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We present a new numerical algorithm for the solution of coupled col-

lisional and collisionless systems, based on the block structured adaptive

mesh and time refinement strategy (AMR). We describe the issues associ-

ated with the discretization of the system equations and the synchroniza-

tion of the numerical solution on the hierarchy of grid levels. We implement

a code based on a higher order, conservative and directionally unsplit Go-

dunov’s method for hydrodynamics; a symmetric, time centered modified

symplectic scheme for collisionless component; and a multilevel, multigrid

relaxation algorithm for the elliptic equation coupling the two components.

Numerical results that illustrate the accuracy of the code and the relative

merit of various implemented schemes are also presented.

Key Words: higher-order Godunov methods, adaptive mesh refinement, elliptic methods,

particle-in-cell methods
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1. INTRODUCTION

Astrophysical systems are typically complex and highly nonlinear, providing the

ground for the occurrence, either singly or concomitantly, of numerous physical pro-

cesses. These include, among others, hydro- and magnetohydro-dynamics, gravity,

radiation and many-body interactions. They operate on a wide range of spatial and

temporal scales and it is often desirable to fully cover these ranges for a thorough

understanding of the problem. Thus the problems are demanding both in terms

of physics algorithms and dynamic range (resolution). While the development of

high order numerical schemes certainly improves the quality of numerical solutions

and the availability of ever more powerful computers has allowed the performance

of larger calculations, special techniques are required in order to achieve very large

dynamic ranges.
1
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The Adaptive Mesh Refinement (AMR) technique offers a powerful solution for

this purpose [1, 2]. While there are difficulties associated with its implementation,

the use of AMR in astrophysics and cosmology has grown significantly to include

studies of nucleosynthesis in Supernovae explosions [3, 4, 5, 6], of the multiphase

interstellar medium and radiative shock hydrodynamics [7, 8], the problem of star

formation out of the collapse of protostellar clouds [9, 10, 11] and the formation

of the first stars as well as the large scale structure in the universe [12, 13]. The

use of AMR technique in the above examples has often been instrumental in either

revealing new properties of the investigated system (such as instabilities) or pointing

out mistaken views based on limited resolution calculations.

We will consider two aspects of application of AMR to astrophysical problems.

The first is the extension to incorporate self-gravity. This capability leads to new

algorithmic difficulties due to the elliptic nature of the problem. In particular

the solution has to be computed simultaneously on all levels of refinement and

continuity of both the solution and its normal derivative has to be enforced at

coarse-fine level interfaces [14]. However, this introduces non-trivial complications

when time refinement is also employed: the coarser levels are advanced first and

finer levels are advanced with the assumption that boundary conditions at fine-

coarse interfaces are provided by the coarse level solutions interpolated in time.

However, the full multilevel elliptic solution can only be computed when all levels

are synchronized and thus is not available when the coarser levels are ahead of the

finer levels. Thus the first implementations of a full multilevel elliptic solver for

self-gravity [10, 11, 15] do not use refinement in time. And when employing time

refinement the multilevel elliptic equation has been solved as a set of independent

boundary value problems, one for each level, not a fully multilevel solution [16, 17,

18, 19].

The second issue we will address is the application of AMR to hybrid systems,

that is a self-gravitating gas coupled to a particle representation of a collisionless

matter described by Vlasov-Poisson equations [20] . This is relevant to several

problems in astrophysics, particularly for modeling the formation and evolution

of structure in the universe. In this case the AMR technique is combined with

Particle-Mesh methods to compute the right-hand side to the Poisson’s equation

due to the particles mass. In order to take advantage of the higher resolution of the

finer grids, it is desirable to advance the particles with the force compute on, and

the timesteps of, the finest grids that cover their spatial position. This introduces

a complication for the elliptic solver similar to the one described above for the case

of self-gravitating gas dynamics, in the sense that the particles contribution to the

right-hand side of Poisson’s equation needs to be accounted for even when the levels

of refinement are not synchronized.

Various AMR codes for hybrid systems have been developed over the past several

years [21, 16, 17, 18, 19, 15]. The refinement strategy in [16, 18, 15] is based on

splitting of individual cells and in [17] only the collisionless component is evolved.

Virtually all schemes use Strang splitting [22] for the multidimensional version

of the hydrodynamics and a modified leap-frog method for the integration of the

equation of motion of the particles. This has also been done for problems in which

there is no coupling to a collisional fluid component, as occurs in computations of

collisionless plasmas [23].
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In our approach we use the block structured scheme for adaptive mesh and time

refinement proposed in [2] as a starting point and extend it include gravity and

collisionless particle dynamics. We use an unsplit Godunov’s method for hydrody-

namics [24]; a symmetric, time centered modified symplectic scheme based on the

kick-drift-kick sequence for the collisionless component; and a multilevel, multigrid

relaxation algorithm for the elliptic equation coupling the two systems. We in-

troduce two new procedures to solve synchronization issues described above that

arise with the elliptic solver when the coarse and finer levels are not synchronized.

We use a method analogous to those developed for AMR for incompressible flows

[25, 26] to compute a lagged estimate of the correction of the elliptic matching

conditions at boundaries between refinement levels at times when the levels are not

synchronized. We also present a detailed discussion of refinement in time in the

presence of collisionless particles, including methods for associating particles with

refinement levels, and a particle aggregation operation to cost-effectively estimate

the density distribution on coarse levels due to particles evolved on finer levels

without compromising the code accuracy. We provide a detailed description of the

formal discretization of the system of equations and the issues involved with the

synchronization of the numerical solution in the presence of refinement in time, at

a level of detail which we feel is lacking in the current literature.

The paper is organized as follows. First, the evolution equations and single level

algorithms are outlined in Section 2. In Section 3 we provide a formal definition of

the employed AMR volume discretization, variables and operators and then describe

in detail the general AMR algorithm for hybrid system. Finally, in section 4 we

test the accuracy of the code by comparing its results against for set of standard

solutions.

2. EVOLUTION EQUATIONS AND TEMPORAL

DISCRETIZATION

In this section we introduce the system equations and describe their temporal

discretization on individual levels of refinement. Motivated by cosmological applica-

tions, the numerical schemes are formulated for a grid with a time dependent scale

length, a(t). Thus after a description of the expanding grid, we introduce the time

discretization for the equations of hydrodynamics with gravity and the equations

of motion for the collisionless component and then briefly outline the time step

constraints and code units.

2.1. Comoving Frame

Cosmic expansion is described by the first Friedmann’s equation which reads [27]

ȧ

a
= H0

(

Ωm a−3 +Ωk a
−2 +ΩΛ

)1/2
(1)

where a(t) is the scale of the universe as a function of time; H0 measures the

current (a = 1) rate of cosmic expansion (the Hubble constant); Ωm,Ωk and ΩΛ are

parameters representing the current energy density associated to matter, curvature

and ‘dark’ component, respectively, in units of the closure value. The solution to
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Eq. (1) relating cosmic time and expansion parameter reads

H0 t(a) =

∫ a

0

dã

ã (Ωm ã−3 +Ωk ã−2 +ΩΛ)
1/2

(2)

and admits simple solutions for Ωk = 0. Since the equations of motion in an

expanding Universe are most naturally solved in a comoving frame, which expands

at the rate ȧ/a given by Eq. (1), we operate the change of coordinates

x = a(t)−1 r (3)

where r and x are the coordinates in the laboratory and comoving reference frame

respectively, and transform all differential operators (time derivatives, gradient,

laplacian) according to [27]

∂

∂r
→

1

a

∂

x
(4)

(

∂

∂t

)

r

→

(

∂

∂t

)

x

+
∂x

∂t

(

∂

∂x

)

t

=

(

∂

∂t

)

x

−
ȧx

a

(

∂

∂x

)

t

. (5)

The velocity

ṙ = ȧx+ aẋ ≡
ȧ

a
r + aẋ (6)

is decomposed into a Hubble flow, (ȧ/a) r, and a peculiar proper component, u =

a ẋ. It is also convenient to introduce the density and pressure in terms of the

comoving volume x3, as opposed to the proper volume r3,

ρ(t,x = r/a) = a3 ρp(t, r) (7)

P (t,x = r/a) = a3 Pp(t, r) (8)

where the subscript p indicates the proper quantities.

2.2. Hydrodynamics

In comoving coordinates, the hydrodynamics is described by the following set of

inhomogeneous partial differential equations

∂ρ

∂t
+

1

a

∂

∂xk
(ρuk) = 0 (9)

∂ρui
∂t

+
1

a

∂

∂xk
(ρuiuk + P δik) = −

ȧ

a
ρui −

1

a
ρ
∂φ

∂xi
(10)

∂ρe

∂t
+

1

a

∂

∂xk
[(ρe + P )uk] = −2

ȧ

a
ρe−

1

a
ρuk

∂φ

∂xk
(11)

∂ρs

∂t
+

1

a

∂

∂xk
(ρsuk) = −2

ȧ

a
ρs (12)

expressing (from top to bottom) mass, momentum, energy and entropy conser-

vation. Here, ρ and P are the comoving density and pressure respectively, u is

the peculiar proper velocity, φ the proper gravitational potential, e ≡ eth + ek =

P/ρ(γ − 1) + u2/2 is the specific total energy, s = P/ργ is the specific entropy and
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γ the gas adiabatic index. The first inhomogeneous terms on the right hand side

of Eq. (10)-(12) describe the effects due to adiabatic cosmic expansion (∝ ȧ/a). In

particular, the factor 2 for the last two equations arises by assuming that the in-

ternal energy of the gas is solely associated with translational degrees of freedom1.

Finally, gravity is described by the gravitational potential φ, which is generated by

the matter distribution of both the collisional and the collisionless components.

We use a cell-centered discretization for our primary dependent variables: U(x, t) ≡

(ρ, ρu, ρe)T → Un
i , where i ∈ Z

D indexes grid points in a space with D dimensions

and n is a discrete time index. The starting point for our temporal discretization

is a conservative finite-difference method for the hydrodynamic equations:

Un+1,h = Un −∆tA(t)
(

D · ~Fn+ 1
2

)

(13)

where D · ~Fn+ 1
2 approximates the spatial derivative terms on the left-hand side of

(11), A(t) is a diagonal matrix with elements
[

1
an+1/2 ,

1
an+1 ,

an+1/2

(an+1)2 ,
an+1/2

(an+1)2

]

, and

∆t is the time step. We use an unsplit second-order Godunov’s method [28, 29, 24]

to compute the flux divergence. In addition to the cosmological expansion terms,

the gas and particle components couple through the force field which is solution to

the following Poisson’s equation

∆φ =
4πG

a
(ρm − 〈ρm〉) . (14)

Here ρm = ρgas + ρpart is the total comoving mass density; the particle density,

ρpart, is computed through a Particle Mesh method (see details in the Appendix).

When periodic boundary conditions are used, 〈ρm〉 is the volume average, otherwise

it is zero. The details of the spatial discretization for Poisson’s equation are given

in the next section. For now, we assume that we can compute the gravitational

acceleration at cell centers, f i ≈ −∇φ, with second order accuracy.

To compute the effect of the source terms, we need to compute them before and

after the hydrodynamic update, taking advantage of the fact that no sources appear

in the density evolution equation:

Sn
i =











0

ρ
n+1/2
i fn

i /a
n+1 + ρni u

n
i [(a

n/an+1)− 1]

∆(ρek) + Pn
i [(an/an+1)2 − 1]

ρni s
n
i [(a

n/an+1)2 − 1]











(15)

where ρ
n+1/2
i = (1/2) (ρni + ρn+1

i ), and ∆(ρek) = (1/2) [ρn+1
i (un+1

i )2 − ρni (u
n
i )

2].

After the hydrodynamics update given in Eq.(13) we apply the source terms as

follows

Un+1,h,s1 = Un+1,h +∆t Sn. (16)

The above estimate of the source term, after being converted to primitive variable

form, is also used in the hydrodynamic predictor step in order to obtain fully

1More generally, in D dimensions, the energy losses due to expansion are ėth/eth = D(γ−1)ȧ/a
for the internal energy and ėk/ek = 2ȧ/a for the specific kinetic energy respectively.
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time-centered fluxes. Sn accounts for the expansion terms to the desired accuracy

but is only first order accurate as far as the gravity term is concerned (hence the

superscript s1). After the new gravitational potential has been computed a source

correction term is estimated as

δS
n+ 1

2

i =
1

2
ρn+1
i

δf
n+1/2
i

an+1











0

1

un+1
i +

[

∆t/4 an+1
]

δf
n+1/2
i

0











(17)

with, δf
n+1/1
i = f

n+1
i − f

n
i , and the final source update is

Un+1 = Un+1,h,s1 +∆t δSn+ 1
2 . (18)

2.2.1. Hypersonic Flows

Accretion flows induced by gravity are typically hypersonic and can be char-

acterized by very large Mach numbers M ≥ 100. This situation is common in

cosmological simulations [30].

In this case the total energy is largely dominated by the kinetic component,

ek ∼M2 eth. Since conservative hydro-schemes track the total energy, e = eth+ek,

relatively small errors in the partition of the two components can produce spurious

values of eth. This is particularly worrisome when a 4-byte (single precision) digital

representation of the numerical data is employed. For this reason, we introduce

the additional equation (12) describing the evolution of the gas entropy. When the

Mach number of the bulk flow is very high, M ≥ 50, and away from shocks, it

provides a more accurate solution from the thermal energy than the total energy

equation. Eq. (12) is naturally incorporated in the numerical scheme for hydrody-

namics adopted here because of its conservative form. In addition, being a simple

advection equation, the conservative fluxes for its integration are a byproduct of

the Riemann solution and require virtually no extra effort to compute.

The equation for the internal energy could be alternatively integrated [31], but

its non-conservative form makes it less attractive. Authors in Ref. [32] already

employed the entropy equation in order to improve the accuracy of their Total

Variation Diminishing scheme for hypersonic flows, although their implementation

required solving twice for the hydrodynamic equations with an extra cost of 30%.

It is worth pointing out that for high Mach number flows, errors in the velocity

field are propagated into the Riemann solver solution for the pressure at the cell

interface, P ∗, with a coefficient ∼M, that is, largely amplified. More precisely we

find

δP ∗

P ∗
= γ

δ∆u

u
M (19)

where ∆u is the one dimensional velocity jump at the cell interface. However,

as illustrated above, the pressure terms enter the hydrodynamic equations with a

weight M−1 as compared to kinetic terms and, therefore, the numerical solution

is not degraded in the case of high Mach number flows because of approximations

involved in the Riemann solver solution.
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2.3. Collisionless Component

The collisionless component is described by a set of particles whose evolution in

phase space is computed according to

dy

dt
=

1

a
u (20)

du

dt
= −

ȧ

a
u+

1

a
f (21)

where y and u are the comoving coordinate and peculiar proper velocity respec-

tively. The acceleration acting on the particle, f , is obtained by first computing

the acceleration on the grid, using a cell- or face- centered scheme, and then by

interpolating it to the particle position through a Particle Mesh method [20].

In order to advance in time the particle positions and velocities we propose the

following integration scheme based on a kick-drift-kick sequence [33]: first the par-

ticles velocity and positions are updated as

un+1/2 = un an

an+1/2
+

1

an+1/2
fn(yn)

∆t

2
(22)

yn+1 = yn +
1

an+1/2
un+1/2 ∆t. (23)

After computing the acceleration at the new timestep, the particle velocity is finally

updated as

un+1 = un+1/2 a
n+1/2

an+1
+

1

an+1
fn+1(yn+1)

∆t

2
. (24)

The proposed scheme is reflexive and hence symplectic [34]. This has the nice

property that the integral of motion will be conserved on average preventing sec-

ular accumulation of error and keeping the system about its true trajectory in

phase space (see, e.g., discussion in [33]). We have also implemented an alterna-

tive method, based on the more common drift-kick-drift sequence, which does the

following: first particle positions at half the time step are predicted as

yn+1/2 = yn +
1

an
un∆t

2
, (25)

then particle positions and velocity are further temporarily updated to

un+1,∗ = un an

an+1
+

1

an+1
fn(yn+1/2)∆t (26)

yn+1,∗ = yn+1/2 +
1

an+1
un+1,∗ ∆t

2
. (27)

Based on the gravitational potential at the new time-step, a final correction term

is applied, that allows second order accuracy

un+1 = un+1,∗ +
1

an+1

[

fn+1(yn+1/2)− fn(yn+1/2)
] ∆t

2
(28)

yn+1 = yn+1/2 +
1

an+1
un+1∆t

2
. (29)
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The above scheme, however, is not fully reflexive. The need of temporary states

that approximate the solution at the end of the time step in order to calculate the

final correction step, breaks the time symmetry of the scheme.

Note that in both schemes, there is no need for storage of extra information about

either the particle positions or their velocities at any old or intermediate step. In

addition, the gravitational potential is computed only once per time step making

their overall computational cost of rather inexpensive.

It should be noticed, however, that in the case of AMR reflexivity is lost even in

the former scheme without additional precautions. This occurs when a particle is

transferred to a different level of refinement, or even during a refinement operation.

In both cases, the gravitational potential changes as a result of these procedures.

Since this change takes place after the correction steps, the backward application

of the scheme would not reproduce the initial configuration. Although in principle

this could be fixed by storing information about the last timestep and acceleration

for each particle, we have not implemented any of this.

2.4. Time Step

The time-step is subjected to the following constraints: In accord with the

Courant-Friedrichs-Lewy (CFL) condition for stability of finite difference meth-

ods [35], we require

∆t = Chydro
a(t)∆x

Max(|ui|+ cs)
, (30)

where Chydro < 1 is the CFL number, and ui and cs are the fluid velocity in the ith
direction and sound speed of the flow respectively. In presence of a source term, S,

we modify the estimate of the fluid velocity according to

|ui|+ cs −→
|Si|∆x

[(|ui|+ cs)2 + 2 |Si|∆x]1/2 − (|ui|+ cs)
(31)

where Si is the component of the source term affecting the velocity ui. For the

purpose of accuracy, rather than stability, for the collisionless particles we likewise

require

∆t = Cpart
a(t)∆x

Max(|ui|)
(32)

with Cpart < 1 and with Ui corrected as in Eq. (31) but with cs = 0. Finally,

we require that the background expansion remains limited during each integration

cycle. This allows us to time center the value of a(t) in our integration schemes

above and neglect its changes with time. We thus enforce

∆t < Cexp
a

ȧ
(33)

with Cexp ≃ (1 − 2)× 10−2.
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2.5. Code Units

The natural choice for the dimensional units of the above physical equations is

given by the following lengths, mass and time scales

L∗ = Lbox (34)

ρ∗ = ρc Ωm (35)

t∗ = H−1
0 (36)

whereLbox is the size of the computational box and ρc ≡ 3H2
0/8πG = 1.879 ×

10−29 h2 is the critical density of the universe, with h ≡ H0/100 km s−1Mpc−1.

The units for the other quantities are defined in terms of these as

u∗ = H−1
0 Lbox (37)

P∗ = ρ∗ u
2
∗ (38)

φ∗ = u2∗ (39)

T∗ = mproton P∗/kBρ∗ (40)

where mproton is the proton mass and kB Boltzmann’s constant.

3. ADAPTIVE MESH REFINEMENT APPROACH

In this section we outline the structure of the AMR algorithm. After introducing

the formal notation, we describe in some detail the scheme for hydrodynamics with

self-gravity and its modifications when a collisionless component is also included,

in the simple case of two levels of refinement. We then describe the extension of

the scheme to the general multilevel case.

3.1. Multilevel Volume Discretization, Variables and Operators

The underlying discretization of the D-dimensional space is given as points

(i0, ..., iD−1) = i ∈ Z
D. The problem domain is discretized using a grid Γ ⊂ Z

D

that is a bounded subset of the lattice. Γ is used to represent a finite-volume dis-

cretization of the continuous spatial domain into a collection of control volumes:

i ∈ Γ represents a region of space,

Vi = [ih, (i+ u)h] (41)

where h is the mesh spacing, and u ∈ Z
D is the vector whose components are all

equal to one. We can also define face-centered discretizations of space based on

those control volumes: Γed

= {i± 1
2e

d : i ∈ Γ}, where ed is the unit vector in the

d direction. Γed

is the discrete set that indexes the faces of the cells in Γ whose

normals are ed:

Ai+ 1
2
ed = [(i + ed)h, (i + u)h], i+

1

2
ed ∈ Γed

. (42)

We define cell-centered discrete variables on Γ:

φ : Γ→ R
m
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and denote by φi ∈ R
m the value of φ at cell i ∈ Γ. We can also define face-centered

vector fields on Γ:

~F = (F0, ..., FD−1) , Fd : Γed

→ R
m

and define a discretized divergence operator on such a vector field:

(D · ~F )i =
1

h

D−1
∑

d=0

(Fd,i+ 1
2
ed − Fd,i− 1

2
ed), i ∈ Γ. (43)

We will find it useful to define a number of operators on points and subsets of ZD.

We define a coarsening operator by: Cr : ZD → Z
D,

Cr(i) =

(⌊

i0
r

⌋

, ...,

⌊

id−1

r

⌋)

where r is a positive integer. These operators acting on subsets of Z
D can be

extended in a natural way to the face-centered sets: Cr(Γ
ed

) ≡ (Cr(Γ))
ed

. For any

set Υ ⊆ Γ, we define G(Υ, r), r > 0, to be the set of all points within a | · |-distance

r of Υ that are still contained in Γ:

G(Υ, r) = Γ ∩ ∪
|i|≤r

Υ+ i

where |i| = max
d=0...D−1

(|id|). We can extend the definition to the case r < 0 :

G(Υ, r) = Γ− G(Γ−Υ,−r).

Thus G(Υ, r) consists of all of the points in Υ that are within a distance −r from

points in the complement of Υ in Γ. In the case that there are periodic boundary

conditions in one or more of the coordinate directions, we think of the various sets

appearing here and in what follows as consisting of the set combined with all of

its periodic images for the purpose of defining set operations and computing ghost

cell values. For example, G(Υ, r) is obtained by growing the union of Υ with its

periodic images, and performing the intersections and differences with the union of

Γ with its periodic images.

We use a finite-volume discretization of space to represent a nested hierarchy

of grids that discretize the same continuous spatial domain. We assume that our

problem domain can be discretized by a nested hierarchy of grids Γ0...Γlmax, with

Γl+1 = C−1
nl
ref

(Γl), and that the mesh spacings hl associated with Γl satisfy hl

hl+1 =

nl
ref . The integer nl

ref is the refinement ratio between level l and l + 1. These

conditions imply that the underlying continuous spatial domains defined by the

control volumes are all identical. In this paper we will further assume nl
ref is even.

In the case where there are only two levels, we will refer to them as coarse and fine,

with the notation {l = 0, l = 1} → {c, f}, and n0
ref → nref .

We make two assumptions about the nesting of grids at successive levels. We

require the control volume corresponding to a cell in Ωl−1 is either completely

contained in the control volumes defined by Ωl or its intersection has zero volume.
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We also assume that there is at least one layer of level–l cells separating level–(l+1)

cells from level–(l − 1) cells: G(Cnl
nref

(Ωl+1), 1) ⊆ Ωl. We refer to grid hierarchies

that meet these two conditions as being properly nested.

From a formal numerical analysis standpoint, a solution on an adaptive mesh hi-

erarchy {Ωl}lmax

l=0 approximates the exact solution to the Partial Differential Equa-

tions only on those cells that are not covered by a grid at a finer level. We define

the valid region of Ωl as

Ωl
valid = Ωl − Cnl

ref
(Ωl+1).

A composite array ψcomp is a collection of discrete values defined on the valid

regions at each of the levels of refinement:

ψcomp = {ψl,comp}lmax

l=0 , ψl,comp : Ωl
valid → R

m.

We can also define valid regions and composite arrays for face-centered variables:

Ωl,ed

valid = Ωl,ed

− Cnl
ref

(Ωl+1,ed

). Thus, Ωl,ed

valid consists of d-faces that are not cov-

ered by the d-faces at the next finer level. A composite vector field ~F comp =

{ ~F l,valid}lmax

l=0 is defined as follows:

~F l,comp = (F l,comp
0 . . . F l,comp

D−1 ) , F l,comp
d : Ωl,ed

valid → R

Thus a composite vector field has values at level l on all of the faces not covered

by faces at the next finer level.

We want to define a composite divergence Dcomp(~F l+1,comp, ~F l,comp)i for i ∈

Ωl
valid. To do this, we construct an extension of ~F l,comp to the edges adjacent

to Ωl
valid that are covered by fine level faces. On the valid coarse-level d-faces,

F l
d = F l,comp

d . On the faces adjacent to cells in Ωl
valid, but not in Ωl,ed

valid, we set

F l
d = 〈F l+1,comp

d 〉, the average of F l+1
d onto the next coarser level:

〈F l+1
d 〉il+ 1

2
ed =

1

(nref )D−1

∑

i+ 1
2
ed∈Fd

F l+1
d,i+ 1

2
ed , il +

1

2
ed ∈ ζl+1

d,+ ∪ ζ
l+1
d,− .

Here Fd is the set of all fine level d-faces that are covered by Ail+
1
2
ed . ζl+1

d,± consists

of all the d-faces in Ωl on the boundary of Ωl+1, with valid cells on the low (± = −)

or high (± = +) side:

ζl+1
d,± = {i±

1

2
ed : i ± ed ∈ Ωl

valid, i ∈ Cnl
ref

(Ωl+1)}.

Given that extension, our composite divergence is defined as:

Dcomp(~F l+1,comp, ~F l,comp)i = D · ~F l
i , i ∈ Ωl

valid. (44)

It is useful to express Dcomp as the application of the level divergence operator

D applied to extensions of ~F l,comp to the entire level, followed by a step that

corrects the cells in Ωl
valid that are adjacent to Ωl+1. We define a flux register
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δ ~F l+1 associated with the fine level

δ ~F l+1 = (δF l+1
0 , ..., δF l+1

D−1)

δF l+1
d : ζl+1

d,+ ∪ ζ
l+1
d,− → R

m.

Let ~F l be any coarse level vector field that extends ~F l,comp, i.e.

F l
d = F l,comp

d on Ωl,ed

valid.

Then, for i ∈ Ωl
valid,

Dcomp(~F l+1,comp, ~F l,comp)i = (D~F l)i +DR(δ ~F
l+1)i, (45)

where δ ~F l+1 is a flux register set to be

δF l+1
d = 〈F l+1

d 〉 − F l
d on ζld,+ ∪ ζ

l
d,−

and DR is the reflux divergence operator, given by the following for valid coarse

level cells adjacent to Ωl+1:

DR(δ ~F
l+1)i =

1

hl

D−1
∑

d=0

∑

±=+,−:

i± 1
2
ed∈ζl+1

d,∓

±δF l+1
d,i± 1

2
ed .

For the remaining cells in Ωl
valid, DR(δ ~F

l+1) is defined to be identically zero.

We can use this notation to define the discretizations of Poisson’s equation we will

be using to compute self-gravity. On a single level, Ωl, we define ∆l, the discrete

Laplacian, to be the standard 2D+1 point operator, with the values used on ghost

cells computed using quadratic interpolation:

∆lφl = D · ~F l,φ (46)

F l,φ
d =

φi+ed − φi
hl

(47)

φli = I(φ
l, φl−1)i for i ∈ ∂Ω

l (48)

where ∂Ωl ≡ G(Ωl, 1)−Ωl. Here the interpolation function I is an O(h3) estimate

of the value on the ghost cell obtained from interpolating from values of φl−1 on

Ωl−1
valid and from the values of φl on Ωl; for details, see [36]. We can then define the

composite Laplacian ∆comp applied to all of the valid data on all levels, in terms

of that operator and refluxing operations.

(∆comp,lφ)i = (∆lφl,ext)i +DR(δ ~F
l,φ) for i ∈ Ωl

valid (49)

δ ~F l,φ = 〈~F l+1,φ〉 − ~F l,φ (50)

where φl,ext is some extension of φl,comp to all of Ωl. The resulting operator depends

only on the valid values of φ in the grid hierarchy (modulo roundoff considerations;

cf. Ref. [37] for further details).
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3.2. AMR for Compressible Flows with Self-Gravity

The starting point for this work is the algorithm described in [2] for solving

hyperbolic conservation laws on nested refined grids. For the case of two levels, we

assume that the solution on both levels is known at time tc. The basic steps to

evolve the solution on both levels to time tc +∆tc can be summarized as follows:

1. Update the solution on the coarse grid:

U c(tc +∆tc) = U c(tc)−∆tc(D · ~F c) + ∆tcS(U c) on Ωc. (51)

Here S(U c) is computed as in Eq. (15) (with the body force, f , set to zero), and

the discrete fluxes ~F are local functions of U c. We also initialize flux registers

associated with Ωf using the same fluxes

δ ~F f = − ~F c.

2. Advance the solution from tf to tf+∆tf on the fine grid nref times, nref∆t
f =

∆tc:

Uf (tf +∆tf ) = Uf (tf )−∆tf (D · ~F f ) + ∆tS(Uf ) on Ωf (52)

δ ~F f +=
1

nref
〈~F f 〉

tf += ∆tf .

Any values required to compute the stencil that are contained in Γf − Ωf are

computed by interpolating the coarse grid values U c(tc), U c(tc +∆tc), using linear

interpolation in time, and piecewise linear interpolation in space.

3. Synchronize the values at the old and new times:

U c(t+∆tc) = 〈Uf (t+∆tc)〉 on Cnref
(Ωf ) (53)

U c(t+∆tc)+= DR(δ ~F )

where 〈·〉i denotes the arithmetic average onto the coarse cell i of all of the values

defined on fine grid cells contained in i.

To extend this algorithm to the case of self-gravity, we must solve the Poisson’s

equation for the gravitational potential due to the mass distribution of the fluid

on the coarse and fine levels. As usual the coarse level is advanced first, and the

solution at tc + ∆tc is used to provide time interpolated boundary conditions for

the fine level at intermediate time steps. In the case of hyperbolic equations the

finite characteristic speeds ensure that a fully consistent multilevel solution can

be recovered at synchronization time with the refluxing operation. Because of its

elliptic nature, however, in order to preserve its multilevel character Poisson’s equa-

tion should be solved simultaneously on all levels. Notice that the coupling among

levels is enforced by the continuity of the potential (Dirichlet) and of its normal

derivative (Neumann) at the coarse/fine grid interface. Therefore, to maintain the

multilevel character of Poisson’s equation when the levels are not synchronized yet,

we obtain a single level solution to Poisson’s equation on the coarse level and apply
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a lagged estimate of the effect of the coarse/fine matching conditions at refinement

boundaries, following the ideas developed in [25, 26, 38] for incompressible fluids.

This leads to the following modifications to the algorithm given above.

0. At simulation start, when all levels are synchronized, we compute a composite

grid solution to Poisson’s equation

(Lcomp,cφcomp)(tc)i = ρc(tc)i i ∈ Ωc
valid (54)

(Lcomp,fφcomp)(tc)i = ρf (tc)i i ∈ Ωf (55)

as well as the coarse grid solution

(Lcφc)(tc) = ρc(tc) on Ωc. (56)

Here, and in what follows, we will denote by L(t) ≡ a(t)
4πG∆ with superscripts l, c,

f , comp indicating the particular discretization of the Laplacian operator.

1. Together with U(tc), the acceleration f
c(t) derived from the composite so-

lution of the potential on the coarse grid is used to compute the coarse grid fluxes

and source terms. After updating the conserved quantities using (51), we compute

the coarse grid potential at the new time

(Lcφc)(tc +∆tc) = ρc(tc +∆tc) (57)

φ̃c,comp(tc +∆tc) = φc(tc +∆tc) + (φc,comp(tc)− φc(tc)) (58)

where in the latter step we have approximately corrected the coarse grid single-level-

solution of the potential for the effects due to the solution on the finer grid [25, 26].

We use the solution in Eq. (58) with φc,comp(tc) to obtain boundary conditions

interpolated in time for the potential at the fine level at intermediate timesteps.

2. We apply the update (51) on the finer level. At tf = tc in order to compute

the hydrodynamic fluxes and source terms we use the force, ff , derived from the

composite potential solution to Eq. (55). At intermediate steps, tc < tf < tc +

∆tc, we solve the following Poisson’s equation on the fine grid with interpolated

boundary conditions

(Lfφf )(tf ) = ρf (tf ) on Ωf (59)

φf (tf ) = I[φf (tf ), φ̃c(tf )] on ∂Ωf

where φ̃c(tf ) is obtained by linear interpolation in time as

φ̃c(tf ) = (1 − α)φc,comp(tc) + α φ̃c,comp(tc +∆tc) , α =
tf − tc

∆tc
.

We compute the forces at the new timestep and apply the correction (17)-(18) to

the fluid momentum and kinetic energy.

3. At time of synchronization, tf = tc + ∆tc, we solve the set of equations

(54)-(56), for the composite and single level solution of the potential. We use the

composite solution to derive the new force, fn+1, and apply momentum and kinetic

energy corrections (17)-(18) to obtain time centered forces on both coarse and fine

levels. The flow of the calculation restarts from step 1 with the gravitational force

known at all levels.
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3.3. AMR with Particles

Due to the time refinement character of the AMR technique the solution on

different levels is advanced with different timesteps. This implies that the density

field represented by the particles evolved on the finer level may not be available

on the coarser level unless they are synchronized. However, this is information is

necessary to solve Poisson’s equation. Therefore, we find it convenient to introduce

effective particles to recover such information in a computationally inexpensive way

and without compromising the code accuracy.

Thus we introduce an aggregation operation P → 〈P〉l that projects a collection

of particles covered by Ωl onto a set of effective particles, with no more that one

particle per cell. If p ∈ 〈P〉l, then

mp =
∑

p′:xp′∈Vi

mp′ (60)

xp =
1

mp

∑

p′:xp′∈Vi

mp′xp′ (61)

up =
1

mp

∑

p′:xp′∈Vi

mp′up′ (62)

The aggregation operation conserves the monopole and dipole terms but causes

information to be lost on the quadrupole moment of the aggregated particles [39],

which provides corrections to the potential of order h2. Thus the aggregation

step preserves second order accuracy. Note, also, that the potential and force

fields obtained through the aggregated particles are only used to provide boundary

conditions for the finer level.

Restricting again the discussion to the case of two levels of refinement, the changes

in the algorithm described above are given as follows:

0. At simulation start, we partition the particles into ones that will be evolved

using the coarse and fine time steps. If P is the set of all particles,

Pf =
{

p ∈ P : xp ∈ G(Ω
f ,−nrefnbuf )

}

(63)

Pc = P − Pf . (64)

The parameter nbuf is chosen so that the support for the Particle-Mesh interpo-

lation function, used to calculate the force acting on the particle and the particle

mass distribution on the grid, is completely contained in Ωf for all of the fine grid

time steps, nref∆t
f = ∆tc. Using nbuf = 1 and Cpart = 0.5 is sufficient for all

choices of Particle-Mesh scheme used here (see Appendix 1).

We then define the set 〈Pf 〉c of fine particles aggregated on the coarse grid using

Eq. (60)-(62).
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Finally, in computing the gravitational potential the densities in Eq. (54)-(56) are

modified to account for the mass distribution of the particles:

ρci(t
c) = ρc,fluidi (tc) +

∑

p∈Pc∪〈Pf 〉c

mpW

(

(i + 1
2u)h

c − xp(t
c)

hc

)

(65)

ρfi (t
c) = ρf,fluidi (tc) +

∑

p∈Pf

mpW

(

(i + 1
2u)h

f − xp(t
c)

hf

)

+
∑

p∈Pc

mpW

(

(i+ 1
2u)h

f − xp(tc)

hc

)

.

(66)

Here W is one of the Particle-Mesh assignment schemes used to spread the particle

mass on the grid, described in Appendix 1. Note that the addition to ρc of the

density field due to 〈Pf 〉c has no effect on the composite solution, because the

support of W for each particle ∈ 〈Pf 〉c is contained entirely in Cnref
(Ωf ).

1. The gravitational force resulting from the composite solution of the potential

is used to compute both the fluid fluxes and source terms, as well as to perform

the update (22)-(23) for the particles in Pc ∪ 〈Pf 〉c. For the latter, we interpolate

the accelerations from the grid cells to particle positions with one of the methods

described in Appendix 1.

2. At the end of each fine time step, while tf +∆tf < tc +∆tc, we compute the

new fine potential, φf , modifying the mass density as

ρf (tf )i = ρf,fluid(tf )i +
∑

p∈Pf

mpW

(

(i+ 1
2u)h

f − xp(t
f )

hf

)

+
∑

p∈Pc

mpW

(

(i+ 1
2u)h

f − xp(t
f )

hc

)

, i ∈ Ωf

(67)

where the positions of the particles in Pc at the intermediate times are given by

linear interpolation between xp(t
c) and xp(t

c +∆tc). We then use the acceleration

due to this field to update the fine particle velocities using (24), and the fine fluid

state using (17)-(18).

3. The synchronization step is analogous to the one in Sec. 3.2: we calculate a

single grid and composite grid solution of the potential using the total mass density

distribution of fluid and particles given by Eq. (65)-(66). The gravitational force

derived from the composite potential is used to apply the corrections to the particle

velocity, given in Eq. (24), and to the fluid momentum and kinetic energy, given

in Eq. (17)-(18), at all levels. Finally, the sets Pc, Pf and 〈Pf 〉c are upgraded

following the definitions in (63)-(64) to account for the new particle positions. The

flow of the calculation restarts from step 1.

3.4. The General Multilevel Algorithm

For the case of a general (lmax+1)-level calculation, we assume that at simulation

start all the particles have been partitioned into groups corresponding to the levels

on which they shall be advanced, and that the particles being advanced by finer
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grids have been aggregated into effective particles for the next coarser levels. This

is summarized in the procedure:

for l = 0, . . . lmax − 1 do

P l+1 =
{

x ∈ P l : xp(t
l) ∈ G(Ωl+1,−nrefnbuf )

}

P l ← P l − P l+1

end for

P lmax
c = ∅

for l = lmax − 1, . . . , 0 do

P l
c = 〈P

l+1 ∪ P l+1
c 〉l

end for

We can then describe the algorithm for advance(l) that advances the solution

at level l, 0 ≤ l ≤ lmax by one time step. We assume that the solution is known at

time tl +∆tl in a process that includes a recursive application of advance. At the

beginning of advance, we assume that: we know the fluid state U l and particle

state P l associated with that level at time tl; we know the fluid, particle, and

potential at the next coarse level at times tl−1, tl−1 +∆tl−1; a composite solution

as well as single level solution of the gravitational potential at time tl has been

computed on level l − 1 and on all finer levels;

We then advance the solution by a time step ∆tl, with nl−1
ref∆t

l = ∆tl−1, as

follows:

1. Using U(tl) along with the accelerations, f l
i, i ∈ Ωl, computed from φl, we

calculate the hyperbolic fluxes ~F l and the source terms S(tl). We update the

conserved quantities

U(tl +∆tl) = U(tl)−∆tlD · ~F l +∆tlSl(tl) (68)

δF l+1 = − ~F l if l < lmax

δF l += 〈~F l〉 if l > 0

and advance the positions and velocities of the particles in P l ∪ P l
c using (22) and

(23).

2. With tl ← tl +∆tl, we solve Poisson’s equation on level l

(Llφl)(tl)i = ρfluid, l(tl)i +
∑

p∈pl

mpW

(

(i+ 1
2u)h

l − xp(t
l)

hl

)

(69)

+
∑

p∈pl
c

mpW

(

(i + 1
2u)h

l − xp(t
l)

hc

)

+
∑

p∈pl−1

mpW

(

(i+ 1
2u)h

l − xp(tl)

hl−1

)

, i ∈ Ωl

φl(tl)i = I[φ
l(tl), φ̃l−1(tl)]i, i ∈ ∂Ω

l

where φ̃l−1(t) is obtained by linear interpolation in time between φ̃l−1,comp(tl−1)

and φ̃l−1,comp(tl−1 +∆tl−1) with the latter defined in Eq. (58). As in Eq. (58) we

then estimate

φ̃l,comp(tl) = φl(tl) + (φl,comp(tl−1)− φl(tl−1)) (70)
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which is used to provide boundary conditions for the potential at the next finer

level, φl+1(t).

3. We call advance recursively nl
ref times.

tl+1 = tl

while tl+1 < tl +∆tl do

advance(l + 1)

tl+1 = tl+1 +∆tl+1

end while

4. If tl−1 < tl < tl−1+∆tl−1, we obtain {φl
′,comp(tl)}l′≥l by solving the composite

equations :

(Lcomp,l′φcomp)(tl)i = ρfluid,l
′

(tl)i +
∑

p∈Pl′

mpW

(

(i+ 1
2u)h

l′ − xp(tl)

hl′

)

(71)

+
∑

p∈Pl′−1

mpW

(

(i+ 1
2u)h

l′ − xp(t
l)

hl′−1

)

i ∈ Ωl′

valid , l′ = l, ..., lmax

φl,comp(tl)i = I[φ
l,comp(tl), φ̃l−1(tl)]i, i ∈ ∂Ω

l.

The field so obtained is used to compute accelerations at the new time, and update

the fluid and particle velocities using (17) - (18) and (24) respectively.

5. The solution at level l is synchronized with the solutions at the finer levels.

U(tl +∆tl) = 〈U(tl+1)〉 on Cnl
ref

(Ωl+1)

U(tl +∆tl)+= DR(δ ~F
l+1)

We upgrade the sets P l′ for l′ = l−1, ..., lmax and 〈P l′+1〉l
′

for l′ = l−1, ..., lmax−1,

according to the new particle positions. The flow of the calculation restarts from

step 1.

4. CONVERGENCE TESTS

We have implemented the above schemes in a Cosmological Hydromagnetic AMR

Radiation Many-body (CHARM) code. The code is based on the CHOMBO AMR

library and it is implemented in a hybrid C++/Fortran77 language. Additional

physics modules, such as radiation [40], cosmic-rays [41, 42] and magnetohydrody-

namics will be presented elsewhere. In the following, we focus on numerical tests

to assess the performance of the algorithms in terms of accuracy and applicability

to problems of direct interest. Performance tests will be presented elsewhere.

Unless explicitly stated otherwise, in the following we use these CFL coefficients

for the time step: Chydro = Cpart = 0.5 and Cexp = 0.01. In addition, we restrict

the results to the case of a TSC interpolation scheme which, in accord with previous

authors, we find to give the most accurate results.
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TABLE 1

Convergence tests: collisionless case†

Npart L1 R1 L2 R2 L∞ R∞

position

8 1.3e-07 1.9 1.4e-07 1.9 1.9e-07 1.8

16 3.5e-08 2.0 3.9e-08 2.0 5.4e-08 2.0

32 8.9e-09 2.0 9.8e-09 2.0 1.3e-08 2.1

64 2.2e-09 2.0 2.4e-09 1.9 3.0e-09 1.6

128 5.6e-10 – 6.2e-10 – 9.8e-10 –

velocity

8 1.3e-04 1.9 1.4e-04 1.9 1.9e-04 1.8

16 3.5e-05 2.0 3.8e-05 2.0 5.3e-05 2.0

32 8.8e-06 2.0 9.7e-06 2.0 1.3e-05 2.1

64 2.2e-06 2.0 2.4e-06 1.9 3.0e-06 1.6

128 5.5e-07 – 6.2e-07 – 9.7e-07 –

force

8 6.5e-02 1.9 7.1e-02 1.9 9.4e-02 1.8

16 1.7e-02 2.0 1.9e-02 2.0 2.7e-02 2.0

32 4.4e-03 2.0 4.8e-03 2.0 6.5e-03 2.1

64 1.1e-03 2.0 1.2e-03 1.9 1.5e-03 1.6

128 2.8e-04 – 3.1e-04 – 4.8e-04 –

† We use equal number of cells and particles, Npart = Ncell, a cell-centered force scheme, and

a constant ∆t
∆x

= 1.6× 10−4.

Errors and convergence rates are calculated as follows. At a given resolution, r,

for any given cell or particle, i, we estimate the error on a computed quantity, qcr(i),

with respect to the analytic solution,qa(i), as

δqr(i) = qcr(i)− q
a
r (i). (72)

We then compute the n-norm of the error, i.e.

Ln(δqr) = ‖δqr‖n =
[

∑

|δqr(i)|
nvi

]1/n

(73)

where vi is either the i-th cell volume or the inverse of the number of particles;

finally we estimate the convergence rate as

Rn =
ln[Ln(δqr)/Ln(δqs)]

ln(∆xr/∆xs)
. (74)

For the cases studied below we report the L1, L2 and L∞ norm of the errors.

4.1. Zel’dovich’s Pancake

We begin with a classical test problem for cosmological codes, the evolution

of a one-dimensional plane-wave perturbation in an expanding background. In
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FIG. 1. L2 norm of the error in position (top), velocity (center) and force (bottom) as
a function of the number of grid cells. Left panels correspond to the case in which the number
of particles and grid cells is the same, Ncell = Npart. Central and right panels correspond to
Npart = 1

2
Ncell, with particles initially placed either at cell nodes (middle panels) or at cell

centers (right panels). In all cases a two point cell centered force stencil is used. See legend for
the meaning of the symbols (UG= Uniform Grid, a is the expansion parameter).

Zel’dovich’s formulation [43], the comoving position and peculiar velocities of col-

lisionless matter evolve as

x(t) = q +
b(t)

a(t)
p(q) (75)

v(t) = a(t) ẋ(t) (76)

where q, p are the Lagrangian initial position and displacements, a(t) is the ex-

pansion factor and b(t)/a(t) describes the growth factor of the perturbation. For a

closed universe (Ωm = 1), a(t) = (3H0t/2)
2/3 (Eq. [2]) and b(t) = 2a2/5 [43].
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TABLE 2

Convergence tests: collisionless, variable timestep, linear phase†

Npart L1 R1 L2 R2 L∞ R∞

position

8 6.4e-06 1.9 6.9e-06 1.9 9.2e-06 1.8

16 1.7e-06 2.0 1.9e-06 2.0 2.6e-06 2.0

32 4.3e-07 2.0 4.7e-07 2.0 6.4e-07 2.1

64 1.1e-07 2.0 1.1e-07 1.9 1.4e-07 1.6

128 2.5e-08 – 2.8e-08 – 4.5e-08 –

velocity

8 8.9e-04 1.9 9.6e-04 1.9 1.3e-03 1.8

16 2.3e-04 2.0 2.6e-04 2.0 3.6e-04 2.0

32 5.9e-05 2.0 6.5e-05 2.0 8.9e-05 2.1

64 1.5e-06 2.0 1.6e-05 1.9 2.0e-05 1.6

128 3.7e-07 – 4.2e-06 – 6.6e-06 –

force

8 6.5e-02 1.9 7.1e-02 1.9 9.4e-02 1.8

16 1.7e-02 2.0 1.9e-02 2.0 2.7e-02 2.0

32 4.4e-03 2.0 4.8e-03 2.0 6.5e-03 2.1

64 1.1e-03 2.0 1.2e-03 1.9 1.5e-03 1.6

128 2.8e-04 – 3.1e-04 – 5.1e-04 –

† We use equal number of cells and particles, Npart = Ncell, a cell-centered force scheme, a

variable timestep, ∆t
∆x

= Cexp(
a
ȧ
), Cexp = 10−2, and a = 0.0221.

Setting the initial displacements to a sinusoidal form, p(q) = 5A sin(kq)/2, where

k is the perturbation wavenumber, we obtain

x(t) = q + a A sin(kq) (77)

v(t) = a ȧ A sin(kq) (78)

ρ(t) = ρ0 [1 + a A k cos(kq)]
−1
. (79)

The solution described by Eq. (77) becomes singular, that is ∂x/∂q = 0 when

acollapse = (Ak)−1. At this stage, particles trajectories cross at x = q = π/k

and a caustic forms. In the following we use astart = 1/51, acollapse = 1/2 and

k = 2π/h−1Lbox.

4.1.1. Collisionless Component

Table 1 demonstrates the second order accuracy of the code. The different

columns report, as a function of numerical resolution, the L1, L2 and L∞ norms

of the error on the particles position, velocity and force, and the corresponding

convergence rates of the errors. The L2 norm of these errors is also reported graph-

ically in the left hand side panels of Fig. 1. For this case we use equal number

of cells and particles, Npart = Ncell, a cell-centered force scheme, and a constant
∆t
∆x = 1.6× 10−4. In Fig. 1 we also report the L2 norm of the errors for the case

in which Npart = 1
2Ncell and the particles are initially placed either at cell nodes
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TABLE 3

Convergence tests: collisionless, variable timestep, nonlinear phase†

uniform grid AMR

Npart L1 R1 L∞ R∞ L1 R1 L∞ R∞ lmax

position

8 3.0e-02 1.7 4.6e-02 1.6 2.9e-02 1.9 4.5e-02 1.9 1

16 9.5e-03 1.8 1.6e-02 1.8 7.9e-03 2.0 1.2e-02 2.0 1

32 2.7e-03 1.9 4.7e-03 1.8 2.0e-03 2.0 3.1e-03 1.9 2

64 7.2e-04 2.0 1.3e-03 2.0 5.1e-04 2.0 8.3e-03 1.9 2

128 1.8e-04 2.0 3.3e-04 1.8 1.2e-04 2.0 2.2e-04 1.3 3

256 4.6e-05 – 9.2e-05 – 3.0e-05 – 9.2e-05 3

velocity

8 5.9e-02 1.4 9.4e-02 1.2 5.1e-02 1.8 7.9e-02 1.9 1

16 2.2e-02 1.6 4.1e-02 1.2 1.4e-02 1.8 2.1e-02 1.5 1

32 7.4e-03 1.6 1.8e-02 1.3 4.1e-03 2.1 7.4e-03 2.2 2

64 2.4e-03 1.7 7.3e-03 1.4 9.6e-03 2.1 1.6e-03 1.9 2

128 7.4e-04 1.8 2.8e-03 1.6 2.2e-04 2.0 4.5e-04 1.3 3

256 2.1e-04 – 9.1e-04 – 5.7e-05 – 1.8e-04 – 3

force

8 1.5e-01 1.1 2.6e-01 0.7 1.1e-01 1.3 1.8e-01 0.9 1

16 7.4e-02 1.0 1.6e-01 0.5 4.5e-02 2.4 9.3e-02 2.6 1

32 3.7e-02 1.0 1.2e-01 0.6 8.2e-02 1.2 1.6e-02 0.1 2

64 1.8e-02 1.2 7.8e-02 0.7 3.5e-03 0.5 1.5e-02 2.3 2

128 8.1e-03 1.4 4.6e-02 1.0 2.5e-03 1.6 3.0e-02 1.3 3

256 3.1e-03 – 2.2e-02 – 8.2e-04 – 1.2e-02 – 3

† We use equal number of cells and particles, Npart = Ncell, a cell-centered force scheme, a

variable timestep, ∆t
∆x

= Cexp(
a
ȧ
), Cexp = 10−2, and a = 0.479.

(central panels, NCP for node centered particle) or cell centers (right panels, CCP

for cell centered particle). Both these configurations lead to a slower convergence

rate than our reference case illustrated in the left hand side panels.

In cosmological simulations, the timestep during the initial stages is determined

by the expansion rate of the background. Thus in Table 2 we report the same

quantities as in Table 1 but for the case of a (variable) timestep determined by
∆t
∆x = Cexp(

a
ȧ ), with Cexp = 10−2. The L2 norm of these errors are also reported

as filled symbols in the left hand side panels of Fig. 2. The errors were computed

after ten timesteps so that the system is still in the linear regime. And, in fact, the

convergence rates are the same as in Table 1. The same correspondence in terms

of convergence rates also exists for the case in which Npart =
1
2Ncell, as illustrated

for the NCP case by the star symbols in right hand side panels of Fig. 2.

Next, we consider the errors during the nonlinear regime of the calculation. In

particular, we consider the solution just prior to the caustic formation, when the

background expanded by a factor 25 since the simulation start. On the left hand

side of Table 3 we report the L1 and L∞ error norms and convergence rates as in
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Table 2 while the L−2 errors are shown as open symbols in the left hand side panels

of Fig. 2. We see that in the nonlinear regime the convergence rates of the errors in

FIG. 2. L2 norm of the error in position (top), velocity (center) and force (bottom) as a
function of the number of grid cells. Left panels correspond to the case in which the number of
particles and grid cells is the same, Ncell = Npart. Right panels correspond to Npart = 1

2
Ncell,

with particles initially placed at cell nodes. See legend for the meaning of the symbols (UG=
Uniform Grid, a is the expansion parameter).

the particle positions, velocities and forces have worsened in a minor, appreciable

and considerable way, respectively.

Finally, we test the performance of the AMR code. We use a constant refinement

ratio, nref = 2, and refine cells enclosing a mass larger than 1.5 the average value.

A maximum of three levels of refinement were allowed. All runs used a first level of

refinement for about 30% of the calculation, except for the lowest resolution case

for which the percentage was 12%. The second level of refinement was only used by

the three higher resolution runs and only for about 5% of the time. Finally, a third

level of refinement was employed only by the two finest runs and only for less than

1% of the time. Similarly, finer grids cover a progressively smaller fraction of the
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computational domain. The L1 and L∞ error norms and convergence rates for the

FIG. 3. Comparison between two numerical experiments, employing a uniform grid (left)
and two levels of refinement (right), in terms of error in the particle position (top), velocity
(middle) and force (bottom). The initial set up includes 32 grid cells (bound by vertical lines) and
32 particles uniformly distributed. Only one quarter of the grid is shown, focusing on the critical
region where the caustic forms. Vertical lines indicate cells’ boundaries.

AMR runs are reported on the right hand side of Table 3 while the L− 2 errors are

shown as spur symbols in the left hand side panels of Fig. 2. These results show

that employing AMR during the nonlinear evolution improves the convergence rate

of the solution in such a way that they resemble the values in the linear stage. This

is true in this example for the errors in the position and velocity and to a lesser

extent, the force, which is more affected by coarse/fine boundary effects.

Fig. 3 compares the errors in position, velocity and force for a fixed grid (left)

and an AMR grid (right) calculations. It focuses on the region where, and the

times when, the caustic forms and AMR operates. Thus only one quarter of the

total grid is shown (with the cell boundaries of the base grid indicated by vertical

lines and marked by integer labels), and the various errors are plotted only for the
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last one third of the simulation run. At the beginning of that time span (when

a ∼ 0.2), the particles have clustered sufficiently at the grid center and a first level

of refinement is created. Six grid meshes are refined (only three between boundaries,

FIG. 4. Same as Fig. 1 but for the case in which a staggered scheme is used for the force
calculation.

12-16, are shown in Fig. 3). The second level of refinement is created much later

and only affects one base (or two refined) grid mesh(es) for the last ten per cent of

the simulation. Fig. 3 shows that the errors in position, velocity and force of the

particles close to the point where the caustic forms are much reduced when AMR

is employed. The generation of a level of refinement is accompanied by a change in

the mass distribution and the potential field. When this happens, a particle may

experience a sudden change in terms of the force field acting upon it. These effects

are responsible for the somewhat ‘errant’ behavior of the force error, as illustrated

in the bottom-left panel of Fig. 3. Overall, though, for each particle the force

fluctuations in the AMR case are significantly smaller than the force errors in the

uniform grid case.
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As a last result for this section, in Fig. 4 we plot L2 convergence errors analogous

to Fig. 1 but for the case in which the force was computed with a staggered scheme.

Comparison of the two figures shows that when Npart = Ncell the solution obtained

with the staggered scheme also converges with second order accuracy, while being

characterized by smaller errors. This is in agreement with previous findings [44].

However, when the number of particles is halved (Npart =
1
2Ncell) the results ob-

tained with a staggered force scheme worsen more dramatically than for the cell

centered case, showing a very poor convergence rate. Closer inspection shows that

when the particles are sparse on the grid, oscillations appear in the potential due to

the discrete character of the matter distribution as reproduced on the grid. Since

this affects only the quality of the staggered scheme the problem may be related

to the inconsistency of this scheme with the centering of the stencil used for the

discretization of the Laplacian operator. We shall return to this issue in the next

test case where the problem reappears with more dramatic effects.

4.1.2. Collisional Component

We now turn to the performance of the hydrodynamic part of the code. We use

the same tests employed in the previous section for the the collisionless component.

However, since in this case the solution refers to an Eulerian grid, in order to have

the velocity and density at a given grid location x(q, t) from Eq. (78)-(79) we must

invert Eq. (77). We first consider the errors in the linear regime, in analogy

TABLE 4

Convergence tests: Godunov’s scheme†

Npart L1 R1 L2 R2 L∞ R∞

density

8 2.7e-05 2.2 2.9e-05 1.9 4.2e-05 1.2

16 5.7e-06 2.2 7.6e-06 2.2 1.8e-05 1.8

32 1.2e-06 2.0 1.7e-06 2.2 5.3e-06 1.9

64 3.0e-07 2.0 3.8e-07 2.1 1.4e-06 1.9

128 7.4e-08 – 8.8e-08 – 3.7e-07 –

velocity

8 3.3e-05 2.0 3.6e-05 2.0 5.2e-05 2.0

16 8.1e-06 2.0 9.0e-06 2.0 1.3e-05 2.0

32 2.0e-06 2.0 2.2e-06 2.0 3.2e-06 2.0

64 5.0e-07 2.0 5.6e-07 2.0 7.9e-07 2.0

128 1.2e-07 – 1.4e-07 – 2.0e-07 –

force

8 1.6e-02 2.0 1.7e-02 2.0 2.4e-02 2.0

16 3.9e-03 2.0 4.3e-03 2.0 6.1e-03 2.0

32 9.7e-04 2.0 1.1e-03 2.0 1.5e-03 2.0

64 2.4e-04 2.0 2.7e-04 2.0 3.8e-04 2.0

128 6.0e-05 – 6.7e-05 – 9.5e-05 –

† We use a cell-centered force scheme and a constant timestep, ∆t
∆x

= 1.6× 10−4.
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TABLE 5

Convergence tests: Godunov’s scheme, linear regime†

Npart L1 R1 L2 R2 L∞ R∞

density

8 2.0e-04 2.2 2.1e-04 1.9 3.0e-04 1.1

16 4.2e-05 2.1 5.7e-05 2.1 1.4e-04 1.7

32 9.5e-06 2.0 1.3e-05 1.9 4.3e-05 1.4

64 2.4e-06 1.9 3.5e-06 1.5 1.6e-05 0.9

128 6.5e-07 – 1.3e-06 – 8.4e-06 –

velocity

8 2.1e-04 2.0 2.3e-04 2.0 3.3e-04 2.0

16 5.1e-05 2.0 5.7e-05 2.0 8.2e-05 2.0

32 1.3e-05 2.0 1.4e-05 2.0 2.0e-05 2.1

64 3.2e-06 2.0 3.5e-06 2.0 5.0e-06 1.9

128 7.9e-07 – 8.9e-07 – 1.3e-06 –

force

8 1.5e-02 2.0 1.7e-02 2.1 2.3e-02 2.0

16 3.6e-03 2.0 4.0e-03 2.0 5.7e-03 2.0

32 9.0e-04 2.0 1.0e-04 2.0 1.4e-03 2.0

64 2.2e-04 2.0 2.5e-04 2.0 3.5e-04 2.0

128 5.6e-05 – 6.2e-05 – 8.9e-05 –

† We use a cell-centered force scheme, a variable timestep, ∆t
∆x

= Cexp(
a
ȧ
), Cexp = 10−2, and

a = 0.0221.

to Table 1 and Table 2 for the collisionless component. In Table 4 we report the

L1, L2 and L∞ norms of the error for the gas density, velocity and force and the

corresponding convergence rates, for the case of fixed time step, ∆t
∆x = 1.6× 10−4.

Similarly, the left hand side of Table 5 reports the L1, L2 and L∞ errors for the

case in which the time step is set by the background expansion rate. The L2 errors

for the fixed and varying timestep cases are also shown by the filled symbols in the

left and right hand side panels of Fig. 5, respectively. These tests show the second

order accuracy of the implemented scheme. We note, however, that in the case

of variable time step the convergence rate of the L∞ norm of the density error is

slower. Next, the left hand side of Table 6 reports the errors and convergence

rates for the case of a uniform grid calculation, well in the nonlinear regime, close

the formation of the caustic (a = 0.479). As before, the L2 errors are also shown as

open symbols in Fig. 5. Unlike the collisionless case, here is the convergence rate

of the density that is mostly affected, particularly at low resolutions (cf. [31, 45]).

As illustrated by the L∞ norm, the error is dominated by the contribution of a few

cells, located where the caustic forms.

Finally, we test the performance of the AMR code. As for the collisionless com-

ponent, we use a constant refinement ratio, nref = 2, refine cells enclosing a mass

larger than 1.5 the average value and allow for a max of three levels of refinement.

The results at a = 0.476 are reported in the right hand side columns of Table 6 for
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TABLE 6

Convergence tests: Godunov’s scheme, nonlinear regime†

uniform grid AMR

Npart L1 R1 L∞ R∞ L1 R1 L∞ R∞ lmax

density

8 2.2e-01 0.5 8.2e-01 – 1.6e-01 0.7 8.2e-01 – 1

16 1.6e-01 0.7 1.2e00 – 1.0e-01 0.6 1.5e00 – 1

32 9.7e-02 0.9 1.5e00 0.0 6.4e-02 2.0 2.4e00 1.3 2

64 5.0e-02 1.6 1.5e00 1.0 1.6e-02 2.0 1.0e00 1.1 2

128 1.6e-02 – 7.3e-01 – 3.9e-03 – 4.7e-01 – 3

velocity

8 2.7e-02 1.4 9.4e-02 0.4 1.6e-02 1.8 8.6e-02 0.7 1

16 1.0e-02 1.4 7.0e-02 0.4 4.7e-03 1.7 5.3e-02 0.6 1

32 3.8e-03 1.5 5.3e-02 0.6 1.4e-03 2.4 3.6e-02 2.2 2

64 1.3e-03 1.6 3.6e-02 0.9 2.6e-04 1.8 9.6e-03 1.9 2

128 4.3e-04 – 2.0e-02 – 7.2e-05 – 3.1e-03 – 3

force

8 6.8e-02 1.6 2.3e-01 0.5 3.7e-02 1.7 2.0e-01 0.9 1

16 2.3e-02 1.5 1.6e-01 0.5 1.1e-02 2.3 1.1e-01 0.8 1

32 8.4e-03 1.5 1.1e-01 0.6 2.2e-03 2.0 6.3e-02 1.7 2

64 2.9e-03 1.6 7.3e-02 0.9 5.5e-04 1.8 1.9e-02 2.2 2

128 9.5e-04 – 3.9e-02 – 1.6e-04 – 4.0e-03 – 3

† We use a cell-centered force scheme, a variable timestep, ∆t
∆x

= Cexp(
a
ȧ
), Cexp = 10−2, and

a = 0.479.

the L1, L∞ errors and convergence rates. There we also show the maximum level

employed by each run. L2 errors are reported as spur symbols in the right panels

of Fig. 5.

The use of refined grids in terms of fraction of grid covered and fraction of the

simulation time is very similar to the corresponding collisionless case. Similar is

also the benefit of AMR, which improves the convergence of the solution to rates

very similar to those characterizing the linear regime. This is indeed a powerful

performance of the AMR technique.

4.2. Effect of Cexp on the Solution Quality

We have investigated how the error depends on the choice of the parameter Cexp

for the above problem. In particular we have computed the error accumulated

during an interval ∆a≪ acollapse, for values of the expansion parameter a = 0.196

and a = 0.091, and for values of Cexp ranging from 10−3 to 0.5. We consider both

the fluid and the collisionless case. We use a uniform grid with 32 zones on a side

and, for the collisionless case, we use one particle per cell. The results are rather

independent of the norm type. We find that the errors introduced in the particles

velocity and position is quite stable, except for the largest values of Cexp. On the

other hand, the errors in the fluid components decrease steadily as Cexp is reduced,

spanning a factor ∼ 5 before reaching a plateau for Cexp ≤ (1− 2)× 10−2.
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FIG. 5. L2 norm of the error in density (top), velocity (center) and force (bottom) as a
function of the number of grid cells. See legend for the meaning of the symbols (UG= Uniform
Grid, a is the expansion parameter).

4.3. Homologous Dust Cloud Spherical Collapse

In this section we test the ability of the code to follow the collapse of a pressure-

less (dust) sphere of matter [46]. The problem is described by the following equa-

tions
(

∂2r

∂t2

)

M

= −G
M(r)

r2
(80)

u =

(

∂r

∂t

)

M

(81)

with initial conditions

ρ(i, t = 0) =

{

f [r(i)] if r(i) ≤ R

0 if r(i) > R
(82)

u(i, t = 0) = 0 (83)
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FIG. 6. Phase space distribution of particles for the spherical collapse of a pressureless
cloud. Cyan open circles correspond to the analytic solution and filled triangles to the numerical
simulation result. The right panel is for the case of a uniform grid whereas the left panel correspond
to an AMR calculation with two levels of refinement.

where M(r) is the mass enclosed within a distance r from the sphere center, R is

the radius of the sphere and f(r) is a function (with f ′(r) ≤ 0) that depends solely

on r. For the hydrodynamic case null density will be approximated with a value

ρ(r > R)≪ min[ρ(r)]. The problem admits a self similar solution in implicit form

which reads

(1− ξ)1/2 ξ1/2 + sin−1(1− ξ)1/2 = τ (84)

r = ξ r0, u =
r0
τc

(

ξ−1 − 1
)1/2

, τ ≡ t

(

8πG〈ρ〉r
3

)1/2

(85)

where 〈ρ〉r = 3M(r)/4πr3 is the average density within a radius r.

From the numerical point of view, the problem is challenging in two respects:

during collapse the force potential becomes progressively steeper and, therefore,

more demanding for the gravity solver. In addition, since the problem has inherent

radial symmetry and we are solving it on a Cartesian grid, the ability of the code

at preserving that symmetry will be tested.

For the collisionless component we initially set particles with null velocity at

the center of cells whose distance from the cloud center is less than R (=1). This

produces a homogeneous density distribution everywhere inside R, except close to

the cloud edge due to the discreteness of the grid. In Fig. 6 we compare the position

of each particle in phase-space (vr, r) as given by the code (black filled triangles)

with the analytic solution (cyan open circle). The left panel corresponds to the

case in which a uniform grid is used whereas for the right panel solution AMR was

employed. We allow for two levels of refinement and tag cells with a total mass four

times as high as the initial value. The comparison between analytic and numerical

solution in Fig. 6 is made for a number of evolution times, expressed in terms of the

adimensional collapse time τcoll = π/2. Noticeably, the code follows the particles



! Please write \titlerunninghead{<(Shortened) Article Title>} in file ! 31

FIG. 7. Phase space distribution of particles for the spherical collapse of a pressureless
cloud. The initial cell-to-particle ratio is 4. Cyan open circles correspond to the analytic solution
and filled triangles to the numerical simulation result using a cell-centered (left) and face-centered
(right) force scheme, respectively.

motions with high accuracy all the way down to the time of collapse. In particular,

there is no sign of artificial asymmetries. Additional levels of refinement were

dynamically generated towards the final phase of the collapse. At the latest time

shown (τ = 0.98 τcoll), we can see the improvement due to the employment of finer

grids in the collapsing region. Note that towards the edge of the cloud the particles

are trailing. This is due to the inability to reproduce a perfectly homogeneous

sphere near the cloud edge from the beginning. The region affected by this is about

one mesh size wide.

When exploring the accuracy of cell-centered versus face-centered force schemes

our tests suggest that, again, in the uniform grid case the latter perform slightly

better, at the level of ca 15%. In analogy with the analysis of Sec. 4.1, we have

tested this further, for the case in which the ratio of cells to particles is significantly

larger than one. This situation may easily occur depending on the adopted criterion

for refinement and on the efficiency for the generation of the refined grid out of the

tagged cells. In Fig. 7 we compare the solutions obtained with a cell-centered (left)

and a staggered (right) force scheme for an initial cell-to-particle ratio of 4. The

initial dust sphere is placed on a grid of 256 cells on a side, and 8 particles are

aligned along its radius out to 32 cells from its center. The code output is plotted

at three different solution times close to the time of collapse t = τcoll. This test

shows that when the number of cell-to-particle ratio is significantly higher than

one, the staggered force scheme tends to produce spurious results. This is in line

with the findings in the previous test problem in section 4.1. On the other hand,

the cell-centered scheme seems well behaved. We find that the qualitative result

does not change when we use a two or four point force stencil, when the number of

particles to resolve the sphere is changed or when the sphere center is shifted by a

fraction of a mesh size in an arbitrary direction.
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Thus the staggered force scheme, although apparently more accurate than its

cell-centered counterpart when the number of cells is comparable to, or less than,

the number of particles [44], it gives rise to spurious results when particles are

sparse on the grid. Therefore, caution must be exercised when employing staggered

schemes for force evaluation.

t=0.72τcoll

t=0.72τcoll

t=0.92τcoll

t=0.92τcoll

FIG. 8. Density and velocity profile for spherical collapse of a pressureless cloud of
gas. Cyan open circles correspond to the analytic solution and black filled dots to the numerical
simulation results.

Finally, the results for the collisional case are illustrated in Fig. 8. The plot

compares the density (top) and velocity (bottom) profiles of the numerical solution

(threaded black dots) and the analytic solution (cyan dots). The latter extend only

out the cloud size, whereas the numerical solution includes the region covered by the

finest level. Two times during the collapse are shown: t = 0.72τcoll and t = 0.92τcoll,

corresponding to the low and high curves, respectively. At these times one and two

levels of refinement have been generated, respectively. The chosen times are close

to the collapse time, when the errors have accumulated and the simulation becomes

more challenging. Nevertheless, as for the collisionless component, the code follows
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accurately the evolution of the density and velocity profiles of the collapsing cloud.

Again, close to the cloud edge the density profile is smoother and the velocity field

slower than the analytic solution. The size of the region affected by this is again of

order of the coarse mesh size and it is partially ascribed to the crude representation

of the cloud edge on the grid.

4.4. Energy Conservation: Layzer-Irvine Equation

For pure hydrodynamics conservation of the total (kinetic+thermal) energy is

enforced by our conservative Godunov’s method. When gravity is added, energy

conservation should still hold, but is not explicitly enforced in our scheme. Finally,

with an expanding background energy is not conserved. For a collection of parti-

cles that interact only gravitationally, the evolution of the energy of the system is

regulated by the Layzer-Irvine equation, which reads

d

dt
[a(t)(E +W)] = −ȧ E (86)

where E is the kinetic energy associated to the peculiar motions of the particles

and W their gravitational potential energy due to the overdensity produced by

their mass distribution. Clearly in absence of expansion (a = 1, ȧ = 0) Eq. (86)

reduces to the ordinary energy conservation equation. Otherwise it describes the

change in the total energy of the system due to the adiabatic expansion of the back-

ground. The derivation and physical meaning of Eq. (86) is reviewed in Ref. [27]. Its

applicability to hydrodynamic simulations is discussed in, e.g., Ref. [32], in which

case a monoatomic gas is assumed and E includes both the kinetic and thermal

energy of the gas.

Eq. (86) can be integrated in time giving

a[E(a) +W(a)]− a0[E(a0) +W(a0)] = −

∫ a

a0

Eda. (87)

We can evaluate the integral on the RHS of the above equation numerically with

the trapezoidal rule and assess the accuracy of the code at tracking the energy of

the system through the quantity

δε =
a[E(a) +W(a)]− a0[E(a0) +W(a0)] +

∫ a

a0
Eda

[a0W(a0)− aW(a)]
. (88)

We first test the energy conservation accuracy of the code for the case of the

collapse of a pressureless cloud. This is the problem studied in the previous section.

We carry out three AMR calculation with different base grid sizes, namely 16, 32,

64 corresponding to 4, 8, 16 cells per cloud radius respectively. In these runs, cells

enclosing more then four times the initial mass content were tagged for refinement

and a maximum of two 2 refinement levels were allowed. The results of the test

are reported in the left hand side panel of Fig. 9 where we plot the error in the

total energy, δε, as a function of resolution, for both the particle (open) and the

gasdynamic (filled) case. The plots show that with 16 zones per cloud radius the

error in the energy is at the level of a per cent or so.
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FIG. 9. Energy conservation error based on Eq.(88) for the collapse of a pressureless
spherical cloud (left) and a cosmological run (right). See text for details.

Next we test code accuracy at tracking the energy of the system in a cosmological

run. For the purpose we use a Λ-Cold Dark Matter cosmology with parameters

Ωm=0.3, ΩΛ = 0.7, Ωb = 0.04, for the energy density in total matter, dark energy

and baryonic matter respectively; and H0 = 70 km s−1 Mpc−1 for the Hubble

constant. The physical domain has a size of L=91.43 Mpc on a side. We execute

three runs with different numerical resolution. The first two runs employ a uniform

grid with 323 and 643 cells, respectively, and the same number of particles as grid

cells. The third run uses a base grid with 323 cells and 323 particles, and two

additional levels of refinement created in region where the total mass enclosed in

a cell exceeds the initial value by a factor eigth. The initial conditions where

generated on a 643 grid and coarse-averaged to a 323 grid for the low-resolution-

uniform and AMR runs.

The results are presented in the right panel of Fig. 9 where we plot δε (top), E

(middle) andW (bottom) as a function of expansion parameter a for each resolution

case. The plots show that when using a uniform grid the total energy of the system

is evolved with an accuracy at the percent level (∼ 2% and 1% for the 323 (dot)

and 643 (dash) cases, respectively), with most of the error generated at startup. In

the AMR case (solid line), however, our error parameter δε increases visibly when

refinement levels are created (at a ∼ 0.15 and a ∼ 0.2 for the first and second level

respectively). The reason for this is simple. When a level of refinement is created

the potential energy of the system changes suddenly (see solid and dot lines in the

bottom panel) throwing off the balance bewtween particle/gas velocities and their

potential energy. As a result a large error in the sense of Eq.(88) is generated. This

is so, even though with the additional level of refinement the potential energy of the

system is more accurate as it gets closer the value from the high resolution run (see

solid and dash lines in the bottom panel). Over time the kinetic energy readjusts to

the new potential (middle panel; notice that the internal energy is negligible) and

a balance between the two forms of energy is reestablished. Because the potential
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energy associated with the newly formed structures is larger than that of the system

at the time when the refinement levels were first generated, the new balance between

kinetic and potential energy reduces substantially the error as time progresses. At

simulation end the AMR run (with a base grid of 323 cells) produces estimates of

δε, E and W very close to the high resolution run.

4.5. Santa Barbara Galaxy Cluster

In this section we carry out the calculation defined by the ‘Santa Barbara Cluster

Comparison Project’ [47] and compare the results of our code with those from

different codes implemented independently by other authors and based either on

similar or different techniques.

The problem consists of simulating the formation of a galaxy cluster in a Standard

Cold Dark Matter universe. The cosmological parameters assumed were Ωm= 1 and

Ωb = 0.1 for the total and baryonic mean mass density in units of the critical density,

respectively; H0 = 50 km s−1 Mpc−1 for the Hubble constant; σ8 = 0.9 for the

present-day linear rms mass fluctuation in spherical top hat spheres of radius 16

Mpc; for the baryon density. The computational domain has a size of L=64 Mpc on

a side. The initial matter fluctuation are characterized by a power spectrum with

an asymptotic spectral index, n = 1, and are ‘constrained’ so that at simulation

end a massive structure has formed at the center of the computational box.

The simulation was initialized at z = 40 with two grids already in place: a base

grid covering the entire 64 Mpc3 domain with 643 cells and 643 particles; and a

second grid, also with 643 cells and 643 particles, but only 32 Mpc on a side and

placed in the central region of the base grid, thus yielding an initial cell size of

0.5 Mpc. Refinement is applied only in this central, higher resolution region and

is based on a local density criterion: cells with a total mass of 6.4 × 1010 M⊙ or

more were refined. We allowed for 5 levels of refinement (for a total of a 6 levels

hierarchy), with a constant refinement ratio nref = 2. The size of the finest mesh

is about 15 comoving kpc. We use the following CFL coefficients for the time step:

Chydro = 0.8, Cpart = 0.5 and Cexp = 0.02.

At simulation end a halo finder based on the spherical overdensity method [48]

was run in order to define the center of the galaxy cluster. The radial profiles for six

quantities of interest are presented in Fig. 10 together with results from two other

simulation codes: ENZO, which is an Eulerian AMR code similar to ours, and HYDRA

(as run by Jenkins & Pearce), which combines smoothed particle hydrodynamics

(SPH) and adaptive particle-particle-particle-mesh (AP3M) method for the N-body

part [49]. These two codes are meant to be representative of the high resolution

grid based and SPH approaches, respectively.

Results are shown down to scales of about 30 kpc which is just above the nominal

resolution at finest level of refinement. The plot shows that there is good agree-

ment among the results of the different codes particularly with ENZO (even though

we used one less level of refinement and use a different refinement criterion). The

discrepancies, when significant, are consistent with those already found in the ex-

tensive comparison paper in Ref. [47]. In fact, there is very good agreement in

terms of dark matter density distribution (top left) which is well fit by the analyt-

ical form proposed in Ref. [50] with parameters specified in the caption. Similarly,

there is good matching of the solution in terms of gas density distribution, except
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FIG. 10. Radial profile of dark matter (top left), baryonic gas (top right) temperature
(middle left), baryonic fraction (middle right), radial velocity for dark matter (bottom left) and
gas (bottom right). In addition to the results from CHARM (open dots), for comparison we also
show those from the ENZO AMR code (filled triangles) [21] as well as those from the HYDRA SPH
code (open stars) [49].

in the inner regions within 100 kpc, where the two AMR solutions flattens and the

SPH solution keeps on increasing. More significant is the difference in temperature

distribution (middle left), which drops in the SPH solution for the inner regions

and stays constant for the AMR case. These differences were already found and

discussed in Ref. [47]. (See also Ref. [19] for similar findings.) Their origin is not

fully clear, although as suggested in Ref. [47], it could be ascribed to the different

way in which SPH and grid based methods treat shocks.

Next panel (middle right) shows the profile for the ratio of gas to dark matter

mass, normalized to the global value. While our solution is in good agreement with

ENZO’s and deviates from HYDRA’s in the inner regions and is somewhat in between

the two beyond 1 Mpc or so. There is significant scatter in the results from the full

set of codes found in Ref. [47], at the level of 0.1-0.2. Nevertheless, it is pointed
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out in Ref. [47] that when integrated out to the virial radius of the system (2.7

Mpc), the SPH codes seem to predict a systematically slightly smaller values for

this quantity than high resolution grid based codes. The reason for this is still not

clear.

Finally, both the gas and dark matter radial velocity profiles agree quite well

at all radii. Some differences may arise due to slight differences in the simulation

timing, as pointed out in Ref. [47]. Note that at larger radii (last few points),

typically characterized by wider scatter, both ENZO’s and HYDRA’s results tend

to be below the average value defined in Ref. [47].

5. CONCLUSIONS

We have presented a new code based on AMR technique for systems comprising

collisional and collisionless components coupled through a long range force. We

have thus extended the scheme in [2] to include collisionless particle dynamics

and gravity arising from the mass distribution of the two components. For the

hydrodynamics we use a slightly modified directionally unsplit Godunov’s method

based on Ref. [28]. As for the collisionless component we have implemented various

time centered modified symplectic schemes based on both the kick-drift-kick and

drift-kick-drift sequence. Our implementations of these schemes appear to perform

comparably. We have also used several types of stencil to calculate the force from

the potential. We find that while the staggered schemes appear more accurate

when the number (density) of particles is at least as large as the number of grid

cells, it produces spurious results when the particles are sparse on the grid. Cell

centered stencils thus seem more reliable, especially when a five point cell centered

discretization of the Laplacian operator is used.

Due to the time refinement character of the AMR technique the solution on dif-

ferent levels is advanced with different timesteps. Synchronization issues then arise

as the multilevel solution to the elliptic equation needs to be solved simultaneously

on all levels. In particular, the density field represented by the particles evolved

on finer levels may not be available on coarser levels when they are not synchro-

nized. Similarly, one cannot account for the effects of the mass distribution on

finer levels on the multilevel solution of the potential, unless all levels are synchro-

nized. Among other features of the code, we have thus introduced an aggregation

procedure to cost-effectively represent on the coarser levels the particles on finer

levels without compromising the code accuracy and performance. We have also

implemented a procedure for estimating (when the coarse and finer levels are not

synchronized) the effects on the coarse potential produced by the matching con-

ditions at refinement boundaries between coarse and fine solution, as they would

arise in a full multilevel calculation. We performed several standard tests which

illustrate the code accuracy as well as the advantages of the AMR technique for the

study of both self gravitating hyperbolic systems, collisionless system and hybrid

systems.

ACKNOWLEDGMENT

FM is thankful to D. Serafini, D. Martin, B. van Straalen and D. Graves for useful discussions, to
the Lawrence Berkeley National Laboratory, for its hospitality, to the Institute of Informatics, ETH
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APPENDIX: CHARGE ASSIGNMENT SCHEMES

Indicating with ∆x the mesh size in one dimension we find the nearest grid point

scheme (NGP) defined for order r = 1 as

W (x̂− x) =

{

1 if |x̂− x| ≤ ∆x/2

0 otherwise
(A.1)

in which the assigned charge distribution is discontinuous as the particle cross the

cell boundary; the cloud in cell (CIC) scheme defined for r = 2 as

W (x̂− x) =

{

1− |x̂−x|
∆x if |x̂− x| ≤ ∆x

0 otherwise
(A.2)

in which the assigned charge distribution is continuous but the first derivative is

not; the cell boundary; and the triangular shape cloud (TSC) scheme defined for

r = 3 as

W (x̂− x) =



















3
4 −

(

|x̂−x|
∆x

)2

if |x̂− x| ≤ ∆x/2

1
2 −

(

3
2 −

|x̂−x|
∆x

)2

if ∆x/2 ≤ |x̂− x| ≤ 3∆x/2

0 otherwise

(A.3)

in which both the assigned charge distribution and first derivative are continuous.

These schemes retain their properties when they are extended to a multidimensional

case in the form of a product

W (x̂− x) =

D
∏

j=1

Wj(x̂j − xj). (A.4)
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