), t)p0(x + mr, t)

−
ρ∑

r = 1

x−m+
r ≥ 0

wr(x,φ(t), t)p0(x, t).

(8)

If ρ = 0, then ∂p0/∂t = 0 and p0(x, t) = p0(x, 0). The summation over x in (7)
should then be performed in a preparatory stage before the simulation starts.

Suppose that wr depends on x only in the κ first reactions. Then the right
hand side in (7) is

−
κ∑

r=1

nrj

∑

x∈Zm
+

wr(x,φ(t), t) p0(x, t)−
R∑

r=κ+1

nrj

∑

x∈Zm
+

wr(φ(t), t) p0(x, t) =

−
κ∑

r=1

nrj

∑

x∈Zm
+

wr(x,φ(t), t) p0(x, t)−
R∑

r=κ+1

nrjwr(φ(t), t).

(9)

If κ = 0, then (7) are the reaction rate equations.
Two equations have been derived for p0 in (5) and for φj in (7). They are

coupled via the expected values of the propensity of each reaction in (7) and the
expected values of the species in the propensities in (5). The dimension of the
stochastic problem has been reduced from N in (2) to m in (5). The cost for this
reduction is the increased number of dependent variables from 1 in (2) to n + 1
in (5) and (7) but the work grows at most as a polynomial in n solving (5) and
(7) compared to an exponential growth in n when is (2) solved.

3 Solution algorithm

The two systems of equations (5) and (7) are solved numerically by a hybrid
method where p0 in (5) is determined by SSA and φ in (7) is computed by a
deterministic time stepping method.

3.1 Solution of the master equation

The SSA is applied to the chemical system defined by the master equation for p0

in (5) with the right hand side (8). Trajectories of the system are simulated by
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updating the state vectors after each reaction in [10]. Then the probability for
the system to be in a state x at time tν is approximated by

p0(x, tν) ≈ 1

M

M∑
j=1

Ψj, Ψj =

{
1, xj = x,
0, otherwise,

(10)

where M is the number of trajectories. The error in p0 due to the finite M is
analyzed in Sect. 4.1

The time evolution of the state is simulated by SSA in the following way. Let
wν be the sum of the propensities at tν so that

wν =

ρ∑
r=1

wr(x
ν ,φ(tν), tν), (11)

cf. (8). In the direct method in [10], the next reaction after tν occurs at tν +∆τ ν ,
where the time increment ∆τ ν is exponentially distributed with mean 1/wν . If the
partitioning of the species into x and y is chosen such that mr = 0 for the largest
propensities wr, i.e. wr is small for r ≤ ρ, then the expected value of ∆τ ν is longer
than the time step without partitioning making SSA more efficient. The reaction
number µ with 1 ≤ µ ≤ R is chosen with probability wµ(xν ,φ(tν), tν)/wν . With
the stoichiometric matrix S defined by

S = (m1,m2, . . . ,mρ)

and the unit vector ej ∈ Rρ with 1 in the j:th position, the algorithm can be
written as a stochastic process for each trajectory

Xν+1 = Xν − Seµ, tν+1 = tν + ∆τ ν . (12)

The M state vectors Xν
j are stored in a trajectory matrix Tν such that Tν

j· =
(Xν

j )
T , j = 1, . . . , M. The evaluation of p0 in (10) for a given x is simplified if

the rows of the matrix are sorted such that Tν
j1 increases for increasing j. Then

each interval in j with a constant Tν
j,l is sorted in ascending values of Tν

j,l+1 for
l = 1, . . . , M − 1. Identical rows are removed and the frequency of the row is
saved. Then the row in Tν corresponding to a particular xk is easily found by
binary search.

3.2 Solution of the differential-summation equation

The time derivative of the expected value in (7) is approximated by an implicit
backward differentiation formula of order 2 (BDF2) with variable time steps [13].
The increment between tk and tk+1 is denoted by ∆tk. Then the new value of
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φk+1 at tk+1 is computed by

αk
0φ

k+1 = ∆tkF(φk+1, tk+1)− αk
1φ

k − αk
2φ

k−1,

ω(x,φ, t) = −
R∑

r=1

nrwr(x,φ, t),

Fj(φ, tk+1) = −
∑

xk+1∈Zm
+

ωj(x
k+1, φ, tk+1) p0(x

k+1, tk+1), j = 1, . . . , n,

αk
0 = (1 + 2θk)/(1 + θk), αn

1 = −(1 + θk), αk
2 = (θk)2/(1 + θk),

θk = ∆tk/∆tk−1,

(13)

see [13, 23]. A predicted value φ̂
k+1

is computed with an explicit scheme using

α̂k
0φ̂

k+1
= ∆tkF(φn, tn)− α̂k

1φ
n − α̂k

2φ
k−1,

α̂0
k = 1/(1 + θk), α̂1

n = θk − 1, α̂2
k = −(θk)2/(1 + θk),

(14)

see [23]. The local temporal discretization error τ k+1 in the difference approxi-

mation is proportional to (∆tk)2. It is estimated by subtracting φ̂
k+1

from φk+1

and dividing by ∆tk. The next time step ∆tk+1 is chosen after comparing τ k+1

with an error tolerance so that τn+2 is expected to satisfy the tolerance in the
next step, see Sect. 4.4.

The system of nonlinear equations in (13) satisfied by φk+1 is solved by New-

ton iterations. The initial guess of φk+1 in the iterations is φ̂
k+1

. The elements
of the Jacobian J in Newton’s method is then computed as

Jij =
(∑

x∈Zm
+

ωi(x, φ + ej∆φj, t)p0(x, t)−∑x∈Zm
+

ωi(x,φ, t)p0(x, t)
)

/∆φj,

i, j = 1, . . . , n,

(15)

i.e. using first order forward differences. The second summation over x needs to
be evaluated only once with this approximation of the derivatives. The number
of participating species in every reaction is small implying that J is rather sparse.
This fact or if κ is small in (9) makes the summation over x necessary only for a
small fraction of J. To take advantage of this, the system specification includes
a dependency matrix D ∈ Zn×n, in which the elements Dij take the integer value
1 when ωi in (13) depends on the chemical species j and 0 otherwise. The sum-
mation over the stochastic variables is necessary only for Jij with Dij = 1. The
Jacobian is stored in factorized form and is recomputed only if the convergence
of the iterations is too slow.

The stability of the integration in (13) is insensitive to the stiffness of ω
with respect to φ. If possible, species involved in reactions with propensities
potentially contributing to the stiffness of J should be treated deterministically
in φ.
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The time steps in (12) and (13) are not necessarily syncronized so that tν+1 =
tk+1. The PDF p0 in (13) is calculated from (10) where all the trajectories have
been advanced by (12) so that tν+1 ≤ tk+1 but in the next step tν+2 > tk+1. The
value of φν in (11) at tν , tk < tν ≤ tk+1 is taken to be constant during the SSA
steps and equals the value computed at tk.

3.3 Approximation of the summation

The sums over x in (13) and (15) can be expensive to compute with exponential
growth of the work in the dimension of x even if the summation is restricted to
a finite but still multidimensional domain in Zm

+ where p0 6= 0. An alternative
to summation over Zm

+ is to approximate the sums by a Monte Carlo (MC) or a
Quasi Monte Carlo (QMC) approach.

Let Ω = {x | 0 ≤ xi ≤ xmax} ⊂ Zm
+ for some xmax > 0 and assume that p0 = 0

outside Ω. Then in (13)

∑
x∈Ω

ω(x, φ, t) p0(x, t) = E[ω(X0,φ, t)] ≈ ζ

K

K∑

k=1

ω(xk, φ, t) p0(xk, t), (16)

where X0 has the PDF p0. Let xj,min and xj,max ≤ xmax be such that p0 = 0 if
xj < xj,min or xj > xj,max for every j. Then the factor in (16) is

ζ =

ρ∏
j=1

((xj,max + 1)− xj,min).

The K quadrature points xk are chosen by an MC or QMC method.
In a standard MC method, the sum in (16) is evaluated by generating pseu-

dorandom vectors xk with xki having uniform distribution in [xi,min, xi,min +
1, . . . , xi,max]. The method converges slowly with the rate K−1/2 but indepen-
dently of m and the regularity of ωp0 [2, 12].

An alternative is to use QMC methods where the sequence of quasirandom xk

is generated deterministically. For xki, a quasirandom number ξ in [0, 1) is first
generated according to some rule. Then it is scaled so that xki is the integer part
of xj,min + ((xj,max + 1) − xj,min)ξ. The convergence rate for smooth functions
is now of O(K−1(log K)m), which is an improvement compared to MC at least
for a moderate m [2]. The summation errors in MC and QMC are estimated in
Sects. 4.2 and 4.3.

The sum (16) can be computed by an acceptance-rejection method [2, 12]
where a uniformly distributed trial point xk is accepted in the sum with proba-
bility proportional to p0. Then the summands can be written vkωj(xk,φ, t) where
the weights vk are one or zero depending on if the point is accepted or rejected.
The convergence rate of QMC depends on the smoothness of the summand and it
may deteriorate because of the lack of regularity in vkωj(xk,φ, t). By introducing
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a linear approximation of vk close to the switch from 1 to 0, better convergence is
achieved in [2, 25]. The convergence of the MC and QMC methods are compared
using Faure sequences [6] for QMC in a numerical example in Sect. 5.

4 Analysis of the algorithm

The three major sources of approximation errors are the calculation of the PDF in
Sect. 3.1, the evaluation of the sums with MC or QMC in Sect. 3.3, and the time-
integration of the differential-summation equation in Sect. 3.2. These errors are
analyzed and computable estimates of them are proposed in this section and the
growth of the computational work is estimated when the number of trajectories
M and the number of quadrature points K increase.

4.1 Error in the marginal PDF

The stochastic variable Ψj at tν in (10) is 1 with probability p0(x, tν) in trajectory
j of the chemical system. Then according to the law of the large numbers [2, 12],
p0 is approximated at x = xk by

p̄ν
0k =

1

M

M∑
j=1

Ψj.

In order to estimate the variance of the PDF at tν and xk the original trajectory
matrix is subdivided in J parts each one of size M̃ and with an approximation
p̃ν,j

0k . The variance σ2
Mk in p̃ν,j

0k is estimated by the sample variance

s2
Mk =

1

J − 1

J∑
j=1

(p̃ν,j
0k − p̄ν

0k)
2, (17)

where the pooled estimate is given by p̄ν
0k = 1

J

∑J
j=1 p̃ν,j

0k . The error εMk in p̄ν
0k

is normally distributed by the central limit theorem, N (0, σ2
Mk/J). If σ2

Ψ is the
variance of Ψj, then σ2

Mk is σ2
Ψ/M̃ and the variance of p̄ν

0k is σ2
Ψ/(JM̃) = σ2

Ψ/M .
An approximate 95 % confidence interval for εMk is given by the Student t-
distribution [12]

|εMk| ≤ 2sMk/
√

J. (18)

4.2 Error in the expected values

Suppose that the PDF in (16) is known by its exact value. The sum is the
expected value of ω at time t with the parameter φ. In an MC method, the
sum is computed at tν by determining trial vectors xk with uniformly distributed
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components. Let the sum of the i:th component at tν be evaluated Q times using
K trial vectors each time

Sqi =
ζ

K

K∑

k=1

ωi(x
ν
K(q−1)+k,φ

ν , tν) p0(x
ν
K(q−1)+k, t

ν), q = 1, . . . , Q. (19)

Usually, Q is much smaller than K. The pooled estimate of E[ω(X,φ, t)] is

Si =
1

Q

Q∑
q=1

Sqi. (20)

It approximates the expected value with the error εKi. The sample variance s2
i

of Sqi is

s2
i =

1

Q− 1

Q∑
q=1

(Sqi − Si)
2. (21)

It follows again from the central limit theorem that the error in Si with probability
0.95 is bounded by

|εKi| ≤ 2si/
√

Q. (22)

The error εKi is normally distributed, N (0, σ2
Ki/Q), where σ2

Ki is the variance
of Sqi. According to the central limit theorem, σKi decays as K−1/2 when K
increases. Consequently, the bound on εKi is proportional to 1/

√
KQ.

The error in the QMC method is estimated by scrambling the sequences as in
[16, 26]. The digits of a quasirandom number in a base are permuted randomly to
obtain the scrambled number. The advantage with scrambling is that the rapid
convergence of QMC is preserved while allowing for error estimates as in MC.
The sum Sqi is computed as in (19). The error estimate is given by (21). Since
σKi ∼ K−1, the right hand side in (21) decreases as 1/(K

√
Q) for increasing K

and Q and a moderate m.

4.3 The total summation error

With ων
k = ω(xν

k,φ
ν , tν), we derive the total error in the summation from (16)

E[ω(X0,φ, tν)] =
ζ

K

K∑

k=1

ων
k p0(x

ν
k, t

ν) + εK

=
ζ

K

K∑

k=1

ων
k p̄ν

0k +
ζ

K

K∑

k=1

ων
k (p0(x

ν
k, t

ν)− p̄ν
0k) + εK .

(23)
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The second sum on the right hand side is a sum of independent and normally dis-
tributed variables εMk = p0(x

ν
k, t

ν)− p̄ν
0k. The difference εν

i between the expected
value and the sum S is in the i:th component

εν
i = E[ωi(X0, φ, tν)]− Si = εKi +

ζ

K

K∑

k=1

ων
ki εMk. (24)

It follows from Sect. 4.1 that the sum Σi in (24) has the distribution

Σi ∼ N (0, ( ζ

K

)2 K∑

k=1

(ων
ki)

2σ2
Mk

J

)
.

If σMk ≤ σM for all k, then the variance of Σi is bounded by

Var(Σi) ≤ ζ

K

σ2
M

J

ζ

K

K∑

k=1

(ων
ki)

2. (25)

By (24), Sect. 4.2, (25), and the bound σKi ≤ σK , i = 1, . . . , n, the total
summation error εν

i is normally distributed with zero mean value and a variance
that is bounded by

Var(εν
i ) ≤

σ2
K

Q
+

ζ

K

σ2
M

J

ζ

K

K∑

k=1

(ων
ki)

2, i = 1, . . . , n. (26)

The variance σ2
K and the upper bound σ2

M in (26) are estimated by the sample
variances in (17) and (21). Since σ2

K decays with increasing K and σ2
M with

increasing M , Var(εν
i ) can be made as small as we wish by choosing K and M

sufficiently large.

4.4 The integration error

The evaluation of F in (13) is perturbed by the error εk+1 caused by the sum-
mation. It is equal to εν in (24), where tν is the time for the most advanced
trajectory in time in the SSA but still tν ≤ tk+1. The discretization error in the
approximation of the time derivative is denoted by τ k+1. Following [13] and [23],
the local error in the corrector solution φk+1 of (13) is

φ(tk+1)− φk+1 = α−1
0 ∆tk(τ k+1

c − εk+1),

τ k+1
c = −1 + θk

6θk
(∆tk)2φ′′′ +O((∆t)3),

(27)

where ∆t = max(∆tk, ∆tk−1). The local error in the predictor φ̂
k+1

from (14) is

φ(tk+1)− φ̂
k+1

= α̂−1
0 ∆tk(τ k+1

p − εk),

τ k+1
p =

1

6θk
(∆tk)2φ′′′ +O((∆t)3).

(28)
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The error equation approximately satisfied by the global error e in the cor-
rector is

de

dt
− ∂F

∂φ
e = τ c − ε. (29)

The aim is to control the driving right hand side in (29) by taking ∆tk sufficiently
small and K and M sufficiently large.

The leading term in the temporal discretization error τ k+1
c is computed by

first combining (27) and (28) and then obtaining an estimate of φ′′′(tk+1). This
estimate is inserted into τ k+1

c in (27) to arrive at an expression for the j:th entry

τ k+1
cj − εk+1

j = −1 + 2θk

2 + 3θk

(φk+1
j − φ̂k+1

j

∆tk
+ (1 + θk)εk

j + εk+1
j

)
+O(∆t3). (30)

Let the variance of εl
j be denoted by σ2

ε . Since εl
j is normally distributed with

mean 0, N (0, σ2
ε ), (see Sect. 4.3) and independent of ε`

j, ` 6= l, the leading term
in (30) is

N (−1 + 2θk

2 + 3θk

φk+1
j − φ̂k+1

j

∆tk
,
(1 + 2θk

2 + 3θk

)2
((1 + θk)2 + 1)σ2

ε ). (31)

The first term in (30) depends on ∆t2 but the second and third terms are inde-
pendent of ∆t. Suppose that we want the error in the right hand side of (29) to
be less than η with a 95 % confidence interval. Choose a fraction γ, 0 < γ < 1,
a time step ∆tk, K,Q, M, and J such that

|φ
k+1
j − φ̂k+1

j

∆tk
| ≤ 2 + 3θk

1 + 2θk
γη,

σε ≤
(σ2

K

Q
+

ζ

K

σ2
M

J

ζ

K

K∑

k=1

(ων
kj)

2
)1/2 ≤ 2 + 3θk

1.96(1 + 2θk)
√

1 + (1 + θk)2
(1− γ)η,

(32)

for all j using (26). Then by (30) we have

|τ k+1
cj − εk+1

j | ≤ η (33)

with probability 0.95. The variance σ2
Ki and the bound σM are estimated by (21)

and (17). The parameter γ determines the fraction of the bound on τ k+1
cj − εk+1

j

to be satisfied by the first, deterministic term in the error. With constant time
steps, θk = 1, the upper bounds in (32) are simplified to

|φ
k+1
j − φ̂k+1

j

∆tk
| ≤ 1.67γη, σε ≤ 0.38(1− γ)η.
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4.5 Computational work

For large systems and a large number of trajectories M , the contribution of SSA
will dominate the total computational work of the hybrid solver. The work of
SSA grows linearly with ρ (and also with m) in (8) for one trajectory.

Suppose that the work in SSA to determine M trajectories is cρM and that
the proportion ϑ of the total CPU time in the hybrid algorithm is spent by SSA.
Assuming c to be constant, the quotient between the hybrid time THY B and the
time TSSA for SSA applied to all variables is

TSSA

THY B

=
cRM

cρM
=

ϑR

ρ
. (34)

With ϑ close to 1, we can expect the reduction to be of the order ρ/R.
The overhead associated with the solution of the deterministic equations (7)

can be estimated by considering the other major contributions to the algorithm.
Assuming that a total of QK QMC vectors are used in the evaluation of the
sum, p0 has to be calculated at QK points. For the evaluation of p0, the tra-
jectory matrix T is first sorted according to rows, using the Matlab routine
sortrows, which is an implementation of the quicksort algorithm with a work of
O(mM log M). Obviously, many rows of T will consist of equal vectors for M
reasonably large. They are removed using a modification of the Matlab built-in
routine unique, with a work of O(mM), giving a modified trajectory matrix T̂
with M̂ ≤ M rows. One quadrature point is then found in T̂ using binary search
with work proportional to m log M̂ . In total, the work of evaluating the sum is
O(mM log M) + O(mQK log M̂). The evaluation of the full Jacobian J and F
would need work of O(n2QK) and O(nQK), respectively, and the solution of the
system of linear equations in the Newton iterations costs O(n2) operations with
a factorized J. Thanks to the sparsity of the Jacobian the work is typically much
lower, e.g. with an iterative method. The major terms in descending order in the
estimate of the computational work W in one time step of the hybrid algorithm
are

W = cmM + c1mM log M + c2mQK log M̂. (35)

The first term in (35) due to SSA is usually much larger than the other ones in
the experiments in Sect. 5, i.e. ϑ is close to 1.

5 Numerical results

The hybrid algorithm is applied to the simulation of three different chemical sys-
tems. The first system is small with two metabolites and two enzymes. The
production of the metabolites is controlled by the enzymes. The second system
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models a molecular clock where the reaction rate equations fail to produce oscilla-
tions for a certain parameter value. Introducing a few stochastic variables makes
the model much more robust to changes in the parameter. This is an example
where addition of stochastic noise improves the original model based on the re-
action rate equations. The third system is a mitogen-activated protein kinase
(MAPK) signaling cascade with 22 molecular species. Only two of these species
are treated stochastically. The results from the simulations with the full system
and the reduced system are similar but the computational work to simulate the
reduced system with good accuracy is much lower.

The most time consuming parts of the hybrid solver, i.e. SSA, evaluation of
p0, MC or QMC summation, and computation of the Jacobian J, are implemented
in C and wrapped as mex-files in a Matlab environment. Different systems are
defined by the implementation of one function that performs SSA on the reduced
system, and one function that returns the right hand side of the differential-
summation equations. To facilitate the generation of different hybrid splittings,
a graphical tool has been developed in Python that reads models in the SBML
format [17] and automatically generates the necessary C files given a desired
partitioning. The reaction rate equations are integrated by Matlab’s ode15s.
The code for generation of the quasi-sequence is written as a mex-file calling a
Fortran subroutine from [16]. This part is executed once initially and contributes
little to the total CPU time if the number of time steps is sufficiently large.

5.1 Metabolites controled by enzymes

The first system is a simple generic model with two metabolites A and B and
two enzymes EA and EB as in [22]. The production of A and B is regulated by
the enzymes. The reactions are

∅
kaeA
1+ a

Ki−−−→ A ∅
kbeB

1+ b
Ki−−−→ B

A + B
k2ab−−→ ∅

A
µa−→ ∅ B

µb−→ ∅

∅
keA

1+ a
Kr−−−→ EA ∅

keB

1+ b
Kr−−−→ EB

EA
µeA−−→ ∅ EB

µeB−−→ ∅
The reaction constants in (5.1) are:

ka kb k2 Ki µ keA keB Kr

0.3 0.3 0.001 60 0.002 0.02 0.02 30

Table 1: The parameters for the metabolite-enzyme model.
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The variables are partitioned so that the metabolites A and B are treated
as stochastic variables and the enzymes EA and EB are assumed to be normally
distributed with a small variance. In this case, the number of stochastic variables
decreases from N = 4 in the full model to m = 2 and n = 2, the number of
reactions is reduced from nine to ρ = 5 in (8), and the number of reactions with
propensities depending on x, κ, is seven in (9).
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Fig. 1: Isolines of the marginal probability density at t = 1000 for A and B (left) and
EA and EB (right) computed by SSA with M = 105.

The marginal probabilities from the SSA for the metabolites and the enzymes
are plotted in Fig. 1. The number of trajectories M approximating the PDFs is
105. The system is close to the steady state at t = 1000. The fluctuations of the
species A and B in (10) appear to be larger than for the enzymes in the figure.

Different summation techniques for (16) are evaluated in Fig. 2 with the
PDF based on M = 105 realizations at t = 1000. The slope of the curves has
been determined by a least squares fit to the data. The sums Sq, q = 1, . . . , Q,
are computed for Q = 30. Then the sample or empirical standard deviation is
determined (componentwise) as in (21).

In Fig. 2, the first component of the sample standard deviation is displayed.
Raw MC summation with pseudorandom numbers is compared to raw QMC sum-
mation using numbers from the Faure sequence generated with the algorithm in
[16]. The acceptance-rejection method (A-R) [2, 12] and a smoothing alternative
[2, 25] are tested. The discontinuity in the A-R method is replaced by a linear
function between 0 and 1 in [25]. One important consideration is the fact that
when for example the A-R method is used to generate numbers from the distri-
bution, fewer evaluation points will be accepted and used than in e.g. the raw
MC method. This means that K in (16) will be different for different methods.
Thus, the errors reported in Fig. 2 refer to the error obtained with a fixed num-
ber of trial points K. A fair comparison with the acceptance-rejection methods
would require sampling until the number of accepted points were within one unit
of K, but what we are interested in is which method gives the smallest error per
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generated random number, to account for the cost in generating the numbers
and most of all in evaluating the PDF. It has to be evaluated for all trial points,
not just the accepted ones. The best convergence rate with the lowest error is
achieved by standard QMC. This is the preferred method in the sequel.
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QMC, A−R (−0.52)
QMC, smoothed A−R (−0.52)
QMC, raw (−0.86)

Fig. 2: The sample standard deviation for different MC and QMC strategies. The
number in parenthesis is the inclination of the curve.

The system is simulated with the hybrid solver. The time steps are chosen
adaptively with a relative error tolerance of 0.01. The maximal time step ∆tmax

is 5. The summation is performed by using a maximum of Q = 10 scrambled
sequences. They are generated and stored initially and then used to form esti-
mates of the sum and the error as in (20) and (22). In the simulations reported
here, K = 215 ≈ 33 · 103 quasirandom points were used for each sequence. If
the tolerance in (32) was met for any number of sequences less than Q, no more
sequences were used. The maximal value of the estimated leading terms of the
error in (30) and σε in (32) are shown in Fig. 3. For this system, the error toler-
ance (η = 0.01, γ = 0.9) was easily met, and the time step reached its maximal
value after approximatively 55 s and remained fixed for the rest of the simulation.
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Fig. 3: The maximal local time discretization errors (left) and the maximal standard
deviation in the QMC approximation of the sum (right) with K = 215,M = 105.

From (32) and Sect. 4.2 some conclusions can be drawn concerning how to
choose K and Q. The bound of σ2

ε in (32) consists of two terms, one corresponding
to σ2

K and the other to σ2
M . Fig. 4 shows these terms separately as computed

during the simulation. In this case, the second term dominates.
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Fig. 4: The first term involving σ2
K (left) and the second term involving σ2

M (right) in
(32) with K = 215,M = 105.

The state space is not large in this example. An upper bound on the second
term σ2

ε2 in the error is

σ2
ε2 =

ζ

K

σ2
M

J

ζ

K

K∑

k=1

(ων
kj)

2 ≤ ζ2σ2
M

JK
max
x∈Ω

ωi(x, φ, t)2 (36)

where ωi consists of the reaction propensities. In a model of a biological reac-
tor, the maximum of these propensities is seldom very large. Furthermore, in a
reaction rate model ωi corresponds to the time derivative of the species i, that is

|ωi(φ, t)| = |dφi

dt
|.
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For systems suitable for a hybrid approach, ideally we are allowed to take large
time steps in the deterministic part of the solver. For such systems the solution
will vary slowly, and the absolute values of the derivatives will be small. One
example where this is true is found to the right in Fig. 5 below. Obviously,
for stiff systems, the absolute value of the derivative will be large in some time
intervals. An example where this happens will be studied in the next section.

In either case, it is reasonable to conclude that for larger systems, ζ will
dominate the nominator of σ2

ε2 and it grows rapidly with an increasing number of
stochastic variables. To ensure that this term stays small it is advantageous to
choose large values of K and M . Also, the error in the QMC approximation of
the sum decreases as 1/(K

√
Q). This taken together, suggests that for a constant

KQ the smallest error is obtained for Q = 1, i.e. one single, long QMC sequence.
The price is that no simple error estimation is available. The results of the other
two simulations in Sects. 5.2 and 5.3 are consistent with these conclusions.

The hybrid method captures the behavior of the expected values of the full
model but the marginal PDF for A and B in Fig. 5 is not extended along
the diagonal in the same manner as the SSA solution in Fig. 1. However, the
distribution obtained with this solver compares very well with the results in [22]
where a Fokker-Planck equation approximates the master equation.
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Fig. 5: The probability density for A and B at t = 1000 (left) and the expected values
for EA and EB (right) computed with the hybrid solver.

The Matlab tool ’Profiler’ has been invoked to determine the time spent
in different parts of the algorithm. The number of quasirandom points for the
summation is 215 ≈ 33 · 103 and the final time is t = 103 in Table 2.
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Number of trajectories 103 104 105 106

Time spent in SSA [%] 3.3 18.7 44.7 50.9
Total CPU time [s] 35 48 181 1615

Table 2: Time spent in SSA.

We see in Table 2 that for many trajectories the SSA requires about 50 % of
the total time. The other major computational cost is the sorting of the state
vectors with algorithms provided by Matlab. They require almost 40 % of the
execution time for 106 trajectories. For this particular problem, there is no gain
in time using the hybrid scheme compared to the SSA. Indeed, for 106 trajectories
the time spent in SSA in the hybrid solver was 821 s compared to 872 s for the
full system.

5.2 Circadian rhythm model

The oscillator [1, 34] is a model for circadian rhythms, illustrating some common
control components that have been observed in such systems. This kind of control
system is designed to assure periodic oscillations of certain molecular species in
order to establish a circadian rhythm in the organism. Obviously, a system of
this kind is very complicated in an organism, and this model system is simplified.

The model has nine molecular species. Two genes Da and Dr and their
corresponding mRNA, Ma and Mr, are controlled by an activator and a repressor
A and R, synthesized from the respective mRNA. Furthermore, the activator
and repressor can associate and form a complex C, in which the activator A
is degraded. The variables D′

a and D′
r are the genes Da and Dr with a bound

activator. In the model it is assumed that there is only one gene coding for the
repressor and activator. Thus Da +D′

a = 1, and the same is true for the repressor
gene. The 18 reactions for the nine molecular species are

D′
a

θaD′a−−−→ Da

Da + A
γaDaA−−−−→ D′

a

D′
r

θrD′r−−−→ Dr

Dr + A
γrDrA−−−−→ D′

r





∅ α′aD′a−−−→ Ma

∅ αaDa−−−→ Ma

Ma
δmaMa−−−−→ ∅





∅ βaMa−−−→ A

∅ θaD′a−−−→ A

∅ θrD′r−−−→ A

A
δaA−−→ ∅

A + R
γcAR−−−→ C





∅ α′rD′r−−−→ Mr

∅ αrDr−−−→ Mr

Mr
δmrMr−−−−→ ∅





∅ βrMr−−−→ R

R
δrR−−→ ∅

C
δaC−−→ R





(37)
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The reaction constants are found in Table 3. For these parameters the sys-
tem exhibits a limit cycle but if the parameter δr is sufficiently small then the
macroscopic reaction rate equations quickly reach a stable fixed point and the
oscillations stop, see Fig. 6. It is shown by Vilar et al in [34] that a mesoscopic
description of the system continues to produce reliable oscillations. The stochas-
tic noise is obviously sufficient to perturb the trajectories away from the fixed
point to initiate new cycles. The parameter δr has two different values 0.2 and
0.08 in the numerical experiments.

αA α′a αr α′r βa βr δma δmr

50.0 500.0 0.01 50 50.0 5.0 10.0 0.5

δa δr γa γr γc Θa Θr

1.0 0.2 1.0 1.0 2.0 50.0 100.0

Table 3: Parameters for the Vilar oscillator.
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Fig. 6: Time evolution of the repressor R computed with the reaction rate equations.
The parameter δr is 0.2 (left) and 0.08 (right).

The variables are partitioned in the hybrid method into two subsets: A,R
and C are treated stochastically, corresponding to X in Section 2 with m = 3,
while the other variables are treated deterministically, corresponding to Y with
n = 6. There are ten stochastic reactions (ρ = 10 in (8)). The initial conditions
for the deterministic variables are 0.2 for the genes and 0 for the other species.
The stochastic variables are initiated as normal distributions centered around 10.
The probability density p0 is approximated with M = 105 trajectories in (10)
and K = 218 ≈ 2.62 · 105 quasi-random points in (16) are used in each sequence
in the integration algorithm (Q = 5). The system was solved with adaptive time
step selection with the error tolerance 0.05.
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Fig. 7: Time evolution of the mRNA variables Ma and Mr (left) and the gene variables
Da, D

′
a, Dr, and D′

r (right) computed with the hybrid method when δr = 0.2.

Sustained oscillations are obtained with the hybrid algorithm for δr = 0.2 in
Figs. 7 and 8. Fig. 8 also displays the length of the time steps taken by the
solver. As can be seen, small time steps are needed in regions where the solution
changes rapidly (cf. Fig. 7). Recomputing time steps after a failure to satisfy the
error tolerance is necessary occasionally in this example. This incurs an extra cost
when this oscillator is simulated with the hybrid algorithm. On the other hand,
sometimes a small time discretization error is not the highest priority since the
understanding of concepts is often the major goal rather than exact predictions.
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Fig. 8: Time evolution of the expected values of the activator A, the repressor R, and
the complex C computed with the hybrid method when δr = 0.2 (left) and the time
steps ∆t taken in the adaptive solver (right).

Both the maximal standard deviation of the QMC summation σK and the
standard deviation of the PDF measured by σM in (32) exhibit periodic oscilla-
tions with distinct maxima and minima in Fig. 9. The maxima of σK correspond
to time intervals with rapid variation of the solution, and the minima of σM cor-
respond to time intervals where the mean values of the stochastic variables take
small values and ζ is small. Unfortunately, while the error due to the discrete
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time steps was controlled easily, the error tolerance dictated by σε in (32) could
not be fulfilled in all time intervals. This was mostly due to the second term
involving σM . In the regions with a fast change in the solution the value of the
sum becomes large, combined with a relatively large state space. This problem is
ameliorated by using one single QMC sequence of 5 ·218 points instead, according
to the discussion in the previous section.
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Fig. 9: The maximal standard deviation of the QMC summation, σK , (left) and the
standard deviation in the PDF (right) for δr = 0.2.

For δr = 0.08 where the reaction rate equations reach a steady state, see
Fig. 6, while the solution computed with the hybrid solver continues to produce
reliable oscillations in agreement with the numerical experiments in [5, 7] and
the conclusions in [34]. However, with the splitting used in the above example,
small time steps are needed in order to ensure oscillations. The phase of the
oscillations also depends on the time discretization error. This is not the only
possible partitioning that give these results. Fig. 10 depicts the solution when two
different partitionings of the system have been considered. For both solutions,
fixed time steps were used. To the left we have the result of the original splitting
when ∆t = 10−3 and one single QMC sequence (Q = 1) of 217 ≈ 1.31 · 105

points was used. To the right we have the solution when only A and R are
treated stochastically. Here, M = 1.0 · 104, ∆t = 0.1, Q = 1, and K = 217. In
both cases, oscillations occur, but the latter configuration is obviously far less
computationally demanding, and benefits more from the hybrid splitting.
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Fig. 10: Solution for δr = 0.08 when A,R and C are treated stochastically (left) and
the corresponding simulation with only A and R as stochastic variables (right).

The contribution of the SSA algorithm to the total time required to solve the
system is studied in Tables 4 and 5. For this system, the stochastic simulations
are more demanding than for the previous example in Sect. 5.1. For M = 106

SSA consumes more than 90 % of the CPU time when K = 215 and the quotient
between the CPU time for SSA, TSSA, and the CPU time for the hybrid algorithm,
THY B, is greater than one for M ≥ 104. For the larger value of K in Table 5,
relatively more time is spent on the calculations of the sums. This system consists
of only nine variables, and for larger systems there is plenty of time to save if a
good splitting of the variables can be found.

Number of trajectories 103 104 105 106

Time spent in SSA [%] 18.6 53.1 83.9 91.8
Total CPU time in 103 s 0.18 0.59 3.50 29.70
TSSA/THY B 0.43 1.32 2.19 2.58

Table 4: Time spent in SSA when the system was simulated with a fixed time step
∆t = 0.5 to the final time 100 s and K = 215 ≈ 33 · 103.

Number of trajectories 103 104 105 106

Time spent in SSA [%] 3.1 14.8 42.4 73.9
Total CPU time in 103 s 0.47 0.96 3.31 18.89
TSSA/THY B 0.04 0.20 0.58 1.02

Table 5: Time spent in SSA when the system was simulated with a fixed time step
∆t = 0.5 to the final time 25 s and K = 216 ≈ 65 · 103.
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Fig. 11: The absolute summation error for different number of trajectories M and
quadrature points K. The number in parenthesis is the inclination of the curve.

The summation error of the QMC quadrature determined by (22) for this
problem is displayed in Fig. 11. The sum in (16) with p0 at t = 25s is computed
using the Faure sequences for different number of trajectories M and different
number of quadrature points K. The error is based on 30 randomized QMC
sequences, i.e Q = 30 in (21). As can be seen, the convergence rate and the slope
increase with increasing number of trajectories. This is expected, since a larger
M implies a smoother p0 and a smaller error in the quadrature.

5.3 Signaling cascade

As a final example we will consider a model of a mitogen-activated protein kinase
(MAPK) signaling cascade [20, 21]. These receptor mediated signal transduc-
tion pathways are conserved regulatory systems, and consist of three sequentially
acting kinases. Kinases are proteins that modify other proteins by the phospho-
rylation of certain amino acid residues. This modification has a different effect
on different proteins, and could lead to e.g. changes in binding properties to
DNA and RNA or to other proteins. In this case, the first protein in the cascade,
RAF, induces two phosphorylations of MEK, the second component in the chain.
Doubly phosphorylated MEK, MEKpp, in turn induces two phosphorylations of
MAPK. The output signal in the scheme, doubly phosphorylated MAPK, MAP-
Kpp, can dimerize and in this form be transported into the nucleus of the cell
where it phosphorylates a number of transcription factors, proteins directly in-
volved in the regulation of the transcription of genes to mRNA [21]. The model
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in [20] also takes into account the effect of scaffolds but this part of the model is
not included here.

The model has 22 variables, the kinases RAF, MEK, and MAPK, the de-
phosphatases RAFPH and MEKPH, which remove phosphate groups from their
corresponding kinase, and the possible dimers formed in the reactions. These 22
variables take part in 30 reactions.

A deterministic simulation of the system with the reaction rate equations
is found in Fig. 12. Only the singly and doubly phosphorylated MAPK are
displayed. Except for a few species, the components vary slowly in time. With
the parameters given in [21], the average number of MAPKpp molecules at a
maximal output signal is below one. A stochastic simulation with SSA reveals
that the number of molecules of doubly phosphorylated MAPK vary from zero
to a few molecules after an initial time when no active MAPK is present, see Fig.
12.
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Fig. 12: Simulation of MAPKp and MAPKpp with the reaction rate equations (left)
and simulation of MAPKpp in one trajectory with SSA (right).

Suppose that we want to construct a larger model where a control system
like this is one component. We might then be interested in the stochastic varia-
tion of the output signal in MAPKpp, while the detailed stochastic information
concerning the other components is less important. This is a scenario where the
hybrid approach provides a speedup compared to the full SSA and more modeling
accuracy than the reaction rate equations. To evaluate the performance of the
hybrid method, the state space is divided so that singly and doubly phosphory-
lated MAPK (MAPKp and MAPKpp) are treated as stochastic variables, X and
m = 2 in Sect. 2, and the other compounds as deterministic variables, Y and
n = 20. In this way, 30 reactions for 22 species are reduced to nine reactions with
a stochastic component, ρ = 9 in (8), and 20 differential-summation equations.
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Fig. 13: Isolines of the marginal probability distribution for MAPKp and MAPKpp
with SSA (left) and the hybrid method (right).

The isolines for p0(x, 500) using SSA for the full system and the hybrid so-
lution are compared in Fig. 13 using M = 105 trajectories. It is evident in
the figure that the hybrid solver is able to capture the stochastic properties of
the activated MAPK species. Since there are only two stochastic variables and
their copy numbers are small, a relatively small number of quadrature points are
needed and the hybrid solver is also much more efficient than SSA for the full
system. In Table 6, we find that with M = 106 SSA is more than seven times
slower than the hybrid method. This system is still fairly small. For example,
the same model extended to include scaffolds [21] has 89 variables participating
in 300 chemical reactions. For a system of this size, the hybrid solver is expected
to be a lot faster than SSA if a good separation of the variables can be chosen.

Number of trajectories 103 104 105 106

Time spent in SSA [%] 6.4 7.9 37.8 58.1
Total CPU time in 103 s 0.45 0.51 1.0 6.68
TSSA/THY B 0.12 0.93 4.63 7.14

Table 6: Time spent in SSA when the system was simulated with a fixed time step
∆t = 1s to the final time t = 200s and K = 215 ≈ 33 · 103.

6 Conclusions

From the numerical experiments the conclusion is that the hybrid solver is able
to capture important features of the fully mesoscopic models, while keeping the
number of stochastically treated variables at a manageable level.

For one of the model systems considered, the reactions are too few and the
splitting done in such a way that an improvement in execution time over the full
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SSA algorithm can not be obtained. It is shown however, that for systems where
this splitting achieves a sufficient reduction in the number of reactions and the
rate constants involved in those reactions, a considerable speedup compared to a
fully stochastic simulation can be obtained. For a larger system, the hybrid solver
is shown to execute up to seven times faster than the full SSA with the chosen
splitting, while it is still able to retain the stochastic properties of the original
model. Alternatively, the hybrid model can be viewed upon as a way of improving
the macroscopic model by introducing stochasticity in some components. With
this viewpoint, the hybrid solver is more computationally demanding than the
ODE models, but gives more realistic results at a low additional cost.

The major bottleneck in the time stepping scheme of the hybrid solver is, apart
from the SSA simulation, the evaluation of the probability distribution function
p0(x, t). The number of evaluation points is determined by the performance of
the summation algorithm. It is therefore crucial to develop a scheme that gives
a small error with few evaluated quadrature points. Here, the sum is computed
with a Quasi Monte Carlo method. Monte Carlo methods are well suited for high
dimensional summation. Even if the dimensions are not particularly high for the
systems considered here, a generally applicable method is required if the intention
is to be able to simulate different systems without extensive reprogramming by
the user. One problem with QMC methods is that the higher convergence rate
compared to pseudorandom numbers depends on the summand being sufficiently
smooth. Since we are dealing with a discrete distribution with stochastic errors
this is not always the case and we have seen that for a small quadrature error a
large number of trajectories is needed. Even when this requirement can be met,
the convergence rate is still not as high as in the ideal smooth case.
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