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Abstract
This paper presents a class of kernel-free boundary integral (KFBI) methods for general elliptic
boundary value problems (BVPs). The boundary integral equations reformulated from the BVPs
are solved iteratively with the GMRES method. During the iteration, the boundary and volume
integrals involving Green's functions are approximated by structured grid-based numerical
solutions, which avoids the need to know the analytical expressions of Green's functions. The
KFBI method assumes that the larger regular domain, which embeds the original complex domain,
can be easily partitioned into a hierarchy of structured grids so that fast elliptic solvers such as the
fast Fourier transform (FFT) based Poisson/Helmholtz solvers or those based on geometric
multigrid iterations are applicable. The structured grid-based solutions are obtained with standard
finite difference method (FDM) or finite element method (FEM), where the right hand side of the
resulting linear system is appropriately modified at irregular grid nodes to recover the formal
accuracy of the underlying numerical scheme. Numerical results demonstrating the efficiency and
accuracy of the KFBI methods are presented. It is observed that the number of GM-RES iterations
used by the method for solving isotropic and moderately anisotropic BVPs is independent of the
sizes of the grids that are employed to approximate the boundary and volume integrals. With the
standard second-order FEMs and FDMs, the KFBI method shows a second-order convergence rate
in accuracy for all of the tested Dirichlet/Neumann BVPs when the anisotropy of the diffusion
tensor is not too strong.
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1 Introduction
The finite difference and finite element methods are two major and competing numerical
methods for solving elliptic boundary value problems (BVPs) [1]. The finite difference
method is popular for simple structured domains and its ability to make use of fast solvers
for constant coefficient BVPs. The finite element method is well-known for its flexibility to
work with unstructured grids for problems on complex domains. The grid generation process
associated with finite element method, however, is generally more challenging, particularly
when the domain boundary is moving or the equation coefficients are discontinuous.
Consequently, some recent research interest has focused on the use of structured (Cartesian)
grid methods, or meshfree methods [2–4], to avoid the problems with grid generation.

Most structured grid methods in the literature reformulate the BVP as an interface problem
and work with finite difference method on Cartesian grids. The grid lines are not required to
be aligned with the domain boundary or the interface of discontinuities, which generally
degrades the accuracy of numerical solutions. To recover the original accuracy of the finite
difference method, techniques such as smoothing or regularization of discontinuities or
correction of the discretization scheme are usually employed.

Representative existing methods are the immersed boundary (IB) method originally
developed by C. S. Peskin in the 1970s [5–7], the immersed interface (II) method proposed
by R. J. LeVeque and Z. Li [8], the ghost of fluid (GF) method originally developed by S.
Osher and his coworkers [9, 10] and later extended by X.-D. Liu [11, 12] and A. Mayo's
grid-based boundary integral method [13, 14].

In the IB method, the complex domain boundary is regarded as being immersed in a fluid
and modeled via a singular source on the interface. The IB method is a smoothing method
with a transition region that smears discontinuities as it uses a discrete delta function to
distribute the singular source to nearby grid nodes. It is typically only first-order accurate in
higher space dimensions. Some high order IB schemes have been proposed recently in the
literature ([15–21]).

Unlike the IB method, the II method is a sharp interface method. In the II method, the finite
difference stencil used to discretize the interface problem is modified at irregular grid nodes,
where the discrete elliptic operator makes use of nodes from both sides of the interface. This
is achieved by incorporating interface jump conditions into local Taylor expansions of the
elliptic operator at the irregular grid nodes. The resulting scheme is of second-order
accuracy and preserves the jumps across the interface. Modern versions of the II method are
robust and efficient [22–27], and has been successfully applied to a variety of interface-
related problems [28–33].

The II method has also been generalized for discretization of a non-diagonal anisotropic
Laplacian in both two and three space dimensions by M. Dumett and J. P. Keener [34, 35].
Their method is currently first-order only, but it is stable for a wide range of anisotropic
matrices when the anisotropy ratio is not too large and not too small. The resulting matrix
with the method is nonsymmetric nonnegative definite.

In the GF method, the boundary or interface jump conditions are captured implicitly by
extending values across the interface into a ghost fluid. On irregular grid nodes, when the
finite difference discretized Laplacian refers to a node from the other side of the interface, a
ghost fluid value instead of the real one will be supplied. Such a jump condition capturing
procedure is directly incorporated into the numerical discretization in a way that the
symmetry of the finite difference coefficient matrix is maintained. The original GF method
[11, 12] for the variable coefficient Poisson equation is first-order accurate only. A recent

Ying and Henriquez Page 2

J Comput Phys. Author manuscript; available in PMC 2013 March 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



work by S. Hou and X.-D. Liu [36] shows that the GF method has been further extended to
work with triangular grids, resulting in a second-order accurate method.

Mayo's approach combines boundary integral equations with finite difference methods to
solve Poisson and biharmonic equations on irregular domains [13, 14, 37–40]. The complex
domain is embedded into a larger rectangular domain, and the problem is reformulated as an
elliptic interface problem such that the solution is harmonic in the rectangle, excluding the
boundary of the original domain. After the source density is solved from the boundary
integral equation, the jumps of the solution and its partial derivatives are naturally
calculated. To recover the formal accuracy of the underlying finite difference scheme, the
jumps are further used to make corrections for the right hand side of the discrete linear
system corresponding to the irregular grid nodes. The corrected linear system is finally
solved using a fast Poisson solver. The grid-based boundary integral method has been
generalized to different problems such as biharmonic equations, Stokes and Navier-Stokes
equations. Recently, J. T. Beale proposed methods for evaluating the (nearly) singular
integrals in both two and three space dimensions, which make the grid-based boundary
integral method more accurate [41, 42]. Mayo's approach is fast when combined with the
fast multipole method [43] provided that the Green's functions are analytically known.

Other Cartesian grid methods similar to the II and GF methods include Berthelsen's
decomposed II method [44], Zhou etc.'s high order matched interface and boundary (MIB)
method [45], Johansen and Colella's volume of fluid (VOF) method [46, 47], Tseng and
Ferziger's ghost-cell immersed boundary method [48], Oevermann and Klein's Cartesian
grid finite volume method [49]. More methods that use Cartesian grids are the phase field
method by J. W. Cahn and J. E. Hilliard [50] and the capacitance matrix method by W.
Proskurowski and O. Widlund [51].

This paper presents a class of kernel-free boundary integral (KFBI) methods for solving the
elliptic BVPs. It is similar, in spirit, to Li's augmented strategy for constant coefficient
problems [25], Wiegmann and Bube's explicit jump II method [26] and Calhoun's Cartesian
grid method [52], and is a direct extension of Mayo's original approach [13, 41, 42]. The
most obvious difference of the method from others is that it works with more general elliptic
operators with possible anisotropy and inhomogeneity. The KFBI method iteratively solves
the boundary integral equations with a Krylov subspace method, the GMRES method
[53,54]. During the iteration, the double/single layer potentials are approximated by limit
values of structured grid-based numerical solutions while direct evaluation of the volume
and boundary integrals is avoided. Hence, the analytical expressions of Green's functions are
not required. The KFBI method assumes that the larger regular domain, into which the
original complex domain is embedded, can be easily partitioned into a hierarchy of
structured grids so that fast elliptic solvers such as the fast Fourier transform (FFT) based
Poisson (Helmholtz) solvers or those based on geometric multigrid iterations are applicable.
Because the irregular nodes on the structured grids introduce lower order errors, the method
corrects the right hand side of the discrete linear system, based on the unknown density
computed in the previous GMRES iteration step and the jump relations of the double or
single layer potential and its flux, recovering the formal accuracy of the applied numerical
scheme.

In section 2, we describe the inhomogeneous and anisotropic elliptic boundary value
problems to be solved. In section 3, some results from the potential theory for the general
elliptic BVPs are presented. In section 4, we give the boundary integral equations
corresponding to the Dirichlet and Neumann BVPs and the iterations used to solve the
boundary integral equations. The KFBI algorithm is summarized in section 5. In section 6,
we show the interface problems for the computation of volume and boundary integrals.

Ying and Henriquez Page 3

J Comput Phys. Author manuscript; available in PMC 2013 March 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Section 7 describes the spatial discretization of the interface problem on the larger regular
domain with structured grids. Section 8 explains how to calculate jumps of the solution
derivatives with the known densities. Section 9 derives the correction formula for the linear
system resulting from spatial discretization of the interface on the structured grid. Section 10
gives the interpolation technique to extract values of the volume and boundary integrals at
points on the boundary curve. Numerical results with the KFBI method for Dirichlet and
Neumann BVPs are presented in section 11. Finally, the advantages, disadvantages and
applications of the method are discussed in section 12.

2 Boundary Value Problems
The kernel-free boundary integral (KFBI) method described here is valid for general elliptic
boundary value problems (BVPs) with either Dirichlet or Neumann boundary conditions on
either simply or multiply connected bounded domains. For simplicity of explanation, we
restrict ourselves to the discussion on the application of the method for solving BVPs on
simply connected bounded domains. For the same reason, we only present the method in
two space dimensions. Its extension to three space dimension is analogous.

Let Ω ⊂ ℝ2 be a simply connected bounded domain with smooth boundary ∂Ω. Let ℬ be a
larger regular domain, which completely contains the domain Ω. Assume that the boundaries
of the original complex domain Ω and the regular domain ℬ have no intersection, i.e., Ω ⊂ ℬ
and ∂Ω ∩ ∂ℬ = ∅. Denote by Ωc ≡ ℬ \ Ω the complement of the domain Ω in B.

The regular domain ℬ can be chosen flexibly to be a triangle, a rectangle, a circle, a ring or
any other regularly shaped domains as long as the Green's function on ℬ exists and fast
elliptic solvers are readily available.

Let σ ≡ σ(p) be a symmetric and positive definite (SPD) diffusion tensor and k ≡ k(p) be a
non-negative reaction coefficient. Assume that both are well defined in the regular domain
ℬ. Then we introduce an (negative) elliptic operator

(1)

Additionally, assume that the diffusion tensor σ(x) and the reaction coefficient k(x) are at
least continuously differentiable over the regular domain ℬ. In practice, these two quantities
may only be defined inside the original complex domain Ω. In this case, we could use the
KFBI method proposed here to derive biharmonic extensions of σ(p) and k(p) by solving
biharmonic equations in the complement Ωc such that the diffusion tensor, the reaction
coefficient and their normal derivatives across the domain boundary are continuous.

Let Hr−1(Ω), Hr+1/2(∂Ω) and Hr−1/2(∂Ω) be the standard Sobolev spaces, with r > k and k
being a positive integer. Given a source function f ∈ Hr−1(Ω) and boundary data gD ∈
Hr+1/2(∂Ω) or gN ∈ Hr−1/2(∂Ω), we consider solving the elliptic equation

(2)

with either the pure Dirichlet boundary condition

(3)

or the pure Neumann boundary condition
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(4)

respectively. Here, n denotes the unit outward normal pointing outside of the bounded
domain Ω. The equations (2) and (3) form an interior Dirichlet boundary value problem. The
equations (2) and (4) form an interior Neumann boundary value problem. Based on the
assumptions described above, these two BVPs are well-posed (except that, when k(x) = 0,
the solution to the Neumann BVP is not unique but only up to an additive constant).

In this work, we assume that all of the variables and functions encountered are smooth
enough such that the derivatives that appear are meaningful.

For a piecewise smooth dependent variable υ(p), defined on the larger regular domain ℬ,
which has possible discontinuities only on the domain boundary ∂Ω, let

(5)

be the limit values of υ(p) from either side of the domain boundary. Assume the domain Ω is
on the positive side of the boundary curve ∂Ω while the complementary domain Ωc is on the
negative side. The jump of the variable υ(p) across the domain boundary from negative to
positive side is denoted by

(6)

3 Basics of Potential Theory
Let us first summarize some facts from the potential theory [55–59] for the general elliptic
operator ℒ as it is the foundation of the KFBI method.

Let G(q; p) be the Green's function of the elliptic operator ℒ on the regular domain ℬ,
which satisfies

(7a)

(7b)

for each fixed p ∈ ℬ. Here, δ is the Dirac delta function.

Theorem 1
If the source function f(p) in (2) is bounded and integrable in Ω, then the solution to the
elliptic equation (2) with homogeneous Dirichlet boundary conditions, i.e., gD(p) ≡ 0, can
be expressed as an integral of the product of the source function f(p) and the Green's
function G(q; p), i.e.,

(8)
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Here,  represents the volume integral operator. Moreover, the solution is continuously
differentiable in ℬ if f(p) is continuous in Ω.

Define two integral operators : H1/2(∂Ω) → H1/2(∂Ω) and *: H−1/2(∂Ω) → H−1/2(∂Ω) by

(9a)

(9b)

with kernels

(10a)

(10b)

respectively.

Theorem 2
The boundary integral operator  defined in (9a) introduces a double layer potential

(11)

with density φ(q) ∈ H1/2(∂Ω). The double layer potential (11) has a jump across the domain
boundary with strength equal to φ(q) while the normal flux np · σ∇u(p) is continuous.
Specifically,

(12a)

(12b)

and

(13)

Theorem 3
Related to the boundary integral operator * defined in (9b), a single layer potential is
introduced by

(14)
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with density ψ(q) ∈ H−1/2(∂Ω). The single layer potential (14) is continuous across the
domain boundary ∂Ω but the normal flux np · σ∇u(p) has a jump with strength equal to
ψ(q). Specifically,

(15)

and

(16a)

(16b)

Theorem 4
In the regular domain ℬ excluding the domain boundary ∂Ω, the double and single layer
potentials satisfy the elliptic equation (2) with the source term f(p) vanishing, i.e.,

(17a)

(17b)

Finally, we have the following theorem on the spectrum of the integral operators (cf.
Kellogg [55] or Kress [57] etc.).

Theorem 5
The integral operators defined in (9a) and (9b) are adjoint to each other. Both of them have
the same spectrum, which is contained in the interval (−1/2,1/2]. The constant λ = 1/2 can
be an eigenvalue of the operators only if the reaction coefficient in the elliptic operator ℒ
vanishes, i.e., κ = 0.

4 Boundary Integral Equations
The solution to the Dirichlet boundary value problem, defined by (2) and (3), can be
expressed as a sum of a volume integral and a double layer potential

(18)

with density φ(p) satisfying the boundary integral equation

(19)

The solution to the Neumann boundary value problem, defined by (2) and (4), can be
expressed as a sum of a volume integral and a single layer potential
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(20)

with density ψ(p) satisfying the boundary integral equation

(21)

By the spectrum properties of the integral operators, both the integral equations, (19) and
(21), are non-singular for general SPD diffusion tensor σ and reaction coefficient k ≥ 0
except that, when the reaction coefficient is equal to zero (κ = 0), the integral equation (21)
corresponding to the Neumann BVP becomes singular. In the non-singular cases, those two
integral equations can be respectively solved by the following simple iterations:

(22a)

(22b)

and

(23a)

(23b)

for υ = 0, 1, 2, ·, with iteration parameter β ∈ (0, 1). Each of the simple iterative methods
converges to a prescribed tolerance within a fixed number of steps with any initial guess φ0
or ψ0 in the solution space. The number of iterations depends on the shape of the domain,
the diffusion tensor σ and the reaction coefficient k. For the singular integral equation
corresponding to the Neumann BVP with vanishing reaction coefficient (κ = 0), an
additional technique has to be applied for the simple iteration to converge.

For general elliptic operators, due to the un-availability of Green's functions, it is usually
very difficult to directly evaluate the volume and boundary integrals in (22) and (23). For
this, we only calculate them approximately. The analytical expressions of Green's functions
are not required. In this sense, the method proposed in this work is called a kernel-free
boundary integral method.

The densities, φν and ψν, are discretized by periodic cubic splines, which allow easy and
efficient calculation of derivatives of the densities. Specifically, we assume that we are
given M∂Ω quasi-uniformly spaced nodes on the boundary ∂Ω (see Fig. 1). Only at the curve
nodes are the values of the density, φ or ψ, updated by the simple iterations (22) and (23).
For the Dirichlet BVP, the right hand side of (22a) is replaced by the limit values of a grid-
based approximate solution. For the Neumann BVP, the right hand side of (23a) is replaced
by the limit values of the normal flux of an approximate solution. The details of the
procedure for computing the limit values will be described in section 10.

As the right hand sides of (22a) and (23a) are approximated by grid-based numerical
solutions, the maximum eigenvalues of the discrete boundary integral operators,
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corresponding to  and *, could be larger than a half but each has an error to the exact one
on the order of a power of the grid size that is used to derive the approximate solution [60–
62]. From the viewpoint of practical implementation, the iteration parameter β will have an
upper bound slightly less than one, and the simple iterations, (22) and (23), are still
guaranteed to converge as long as the grids used to compute the approximate solutions are
fine enough such that the maximum eigenvalues of the discrete integral operators are
bounded by one, for example.

Nevertheless, the simple iterations for solving the boundary integral equations could be
further improved by a Krylov subspace method such as the GMRES iteration [53,54]. For
example, if we rewrite the boundary integral equation (19) as

(24)

with

(25)

and rewrite the boundary integral equation (21) as

(26)

with

(27)

the application of the GMRES iterative method to solving (24) and (26) simply requires
computation of ḡD, ḡN and the actions φ, *ψ of the operators , * on φ and ψ,
respectively. Once again, the right hand sides of (25) and (27) can be approximated by limit
values of approximate solutions to the Dirichlet BVP while direct evaluation of volume and
boundary integrals are avoided.

5 Algorithm Overview
The key to the KFBI method for solving the boundary integral equation, (19) or (21), with
the simple iterations described in section 4 or the GMRES method, is the approximation of
the associated volume and boundary integrals using structured grid based solutions. The
procedure for computing Gf and Nφν during each iteration is summarized as follows:

Step 1.Set up the domain boundary. Partition the boundary curve into a set of quasi-
uniformly spaced curve segments. Denote the discretization nodes by qj(j = 1, 2, …, M∂Ω).
Compute normals, tangents and curvatures of the boundary at the discretization nodes.

Step 2.Set up the structured grid. Embed the complex domain Ω into a larger regular domain
ℬ. Partition ℬ into a hierarchy of structured grids. Denote the finest grid by h. Identify
regular and irregular nodes of the structured grid h. Locate the points where the domain
boundary ∂Ω intersect with the edges (and diagonals) of the elements of grid h. Compute
tangential and normal unit directions of the boundary curve at those intersected points too.
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Step 3.Discretize the elliptic operator ℒ on the structured grid hwith the finite difference
method or the finite element method. Denote the stiffness matrix by Ah. Similarly, assembly
the right hand side of the linear system, denoted by fh.

Step 4.Following section 8, given the approximate density φνor ψν, compute the jumps of
the solution and its partial derivatives,[uν],[∂uν/∂x],[∂uν/∂y], [∂2uν/∂x2], [∂2uν/∂x∂y]and
[∂2uν/∂y2], at the points where the domain boundary intersect with the edges (and diagonals)
of the elements of the grid h.

Step 5.Following section 9, with the jumps computed in step 4, compute the correction
formula Cν,hand modify the right hand side fh. Denote the resulting source term by fν,h.

Step 6. Solve the modified linear system Ah uν,h = fν,hwith a fast elliptic solver such as the
FFT-based Poisson (Helmholtz) solver or a geometric multigrid solver.

Step 7.Following section 8, with the approximate density φνor ψν, compute the jumps of
the solution and its partial derivatives,[uν,h],[∂uν,h/∂x],[∂uν,h/∂y], [∂2uν,h/∂x2], [∂2uν,h/
∂x∂y]and [∂2uυ,h/∂y2], at the discretization nodes of the boundary curve, qj(j= 1, 2,…, M∂Ω).

Step 8.Following section 10, use the jumps computed in step 7 to compute the limiting
values of the approximate solution uvhor its normal flux n · σ∇uν,hat the curve nodes qj(j= 1,
2, …, M∂Ω).

Note that the steps 1-3 above need to be executed only once. The limiting values computed
in step 8 will approximate the volume or boundary integrals (Gf, Kφυ,Nψυ or/ *ψυ),
respectively. With the approximation, the unknown density φυ or ψυ is updated by the
simple iterations described in section 6, or the GMRES iterative method [53,54]. Then
repeating steps 4-8 above continues the iteration until a stopping criterion is met (say, the
residual is small enough).

In the limit as the iteration for the density φν or ψυ converges, the grid-based numerical
solution uν,h is naturally an accurate approximation of the exact one.

6 Computation of the Volume and Boundary Integrals
Following Mayo's approach [37], the volume integral υ = f occurring in the boundary
integral equations above is computed by solving the following interface problem with
discontinuous inhomogeneous source

(28a)

(28b)

(28c)

(28d)

The double layer potential/integral υ = φ is computed by solving an interface problem,
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(29a)

(29b)

(29c)

(29d)

The single layer potential/integral υ = − ψ is computed by solving another similar
interface problem,

(30a)

(30b)

(30c)

(30d)

The boundary integral *ψ on the domain boundary ∂Ω is by definition computed as the
normal flux of the single layer potential/integral, i.e.,

(31)

Note that the three interface problems above, (28)-(30), can be presented and solved in a
unified framework.

In the rest of this paper, for simplicity, we only illustrate the KFBI method for solving the
Dirichlet boundary value problem. The extension of the method to solving the Neumann
BVP is analogous.

As indicated by (18), the solution to the Dirichlet BVP described by Eqns. (2) and (3) is a
sum of the solutions to the interface problems (28) and (29). In other words, the Dirichlet
BVP is equivalent to the following interface problem:

(32a)

(32b)

(32c)

(32d)
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with φ(p) the double layer potential density, defined by the boundary integral equation (19).
Without confusion, we still use the same symbol u(p) to denote the solution to the interface
problem (32).

Suppose that an approximation to the double layer potential density φ(p) is known as an
intermediate result of the simple iteration (22) or the GMRES iteration for the boundary
integral equation (19) or (24). Denote the approximate density by φυ ≡ φν(p).

Given this density function φν in place of φ in (32b), the interface problem (32) is
approximated by

(33a)

(33b)

(33c)

(33d)

with uν ≡ uν(p) being an approximation of u(p), the solution of (32).

7 Spatial Discretization on Structured Grids
To further solve the interface problem (33) numerically, assume that the regular domain ℬ is

partitioned into a uniform structured grid. Assume the grid has N interior nodes .
Denote the mesh parameter of the grid by h.

On the uniform structured grid, the elliptic operator ℒ can be discretized with a standard
grid-based method, such as the finite difference method, the finite element method or the
finite volume method. Assume a kth-order (κ > 1) scheme is used to discretize the elliptic
operator ℒ. Denote the discrete elliptic operator by ℒh.

If the discretization scheme is the finite difference method, the discrete elliptic operator ℒh
is explicitly available. For example, when the standard five-point stencil is used, the discrete
elliptic operator ℒh has the form ℒh= Ah/h2, where the finite difference stiffness matrix Ah
is block tridiagonal with the natural ordering of grid nodes and the non-zero entries of Ah
are either 4 or −1. Typically the following approximation property holds

(34)

in the discrete maximum norm for υ sufficiently smooth. However, if the discretization
scheme is the finite element method or the finite volume method, the expression for the
discrete elliptic operator ℒh may not be explicitly available. In this case, we assume the
Dirichlet BVP:

(35a)
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(35b)

with f* ∈ Hr−1(ℬ) (r > k > 1), is discretized by a kth-order (κ > 1) finite element or finite
volume method into the linear system

(36)

Here, Ah ≡ (ai,j)N×N is the finite element stiffness matrix; Mh ≡ (mi,j)N×N is the mass matrix
and each entry of the vector f* equals the value of the source f* at the corresponding grid
node, i.e.,

(37)

Let vh ≡ (υ(p1), υ(p2), …, υ(pN))T be the vector with its ith entry equal to the value of

 at the ith grid node pi. For simplicity, we assume, with the uniform grid, there
exists an invertible diagonal matrix Dh ≡ diag(di)N such that

(38)

for any  in the discrete maximum norm.

Introducing the notation:

(39)

we could define the discrete elliptic operator ℒh by

(40)

for . Here, the coefficient matrix in the right hand side of (40) is understood as
an operator of grid functions. Note that the assumption (38) indicates the approximation
property of the discrete elliptic operator:

(41)

in the discrete maximum norm for .

In general, the stiffness matrix Ah = (ai,j)N×N is sparse, symmetric and negative definite.
Each row in the matrix Ah corresponds to an interior node on the grid. For the ith row in the
matrix, which corresponds to the ith grid node pi, we call the set of grid nodes

(42)

as the discretization stencil of the discrete elliptic operator ℒh at the grid node pi, and the
corresponding index set is denoted by
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(43)

A grid node pi is called irregular if there is a grid node pj ∈ S(i) such that the line segment

 connecting pi with pj intersects with the domain boundary ∂Ω. Note the line segment

 may intersect with the boundary curve several times (see Fig. 2). Otherwise, the grid
node pi is called regular. By the definition, a grid node may be irregular even though all of
the nodes in its discretization stencil are on the same side of the boundary (see Fig. 2).

Suppose that the linear system resulting from discretizing the interface problem (33) with
the kth-order discretization scheme is given by

(44)

In principle, the discretization scheme for the interface problem (33) should essentially have
kth-order accuracy if the jumps across the domain boundary of the solution u&nu the flux
n·σ∇uν, the extended source term f ̃ all vanish and additionally f̃ is sufficiently smooth.
However, the presence of discontinuities of the solution and the extended source term
significantly degrade the accuracy of the solution ũν,h to the linear system (44) since

(45)

at irregular grid nodes pi. To recover the formal accuracy of the discretization scheme, the
right hand side of the linear system (44), which approximates the extended source term f̃(p),
must be modified at irregular grid nodes.

Section 9 describes a correction formula Cν,h(p) for the source term in (44). The correction
is made such that

(46)

at irregular grid nodes pi. Define the corrected source term as a grid function by

(47)

for i = 1, 2, …, N. Finally, we obtain the following corrected linear system

(48)

or the symmetric and negative definite one

(49)

Like (39), each side of (49) is understood as the ith entry of the corresponding matrix-vector
product, or the matrices Ah and Dh are treated as operators of grid functions. The diagonal
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matrix Dh is replaced by the identity matrix Ih if the discretization is based on the finite
difference method.

As the stiffness matrix Ah is symmetric and negative definite and a hierarchy of structured
grids exist based upon the assumption on the regular domain ℬ, the system (49) can be
efficiently solved with standard geometric multigrid iterations. In the case that the regular
domain ℬ is a rectangle and the elliptic operator is homogeneous and isotropic, it may even
be solved with the fast Fourier transform (FFT) based fast Poisson (Helmholtz) solvers.

8 Calculation of Jumps of the Partial Derivatives
Suppose that the domain boundary ∂Ω is smooth enough (at least twice continuously
differentiable). Let t(s) ≡ (ẋ(s), ẏ(s))T be the unit tangential vector along the boundary.
Here, s is the arc-length parameter. The outward normal n is given by n(s) = (ẏ(s), −ẋ(s))T.

We present the calculation of jumps across ∂Ω of the derivatives of the solution (u ≡ u(p)) to
the Dirichlet or Neumann BVP in a unified framework. Assume that

(50a)

(50b)

(50c)

(50d)

For the Dirichlet BVP, the flux of the double layer potential is continuous across ∂Ω, i.e., ψ
= 0. For the Neumann BVP, the single layer potential is continuous across ∂Ω, i.e., φ = 0.

Assume the (symmetric) diffusion tensor σ in ℒ has the form

(51)

Writing out the jump (50c) of the normal flux n · σ∇u gives us

(52)

Differentiating (50b) in the tangential direction t, we see that

(53)

The determinant of the two by two system (52)-(53) is equal to

(54)
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which is always positive, uniformly bounded by a positive constant from below. So, the
jumps [ux] and [uy] of the first-order derivatives can be solved from (52)-(53).

To compute the jumps ([uxx], [uxy] and [uyy]) of the second-order derivatives of u, we
differentiate (52) and (53) in the tangential direction and obtain

(55a)

(55b)

with

In addition, denote by ρ the jump of the extended source f ̃ in (50a), i.e.,

(57)

Writing out (57) explicitly gives us

(58)

with

The determinant of the coefficient matrix in the three by three system (55)-(57) is equal to

(59)

which is uniformly bounded by a positive constant from below too. So, the jumps ([uxx],
[uxy] and [uyy]) of the second-order derivatives of u can be uniquely solved from the three
by three system (55)-(57).

We could similarly evaluate discontinuities in the third-order derivatives of u(p). There are
four such derivatives, [uxxx], [uyyy], [uxxy] and [uxyy]. To determine the discontinuities in
these derivatives we differentiate Eqns. (55) in the tangential direction t and differentiate
(57) in both the normal and tangential directions. This method can be used to compute
discontinuities in higher order derivatives.

For the solution uν to the approximate interface problem (33), the jumps of its derivatives,
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(60)

can be calculated exactly in the same way as above.

9 Derivation of the Correction Formula
We focus on the correction of the linear systems discretized by the standard continuous
second-order (κ = 2) finite element method since it can easily handle Dirichlet and Neumann
boundary conditions associated with the general (possibly anisotropic) elliptic operator ℒ.
Computation of the correction formula for those resulting from discretization with finite
difference or finite volume method is similar.

With the continuous piecewise linear (or bilinear) finite elements, the diagonal matrix Dh in
(38) is obtained through the technique of mass lumping [63–67] for the mass matrix Mh on
the right hand side of the finite element system (36). The assumption (38) results from the
numerical integration with grid nodes being the quadrature points.

As indicated by (46), the correction to the right hand side of the system (44) at irregular grid
nodes pi is computed such that

(61)

First, for each grid node pi, we define the truncated Taylor expansion of uν(p) around pi by

(62)

with the unit direction

(63)

for p ≠ pi. By the approximation property (41), we have

(64)

By replacing ℒuν(pi) in (61) with the weighted sum of the values of the truncated Taylor
expansion Uν,i(p) at grid nodes in the stencil, we could compute the correction formula
using

(65)
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Notice that, with the second-order finite element method, the entries di of the diagonal
matrix Dh are on the order of h2. It is necessary and sufficient to compute the difference
uν(pj) − Uν,i(pj) in (65) up to the third-order accuracy.

In the case that the line segment connecting the grid nodes pi and pj does not come across
the domain boundary ∂Ω, the difference between uν(pj) and Uν,i(pj) has already been on the
order of h3. In the correction formula (65), it is simply replaced by zero.

In the case that the line segment  intersects with the domain boundary only once at a
point q (see Fig. 3(a)), if the node pi is in the complementary domain Ωc and the node pj is
in the interior of the domain Ω, the difference between uν(pj) and Uν,i(pj) is computed as the
difference of their Taylor expansions around q, i.e.,

(66)

if the node pi is in the interior of the domain Ω and the node pj is in the complementary
domain Ωc, the difference is computed by

(67)

When the line segment  intersects with the domain boundary several times, the
difference uν(pj) − Uν,i(pj) can be similarly computed but the procedure is more
complicated because a multiplicative manipulation of the jumps will be involved each time

when the line segment  comes across the domain boundary ∂Ω. Here, we only give the
formula corresponding to the cases when the number of intersected points is two (see Fig.

3(b)): if both of the endpoints of the line segment  are in the interior of the domain Ω,

(68)

if both of the endpoints are in the exterior of the domain Ω,

(69)

Finally, the jumps of the directional derivatives (n = 1, 2),

are calculated in terms of the known jumps of partial derivatives,
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(70)

and

(71)

For piecewise constant coefficient elliptic equations, recently Beale and Layton [68] proved
that, with the correction formula computed as above for the standard five-point finite
difference scheme, the solution to the corrected linear system (49) is second-order accurate
in the discrete maximum norm,

(72)

For the general elliptic operator ℒ with possible anisotropy and inhomogeneity, a factor of
log h will enter into the pointwise error estimate, which is stated in the following theorem.

Theorem 6
Assume that the number of irregular grid nodes is on the order of hN. The numerical
solution uν,h to the corrected linear system (49) for the general elliptic BVP is essentially
second-order in accuracy, i.e.,

(73)

It can be shown that the pointwise error estimate (73) is true with either the finite difference
method or the finite element method. In the next, we only prove it for the finite element
method case.

We first need to introduce two lemmas related to discrete Green's functions. Let 
be the standard finite element space consisting of continuous functions that are linear
(bilinear) on each of the elements of h and vanish outside h. For a fixed grid node pi, let
cji be a point in the interior of an element, which is adjacent to pi. Define a discrete Green's
function gji by

(74)

The partial derivatives gji,x and gji,y in the distributional sense of the discrete Green's
function gji satisfy:

(75)

and

Ying and Henriquez Page 19

J Comput Phys. Author manuscript; available in PMC 2013 March 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(76)

respectively.

Lemma 7

(77)

Proof. We will prove the inequalities by a duality argument. For arbitrarily chosen φ ∈
L2(ℬ), let ψ be the solution of the following BVP

(78a)

(78b)

We have

(79)

Here, Rh: H2 → Sh is the elliptic projection. It is proved by Rannacher and Scott [69] first
for the Laplacian operator and later extended for the general elliptic operators (refer to

Brenner and Scott [70]) that Rh is bounded in the Sobolev space , uniformly in p for p >
2.

(80)

Furthermore, the Sobolev inequality

(81)

and the elliptic regularity estimate

(82)

indicate

(83)

Letting p= | log h |, we obtain

(84)
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and hence the first inequality in the lemma. The proof for the second inequality is similar.

The following lemma in the finite difference case is some form of the results by Bramble
and Thomée [71]. Here, we prove that the maximum norm estimate for the discrete Green's
function is also true with the finite element method.

Lemma 8

(85)

Proof. By the Sobolev embedding inequality, for p > 2, H1(ℬ) ↪ Lp(ℬ),

(86)

By the inverse estimate in the finite element space Sh,

(87)

So,

(88)

Let p= |log h|. We have

(89)

Finally, plugging υ = gji into (89), we obtain

(90)

As cji → pi, in the limit of (85), we have

Lemma 9

(91)

for the discrete Green's function gi given by

(92)

Let gi be the vector with its components equal to the nodal values of the discrete Green's
function gi in Lemma 9. Let ei = (0, …, 0,1, 0, …, 0)T be the unit vector with only the ith

entry equal to one and all others vanishing. Then the vector gi is the solution to the linear
system
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(93)

and also satisfies the estimate

(94)

in the discrete maximum norm.

Now we are ready to prove Theorem 6.

Proof. [Theorem 6] Assume that

(95)

for i = 1, 2, …, N, with Ei = O(h2) if pi is a regular grid node and Ei = O(h) if pi is irregular.
Let

(96)

be the set of indices of irregular grid nodes. By the assumption that the number of irregular
grid nodes is on the order of hN, we have |J*| = C0Nh for some C0 > 0. Let Eh ≡ (E1, E2, …,
EN)T. From error equation (95), we get

(97)

For simplicity, assume that each entry in the diagonal of the matrix Dh is equal to h2. Let

 and . From (97), we could further obtain

(98)

10 Interpolation of the Volume and Boundary Integrals
As in general the Green's function G(p; q) of the elliptic operator ℒ in the regular domain ℬ
is not analytically available, we replace step (22a) (or (23a) for Neumann BVPs) with the
corrected linear system (49). That is, given the approximate jump μν(p), we could first
compute the corrections Cν,h, next solve the linear system (49) and denote the approximate

solution by uν,h(p). Then we extract the limit values of  (from inside) (or its flux for
Neumann BVPs) using Taylor expansions of the approximate solution uν,h around the
discretization nodes of the boundary curve (see Fig. 4).

We treat the approximate solution uν,h(p) as a piecewise smooth function even though only
the values of the function at the grid nodes are known. Assume the function and its
derivatives are possibly discontinuous only on the domain boundary ∂Ω. We also assume
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that the approximate solution uν,h(p) is smooth enough in ℬ\∂Ω such that the action of the
continuous operator ℒ on it is meaningful.

Taylor expansion of the approximate solution uν,h(p) around a point q on the domain
boundary ∂Ω (see Fig. 4) gives us

(99)

and

(100)

Here, (ξ,η)T = p − q. For conciseness, we denote the limit values of the approximate
solution uν,h and its derivatives by

(101)

and

(102)

Some subscripts are omitted.

Evaluating the truncated Taylor series, (99) or (100), at six nearby grid nodes pj (j = 0,1, …,
5) (see Fig. 4) yields

(103)

and

(104)

with Vj ≡ uν,h(pj) and (ξj, ηj)T = pj − q, for j = 0,1, …, 5. Let

(105)

Using the jump relations of the solution and its derivatives, we rewrite (104) as
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(106)

Let aj ≡ ξj/h, bj ≡ ηj/h and introduce new quantities:

(107)

and

(108)

Then from Eqns. (103) and (106), we obtain

(109)

or

(110)

for j = 0,1, …, 5. Note that the coefficient matrix of (109)-(110) is independent of the mesh
parameter h. The limit values of the approximate solution and its derivatives are uniquely
determined by (109)-(110) if we appropriately choose the the six grid nodes pj (j = 0,1, …,
5) such that the coefficient matrix is invertible.

In the case that the structured grid consists of rectangular or quadrilateral elements, we
chose an interpolation stencil as the nearest six grid nodes, which looks like a fish but never
being a two by three rectangle, and four of which are the vertices of the element that
contains the curve node q in its interior (see Fig. 4(a)). In the case that the structured grid
consists of triangular elements, we choose the six grid nodes such that the stencil forms a
triangle, which contains in its interior the curve node q of interest on the boundary curve
(see Fig. 4(b)). With interpolation nodes chosen as above, the matrix is always invertible and
the polynomial interpolation scheme is guaranteed to be stable ([26,72]).

11 Numerical Results
Numerical results from application of the kernel free boundary integral method to solving
BVPs with either Neumann or Dirichlet boundary conditions are presented in this section.

To study the convergence rate and efficiency of the KFBI method, in the numerical
simulations for each test problem, the boundary curve ∂Ω and the regular domain ℬ, into
which the original complex domain Ω is embedded, are simultaneously refined with a
refinement ratio of two.

In the numerical experiments reported in this section, the GMRES iterative method is used
to solve the boundary integral equations. For Dirichlet BVPs, the unknown density is
initialized as φ0 = 2gD; for Neumann BVPs, the unknown density is initialized as ψ0 = 2gN.
The GMRES iteration stops only when the relative residual in a scaled discrete l2-norm is
less than a small tolerance, i.e.,
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(111)

for the boundary integral equation (24) corresponding to the Dirichlet BVPs and

(112)

for the boundary integral equation (26) corresponding to the Neumann BVPs. In the
simulations presented, the tolerance is fixed to be

(113)

The scaled discrete l2-norm of a vector v = (υ1, υ2, …, υn)T ∈ Rn is defined by

(114)

In the first three test problems, the regular domain ℬ is chosen to be the rectangular box ℬ =
(−1, 1)2 and the diffusion tensor and the reaction coefficient of the elliptic operator are
assumed to be isotropic and homogeneous. That is, we first consider solving the constant
coefficients BVPs on complex domains (see Fig. 1). In these cases, the elliptic operator ℒ
degenerates to be the Laplacian operator (κ = 0) or the generalized Helmholtz operator (κ >
0). The corresponding interface problems on Cartesian grids are simply discretized by the
five-point central finite difference scheme and solved with a FFT-based Poisson (Helmholtz)
solver.

Numerical results for the first two test problems are summarized in Tables 1-2 and Figs. 5-6.
In each of the tables, the first column contains the numbers of nodes on ∂Ω, denoted by M∂Ω,
which are used to discretize the boundary curves. The second column contains the sizes of
the Cartesian grids used to solve the interface problems. The other columns are respectively
the errors of the data in the scaled discrete l2-norm (‖eh‖2) and the maximum norm (‖eh‖∞)
and the number of GMRES iterations (ν). In the tables, the number of GMRES iterations is
also the times the FFT-based fast Poisson (Helmholtz) solver is called during the simulation.

Example 1 (An interior Dirichlet BVP on a star-shaped domain)
The boundary curve of the star-shaped domain is defined by

(115)

(116)

for θ ∈ [0,2π), which is completely contained in the rectangular box B = (−1, 1)2. The
Dirichlet boundary conditions on ∂Ω are chosen such that the exact solution to the problem
is given by
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(117)

The boundary conditions on ∂ℬ are simply set as zero. See Table 1 for the errors and Fig. 5
for the numerical solution on a 128 × 128 grid.

Example 2 (An interior Neumann BVP on a heart-shaped domain)
The boundary curve ∂Ω is fitted with a cubic spline. Pure Neumann boundary conditions are
applied on ∂Ω such that the exact solution is given by

(118)

The boundary conditions on ∂ℬ are simply set as zero. In the case that the reaction
coefficient vanishes (κ = 0), the solution to the pure Neumann BVP is not unique but only
up to an additive constant. To compute numerical errors, we translate the solution to the
corresponding interface problem by a constant such that the numerical solution matches the
exact one at the center of the box B. See Table 2 for the errors and Fig. 6 for the numerical
solution on a 128 × 128 grid.

The numerical results presented in Tables 1-2 uniformly verify that the Cartesian grid
method proposed is of second-order accurate. The number of GMRES iterations used for the
boundary integral equations is independent of the grid size, which is in contrast to
Wiegmann and Bube's explicit jump II method and Li and Ito's augmented strategies for
constant coefficient BVPs.

In our experiments, simple iterations like (22) and (23) have also been correspondingly
applied to solve the integral equations for Examples 1-2 with the same uniform grids of
different sizes. We chose the iteration parameter β to be equal to 0.8 and used the same
stopping criteria and tolerance as the GMRES iteration. It is observed that, for the interior
Dirichlet BVP in Example 1, the iteration number used by the simple iteration (22) is 19 on
the coarsest 64 × 64 grid and always 17 on others, more than those used by the GMRES
method. For the interior Neumann BVP with non-vanishing reaction coefficient (κ = 1) in
Example 2, the iteration number used by the simple iteration (23) is 46 on the coarsest 64 ×
64 grid and always 47 on others. For the interior Neumann BVP with vanishing reaction
coefficient (κ = 0) in Example 2, during each iteration, the iterated density is modified such
that it has zero mean value, which guarantees the simple iteration converges for the singular
integral equation; the iteration number used by the simple iteration is 26 on the coarsest 64 ×
64 grid and always 27 on other grids.

Example 3 (A Neumann BVP on the complements of complex domains)
In this example, we solve the Laplace's equation with homogeneous Neumann boundary
conditions on the boundaries ∂Ω of two different complex domains (a mushroom-shaped
domain and a spiral-shaped domain) (see Fig. 7) and Dirichlet boundary conditions on the
boundary ∂ℬ of the rectangular box, which say

(119)

We run simulations with five grids of different resolutions ranging from 64×64 to 1024 ×
1024 as before. It is observed that the iteration numbers used by the GMRES method for the
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problem on the mushroom-shaped domain are always 24 while those on the spiral-shaped
domain fluctuate between 35 and 36.

In the next two examples, we use the standard continuous piecewise bilinear finite element
method to solve the interior Dirichlet/Neumann boundary value problems. Both isotropic
and anisotropic BVPs are tested. In the anisotropic case, for simplicity, we assume the
diffusion tensor is spatially uniform and has the form

(120)

with λ1 = 1, λ2 = 1/μ and θ = π/4. Here, μ > 1 is the anisotropy ratio of the diffusion tensor.
It ranges from two to a hundred. The larger regular domain B is still chosen to be the square
rectangular box as above, i.e., ℬ = (−1, 1)2. The box is partitioned into a hierarchy of
Cartesian grids. The resulting linear systems are solved by a geometric multigrid solver
(exactly, an implementation based on V-cycle preconditioned conjugate gradient iterations).
In these simulations, we used the technique of mass lumping (row-sum) to assembly the
mass matrices involved.

Numerical results for the test problems are summarized in Tables 3-7 and Figs. 8-9. In each
of the tables, the first column contains the numbers of nodes on ∂Ω, denoted by M∂Ω, which
are used to discretize the boundary curves. The second column contains the sizes of the
Cartesian grids used to solve the interface problems. The other columns are respectively the
errors of the data in the scaled discrete l2-norm (‖eh‖2) and the maximum norm (‖eh‖∞) and
the number of GMRES iterations (υ). In the tables, the number of GMRES iterations is also
the times the geometric multigrid solver is called during the simulation.

Example 4 (An interior Dirichlet BVP on a circular domain)
The circular domain Ω is defined by

(121)

The reaction coefficient in the elliptic operator is fixed to be zero, i.e., k = 0. Pure Dirichlet
boundary conditions are applied on ∂Ω such that the exact solution is given by

(122)

The boundary conditions on ∂ℬ are simply set as zero. See Table 3 for the errors and Fig. 8
for the numerical solutions on a 128 × 128 grid.

Example 5 (An interior Neumann BVP on an ellipse-shaped domain)
The ellipse-shaped domain Ω is defined by

(123)
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Pure Neumann boundary conditions are applied on ∂Ω such that the exact solution is given
by

(124)

The boundary conditions on ∂ℬ are simply set as zero. Both cases of zero and non-zero
reaction coefficients, k = 0 and k = 1, are tested. In the case that k = 0, the solution to the
pure Neumann BVP is not unique but only up to an additive constant. To compute numerical
errors, we translate the solution to the corresponding interface problem by a constant such
that the numerical solution matches the exact one at the center of the box ℬ. See Tables 5-7
for the errors and Fig. 9 for the numerical solutions on a 128 × 128 grid. Table 5 and Fig. 9
compare results for solving isotropic and moderately anisotropic Neumann BVPs. Table 6
shows the results from solving the pure Neumann problem with the reaction coefficient
vanishing (κ = 0). Table 7 shows the results with a non-zero reaction coefficient (κ =1).

The numerical results summarized in Tables 3-7 for the previous two examples indicate that,
in the regime with strong anisotropy ratios of the diffusion tensor, the method for solving
Dirichlet BVPs and Neumann boundary value Helmholtz problems (κ ≠ 0) performs much
better than for the pure Neumann BVPs, where the reaction coefficient is vanishing. For
isotropic and moderately anisotropic BVPs, the numerical results were consistent with the
theoretical expectation for both the accuracy and efficiency of the method.

Example 6 (Continued, the pure Neumann BVP on an ellipse-shaped domain)
To compare with the previous example and investigate the effect of the orientation of the
diffusion tensor on the accuracy and efficiency of the method, in this example, we choose
the diffusion tensor simply as

(125)

with λ1, = 1, λ2 = 1/μ > 1 being the anisotropy ratio. In words, the diffussion tensor is
aligned with the grid lines (coordinate axis). Other settings, including simulation parameters,
boundary conditions and exact solutions, are the same as Example 5, except that the reaction
coefficient is fixed to be zero (κ = 0). Numerical results are summarized in Table 8.

Table 8 shows that the results from the KFBI method are consistent with that predicted by
the theoretical analysis when the diffusion tensor is aligned with the grid lines. Even for
severely strong anisotropic Neumann BVPs, the method still shows its second-order
convergence rate in accuracy and grid-independent iteration numbers when the grid is fine
enough (size not less than 256 × 256 for the test problem).

12 Discussion
The KFBI method is stable and accurate for general (possibly anisotropic) elliptic boundary
value problems. It employs a Krylov subspace method (the GMRES iteration) to compute
the densities of the double or single layer potential from the boundary integral equation,
corresponding to the Dirichlet or Neumann BVP. The Krylov subspace method is
guaranteed to converge by the spectral properties of the double/single layer boundary
integral operators. For isotropic and moderately anisotropic BVPs, it is observed that the
number of GMRES iterations used is independent of the sizes of the grids employed. The
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volume and boundary integrals, which are required by the GMRES iteration for updating the
densities, are computed as limit values of the structured grid-based approximate solutions.
Because analytical expressions of Green's functions are not required, the method is kernel-
free.

In this work, only the details for a second-order implementation of the KFBI method in two
dimensions are described. In principle, it is natural and straightforward to derive higher-
order extensions of the method as long as the elliptic operator ℒ is discretized with a higher-
order discretization scheme and the computation of the jumps of the derivatives, the
correction of the source term and the approximation of the integrals employ more grid nodes
and more terms in the Taylor series. While the extension of the method to higher space
dimensions is also straightforward, the validity of the method for BVPs on domains with
piece-wise smooth boundaries needs to be investigated.

The KFBI method is flexible as well as efficient. The regular domain ℬ can be chosen
arbitrarily to be a triangle, a rectangle, a circle, a ring or any other regularly shaped domain
as long as the Green's function on ℬ exists and fast elliptic solvers are readily applicable.
Additionally, it is important to know that the numerical solutions on the structured grids can
be obtained by a variety of discretization methods.

Because the method does not modify the stiffness matrix, which results from the
discretization of the elliptic operator with a standard discretization scheme, a standard linear
system solver such as the fast Fourier transform (FFT) based Poisson (Helmholtz) solvers or
those based on geometric multigrid iterations can be easily combined. For time-dependent
problems, the KFBI method also has its advantage against those modifying matrices in each
timestep. Moreover, the KFBI method allows the edges adjacent to an irregular node to
intersect with the boundary of the complex domain several times. It has potential to work
with coarse grids even though the boundary curve is “very close to itself”.

The extension of the KFBI method for BVPs on multiply connected bounded domains will
be studied in the near future. As the standard boundary integral equation corresponding to a
BVP on a multiply connected domain is singular, some additional techniques have to be
used for the KFBI method to be applicable. One strategy is to add singular sources through
introducing (regularized) delta function(s) [17] into the source term of the BVP. An
alternative one is to incorporate the explicit jump concept by Wiegmann and Bube [26].

As the spectrum of the boundary integral operators is contained in the interval (−1/2, 1/2],
iterative methods even as simple as (22) and (23) will converge as long as the structured
grids used to compute the approximate solutions are sufficiently fine. The convergence rate,
however, may deteriorate in some situations when the shape of the domain is not simple
since the eigenvalues are closely clustered around the endpoints of the interval (−1/2, 1/2).
As indicated by the numerical results from Example 3, the numbers of iterations used by the
GMRES method for problems on the mushroom-shaped and spiral-shaped domains are
respectively twice and three times those on simpler domains. To overcome the problem, an
appropriate preconditioner for the GMRES method should be pursued.

Finally the method can be applied to anisotropic BVPs if the anisotropy ratio is not too
strong. For strong anisotropy that is not aligned with the grid, the accuracy of the method
may degrade. The loss of accuracy is more obvious when the method is used to solve pure
Neumann BVPs with a vanishing reaction coefficient (κ = 0). The explicit relationship
between the anisotropy ratio, the orientation of the diffusion tensor, the type of boundary
conditions, the mesh parameter and error estimates is interesting and requires further study.
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The KFBI method presented here can be applied to a wide range of elliptic boundary value
problems that arise from the fields of fluid dynamics, material science and biophysics,
including reaction diffusion modeling in cardiac and neuro-electrophysiology. While some
limitations exist, the KFBI method is straightforward to implement and has demonstrated
some advantages over other existing structured (Cartesian) grid methods.
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Fig. 1.
The kernel free boundary integral method assumes that the larger regular domain, which
embeds the complex computational domain Ω, can be easily partitioned into a hierarchy of
structured grids so that fast elliptic solvers such as the fast Fourier transform (FFT) based
Poisson (Helmholtz) solvers or those based on geometric multigrid iterations are applicable.
The boundary ∂Ω of the complex domain is partitioned into quasi-uniform curve segments.
The number of the nodes on the curve is denoted by M∂Ω. The values of the unknown
densities φν and ψν are defined only at the M∂Ω curve nodes. Other values of the densities
and their tangential derivatives are reconstructed by a standard periodic twice continuously
differentiable cubic spline.
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Fig. 2.
The grid nodes pi are irregular even though all of the nodes in the 9-point stencil are
possibly on the same side of the boundary curve.
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Fig. 3.
The node pi is irregular as the line segment connecting nodes pi and pj intersects with the
boundary curve. The right hand side of the discrete linear system must be appropriately
corrected at the irregular grid node. When the line segment intersects with the boundary
curve several times, a multiplicative manipulation of the jumps is involved.
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Fig. 4.
Six grid nodes pj (j = 0,1, …,5) for computing the limit values of an approximate solution
and its derivatives at point q.
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Fig. 5.
Numerical solution to the interior Dirichlet boundary value problem on the star-shaped
domain with a 128 × 128 grid (Example 1, κ = 0). In these two plots, the same iso-values
and colormaps are used to visualize the interior and exterior data: maximum interior value of

the solution , minimum interior value of the solution , maximum
exterior value of the solution , minimum exterior value of the solution

.
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Fig. 6.
Numerical solution to the interior Neumann boundary value problem on the heart-shaped
domain with a 128× 128 grid (Example 2, κ = 0). In these two plots, as the solution to the
Neumann BVP is continuous across the domain boundary and both of the interior and
exterior solutions achieve their maximum and minimum values on the boundary the same
iso-values and colormaps are used to visualize the data: maximum interior value of the

solution , minimum interior value of the solution , maximum
exterior value of the solution , minimum exterior value of the solution

.
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Fig. 7.
The numerical solutions to the BVPs on the complements of complex domains with
128×128 grids (Example 3). Homogeneous Neumann boundary conditions are provided on
the boundary of the complex domains. Dirichlet boundary conditions are provided on the
boundary of the rectangular box. In the simulations with different grid sizes ranging from 64
× 64 to 1024 × 1024, it is observed that the iteration numbers used by the GMRES method
for the problem on the mushroom-shaped domain are straightly 24 while those on the spiral-
shaped domain fluctuate between 35 and 36. In these figures, the interior and exterior data
use the same isovalues and colormaps.
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Fig. 8.
Numerical solutions to the interior Dirichlet boundary value problem (Example 4) with the
finite element method on a 128×128 grid: (a) the diffusion tensor is isotropic (σ = 1); (b) the
diffusion tensor is anisotropic with anisotropy ratio 3: 1, the principle eigenvector aligned
with the positive diagonal of the box ℬ.
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Fig. 9.
Numerical solutions to the interior Neumann boundary value problem (Example 5, κ = 1)
with the finite element method on a 128×128 grid: (a) the diffusion tensor is isotropic (σ =
1); (b) the diffusion tensor is anisotropic with anisotropy ratio 3: 1, the principle eigenvector
aligned with the positive diagonal of the box ℬ.
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