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Abstract

The linear multifrequency-grey acceleration (LMFGA) technique is used to accel-
erate the iterative convergence of multigroup thermal radiation diffusion calcula-
tions in high energy density simulations. Although it is effective and efficient in
one—dimensional calculations, the LMFGA method has recently been observed to
significantly degrade under certain conditions in multidimensional calculations with
large discontinuities in material properties. To address this deficiency, we recast the
LMFGA method in terms of a preconditioned system that is solved with a Krylov
method (LMFGK). Results are presented demonstrating that the new LMFGK
method is always more efficient than the original LMFGA method. The superiority
of the new LMFGK method increases with both the size of the time step and the
inhomogeneity of the problem.
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1 Introduction

The linear multifrequency—grey acceleration (LMFGA) technique has proven
to be very effective for improving the iterative convergence of multigroup ther-
mal radiation diffusion calculations in high energy density simulations.! Al-
though it appears to be unconditionally effective in one-dimensional problems,
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the method has recently been observed at Lawrence Livermore National Labo-
ratory to significantly degrade in multidimensional problems with large discon-
tinuities in material properties.? A similar deficiency has been observed for the
diffusion-synthetic acceleration (DSA) scheme associated with the transport
equation.® Using the DSA method as a preconditioner for Krylov iterations ad-
dresses this deficiency, restoring the effectiveness and efficiency of the method.*
The purpose of this paper is to recast the LMFGA method for preconditioned
Krylov iterations, i.e., to recast it as a preconditioned system solved with a
standard Krylov method. This is done with the intent of obtaining an itera-
tive solution technique for solving the multigroup thermal radiation diffusion
equations that is effective and efficient under all conditions. We refer to our so-
lution method as the linear multifrequency—grey Krylov (LMFGK) technique.
Our computational testing indicates that the LMFGK method is always more
efficient than the original LMFGA method. As expected the relative efficiency
of the new LMFGK method increases with both the size of the time step and
the inhomogeneity of the problem.

The remainder of this paper is organized as follows. In Sec. 2 we give a brief
description of the use of Krylov methods. In Sec. 3 we describe the equations
of thermal radiation diffusion. In Sec. 4 we present an overview of the LM-
FGA technique. In Sec. 5 we show how to recast the LMFGA technique as a
preconditioned Krylov method for solving the multigroup thermal radiation
diffusion equations (LMFGK). In Sec. 6 we show a simple relationship be-
tween the LMFGA and LMFGK techniques. In sec 7 we describe our discrete
equations. Computational results are presented in Sec. 8 comparing the per-
formance of the LMFGK method with that of the original LMFGA method.
Finally, in Sec. 9, we give conclusions and recommendations for future work.

2 Krylov Methods

It is sufficient for our purposes to briefly describe how a Krylov iteration is
used in an implementation. A theoretical description of Krylov methods is
given in Ref. 5. Suppose we wish to solve a linear system of the form

M7 =1 (1)

for the solution Z with a Krylov iterative method software package. The user
supplies the right hand side and an initial guess. At each Krylov iteration,
the package supplies a vector 7 and the user returns a vector @ = M7
to the package. This is referred to as the action of the operator M on Z
because the operator may not be explicitly constructed (which is the case in

our application). For instance, suppose that M is dense because it represents
the inverse of a banded sparse matrix S, M = S~!. Then W = M7 is



computed not by forming M but by solving the sparse system SW = 7.
Alternatively, it would represent a forward-backward substitution if the LU
decomposition of S were computed. Otherwise, if M were explicitly available,
the action of M on 7 would simply represent a matrix-vector multiplication.
Most Krylov methods require the action of M only once per iteration, CG
and GMRES for example, but some may require the action more than once,
BiCGStab for example.

The convergence rate for Krylov iterative methods can be difficult to predict
in general. Nonetheless, some qualitative criteria for the spectrum of an op-
erator (matrix) M that can lead to rapid iterative convergence are that the
eigenvalues are bounded away from zero, as tightly clustered as possible, and
preferably close to unity. If an operator does not have these characteristics, a
good preconditioner will have the effect of clustering the eigenvalues and mov-
ing them away from zero and towards unity. A precise description of how these
very loose criteria result in good convergence rates for GMRES, in particular,
can be found in Ref. 6.

3 The Thermal Radiation Multigroup Diffusion Equations

The equations of multigroup thermal radiation diffusion can be written as
follows:

%% - e‘Dg€¢g + 0-t¢g = Ua,g47ng(T) y 9= 1aGa (2)
and
or &
Cva = Z Oag [0y — 4By (T)] (3)
g=1

where ¢,(7) is the angularly-integrated radiation intensity for group g, T(7)
is the material temperature, ¢ is the speed of light, Dg(?, T) is the diffusion
coefficient for group g, aa,g(7>, T) is the macroscopic absorption cross section
for group g, C,(7,T) is the material heat capacity, and By(T) is the Planck
function integrated over group g:

-1

By(1) = [, Zg—Ecz [exp (%) _ 1] dE | (4)

where h is Planck’s constant and k is Boltzmann’s constant. Linearizing Egs. (2)
and (3) about an arbitrary temperature, 7%, and discretizing them in time

1 1
over the interval [t”i,tmi using the backward Euler method, we obtain




the following multigroup diffusion equations:

G
—?-Dge% + U;“,gaSg —VXyg Z O-Z,kd)lc = gg y 9= 17 G: (5)
k=1
where:
O-T’g = O-a,g + T ? (6&)
1
= 6b
T=— (6b)
« 0B
_ §=1 Ua,g47TTT£ 6
V=g G« 498 7 (6c)
At + Eg:l Ja,g47r aT
aB*
o¥ 4dr—-2
Xo = a,9>" BT ’ (6d)

- G « OB}
k=1 Ua,k47T_&aT

& = 4mo, B, + T¢Z’1/2—

a,g9—9g
v i * AxB* CZ Tn—l/Q_T* 6
Xg Ta k4T B, T ( ) ; (6e)
k=1

with the material temperature given by

n 25:1 Ok (¢g - 47TB;) A%% (an/z _ T*)

5

T=T*
G " 63;
At T 2g=104 AT 57

(7)

Note that a superscript “*” denotes evaluation at 7%, and that the time index

n + 7 has been suppressed in Egs. (5) through (7). The temperatures can be
locally obtained once the multigroup diffusion equations are solved. Thus we
focus on solving Eq. (5).

4 Linear Multifrequency-Grey Acceleration

The traditional method for solving the multigroup diffusion equation is source
iteration. Denoting the iteration index by /, this iteration can be represented
as follows:

—Q'Dgedﬁf}ﬂ + 0:,g¢g+1 =vxof* +& , (8)
where
G
f= Zaé,kqﬁk . 9)
k=1

Note that if the absorption rate f is known, the process converges in one
iteration. Thus the convergence rate of this iteration process is determined by
the rate at which errors in the absorption rate are attenuated. When v = 1,



this iteration process can converge arbitrarily slowly. This is known as the
strong material-radiation coupling limit and is physically characterized by
large absorption and small heat capacity. One can always make this iteration
process rapidly convergent by taking a sufficiently small time step, but this
generally requires time steps much smaller than the characteristic time scale
of the problem. Hence it is not an effective strategy. The LMFGA technique
accelerates the convergence of this outer iteration process. In particular, it can
be represented as follows:

1 1
—?-DQ?QS?Q + 0:,g¢§+2 =vx f* +¢&, , (10a)
—V (D)0 + [(02) (1 — 1) + 7] 60 = v (f“% - ff) , (10b)
P = P 4 (5,)60 (10¢)
where
(D)= 5 (1)
s 303, ’

G
(0a) = ZIUZ,gCg ) (12)

o

>i9

Sg = ﬁ . (13)

The principle behind this method is fully explained in Reference 1. A brief
description follows. A one—dimensional Fourier analysis for a homogeneous
infinite-medium can be performed that is based upon a decomposition of the
errors in f into Fourier modes, each having a spatial dependence of the form
exp(jAr), where j = /=1, X is any real number, and z is the spatial vari-
able. Note that small values of A correspond to slowly varying errors while
large values of A correspond to rapidly varying errors. The analysis indicates
that the outer source iteration at step £ + %, defined by Eq. (10a), strongly
attenuates error modes of f with large values of |A| (rapidly varying errors)
and weakly attenuates those with small values of |A| (slowly varying errors).
An exact multigroup diffusion equation can be written for the additive errors
in the multigroup intensities at iteration step ¢ + %, and the exact additive
error in the absorption rate can be directly calculated from these intensity
errors. However, this exact multigroup error equation is no easier to solve
than the original equation, so solving it is not an viable strategy. Instead one
substitutes a low-rank approximation for the exact equation that is reason-
ably easy to solve with the intent that it be accurate for modes with A ~ 0.
The Fourier analysis shows that the errors in the intensity take on a specific
energy shape in the limit as A — 0. By assuming that the solution to the ex-
act error equation is the product of this energy shape modulated by a purely
space dependent function, one can derive a grey equation for the error in the



energy-integrated intensity that will that is exact in the limit as A — 0. This
grey diffusion equation for the additive error in the energy-integrated inten-
sity is given in Eq. (10b), with the normalized energy shape function given by
Eq. (13). Once the error in the integrated intensity has been estimated from
a solution of the approximate grey equation, the corresponding error in the
absorption rate is calculated from the error in the energy-integrated inten-
sity and added to the absorption rate iterate at step ¢ + %, resulting in the
“accelerated” absorption rate at step £ 4 1. This entire process is performed
in Eq. (10c). Thus the grey diffusion equation enables the errors in the ab-
sorption rate to be perfectly attenuated in the limit as A — 0. Nonetheless,
one must be concerned about the effect of the grey diffusion approximation
on the rapidly varying error components. The grey diffusion equation is of
low rank and thus cannot be accurate for all error components. If the grey
diffusion equation were to sufficiently overestimate the rapidly varying errors,
it would cause the accelerated iteration process to diverge. Fortunately, the
grey diffusion approximation grossly underestimates the rapidly varying er-
rors and thus does no harm. The overall result for the idealized homogeneous
infinite-medium problem is a rapidly convergent iteration process that almost
perfectly attenuates both very slowly and very rapidly varying errors, and
strongly attenuates errors with an intermediate variation.

Computational experience indicates that in real one-dimensional calculations,
this method is unconditionally effective. However, as previously noted, it has
recently been found that this method can significantly degrade in multidi-
mensional problems with large discontinuities in material properties.? The
multifrequency-grey acceleration technique can be interpreted as a two-grid
method with the grey-diffusion operator playing the role of the “coarse-grid”
operator. It is well known within the computational mathematics community
that multigrid methods are far more robust when recast as preconditioned
Krylov methods. Indeed, as previously noted, the DSA scheme for the trans-
port equation (a two-grid diffusion-based method) becomes ineffective in mul-
tidimensional problems with large discontinuities in material properties, but
when recast as a preconditioned Krylov method has been has been observed
to remain effective under all conditions.* As previously noted, this is our moti-
vation for recasting the LMFGA method as a preconditioned Krylov method.

5 A Preconditioned Krylov Method

In this section we derive a preconditioned Krylov method for the multigroup
radiative diffusion equations. We first derive an equation for the absorption
rate f. The action of the operator associated with this equation requires the
same set of independent one group diffusion solutions required by a source
iteration. We then derive a diffusion—based preconditioner that is closely re-



lated to the diffusion operator used in the LMFGA method to estimate the
intensity errors at step £ + 3.

5.1 The Absorption Rate Equation

We choose not to directly solve Eq. (5) with a Krylov method. Rather, we
solve an equation that has the absorption rate f as its unknown. Once the
absorption rate has been calculated, the multigroup intensities can be obtained
by solving an independent set of one group diffusion equations:

_V D,V ey + 0 by =vxgf+E  9=1,G. (14)

We assume that an efficient method exists for solving such a system. Obviously,
this assumption is also required for the LMFGA method because the basic
unaccelerated iteration scheme requires the solution of an equivalent system
as illustrated by Eq. (10a).

We now proceed with the derivation of an equation for the absorption rate.
Let us first rewrite Eq. (5) in operator form as follows:

qusg = Vng + é-g , 9=1,G, (15)
where
Ay=-V-D,V+o, . (15a)
Solving Eq. (15) for ¢4, we get
¢g = A;I [Vng + é.g] , = 17 G. (16)

Multiplying Eq. (16) by o , and summing over all groups, we obtain:

G
f= Z O-Z,gA;I [Vng + fg] . (17)
g=1

Moving all terms containing f to the left side of Eq. (17), we obtain the desired
equation for the absorption rate:

G
Bf= ZJ;,gA;Ié-g ) (18)
g=1
where
G
B=|I-) a;gAg_lzxxg] , (18a)
g=1

and I denotes the identity operator. Equation (18) is solved via a Krylov
method rather than Eq. (5) because this strategy can require far less memory.



Assuming one spatial unknown per group per cell, Eq. (5) has a solution vector
dimension equal to the number of spatial cells times the number of groups; but
Eq. (18) has a solution vector dimension equal to the number of spatial cells.
Furthermore, Eq. (18) has a much more compact spectrum than Eq. (5). In
particular, under the assumption of an infinite homogeneous medium, it can
be shown that the eigenvalues of the operator associated with Eq. (17) are
real, positive, and lie in the open interval (0,1). For instance, let us assume
an infinite homogeneous medium and a one-dimensional Fourier dependence

for f:
f(@) = foexpjrz . (19)

Applying the operator B to f, we obtain

G

TagVXg
Bf=|I- 9 = 2
F= S g | = (20)

where

D\ + on,(l=v)+7

21
Dy\? + Ogg T T (21)

w(A) = ;Xg

Note that f is an eigenfunction of B with eigenvalue w()). Assuming a nonzero
and bounded time step, it can be seen from Eq. (6¢) that v has a greatest lower
bound of zero and a least upper bound of unity. Under the same assumptions
it can be seen from Eq. (6d) that the sum over g of x, is unity. Consider-
ing this information, it is not difficult to see that w(\) has a greatest lower
bound of zero and a least upper bound of unity. Small eigenvalues correspond
to low frequency modes, while eigenvalues near unity correspond to high fre-
quency modes. This spectrum is much more compact than that associated
with Eq. (5), which not only has real and positive eigenvalues near zero, but
also has real and positive eigenvalues of arbitrarily large magnitude. Even
if we assume a symmetric positive definite (SPD) discretization for each one
group diffusion operator associated with B, it is clear that B is not self-adjoint
with space dependent material properties. It is desirable to use the conjugate
gradient Krylov method® whenever possible. However, this method is limited
to symmetric positive definite systems. Thus we cannot use the CG method
to solve Eq. (18) for the absorption rate. However, this is not necessarily a
significant disadvantage, because the CG method can still be used to perform
the group dependent diffusion solutions required to form the action of B, and
to calculate the angularly—integrated intensities using Eq. (14) after the ab-
sorption rate has been calculated. Note from Eqs. (8) and (18) that the steps
required to form the action of the operator associated with Eq. (18) is identical
to that required to perform a source iteration.



5.2 The Preconditioner for Multigroup Diffusion

We next derive the preconditioner for the operator B. The first step in the
derivation is to decompose the solution to Eq. (5) into two components, gb_go)

and ¢{}, where
bg = ¢§0) +o) . g=1,G. (22)
The equation satisfied by qﬁgo) is

Ag(bgo) = é‘g , 9= 17 G, (23)

and the equation satisfied by ¢{V is

G G
* 1 *
k=1 k=1

Solving Eq. (23) for ¢{”), we obtain
o) = A, g=1,G. (25)

9

Substituting from Eq. (25) into Eq. (24), we get

G G
Ay —vxy S ottt =vxg Y ol A, g=1,G.  (26)
k=1 k=1

We next define a grey approximation to Eq. (26) that is accurate when ¢, is
slowly varying in space. Applying A;l to Eq. (26) from the left, we obtain

G
ngl) = A;ll/xg Z U:;,k: I:Qs](cl) + A;lfk] , g= ]_, G. (27)
k=1

It is easily seen from Eq. (27) that gbgl) has a group dependent shape propor-
tional to A, "x,. Recalling Eq. (15a), we find that

_ X
Ay, =—29 28
g X Dg)‘2+aj—,g (28)

Thus in the limit as A — 0, the normalized shape of ¢{" is given by

Note from Eq. (13) that this shape is identical to that of the weakly attenuated
intensity errors associated with the source iteration process. We next assume



this shape for qsgl). In particular, we assume that

o) = g @), (30)
where ®() is a space dependent modulation function corresponding to the
energy—integrated intensity. Substituting from Eq. (30) into Eq. (26), and

summing over all groups, we obtain the following grey drift-diffusion approx-
imation:

~W(D) Vo -F{D) 8V +[(g,) (1 - v) + 1] 8D = v i o AT, (31)

where
(D) = i Dysy (31a)
(D) = i D,Vs, | (31b)
and

G
(o) =2 0045 (31c)
g=1

To facilitate the solution of the grey equation, we drop the drift term from
Eq. (31) to obtain

HoW = ZGj or AL (32)
where .
= VD)V +[(oa) (1= v) +7] . (32a)

Note from Egs. (10b) and (32a) that this grey diffusion operator is identical
to that associated with the LMFGA method. Solving Eq. (32) for &), we
obtain

G
oM =H"v) or, ALY, . (33)
k=1

Recognizing that the grey absorption rate is given by (o,) ®, we manipulate
Eq. (33) to yield the first component of the absorption rate:

G
fO=()H ) or A (34)
k=1

Following Eq. (23), the zero’th component of the absorption rate is rigorously
given as follows:

G
=% or AT, (35)
g=1

10



Adding Eqs. (34) and (35), we obtain the total absorption rate with the zero’th
component computed exactly, and the first component computed approxi-
mately via the grey approximation:

G
f= (I + (0q) H_ly) >oon,AVE (36)
g=1
Let us next solve Eq. (18) for the absorption rate:
G
f=B7 > oAl (37)
g=1

Comparing Egs. (36) and (37), it is clear that

(T+ (o) H'v)»B" . (38)
Thus our preconditioner is

C=(I+(0)H V) , (39)

and our preconditioned equation is

G
CBf=CY o:,A%, . (40)

9=1

Assuming an infinite homogeneous medium and the Fourier spatial dependence
assumed in Eq. (19), it is easily shown that

CB=1+0(\) . (41)

Remembering that small values of A correspond to the eigenfunctions of B with
the smallest eigenvalues, it follows that C will move the smallest eigenvalues
away from zero to essentially unity. We are concerned with the eigenfunctions
of B with the largest eigenvalues since the preconditioner cannot be exactly
equal to the inverse of B for all of its eigenfunctions. In analogy with the be-
havior of the grey diffusion approximation in the LMFGA method, the inverse
grey diffusion operator in C grossly underestimates the eigenvalues of B that
are large. They are in fact so underestimated that the identity term in C dom-
inates the diffusion term with the result that the preconditioner is effectively
just the identity. Thus the overall effect of the preconditioner is ideal: it moves
the smallest eigenvalues essentially to unity and leaves the largest eigenvalues
alone. While this is guaranteed only for an infinite homogeneous medium, it
nonetheless suggests that C will be a very effective preconditioner for the gen-
eral case. The properties of the grey diffusion operator that cause degradation
in the classic LMFGA method can possibly generate some eigenvalues in the
preconditioned operator that are greater than the maximum value of unity

11



associated with B. However, we conjecture that this effect will have a small
adverse effect on the convergence of CB relative to B. The movement of the
smallest eigenvalues away from zero will likely have much greater impact than
any increase in the largest eigenvalues, resulting in a preconditioner that is
very effective overall. We later provide computational results that give insight
into the spectrum of the preconditioned operator.

Even if we assume an SPD diffusion discretization, C is not SPD with spa-
tially dependent material properties. As previously noted, B is also not SPD
with spatially dependent material properties. Thus, unless there is some sym-
metrization process of which we are currently not aware, the preconditioned
system, CB will not be SPD, which implies that Eq. (40) cannot be solved
using the CG method. Nonetheless, all of the diffusion solutions associated
with forming the action of CB can be performed using the CG method.

Since the action of the operator B requires the inversion of an independent
set, of one-group diffusion equations, a nested Krylov strategy is required
to solve Eq. (40). By this we mean that each Krylov iteration for Eq. (40)
requires the solution of an independent set of one-group diffusion equations,
each of which should ideally be solved via a preconditioned CG method. To
achieve the highest efficiency for nested calculations, while still converging
to the correct solution, the tolerance for the “inner” CG iterations could be
relaxed as the “outer” Krylov iteration proceeds according to the strategy
presented in Refs. 7,8.

6 Relating the LMFGA and LMFGK Methods

In this section we demonstrate a simple relationship between the LMFGA and

LMFGK methods. We begin by re-expressing the LMFGA method in terms of

operators previously defined for the LMFGK method. In particular, we first
1

e+l 1
solve Eq. (10a) for ¢g+2, and then use that expression to solve for f¢2:

ff+% = (I-B)f'+ i or AE (42)
g=1

where A, and B are defined by Egs. (15a) and (18a), respectively. Next we
substitute from Eq. (42) into Eq. (10b) to obtain

G
50 =H"v (Z or A e, — B ff) , (43)

9=1

where B is defined by Eq. (18a). Finally, we substitute from Eqs. (42) and (43)
into Eq. (10c), to obtain a single expression that defines a complete LMFGA

12



iteration for the absorption rate:

G
fAr=I-CB)f+CY oi A, | (44)

g=1

where C is defined by Eq. (39). Comparing Eq. (44) with Eq. (40), one finds
that the LMFGA method is simply Richardson iteration® applied to the pre-
conditioned equation that is solved in the LMFGK method. Richardson iter-
ation applied to a general linear system of the form given in Eq. (1) is

T = (I-M) T+ b . (45)

Thus, as one would expect, the two methods are closely and simply related.
They each represent a method for solving the preconditioned equation given
by Eq. (40). In the case, of the LMFGA method, this equation is solved via
Richardson iteration; and in the case of the LFMGK method, this equation is
solved via a standard Krylov method.

7 The Discretized Equations

To test our LMFK method, we use Palmer’s node—centered polygonal-mesh
discretization of the diffusion operator in two—dimensional r-z geometry® in
conjunction with a discontinuous representation for the material temperatures.
The radiation intensities are located at nodes, but the temperatures are lo-
cated at ”corners”. A corner is uniquely associated with both a node and a
cell that subtends that node. Every corner coincides with a node, but there
is a separate corner for each cell that subtends the node. Corners are illus-
trated for a polygonal mesh in Fig. 1. Thus the material temperatures are

Node

/

Fig. 1. Iustration of Corners and Nodes. Each corner coincides with a node but is
uniquely associated with cell that subtends that node.

also located at the nodes, but there is a separate node temperature for each

13



cell that subtends the node. Consequently, material temperature is said to be
discontinuous at each node. Since there is only one set of multigroup radiation
intensities per node, the radiation intensity treatment is said to be continuous.
A continuous temperature treatment would simply have one temperature at
each node. Since material properties are cell-centered, the discontinuous tem-
perature treatment yields separate temperatures in each material, which is
highly desirable in radiation-hydrodynamics calculations. The node-centered
hybrid continuous/discontinuous radiation diffusion/temperature discretiza-
tion that we use is simpler and easier to solve than a fully cell-centered dis-
cretization, but it is nonetheless compatible with standard cell-centered and
staggered-mesh hydrodynamics discretizations. Although we do not consider
radiation-hydrodynamics calculations in this study, such calculations are a ma-
jor application for multigroup thermal radiation diffusion algorithms. Thus it
is appropriate to test our LMFGK method using a multigroup thermal ra-
diation diffusion discretization that is practical for radiation-hydrodynamics
calculations.

Before describing our radiation/temperature discretization for general polyg-
onal meshes, we first consider a simple 1-D slab-geometry mesh. The center,
node, and corner indexing for such a mesh is shown in Fig. 2. Let h; denote

i-1/2 i+1/2 i+3/2
L 1 ]

i i+1

Fig. 2. Center, node, and corner indexing in 1-D slab geometry. The cell centers
carry integer indices, the nodes carry half-integer indices, and corners carry both
cell and node indices.

the width of cell ¢. The effective width associated with corner 7,7 + % is

i+t ~ 9 0 (46)
and the effective width associated with node 7 + % is the sum of the associated
corner widths

hiyi | hy

s hi+1,i+% T hi,i—l—% 5 T3 - (47)
Many of our discrete equations contain node-centered quantities obtained
by volume-weighted averaging of corner-centered quantities. The normalized

weight associated with corner 7,7 + % is

h

h

o1
z,z+§ h,
w.., 1 = =
bity  h o1 hip1 4+ hy
z+2

(48)

It is often convenient for our purposes to collectively apply an index to a group
of terms enclosed within parentheses, brackets, etc. This implies that all the
enclosed quantities individually carry that index.

14



On the mesh interior, the discrete analog of Eq. (15) for the intensity in group
g at node 7 + % can be expressed as follows:

(Ag¢g)i+l =

[(ngf + Eg)mﬂ% Wl t (rxof + &), il Uit hH% . (49)
where
(Agdo) 3 = =22 (05 =0, 1) +
D}ZZ (¢g,i+§ - ¢g,i_%) ’g’z+;¢g’z+2 il (49a)
G

fz',z‘+% - £Gz,k,i+1,i+%¢g,i+% ’ (49b)
ot 1 =0" w, .. 1+0" w1 . (49¢)

Tgits  Tgitlity itlity | rgiity ity
The diffusion coefficient D, ; , which appears in Eq. (49a), is cell-centered and
evaluated for the material in cell 7 at the cell-centered temperature,

4 4 %
(T* 1) + (T 1) ] . (49d)
zz+2 =g

The cross section, c* |, which appears in Eq. (49b), is corner-centered and
,g,l z+ 2

evaluated for the material in cell 7 at the corner temperature, 7% L1 The cross
Z I3
2

section, o* 1, which appears in Eq. (49c), is constructed from o*
7g,z Z+2 ,g7z Z+§

in accordance with Eqgs. (6a) and (6b). The quantities, v, . 1 and x
2,2 +2 915 Z+2

which appear in Eq. (49), are corner-centered and constructed from other
corner-centered quantities in accordance with Eqs. (6¢) and (6d). The quantity,

fg”+1, which appears in Eq. (49), is corner-centered and constructed from
2

other corner-centered quantities and one node-centered quantity in accordance
1

T

2

with Eq. (6e). This node-centered quantity corresponds to 7'(;5 il
9ty

The diffusion operator appearing in Eq. (49) and defined by Eq. (49a) is node-
centered, but the node-centered cross section appearing in that operator and
defined in Eq. (49c) is a volume-weighted average of corner-centered cross-
sections. Similarly, the right side of Eq. (49) is node-centered but formed from
a volume-weighted average of corner-centered quantities.

The discrete analog of Eq. (7) for the temperature at corner i, + % is given
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T =T

o1 S
Lty 4it5
cr
viyits ~1/2
¥ o* ¢ 1 —d4rB |+ (P
9 a,9,% z+ g5i+5 9,50+ 5 1+ 1+
2 2 2 2 2 (50)
T )
v,i,i4+5 *
T2+ e L An

% a0, i+3 O giity

where C* | denotes the heat capacity for the material in cell 7 evaluated at

V0,0t 5
2
the corner-centered temperature, T sl B* 1 denotes the Planck function
2 9,258 3
evaluated at the corner-centered temperature, T“_+ 1, and 681; 1 denotes

2
the temperature-derivative of the Planck function evaluated at the corner-

centered temperature, T L1
3

Symbolically inverting the discrete diffusion operator in Eq. (49), we obtain a
discrete analog of Eq. (16):

_ A-l
¢g,i+% o Ag
(WXof +§g)i+1,i+% Wi, +1 + X f +§9) +3 wi,z’—f—% h’z‘+% ) (51)
Multiplying Eq. (51) by o* L1 and summing over all groups, we obtain the
’.q,z 1 2

discrete analog of Eq. (17):

G
zz+2 g

+Wxef +&) 1w 1|lh 1, (52

z,z+2 z,z+2 H—i

7g7z Z+2 g

(xof + Eg)i—f—l,i—l—% wi+1,i+%
Note that this is an equation for the absorption rate at corner %, i+ % Thus the
absorption-rate equation is corner-centered even though the radiation intensity
equation is node-centered. This occurs because the temperatures are corner-
centered rather than node-centered.

Assuming a discrete decomposition analogous to that given in Egs. (22) and
(23), the discrete analog of Eq. (27) is

G
1 _ A
o' 1 =A" l”Xg (f(l) +> Ua,kAklgkﬂ L wi+1,i+%+
i1ty

gil+2 k=1

G
[yxg (f(1)+202,kA,;1§k>] w 1oh 1 (53)
k=1 m+% T2 2
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A difficulty arises when trying to obtain an energy shape function for the grey
diffusion equation from Eq. (53) because the solution to Eq. (53) does not
assume a unique shape when the solution is spatially constant. In particular,
setting the spatial derivative terms to zero in Ag_l, Eq. (53) becomes

1 S Al
¢(13+; = lVXg <f(1) + Z Ta i Ak 1&)] wi—|—1,z’+l+
SRR k=t i+1i+3 2
G
[yxg (f(l) +3 az,kAklé“k)] X wi’H% . (54)
k=1

i’i+§

There is a separate contribution to ¢(1?+1 in Eq. (54) from each corner associ-
9i+3

ated with node 7+ %, and each of these contributions has a unique shape. Thus

the overall shape of qﬁ(l? 1 depends upon the relative magnitudes of these con-
g1ty

tributions. The solution would have a unique shape if the temperatures were
node-centered. Even though a unique shape is not assumed, a grey equation
nonetheless can be obtained given node-centered shape functions.

To obtain node-centered shape functions, we first define unnormalized corner-
centered shape functions. In particular, the unnormalized shape function at
corner %, % + % is defined as follows:

v..1 o1
z,z+§Xg,z,z+§
a 1= T E—
gaZaZ+2 g 1
T,g,Z+§

(55)

The unnormalized shape function at node i + % is obtained via a volume-
weighted average of the unnormalized corner shape functions:

o 1=0 1w 1+ 1w 1. o6
g,z+§ g,z+1,z+§ Z+1,’L+§ g,z,z+§ z,z+§ ( )
Thus the normalized shape function at node 7 + % is given by
(0% ,+1
9it+3
S S o
k=1C . 1
k,z+2

The generation of the discrete grey diffusion equation begins by multiplying
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Eq. (53) from the left with A,:

(Ag¢(1))g,i+% N l(yng(l))iH,H% wi—|—1,i—|—1 +

2

G
(1)) — * —1
v w h 1=V or A w +
(X-"f hits Lty | ity ngZl a kA% Ek . i ]
= i1 s
w2

G
(VXg > UZ,kAk1§k> ) wi,i+% hi+% ’ (58)
k=1 ity

We directly use the node-centered shape functions for the absorptive compo-
nents of A and for the second term in brackets on the left side of Eq. (58). The
diffusion components of A require some care to avoid an effective drift term.
More specifically, each difference of intensities associated with a single cell-
centered diffusion coefficient must be averaged with a single shape function.
These cell-centered shape functions are obtained simply by linearly averaging
the two node-centered shape functions associated with each cell:

S9i =3 (g_% +<Z.+%> : (59)

The following discrete grey diffusion equation is obtained from the averaging
process:

G
Ho® =\(vY o A w, 1+
( )H-% kz::l a,k="k é-k 1 z—|—1,z—|—%

i+1i+3
& 1
ok A% ilhoa, 60
<yk§10a,k k gk)iH_% wz,z—k% z—|—% ( )
where
(1) :_<Dz'+1> M &)
(H@ )”% hiv1 (q)”% (I)H-%) +
<D>z (I)(l) _(I)(l) + [< )(1—1/)] T (I)(l) A (60&)
h; i+s i-1 Ta i+3 T ®irL i+3
G
(D)i = 3_ Dyisysi » (60b)
g=1

z'—l—% = [<0a> (1 - V)]H—l,i—l-% wz’—l—l,z’—l-l +

[00) (1= 7)] :
(o) (=2 1w, 1 (60¢)

i,i+§ 242
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G
- X
<0a>i,i+1 o Zgg,z‘,zur%gg,w% ' (60d)

PR —
Like the discrete multigroup diffusion operator defined by Eq. (49a), the dis-
crete grey diffusion equation defined by Eq. (60a) is node-centered. The grey
equation for the absorption rate is obtained by first symbolically inverting the
operator on the left side of Eq. (60a), and then multiplying that equation by

<Ja>i,i+%:

G
1 -1 -1
T o — . 1 L)
k=1 z+1,z+§

e
* -1
(v oeare) .l - (61)
Note that the grey equation for the absorption rate given in Eq. (61), like
the multigroup equation for the absorption rate given in Eq. (52), is corner-

centered.

The procedure for generating the polygonal-mesh equations is almost com-
pletely analogous to that used to generate the slab-geometry equations. Only
a few aspects of the procedure require explicit discussion. As previously noted,
the polygonal diffusion discretization is node-centered.® As in the slab-geometry
case, all terms relating to absorption and emission are treated using a one-
point or diagonal approximation. Let us consider a node on the mesh interior,
and denote it as “node a”. The diffusion stencil couples the intensity at node
a to each intensity located at a node that shares a polygon with node a. This
is illustrated in Fig. 3. Each polygon is decomposed into triangles as shown

Node" a"
1
1

1
I

Fig. 3. The polygonal diffusion stencil. All of the nodes associated with the diffusion
stencil for node “a” are shown. Every node that shares a polygon with node “a” is
in the stencil.

in Fig. 4. Each triangle is associated with three intensities: two nodal inten-
sities and an intensity at the center of the polygon. The center intensity is
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not an independent unknown, but rather is an average of the the nodal in-
tensities associated with the polygon. Each triangle is also associated with a
gradient computed from the three triangular intensities. While there is only
one material in each polygon, there is a separate diffusion coefficient for each
triangle. This diffusion coefficient is analogous to the cell-centered coefficient
in slab geometry, but is not really ”centered” in the triangle. It is evaluated
in analogy with Eq. (49a) using the two corner temperatures associated with
each triangle. Thus it can be thought of as being located at the center of
the outer edge of the triangle. The shape functions associated with these two
nodes are also averaged in analogy with Eq. (59) to obtain a unique shape
function for each triangle, and this shape function is used to generate a grey
diffusion coefficient. While there are only two corners per node in slab geom-

Fig. 4. The triangular decomposition associated with each polygon.

etry, there can be an arbitrary number of corners per node on a polygonal
mesh. Corner-centered quantities are averaged onto the nodes using the same
volume-weighted technique used in slabs. Each triangle is uniquely associated
with two corners, and each corner carries half the triangular volume. Polygo-
nal corner volumes are illustrated in Fig. 5. This concludes our description of

Corner Volume

\

Fig. 5. The volume associated with a polygonal corner.

Corner

the discrete polygonal-mesh equations.
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8 Calculations and Results

Two sets of calculations in two-dimensional r — z geometry were performed
to compare the LMFGA and LMFGK methods. As elucidated in Sec. 6, both
the LMFGA and LMFGK methods solve the same preconditioned equation
given in Eq. (40). To achieve a fair comparison, the same stopping criterion
was used for both methods:

G
1Rl < €llC Y op ATl - (62)
g=1
Here, ||...||, stands for the L2-norm, € is the convergence tolerance, and R is

the residual vector evaluated with f¢, the solution at the ¢-th iteration:
¢ J ¢
* -1
R'=C Zl o, A T, — CBf* . (63)
g:

It is evident from Eq. (44) that the residual vector R¢ for the LMFGA method
is equal to f&! — f% therefore, the LMFGA method can be expressed as
follows:

Algorithm 1 (LMFGA algorithm)

(1) Compute the right-hand-side of Eq. (40).
(2) Set the initial guess as the solution of the 0-th iteration f°.
(8) For £ =0,1,--- Do:
e Compute f*1 by solving Eqs. (10a) - (10c).
o Set Rt = feri_ ft.
o [f the stopping criterion Eq. (62) is satisfied go to 5.
(4) EndDo

1
e =
(5) Accept ¢g+2 = A;l [ng e+ fg] as the angularly-integrated radiation in-
tensity for group g (9 =1,G).

1
Since ¢§+2 has been computed during the computation of f¢*!, step 5 does not
require any further computation. Computing the right-hand-side of Eq. (40)
and the computation of f¢*! in each iteration both require the inverses of
the operators A, and H, defined in Eq. (15a) and Eq. (32a), respectively;
therefore, if the iteration stops at the k-th iteration, the algorithm above
requires solving G' + 1 diffusion equations k£ + 2 times.

Without going into the details of the GMRES algorithm, the steps of the
LMFGK method are as follows:

Algorithm 2 (LMFGK algorithm)
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(1) Compute the right-hand-side of Eq. (40).

(2) Compute the initial residual vector R® using the initial guess f°.
(8) If the stopping criterion Eq. (62) is satisfied set £ to 0 and go to 7.
(4) Set v; = R°/||R%||y as the first vector of the Krylov space.

(5) For{=1,2,--- Do:

e Compute wy = CBuvy to extend the Krylov space.

o Compute ||R||; and f' according to the GMRES algorithm.

e If the stopping criterion Eq. (62) is satisfied go to 7.

e If the dimension of the Krylov space reaches the mazximum size:
Restart using f* as the new initial guess and set voy; = RY/||RY|y as
the first vector of the new Krylov space.

o FElse:

Compute veyq from wy according to the GMRES algorithm.
o Endif
(6) Enddo
(7) Compute qﬁf}“ = Ag_1 [yxg e+ ﬁg] , the angularly-integrated radiation in-
tensity for group g (9 =1,G).

In the LMFGK method, the inverses of the operators A, and H are needed in
the computations of wy for each iteration and the right-hand-side of Eq. (40).
In addition, computation of qﬁﬁ“ in step (7) needs the inverse of the operator
A ,; therefore, if the iteration stops at the k-th iteration, the algorithm above
requires solving the diffusion equations for G photon groups k + 3 times and
the grey diffusion equation £+ 2 times. The maximum dimension of the Krylov
space was set to 10 in the calculations.

The calculations used 10 photon groups with the following group boundaries
(in units of keV'): 0.0001, 0.000316, 0.001, 0.00316, 0.01, 0.0316, 0.1, 0.316,
1.0, 3.16, 10.0. Photons with energies less than 0.0001 keV" or greater than
10.0 keV are ignored. The absorption cross section for each group was the
geometric-mean of the opacities at the group boundaries evaluated with the
following power—law formula:

TN\ 2/ v \-3
s (L)) TG
Tag(T,v) = 10.0cm (g/cm?’) keV keV) (64)

where T" and v are material temperature and photon energy in units of keV/,
and p is the material density in units of g/cm®. The diffusion coefficient for
each group was

(1
D, = min (3%,9, %) , (65)

evaluated at the beginning of each time step.

The material had a constant specific heat of 0.05 jerks/keV/g. The geome-
try of the test problems was a 7-cm long cylinder with a 1-cm radius. This
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geometry is illustrated in Fig. 6. The spatial zoning of the cylinder follows.

1
—Region 3
x 05 —Region 2
R — Source —Region 1
° | | | | | |
0 1 2 3 4 5 6 7

Fig. 6. The basic problem geometry for all calculations. Region 2 has a width of 0.1
cm.

(1) There are three regions.
(a) Region 1 is defined by r € [0.0,0.5] and z € [0.0, 7.0].
(b) Region 2 is defined by r € [0.5,0.6] and z € [0.0, 7.0].
(c) Region 3 is defined by 7 € [0.6,1.0] and z € [0.0,7.0].

(2) Regions 1 and 3 were tessellated with 0.1 ¢m by 0.1 ¢m square zones.

(3) Region 2 was tessellated with zones that were 0.1 ¢m wide in the z-
direction and had varying widths in the r-direction. In particular, the r-
widths of the zones were chosen such that the r-width of each successive
zone was 1.47392 times larger than that of the zone beneath it. Region 2
was tessellated with 10 such geometrically expanding zones. The r-width
of the first of these zones (the zone with a minimum radius of 0.5 em),
was 1 x 1072 em.

The boundary conditions for the radiation follow.

(1) The following Marshak source boundary condition was applied on the left
boundary subface defined by z = 0.0 em and r < 0.5 em:

A By(Ts) — ¢
2 7

D,V o, 7= (66)
where 7 is the outward-directed unit vector normal to the boundary, B,
is the integrated Planck function defined in Eq. (4), and T is a time
dependent source temperature. This source temperature had an initial
value of 0.05 keV, increased linearly to reach 0.5 keV in 2.0 sh, and
remained at 0.5 kel thereafter.

(2) A vacuum boundary condition was applied on the right boundary face
defined by z = 7.0 em. A vacuum boundary condition is a Marshak
boundary condition defined in Eq. (66) with zero source temperature 7.

(3) A reflecting boundary condition, V¢, - 2 = 0, was applied on the rest of
the boundaries.

The first set of calculations corresponds to a problem with strong discontinu-
ities in material properties. The material density of Region 1 was 0.01 g/cm?
and that of Regions 2 and 3 was 2.0 g/cm?. Each calculation started at ¢ = 0.0
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sh and ran to a final time of 20 sh with a fixed time-step size. The time steps
were varied between calculations. Table 1 compares the LMFGA and LMFGK
methods for three choices of time-step sizes At (0.1 sh, 0.01 sh, and 0.001 sh).
Three numbers are compared:

e The wall—clock run time. The calculations ran on a dedicated computing
processor; therefore, the wall-clock time is very close to the CPU time.

e Number of iterations for solving the preconditioned equation Eq. (40) per
time step, averaged over all the time steps, therein after referred to as num-
ber of “outer” iterations.

e Sum of the numbers of iterations taken by the linear solver for all the dif-
fusion equations within each time step, averaged over all the time steps,
therein after referred to as number of “inner” iterations. The linear solver
used GMRES algorithm with algebraic multi-grid (AMG) preconditioner.

The tolerance ¢ in the stopping criterion Eq. (62) was set to 10> for this set
of calculations.

It can be seen from Table 1 that LMFGK takes fewer “outer” iterations than
LMFGA. This is expected because GMRES should take no more iterations
than Richardson iteration in solving the same set of linear equations. As the
time-step size At increases, the advantage of LMFGK becomes more signif-
icant. Note, however, that the ratio of the number of “inner” iterations to
the number of “outer” iterations is significantly smaller for LMFGA than for
LMFGK. Consequently, the advantage of LMFGK in terms of the number
of “outer” iterations does not translate proportionally to shorter run-times.
The reason for this behavior lies in the difference in the right-hand-side of
the diffusion equations. For LMFGA, the diffusion equation to be solved for
each group is Eq. (10a). In solving Eq. (10a), the solution of the previous
iteration ¢lg_(1/ 2) is used as an initial guess for the current solution ¢lg+(1/ 2).
As the iteration proceeds, the initial guess becomes an increasingly better
approximation to the solution qﬁlgﬂl/ 2)_ In contrast, for the LFMGK method
the operator B defined in Eq. (18a) is applied to the vector v, each time the
GMRES method extends its Krylov vector space (See Algorithm 2). Since v,
is orthogonal to the Krylov vector space of iteration (¢ — 1), there is no ap-
propriate initial guess for solving the diffusion equation associated with the
computation of A;ll/Xg’Ug. The significance of this fact was not evident to us
before performing this computational study. Nonetheless, the run times for
the LMFGK method are always less and sometimes much less than those of
the LMFGA method.

It is possible for LMFGK to achieve higher efficiency by relaxing the toler-
ance for the “inner” iterations while the “outer” Krylov iteration proceeds
according to the strategy presented in Refs. 7,8. In the interest of fairness,
one would like to apply a similar strategy to the LMFGA method, but it is not
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Table 1
Comparisons for the variable-density calculations.

of “Outer” of “Inner”
At (sh) | Method | Time (s) # #
Tterations Tterations
LMFGK 327.2 7.98 1424.42
0.1
LMFGA 679.1 25.73 2929.14
LMFGK 1776.7 3.55 668.40
0.01
LMFGA 2353.6 8.07 785.00
LMFGK 9412.8 1.26 260.32
0.001
LMFGA 11020.7 1.56 190.12

clear that such a strategy is valid for a traditional iteration technique since
it was specifically developed for Krylov methods. Thus we chose not to apply
this strategy in this initial study. This is clearly a topic for future research,
since it could conceivably result in a significant increase in the efficiency of
the LMFGK method relative to that of the LMFGA method.

The second set of calculations corresponds to a homogeneous problem. The
material density was 2.0 g/cm? in all regions. The tolerance € in the stopping
criterion Eq. (62) was set to 10~* for this set of calculations. The remaining
problem parameters were identical to those in the first set of calculations. The
comparisons are given in Table 2 for three time-step sizes, At (0.2 sh, 0.1 sh,
and 0.01 sh).

As one would expect, the advantage of the LMFGK method relative to the
LMFGA method is not as significant for the homogeneous problem since the
LMFGA method does not suffer the degradation associated with highly inho-
mogeneous problems. Nonetheless, the LMFGK method is always more effi-
cient than the LMFGA method.

9 Conclusions and Recommendations for Future Work

From our results we conclude that the LMFGK method is a superior alter-
native to the LMFGA method and is indeed less sensitive to material inho-
mogeneities. However, the increased number of inner iterations required per
outer iteration with the LMFGK method clearly diminishes the impact of its
rapid outer iteration convergence rate. The strategy of using a convergence
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Table 2
Comparisons for the uniform-density calculations.

of “Outer” of “inner”
At (sh) | Method | Time (s) # #
Tterations Tterations
LMFGK 62.8 3.41 455.71
0.2
LMFGA 79.3 6.14 472.31
LMFGK 117.3 2.83 403.83
0.1
LMFGA 139.4 4.57 376.99
LMFGK 897.7 1.228 249.49
0.01
LMFGA 1014.4 1.375 180.97

tolerance for the inner iterations that changes as the outer iterations proceed
clearly has the potential to significantly reduce the cost of the inner iterations.
In principle, this type of strategy should be applicable to both the LMFGK
and LMGFA methods. However, it is not clear that these methods will be
equally amenable to this type of strategy. For instance, the strategy described
in Refs. 7,8 was specifically developed for Krylov methods. Thus the potential
exists to significantly alter the relative efficiencies of the LMFGK and LMFGA
methods. We intend to address this issue in the near future.

A variant of the LMFGA method exists for multigroup thermal radiation
transport calculations.'® We are presently investigating a corresponding LM-
FGK method. Interestingly, there are two very different options for formulating
such a method. Each has potential advantages and disadvantages relative to
the other. We are investigating both of them and intend to report our results
in the near future.
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