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We present a novel computational methodology for solving the scalar nonlinear Helmholtz
equation (NLH) that governs the propagation of laser light in Kerr dielectrics.

The methodology addresses two well-known challenges in nonlinear optics: Singular
behavior of solutions when the scattering in the medium is assumed predominantly for-
ward (paraxial regime), and the presence of discontinuities in the optical properties of
the medium. Specifically, we consider a slab of nonlinear material which may be grated
in the direction of propagation and which is immersed in a linear medium as a whole.
The key components of the methodology are a semi-compact high-order finite-difference
scheme that maintains accuracy across the discontinuities and enables sub-wavelength
resolution on large domains at a tolerable cost, a nonlocal two-way artificial boundary con-
dition (ABC) that simultaneously facilitates the reflectionless propagation of the outgoing
waves and forward propagation of the given incoming waves, and a nonlinear solver based
on Newton’s method.

The proposed methodology combines and substantially extends the capabilities of our
previous techniques built for 1D and for multi-D. It facilitates a direct numerical study
of nonparaxial propagation and goes well beyond the approaches in the literature based
on the ‘‘augmented” paraxial models. In particular, it provides the first ever evidence that
the singularity of the solution indeed disappears in the scalar NLH model that includes the
nonparaxial effects. It also enables simulation of the wavelength-width spatial solitons, as
well as of the counter-propagating solitons.
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1. Introduction

1.1. Mathematical models

The propagation of electromagnetic waves in materials is governed by Maxwell’s equations with appropriately chosen
material responses. The responses characterize the dependence of material properties – magnetic permeability, electric per-
mittivity, and conductivity – on the location and frequency of the propagating field. For high intensity radiation, the material
quantities may also depend on the magnitude of the propagating field, which makes the responses nonlinear.

In nonlinear optics, one is often interested in studying the propagation of monochromatic waves (continuous-wave laser
beams) through transparent dielectrics. In this case, the generation of higher harmonics and nonlinear coupling between dif-
ferent (temporal) frequencies can often be neglected, and accordingly, a time-harmonic solution can be assumed. The mag-
netic field can then be eliminated, and Maxwell’s equations transform to a second-order differential equation with respect to
the electric field, known as the vector Helmholtz equation, see [1]. If the material is isotropic and, in addition, the electric
field is assumed linearly polarized, then one arrives at the scalar nonlinear Helmholtz equation (NLH):
1 Thi
DEðxÞ þx2
0

c2 n2E ¼ 0; n2ðx; jEjÞ ¼ n2
0ðxÞ þ 2n0ðxÞn2ðxÞjEj2r; ð1Þ
where r > 0 and n is the refraction index. In physical materials one always has r ¼ 1, so that the dependence of n2 on jEj is
quadratic.

In Eq. (1), x ¼ ½x1; . . . ; xD� are the spatial coordinates, E ¼ EðxÞ denotes the scalar electric field, x0 is the laser frequency, c is
the speed of light in vacuum, D ¼ @2

x1
þ � � � þ @2

xD
is the D-dimensional Laplacian, n0 is the linear index of refraction, and n2 is

the Kerr coefficient. Both n0 and n2 are assumed real, so that the medium is transparent or lossless.
The coordinate xD will also be denoted by z and will hereafter be referred to as longitudinal, whereas the remaining direc-

tion(s) x? ¼ ½x1; . . . ; xD�1� will be called transverse.
Our primary physical setup involves a slab of Kerr material surrounded on both sides by the linear homogeneous medium

in which n0 � next
0 and n2 � 0, see Fig. 1(a).

We introduce the linear wavenumber k0 ¼ x0next
0 =c and the normalized quantities mðxÞ ¼ n0ðxÞ=next

0 and
�ðxÞ ¼ 2n0ðxÞn2ðxÞ=ðnext

0 Þ
2, and then recast Eq. (1) as
DEðxÞ þ k2
0 m2ðxÞ þ �ðxÞjEj2r
� �

E ¼ 0: ð2Þ
Note that the Kerr coefficient n2ðxÞ is always discontinuous at the interface planes z ¼ 0 and z ¼ Zmax, see Fig. 1(a). The linear
index of refraction n0ðxÞ may also be discontinuous at the interface planes. Discontinuities in n0ðxÞ and n2ðxÞ immediately
give rise to those in mðxÞ and �ðxÞ, see Eq. (2). Thus, for the typical experimental setting that involves a slab of homogeneous
Kerr material,1 the coefficients of Eq. (2) are piecewise-constant:
mðz; x?Þ ¼
1; z < 0;
mint; 0 6 z 6 Zmax;

1; z > Zmax;

8><>: and �ðz; x?Þ ¼
0; z < 0;
�int; 0 6 z 6 Zmax;

0; z > Zmax:

8><>: ð3Þ
Discontinuities in the coefficients (3) imply that additional conditions will be required for the NLH (2) at the interfaces z ¼ 0
and z ¼ Zmax. These conditions can be obtained by analyzing the corresponding Maxwell’s equations. They reduce to the con-
tinuity of the field EðzÞ and its first normal derivative @E

@z, see Appendix A. When building a numerical approximation, the pres-
ence of material discontinuities requires special attention (Sections 2 and 3).

The problem is driven by a laser beam that impinges on the Kerr material from the outside and causes a local increase in
the overall index of refraction as it propagates through, see Fig. 1(a). Since light rays bend toward the areas with higher
refraction index, the impinging beam self-focuses inside the Kerr medium. The material discontinuities at z ¼ 0 and
z ¼ Zmax reflect a portion of the forward propagating wave, resulting in backward propagating waves. Moreover, the nonlin-
early induced nonuniformities of the refraction index may also scatter the radiation backwards. The presence of waves prop-
agating in opposite directions implies that the boundary conditions for the NLH (2) must ensure the reflectionless
propagation of all the outgoing waves (regardless of their direction of travel and the angle of incidence at the outer bound-
ary) and at the same time correctly prescribe the given incoming beam at the boundary, see Fig. 2. Such boundary conditions
are called two-way boundary conditions [2], see Section 2 for 1D and Section 3 for multi-D.

One can also consider a simplified model that would account only for the forward propagating component of the field. Let
z � xD be the direction of the impinging laser beam, and let us also consider the simplest case of m � 1 and � � �int inside the
Kerr medium. Then, introducing the ansatz E ¼ eik0z/, where / ¼ /ðxÞ is assumed to vary slowly compared with the fast car-
rier oscillation eik0z, one can neglect the small /zz term (paraxial approximation), and reduce the NLH (2) to the nonlinear
Schrödinger equation (NLS):
2ik0/zðz; x?Þ þ D?/þ k2
0�j/j

2r/ ¼ 0; 0 6 z 6 Zmax; ð4Þ
s setup withstands an easy generalization to the case of multiple plane-parallel layers, see Section 1.3.



(b) (a)

Fig. 2. Schematic of the boundary conditions in the longitudinal direction: (a) One-way radiation boundary condition at z ¼ Zmax þ d; (b) Two-way radiation
boundary condition at z ¼ �d.

Fig. 1(a). The three-layer physical setup.

Fig. 1(b). The multi-layer physical setup.
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which governs the envelope /. In Eq. (4), D? ¼ @2
x1
þ � � � þ @2

xD�1
denotes the transverse Laplacian. The NLS (4) supports only

forward propagation because the assumption of slow variation of / does not leave room for any � e�ik0z components in the
solution. Eq. (4) is first order in z and, unlike the NLH, requires a Cauchy problem to be formulated and solved with the ‘‘ini-
tial” data provided by the impinging wave and specified, say, at z ¼ 0 (see, e.g., [3,4] for detail).

It is well known that solutions of the NLS (4) exist globally when rðD� 1Þ < 2, the subcritical NLS, but can become sin-
gular, i.e., collapse at finite propagation distances, when either rðD� 1Þ > 2, the supercritical NLS, or rðD� 1Þ ¼ 2, the crit-
ical NLS [3].

As shown by Weinstein [5], a necessary condition for singularity formation in the critical NLS is that the input power ex-
ceeds the critical power Pc. The value of Pc is equal to the power of the ground-state solitary wave solution of the NLS; it can
be calculated analytically for D ¼ 2 and numerically for D > 2.

A question that has been open in the literature for over forty years is whether the more comprehensive NLH model for
nonlinear self-focusing eliminates the singular behavior that characterizes collapsing solutions of the critical and supercrit-
ical NLS. Unfortunately, the fundamental issue of solvability of the NLH and regularity of its solutions still remains unad-
dressed for many important settings. Only the one-dimensional case, when Eq. (2) becomes an ODE, has been studied
extensively, and exact solutions have been obtained using a combination of analytical and numerical means [6–13]. In mul-
ti-D, there have been indications that solutions of the NLH may exist even when the corresponding NLS solutions become
singular, based on both numerical study of ‘‘modified” NLS equations [14–16], and on asymptotic analysis [17], but these
studies did not account for backscattering. Recently, Sever employed a Palais–Smale type argument and has shown that
the multi-D NLH is solvable in the sense of H1 and that the solution is not unique [18]. His argument, however, only applies
to self-adjoint operators, whereas the physical setups considered in this study require radiation boundary conditions.

1.2. Numerical method

The new computational methodology for the NLH that we present builds up on our previous work [19,2,20,21] and ex-
tends it substantially. We introduce a new semi-compact discretization and a new Newton’s solver, and the ensuing capa-
bilities include an explicit demonstration of the removal of singularity that ‘‘plagues” the NLS, and the computation of
narrow nonparaxial solitons.

Specifically, we solve the NLH (2) for two different cases.
The first one corresponds to the critical NLS (rðD� 1Þ ¼ 2). We consider both the two-dimensional quintic nonlinearity

D ¼ 2 and r ¼ 2 (planar waveguides), and the three-dimensional cubic nonlinearity D ¼ 3 and r ¼ 1 (bulk Kerr medium, for
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Fig. 3. Stencils in 2D: (a) Standard central difference fourth-order stencil, as in our previous work [2,20,21]; (b) Compact 3� 3 fourth-order stencil for linear
operators, as, e.g., in [23,24]; (c) Semi-compact stencil used in this work.
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which we additionally assume cylindrical symmetry). As rðD� 1Þ ¼ 2 for either setting, one can expect that the role of non-
paraxiality and backscattering will be similar.

This study goes beyond the investigation of the ‘‘modified” NLS’s [14–17], and the results reported in Section 7.2 provide
the first ever numerical evidence that the collapse of focusing nonlinear waves is indeed arrested in the NLH model, which incor-
porates the nonparaxiality and backscattering.

The second case we analyze is that of a planar waveguide with cubic nonlinearity (D ¼ 2 and r ¼ 1). In this subcritical
case, solutions to the NLS do not collapse. Instead, the laser beam can propagate in the Kerr medium over very long distances
without changing its profile2 – the type of behavior often referred to as spatial soliton. Solitons have been studied extensively
as solutions to the NLS. For beams that are much wider than the optical wavelength, it is generally expected that the ‘‘subcrit-
ical” NLH will have similarly looking solutions. However, it was not until our paper [20] that it has become actually possible to
study the effect of nonparaxiality and backscattering on solitons. The methodology proposed in this paper allows us to go fur-
ther and demonstrate numerically the existence and sustainability over long distances of very narrow spatial solitons for the NLH,
basically as narrow as one carrier wavelength k ¼ 2p=k0, see Section 7.1. Furthermore, the NLH appears particularly well suited
for modeling interactions between counter-propagating solitons, as a boundary value problem can naturally be formulated.

In the NLS framework, on the other hand, the two counter-propagating solitons will imply two opposite directions of
marching.3

The discrete approximation of the NLH must be high order so as to minimize the number of points per wavelength re-
quired for solving Eq. (2) with sub-wavelength resolution on a large domain, and for resolving the small-scale phenomenon
of backscattering against a background of the forward-propagating wave. It must also maintain its accuracy across the mate-
rial discontinuities. As the geometry is simple, and the discontinuities are only in the longitudinal direction, we can approx-
imate the NLH by finite differences on a rectangular grid. In the case D ¼ 2, it will be a Cartesian grid of coordinates ðx; zÞ. In
the case D ¼ 3, we still want to have only two independent spatial variables and hence employ cylindrical symmetry. The
NLH (2) is then approximated on the rectangular grid of cylindrical coordinates ðq; zÞ, where q ¼ ðx2 þ y2Þ1=2. In doing so,
the discontinuities that are confined to transverse planes will always be aligned with the grid.

In our work [2,20], we used the standard fourth-order central differences (five node stencil in each coordinate direction)
to approximate the NLH (2) on a rectangular grid, see Fig. 3(a). While this approach works well in the regions of smoothness,
it deteriorates to second-order accuracy in regions of material discontinuities. In the recent paper [19], we discretized the
one-dimensional NLH with fourth-order accuracy using compact finite volumes and a three node stencil. This discretization
handled the material discontinuities with no deterioration of accuracy and was also extended to higher orders in the linear
case [25]. However, the extension of the scheme of [19] to multi-D is not straightforward. Therefore, in the current paper we
adopt a hybrid approach. We use the standard fourth-order central differences in the transverse direction, and a compact
fourth-order finite difference discretization on three nodes in the longitudinal direction, see Fig. 3(c).

The five node transverse stencil does not impair the accuracy because there are no discontinuities in that direction. The
three node longitudinal part of the scheme is supplemented by one-sided differences that implement the required interface
conditions at the points of discontinuity. In doing so, the compact stencil eliminates the need to use those special differences
anywhere except at the discontinuities themselves. Another advantage of having a three node compact stencil in the longi-
tudinal direction is that it leads to matrices with a narrower bandwidth.

The interior discretization is supplemented by nonlocal two-way artificial boundary conditions (ABCs) set at z ¼ �d and
z ¼ Zmax þ d, see Fig. 2, and by local radiation boundary conditions at the transverse far-field boundaries. The discrete ABCs
2 In this case, self-focusing balances diffraction exactly.
3 Counter-propagating beams have been simulated using two coupled NLSs [22], but this approach involves some approximations which are not needed in

the NLH, and whose validity is unclear.
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are similar to those of [20], but having a three node compact stencil greatly simplifies their construction because, unlike in
the case of a five node stencil, there are no additional evanescent modes in the discretization, see Section 3.4.

The solver employed in [2,20,21] was of a fixed-point type. On the outer iteration loop, the nonlinearity in Eq. (2) was
frozen, and a linear Helmholtz equation with variable coefficients was obtained. This linear equation was then solved iter-
atively on the inner loop, essentially by building a sequence of Born approximations [26].

This double-loop iterative method was shown to converge for (subcritical) solitons and for ‘‘mild” critical cases, but has
never been able to produce convergent solutions for incoming beams that become singular in the NLS model.

In [19], we have demonstrated that the iterations’ convergence in [2,20,21] breaks down far below the power threshold
for non-uniqueness of the one-dimensional problem. This suggested that the convergence difficulties in [2,20,21] were not
related to the loss of uniqueness by the solution [18,8], but rather to the deficiencies of the iteration scheme itself. The latter
may be (partially) accounted for by the known convergence limitations of the Born approximations, because they can be
interpreted as a Neumann series [27] for the corresponding integral operator [26, Section 13.1.4].

An alternative iteration proposed in [19] is based on Newton’s method. As, however, the Kerr nonlinearity is Frechét non-
differentiable for complex-valued E, for Newton’s method to apply the NLH has to be recast as a system of two equations
with real unknowns. The one-dimensional numerical experiments of [19] demonstrate robust convergence of Newton’s iter-
ations for a wide range of input powers. Therefore, in this paper we implement Newton’s method for solving the multi-
dimensional NLH (2), see Section 4. As shown in Section 7.2, the method converges for initial conditions that lead to singu-
larity formation in the critical NLS model, for both D ¼ 2 and D ¼ 3.

1.3. Extension to the multi-layer case

Instead of having a homogeneous Kerr material in the nonlinear region as shown in Fig. 1(a), we can analyze the case of a
layered (grated) material as shown in Fig. 1(b). In doing so, the linear material outside of the Kerr slab still remain
homogeneous.

The corresponding extension of the mathematical model is straightforward. It amounts to introducing a fixed partition of
the interval ½0; Zmax�:
0 ¼ ~z0 < � � � < ~zl < � � � < ~zL ¼ Zmax; ð5aÞ

so that the material characteristics are constant within each sub-interval:
mðz; x?Þ � ~ml; �ðz; x?Þ � ~�l for z 2 ~zl;~zlþ1ð Þ; ð5bÞ

whereas at the interfaces (5a) they may undergo jumps. Altogether, this leaves the coefficients of Eq. (2) piecewise constant
in z.

The additional interface conditions required by Eq. (2) are the same as before – continuity of E and @E
@z between the layers,

see Appendix A.

1.4. Structure of the paper

In Section 2, we illustrate the main concepts of the continuous formulation and the discretization for the one-dimensional
NLH. In Section 3, we describe the continuous formulation of the problem and the discretization for the two-dimensional
Cartesian NLH and for the three dimensional NLH with cylindrical symmetry. In Section 4, we introduce Newton’s solver
for the resulting system of nonlinear equations on the grid. Section 5 provides a summary on the numerical method, Section
6 relates the input beams for the NLH and the corresponding NLS models, and Section 7 contains the results of simulations.
Finally, Section 8 presents our conclusions and outlines directions for future work. Note also that some of the results shown
hereafter were previously reported in [28]. That paper, however, did not contain any description of the numerical method.

2. The NLH in one space dimension

In this section we consider the one-dimensional NLH with constant material coefficients m2 and � for 0 < z < Zmax, which
means that there are two discontinuities at z ¼ 0 and z ¼ Zmax, but no discontinuities in the interior of the Kerr slab, see
Fig. 1(a). In Section 2.1, we present the continuous formulation of the problem, and in Section 2.2 we introduce a compact
discrete approximation. In Section 2.3, we briefly discuss the extension to the multi-layer case outlined is Section 1.3. This
simple one-dimensional case illustrates the key ideas and notations that will be used later in the more complex multi-
dimensional cases.

2.1. Continuous formulation

Consider a homogeneous slab of the Kerr material immersed in an infinite linear medium.
The propagation of the electric field is governed by the 1D NLH equation inside the Kerr material:
d2EðzÞ
dz2 þ k2

0 m2 þ � Ej j2r
� �

E ¼ 0; 0 < z < Zmax ð6aÞ
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and by the linear Helmholtz equation outside the Kerr material:
4 Her
5 Phy

Kerr ma
phenom
d2EðzÞ
dz2 þ k2

0E ¼ 0; z < 0 or z > Zmax: ð6bÞ
At the material interfaces z ¼ 0 and z ¼ Zmax, the field and its first derivative must be continuous [19]:
Eð0þÞ ¼ Eð0�Þ; dE
dz
ð0þÞ ¼ dE

dz
ð0�Þ;

EðZmaxþÞ ¼ EðZmax�Þ;
dE
dz
ðZmaxþÞ ¼

dE
dz
ðZmax�Þ:

ð6cÞ
We consider the case of two incoming waves with known characteristics that travel toward the Kerr region ½0; Zmax� from
z ¼ �1 to the right and from z ¼ þ1 to the left.4 The overall field may also have scattered components, which are outgoing
with respect to the domain ½0; Zmax� and which are not known ahead of time. The general solution to Eq. (6b) outside ½0; Zmax� is a
superposition of the right-propagating wave eik0z and the left-propagating wave e�ik0z. Consequently, the field outside ½0; Zmax�
shall be sought for in the form:
EðzÞ ¼
E0

inceik0z þ C1e�ik0z; �1 < z 6 0;

C2eik0ðz�ZmaxÞ þ EZmax
inc e�ik0ðz�ZmaxÞ; Zmax 6 z <1;

(
ð7Þ
where E0
inc is a given amplitude of the incoming wave that travels to the right from z ¼ �1 and impinges on the Kerr medium

at z ¼ 0, whereas C1 is the amplitude of the outgoing wave traveling to the left toward z ¼ �1, which is not known ahead of
time.5 Likewise, EZmax

inc is a given amplitude of the incoming wave that travels to the left from z ¼ þ1 and impinges on the Kerr
medium at z ¼ Zmax, whereas C2 is the amplitude of the outgoing right-traveling wave, which is not known ahead of time.

Representation (7) is to be enforced by the ABCs that should prescribe the given values of E0
inc and EZmax

inc and at the same
time allow for the arbitrary values of C1 and C2.

In [19], we have set such ABCs precisely at the material interfaces, and have shown that they were given by the inhomo-
geneous Sommerfeld type relations:
d
dz
þ ik0

� �
E
����
z¼0
¼ 2ik0E0

inc;
d
dz
� ik0

� �
E
����

z¼Zmax

¼ �2ik0EZmax
inc :
In this paper, we set equivalent ABCs at a certain distance d > 0 away from the interfaces, see Fig. 2, and inside the linear
regions:
d
dzþ ik0
� �

E
��
z¼�d
¼ 2ik0e�ik0dE0

inc;

d
dz� ik0
� �

E
��
z¼Zmaxþd

¼ �2ik0e�ik0dEZmax
inc :

ð8Þ
As we shall see, the separation between the material interfaces z ¼ 0 and z ¼ Zmax and artificial boundaries z ¼ �d and
z ¼ Zmax þ d simplifies the discretization of the problem, because the continuity conditions (6c) and the boundary conditions
(8) can be discretized independently of each other, see Sections 2.2.2 and 2.2.3, respectively.

2.2. Discrete approximation

The one-dimensional problem (6a), (8) will be approximated using compact fourth-order finite differences. We first dis-
cuss the discrete approximation of Eqs. (6a) and (6b), then the approximation of the interface condition (6c), and finally the
approximation of the two-way ABCs (8). In what follows, we introduce some notations that will be particularly helpful in
multi-D.

We begin with setting up a uniform grid of N þ 7 nodes on ½�d; Zmax þ d�:
zn ¼ n � h; h ¼ Zmax

N
; n ¼ �3;�2; . . . ;N þ 2;N þ 3; ð9Þ
so that
z0 ¼ 0; zN ¼ Zmax; d ¼ 3h:
We also denote by En and Pn ¼ jEnj2rEn the values of E and of jEj2rE at the grid nodes zn. Finally, we introduce a special nota-
tion D for central difference operators, with the order of accuracy in the superscript and the differentiation variables in the
subscript. For example,
Dð2Þzz E ¼def Enþ1 � 2En þ En�1

h2 ¼ d2E

dz2

�����
z¼zn

þ O h2
� �

:

eafter, we slightly generalize the schematic depicted in Fig. 2, in that we allow for incoming waves to impinge on both interfaces, at z ¼ 0 and z ¼ Zmax.
sically, the left-traveling outgoing wave C1e�ik0 z may have two sources: A portion of the right-traveling wave E0

inceik0 z may get scattered to the left by the
terial slab, and a portion of the left-traveling wave EZmax

inc e�ik0 z may be transmitted through by the Kerr material slab. In the nonlinear problem, these
ena are coupled and cannot be easily distinguished from one another.
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2.2.1. Approximation of the equation
Inside the Kerr medium, i.e., for n ¼ 1; . . . ;N � 1, the material coefficients m2 and � are constant, and hence the field EðzÞ is

smooth. Using Taylor’s expansion of the field, we obtain from the standard second-order central difference
approximation:
Dð2Þzz E ¼ Enþ1 � 2En þ En�1

h2 ¼ @zzEn þ
h2

12
@zzzzEn þ O h4

� �
: ð10Þ
Then, recasting the one-dimensional NLH (6a) as
@zzEn ¼ �k2
0 m2 þ �jEnj2r
� �

En ¼ �k2
0ðm2En þ �PnÞ;
we can approximate the term @zzzzEn on the right-hand side of (10) with second-order accuracy as
@zzzzEn ¼ Dð2Þzz @zzEn þ O h2
� �

¼ �k2
0Dð2Þzz m2En þ �Pn

� �
þ O h2

� �
:

This yields a compact fourth-order approximation for the second derivative:
@zzEn ¼ Dð2Þzz En þ
h2k2

0

12
Dð2Þzz m2En þ �Pn

� �
þ O h4

� �
:

Then, the resulting scheme for the one-dimensional NLH (6a) at the interior nodes reads:
Dð2Þzz En þ k2
0 1þ h2

12
Dð2Þzz

 !
m2En þ �Pn
� �

¼ 0; n ¼ 1; . . . ;N � 1: ð11Þ
This approach is sometimes called an equation-based approximation [24].
Outside the Kerr medium, i.e., for n < 0 and n > N, the foregoing derivation is repeated with m2 � 1 and � � 0, which

yields a compact fourth-order approximation of the linear Helmholtz equation (6b):
1þ k2
0h2

12

 !
Dð2Þzz En þ k2

0En ¼ 0;n ¼ �3;�2;�1 and n ¼ N þ 1;N þ 2;N þ 3: ð12Þ
Note that Eq. (12) for the outermost grid nodes n ¼ �3 and n ¼ N þ 3 will involve the ghost values E�4 and ENþ4, respectively.
These ghost values will be determined from the discrete two-way ABCs, see Section 2.2.3.

2.2.2. Approximation at the interfaces
At the material interfaces z ¼ 0 and z ¼ Zmax (i.e., grid nodes n ¼ 0 and n ¼ N) the discretized field is given by E0 and EN ,

respectively. Hence, the continuity of E at the interface is automatically guaranteed, and only the continuity of Ez, see formula
(6c), requires special attention. The latter is enforced by approximating the derivatives at the interfaces with fourth-order
one-sided finite differences. We again use the differential equation to eliminate one grid point from the one-sided stencil
and reduce it from the conventional five nodes to four. While reducing the size of the stencil at the interface is not as impor-
tant as in the interior and exterior of the Kerr material, numerical observations show that in some cases it may bring down
the truncation error at the interface by a factor of two.

Using Taylor’s expansion and the one-dimensional NLH (6a), we can write:
dE
dz

����
z¼0þ
¼ �85E0 þ 108E1 � 27E2 þ 4E3

66h
� 3h

11
d2E

dz2

�����
z¼0þ

þ O h4
� �

¼ �85E0 þ 108E1 � 27E2 þ 4E3

66h
þ 3k2

0h
11

m2
0þE0 þ �0þP0þ

� �
þ O h4

� �
:

Repeating the calculation for Ezð0�Þ and equating the resulting approximations for Ezð0�Þ and Ezð0þÞ, we have:
4E�3 � 27E�2 þ 108E�1 � 170E0 þ 108E1 � 27E2 þ 4E3

66h
þ 6hk2

0

11
m2

0� þ m2
0þ

2
E0 þ

�0� þ �0þ

2
P0

� �
¼ 0: ð13Þ
Then, substituting m0� ¼ 1; �0� ¼ 0; m0þ ¼ m and �0þ ¼ �; we obtain:
4E�3 � 27E�2 þ 108E�1 � 170E0 þ 108E1 � 27E2 þ 4E3

66h
þ 6hk2

0

11
1þ m2

2
E0 þ

�
2

P0

� �
¼ 0: ð14aÞ
A similar equation is obtained for the interface at n ¼ N:
4EN�3 � 27EN�2 þ 108EN�1 � 170EN þ 108ENþ1 � 27ENþ2 þ 4ENþ3

66h
þ 6hk2

0

11
1þ m2

2
EN þ

�
2

PN

� �
¼ 0: ð14bÞ
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2.2.3. Two-way boundary conditions
At the exterior nodes n < 0 and n > N, the one-dimensional Helmholtz equation (6b) is approximated with fourth-order

accuracy by the constant coefficient homogeneous difference equation (12). This equation can be recast as
Enþ1 � 2En þ En�1

h2 þ k2 ¼ 0; where k2 ¼ 1

1þ k2
0h2

=12
k2

0: ð15Þ
The general solution of Eq. (15) is of the form En ¼ Cþqn þ C�q�n, where
q ¼ r þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

and q�1 ¼ r � i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

are roots of the corresponding characteristic equation q�1 � 2=r þ q ¼ 0, and r ¼ ð1� k2h2
=2Þ�1. These roots are complex

conjugate and have unit magnitudes. Moreover, they satisfy q ¼ eik0hð1þ O h5
� �

Þ and q�1 ¼ e�ik0hð1þ O h5
� �

Þ. Hence, the dis-
crete solution qn approximates the right-going wave eik0nh ¼ eik0z, and the discrete solution q�n approximates the left-going
wave e�ik0nh ¼ e�ik0z, with fourth-order accuracy.

Consequently, the discrete counterpart of Eq. (7) is
En ¼
E0

incqn þ C1q�n; �1 < n 6 0;

C2qn�N þ EZmax
inc e�ðn�NÞ; N 6 n <1:

(
ð16Þ
Applying Eq. (16) at n ¼ �3 and n ¼ �4, we can eliminate the unknown constant C1 and express the value of the field at the
ghost node n ¼ �4 as
E�4 ¼ ðq�1 � qÞq�3E0
inc þ qE�3: ð17aÞ
Likewise, applying Eq. (16) at n ¼ N þ 3 and n ¼ N þ 4, we obtain:
ENþ4 ¼ ðq�1 � qÞq�3EZmax
inc þ qENþ3: ð17bÞ
Relations (17a) provide a fourth-order accurate approximation to the boundary conditions (8) for d ¼ 3h. Relation (17a) is
substituted into Eq. (12) for n ¼ �3 and relation (17b) is substituted into Eq. (12) for n ¼ N þ 3. This eliminates the ghost
values from scheme (12) and closes the system of difference equations on the grid (9).

2.3. Extension to the multi-layer material

In the case of a grated Kerr material described in Section 1.3, there are additional discontinuity points defined by formula
(5a).

The interface conditions at each discontinuity point ~z are the same as at z ¼ 0 and z ¼ Zmax:
Eð~zþÞ ¼ Eð~z�Þ; dE
dz
ð~zþÞ ¼ dE

dz
ð~z�Þ:
Hence, in the simple case when ~z happens to be at one of the grid nodes, the discrete continuity condition at ~z is given by the
same expression as (13). If the discontinuity point does not coincide with any grid node, one can construct a separate uni-
form grid for each sub-interval, and the extension to the multi-layer case will then be straightforward.

3. The NLH in two and three space dimensions

3.1. Continuous formulation

Here, we build a continuous formulation for the case of a homogeneous slab of the Kerr material which occupies the re-
gion 0 6 z 6 Zmax, see Fig. 1(a). As in the one-dimensional setting, we will later generalize the method to the multi-layer case,
see Section 3.5.

We first consider the two-dimensional Cartesian geometry case x � ðz; xÞ. This case models the physical case of propaga-
tion in planar waveguides, where the dynamics in y can be neglected. In this case, the computational domain is truncated in
the transverse direction to x 2 ½�X max;X max�. In the longitudinal direction, we truncate the computational domain at a cer-
tain distance d from the interfaces, to z 2 ½�d; Zmax þ d�.

As before, the electric field is governed by the scalar NLH equation inside the Kerr medium (cf. Eq. (2)):
Ezzðz; xÞ þ Exx þ k2
0 m2 þ � Ej j2r
� �

E ¼ 0;

ðz; xÞ 2 ð0; ZmaxÞ � ½�X max;X max�
ð18aÞ
and by the linear Helmholtz equation outside the Kerr medium (where m � 1 and � � 0):
Ezzðz; xÞ þ Exx þ k2
0E ¼ 0;

ðz; xÞ 2 ½�d;0Þ [ ðZmax; Zmax þ d�f g � ½�X max;X max�:
ð18bÞ
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At the material interfaces z ¼ 0 and z ¼ Zmax, the field E and its normal derivative Ez are continuous for all x 2 ½�X max;X max�:
Eð0þ; xÞ ¼ Eð0�; xÞ; Ezð0þ; xÞ ¼ Ezð0�; xÞ;
EðZmaxþ; xÞ ¼ EðZmax�; xÞ; EzðZmaxþ; xÞ ¼ EzðZmax�; xÞ:

ð18cÞ
We also consider the case of three spatial dimensions, which models the propagation in bulk medium. In order to reduce the
computational costs, we assume that the field is cylindrically symmetric EðxÞ � Eðz;qÞ, where q ¼ jx?j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. This en-

ables us to solve the problem with only two independent spatial variables. In this case, the computational domain in the
transverse direction is q 2 ½0;qmax�, and the scalar NLH equation inside the Kerr medium is
Ezzðz;qÞ þ Eqq þ
1
q

Eq þ k2
0 m2 þ � Ej j2r
� �

E ¼ 0;

ðz;qÞ 2 ð0; ZmaxÞ � ½0;qmax�:
ð19aÞ
The linear Helmholtz outside the Kerr medium is
Ezzðz;qÞ þ Eqq þ
1
q

Eq þ k2
0E ¼ 0;

ðz;qÞ 2 ½�d; 0Þ [ ðZmax; Zmax þ d�f g � ½0;qmax�
ð19bÞ
and the continuity conditions at the planar interfaces are
Eð0þ;qÞ ¼ Eð0�;qÞ; Ezð0þ;qÞ ¼ Ezð0�;qÞ;
EðZmaxþ;qÞ ¼ EðZmax�;qÞ; EzðZmaxþ;qÞ ¼ EzðZmax�;qÞ:

ð19cÞ
We shall sometimes find it convenient to adopt a general notation for both cases, by denoting the scalar transverse coordi-
nate as x? ¼ jx?j and its domain by X?. In the Cartesian case we have x? � x and X? ¼ ½�X max;X max�, while in the cylindri-
cally symmetric case we have x? � q and X? ¼ ½0;qmax�.

We shall also find it convenient to decompose the Laplacian as D ¼ @zz þ D?, where D? ¼ @xx in the Cartesian case and
D? ¼ 1

q @qðq@qÞ � @2
q þ 1

q @q in the cylindrically symmetric case. Physically, the transverse Laplacian term D?E leads to
diffraction.

Using this notation, the Cartesian system (18a) and the cylindrically symmetric case system (19a) are universally repre-
sented as
Ezzðz; x?Þ þ D?Eþ k2
0 m2 þ � Ej j2r
� �

E ¼ 0;

ðz; x?Þ 2 ð0; ZmaxÞ �X?; ð20aÞ
Ezzðz; x?Þ þ D?Eþ k2

0E ¼ 0;
ðz; x?Þ 2 ½�d;0Þ [ ðZmax; Zmax þ d�f g �X?; ð20bÞ
Eð0þ; x?Þ ¼ Eð0�; x?Þ; Ezð0þ; x?Þ ¼ Ezð0�; x?Þ;
EðZmaxþ; x?Þ ¼ EðZmax�; x?Þ; EzðZmaxþ; x?Þ ¼ EzðZmax�; x?Þ: ð20cÞ
3.1.1. Local transverse boundary conditions
Following the approach first used in [20], we set locally one-dimensional radiation boundary conditions of the Sommer-

feld type in the transverse direction x?. To do so, we assume that the beam is localized around x? ¼ 0, so that far from the
beam center the nonlinearity becomes negligible, i.e.,
�jEj2r � m2; jxjP X max or q P qmax:
Therefore, the field (approximately) satisfies the constant coefficient equation:
DEþ m2
0k2

0E ¼ 0; jxjP X max or q P qmax:
We further assume that for jxj J X max(q J qmax) the field is composed predominantly of the outgoing plane (cylindrical)
waves with nearly normal incidence on the boundary jxj ¼ X max (q ¼ qmax).

This leads to the following radiation boundary conditions in the 2D Cartesian case [20]:
Ex � ik0m0Ejx¼X max
¼ 0; Ez þ ik0m0Ejx¼�X max

¼ 0: ð21aÞ
In the 3D cylindrically symmetric case the local radiation boundary condition at q ¼ qmax reads [21]:
Eq � aEjq¼qmax
¼ 0; a ¼

d
dq Hð1Þ0 ðm0k0qmaxÞ
Hð1Þ0 ðm0k0qmaxÞ

; ð21bÞ
where Hð1Þ0 is the Hankel function of the first kind. The symmetry condition at the axis q ¼ 0 is
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@

@q
Eðz;0Þ ¼ 0: ð21cÞ
We emphasize that these transverse boundary conditions are valid as long as the beam is localized around the axis and re-
mains ‘‘far” from the transverse boundary at x ¼ X max or q ¼ qmax.

3.1.2. Nonlocal longitudinal boundary conditions
Similarly to the one-dimensional case (see Section 2.1), the boundary conditions in the longitudinal direction z will be set

in the linear regions at z ¼ �d and z ¼ Zmax þ d. They should render the boundaries transparent for all the outgoing waves,
i.e., eliminate any non-physical reflections, and at the same time correctly prescribe the given incoming wave(s), see Fig. 2.
Unlike in the one-dimensional case, however, a two-way Sommerfeld boundary condition of type (8), which is local in the
configuration space, cannot be transparent for all the outgoing waves, because these waves travel with different longitudinal
velocities that depend on their angle of incidence.

Therefore, to accommodate all angles of incidence, we first separate the variables in the linear Helmholtz equation (20b)
by expanding its solution with respect to the eigenfunctions of the transverse Laplacian. These eigenfunctions solve the or-
dinary differential equation:
D?w
ðlÞðx?Þ ¼ �ðkðlÞ? Þ

2wðlÞ ð22Þ
subject to the transverse boundary conditions (21c). The resulting eigenvalue problem is not of the classical Sturm–Liouville
type, since its operator is not self-adjoint (because of the radiation boundary conditions). As a result, the eigenfunctions are
not orthogonal. Nevertheless, these eigenfunctions are bi-orthogonal [29, Volume I] or, alternatively, real orthogonal, and
still form a complete system.

A comprehensive discussion on completeness of eigensystems arising in the diffraction theory, and on convergence of the
corresponding series, can be found in [30].

Since the system of eigenfunctions fwðlÞg is complete, we can expand the field E and the incoming beams E0
inc and EZmax

inc as
Eðz; x?Þ ¼
X1
l¼0

ulðzÞwðlÞðx?Þ;

E0
incðx?Þ ¼

X1
l¼0

u0
inc;lw

ðlÞðx?Þ; EZmax
inc ðx?Þ ¼

X1
l¼0

uZmax
inc;l w

ðlÞðx?Þ:
ð23Þ
In the transformed space, the linear Helmholtz equation (20b) reduces to a system of uncoupled one-dimensional linear
Helmholtz equations (ODEs):
d2

dz2 þ ðk
ðlÞ
k Þ

2

 !
ulðzÞ ¼ 0; ðkðlÞk Þ

2 ¼ k2
0 � ðk

ðlÞ
? Þ

2
; l ¼ 0;1; . . . ;1: ð24Þ
Each of the uncoupled equations (24) formally coincides with Eq. (6b) and has the same general solution composed of two
waves one of which can be interpreted as propagation in the positive z direction and the other one – in the negative z direc-
tion. Unlike in Eq. (6b), however, the quantity ðkðlÞk Þ

2 in Eq. (24) may have a negative real part, in which case the waves be-
come evanescent. It may also have a non-trivial imaginary part, which is due to the non-self-adjoint transverse (radiation)
boundary conditions (see [20] for more detail). Regardless of the particular shape that the waves may assume, the longitu-
dinal boundary conditions have to ensure that the field in the region z 6 �d be of the form [cf. formula (7)]:
uðzÞ ¼ u0
inc;le

ikðlÞk z þ C1e�ikðlÞk z
:

Therefore, the two-way ABC at z ¼ �d can be written as
d
dz
þ ikðlÞk

� �
ul

����
z¼�d

¼ 2ikðlÞk e�ikðlÞk du0
inc;l: ð25aÞ
Similarly, at the opposite boundary, z ¼ Zmax þ d, we obtain:
d
dz
� ikðlÞk

� �
ul

����
z¼Zmaxþd

¼ �2ikðlÞk e�ikðlÞk duZmax
inc;l : ð25bÞ
Boundary conditions (25b) are local in the transformed space fulðzÞg1l¼0. In this space, the two-way one-dimensional Som-
merfeld conditions are applied independently for each individual mode defined by (24). The equivalent of relations (25b)
after the inverse transformation of (23) will result in a nonlocal pseudodifferential operator in the original space fEðz; xÞg,
see [20] or [31] for more details. Therefore, the resulting boundary conditions are nonlocal two-way artificial BCs.

3.2. Discrete approximation

We build a semi-compact scheme for the Cartesian problem (18a), (21a), (25b) in Section 3.2.1, and for the cylindrically
symmetric problem (19a), (21b), (21c), (25b) in Section 3.2.2. As in the one-dimensional case, we discretize the governing
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equations inside and outside the Kerr material, and then obtain a discretization at the material interfaces. The discrete trans-
verse boundary conditions and the discrete two-way ABCs for both problems are described in Section 3.3 and Section 3.4,
respectively.

3.2.1. 2D cartesian case
On the rectangle ½�3hz; Zmax þ 3hz� � ½�X max;X max�, we introduce a uniform Cartesian grid of ðN þ 7Þ �M nodes as
zn ¼ n � hz; hz ¼
Zmax

N
; n ¼ �3;�2; . . . ;N þ 2;N þ 3;

xm ¼ �X max þ ðmþ 1=2Þhx; hx ¼
2X max

M
; m ¼ 0;1; . . . ;M � 1;

ð26Þ
so that
z0 ¼ 0; zN ¼ Zmax; x�1=2 ¼ �X max; xM�1=2 ¼ X max:
In this paper, we keep hz � hx so that all Oðhj
zh

k�j
x Þ terms can be treated as terms of the same order k and denoted by O hk

� �
.

For convenience, we also introduce the following notations for the field and the Kerr nonlinearity at the grid nodes:
En;m ¼def Eðzn; xmÞ; Pn;m ¼def jEn;mj2rEn;m:
Finally, we use the previous notation D for central difference operators, with the order of accuracy in the superscript and the
differentiation variables in the subscript.

For example,
Dð2Þxx E ¼def En;mþ1 � 2En;m þ En;m�1

h2
x

¼ @xxEn;m þ O h2
� �

:

Other notations for central differences are listed in Appendix B.
To build a semi-compact approximation of the NLH (18a) at the interior points n ¼ 1; . . . ;N � 1, we first introduce the fol-

lowing mixed order discrete Laplacian:
Dð2Þzz En;m þ Dð4Þxx En;m ¼
En�1;m � 2En;m þ Enþ1;m

h2
z

þ�En;m�2 þ 16En;m�1 � 30En;m þ 16En;mþ1 � En;mþ2

12h2
x

¼ DEn;m þ
h2

z

12
@zzzzEn;m þ O h4

� �
: ð27Þ
In order to remove the O h2
� �

term on the right-hand side of (27), we consider the following expression that
contains fourth-order derivatives with respect to both z and x, and approximate it to second-order accuracy using central
differences:
ð@zzzz � @xxxxÞEn;m ¼ ð@zz � @xxÞDEn;m ¼ Dð2Þzz � Dð2Þxx

� �
DEn;m þ O h2

� �
: ð28Þ
Then, we employ the NLH (18a) itself and substitute the expression
DEn;m ¼ �k2
0 m2En;m þ �Pn;m
� �
into formula (28). Next, we approximate the derivative @xxxxE in formula (28) to second-order accuracy using central differ-
ences, and altogether obtain:
@zzzzEn;m ¼ �k2
0 Dð2Þzz � Dð2Þxx

� �
m2En;m þ �Pn;m
� �

þ Dð2ÞxxxxEn;m þ O h2
� �

: ð29Þ
Substitution of (29) into (27) yields a semi-compact fourth-order discretization of the Laplacian, which leads to the following
fourth-order scheme for the NLH (18a):
Dð2Þzz þ Dð4Þxx En;m �
h2

z

12
Dð2Þxxxx

 !
En;m þ k2

0 1þ h2
z

12
Dð2Þzz �

h2
z

12
Dð2Þxx

 !
m2En;m þ �Pn;m
� �

¼ 0; n ¼ 1; . . . ;N � 1; m

¼ 0; . . . ;M � 1: ð30Þ
To obtain a similar fourth-order scheme for the linear Helmholtz equation (18b), we repeat the previous derivation with
�Pn;m ¼ 0 and m ¼ 1, which yields:
1þ k2
0h2

z

12

 !
Dð2Þzz þ Dð4Þxx �

k2
0h2

z

12
Dð2Þxx �

h2
z

12
Dð2Þxxxx

 !
þ k2

0

" #
En;m ¼ 0; n ¼ �3; . . . ;�1;N þ 1; . . . ;3; m

¼ 0; . . . ;M � 1: ð31Þ
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Next, we consider material interfaces at the nodes n ¼ 0 and n ¼ N. Using Taylor’s expansion, we can write:
�85E0;m þ 108E1;m � 27E2;m þ 4E3;m

66hz
¼ @zE0þ;m þ

3hz

11
@zzE0þ;m þ O h4

� �
:

Then, approximating the derivative @zzE0þ;m with fourth-order accuracy:
@zzE0þ;m ¼ DE0þ;m � @xxE0þ;m ¼ �k2
0ðm2

0þE0;m þ �0þP0;mÞ � Dð4Þxx E0;m þ O h4
� �

;

we obtain:
@zE0þ;m ¼
�85E0;m þ 108E1;m � 27E2;m þ 4E3;m

66hz
þ 3hzk

2
0

11
m2

0þE0;m þ �0þP0;m
� �

þ 3hz

11
Dð4Þxx E0;m þ O h4

� �
: ð32Þ
Deriving a similar formula for @zE0�;m and equating the resulting expressions for @zE0þ;m and @zE0�;m, we get a fourth-order
accurate approximation of the continuity condition Ezð0�Þ ¼ Ezð0þÞ:
4E�3;m � 27E�2;m þ 108E�1;m � 170E0;m þ 108E1;m � 27E2;m þ 4E3;m

66hz
þ 6hzk

2
0

11
m2

0� þ m2
0þ

2
E0;m þ

�0� þ �0þ

2
P0;m

� �
þ 6hz

11
Dð4Þxx E0;m ¼ 0: ð33Þ
Finally, substituting m0�;m ¼ 1; �0�;m ¼ 0; m0þ;m ¼ m and �0þ;m ¼ �, we have:
4E�3;m � 27E�2;m þ 108E�1;m � 170E0;m þ 108E1;m � 27E2;m þ 4E3;m

66hz
þ 6hzk

2
0

11
1þ m2

2
E0;m þ

�
2

P0;m

� �
þ 6hz

11
Dð4Þxx E0;m ¼ 0: ð33aÞ
A similar equation is obtained for the interface at n ¼ N:
4EN�3;m � 27EN�2;m þ 108EN�1;m � 170EN;m þ 108ENþ1;m � 27ENþ2;m þ 4ENþ3;m

66hz
þ 6hzk2

0

11
1þ m2

2
EN;m þ

�
2

PN;m

� �
þ 6hz

11
Dð4Þxx EN;m ¼ 0: ð33bÞ
3.2.2. Cylindrically symmetric case
We use the same grid (26), except that in the transverse direction we now have:
qm ¼ ðmþ 1=2Þhq; hq ¼
qmax

M
; m ¼ 0; . . . ;M � 1; ð34Þ
so that
q�1=2 ¼ 0 and qM�1=2 ¼ qmax: � �

We also keep hz � hq so that all Oðhj

zhk�j
q Þ terms appear of the same order O hk .

To approximate the NLH (19a) at the interior points n ¼ 1; . . . ;N � 1, we begin by introducing a mixed order discretization
of the cylindrical Laplacian D ¼ @zz þ Dq � @zz þ @2

q þ 1
q @q:
Dð2Þzz þ Dð4Þqq þ
1
qm

Dð4Þq

� �
En;m ¼ DEn;m þ

h2
z

12
@zzzzEn;m þ O h4

� �
: ð35Þ
To remove the O h2
� �

term on the right-hand side of (35), we start with the second-order central difference approximation of
the expression ð@zzzz � D2

qÞEn;m ¼ ð@zz � DqÞDEn;m, where D2
q ¼ q�3@q � q�2@qq þ 2q�1@qqq þ @qqqq, and using the NLH (19a) it-

self, obtain:
@zzzzEn;m ¼ �k2
0 Dð2Þzz � Dð2Þqq �

1
qm

Dð2Þq

� �
m2En;m þ �Pn;m
� �

þ q�3
m Dð2Þq � q�2

m Dð2Þqq þ 2q�1
m Dð2Þqqq þ Dð2Þqqqq

� �
En;m þ O h2

� �
: ð36Þ
Substitution of (36) into (35) yields a semi-compact fourth-order discretization of the cylindrical Laplacian, which leads to
the following fourth-order scheme for the NLH (19a):
Dð2Þzz þ Dð4Þqq þ
1
qm

Dð4Þq

� �
En;m �

h2
z

12
q�3

m Dð2Þq � q�2
m Dð2Þqq þ 2q�1

m Dð2Þqqq þ Dð2Þqqqq

� �
En;m

þ k2
0 1þ h2

z

12
Dð2Þzz � Dð2Þqq �

1
qm

Dð2Þq

� �" #
m2En;m þ �Pn;m
� �

¼ 0; n ¼ 1; . . . ;N � 1; m ¼ 0; . . . ;M � 1: ð37Þ
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To obtain a similar fourth-order scheme for the linear Helmholtz equation (19b), we repeat the previous derivation with
� � 0 and m � 1, which yields:
6 Stab
Dð2Þzz þ Dð4Þqq þ
1
qm

Dð4Þq

� �
En;m �

h2
z

12
q�3

m Dð2Þq � q�2
m Dð2Þqq þ 2q�1

m Dð2Þqqq þ Dð2Þqqqq

� �
En;m

þ k2
0 1þ h2

z

12
Dð2Þzz � Dð2Þqq �

1
qm

Dð2Þq

� �" #
En;m ¼ 0; n ¼ �3; . . . ;�1;N þ 1; . . . ;3; m ¼ 0; . . . ;M � 1: ð38Þ
The analysis of material interfaces at n ¼ 0 and n ¼ N is very similar to that of Section 3.2.1, and we arrive at the following
fourth-order accurate approximation of the continuity condition Ezð0�Þ ¼ Ezð0þÞ:
4E�3;m � 27E�2;m þ 108E�1;m � 170E0;m þ 108E1;m � 27E2;m þ 4E3;m

66hz
þ 6hzk2

0

11
m2

0� þ m2
0þ

2
E0;m þ

�0� þ �0

2
P0;m

� �
þ 6hz

11
Dð4Þqq þ

1
qm

Dð4Þq

� �
E0;m ¼ 0: ð39Þ
Substituting m0�;m ¼ 1; �0�;m ¼ 0; m0þ;m ¼ m and �0þ;m ¼ � into (39), we have:
4E�3;m � 27E�2;m þ 108E�1;m � 170E0;m þ 108E1;m � 27E2;m þ 4E3;m

66hz
þ 6hzk2

0

11
1þ m2

2
E0;m þ

�
2

P0;m

� �
þ 6hz

11
Dð4Þqq þ

1
qm

Dð4Þq

� �
E0;m ¼ 0: ð40aÞ
A similar equation is obtained for the interface at n ¼ N:
4EN�3;m � 27EN�2;m þ 108EN�1;m � 170EN;m þ 108ENþ1;m � 27ENþ2;m þ 4ENþ3;m

66hz
þ 6hzk2

0

11
1þ m2

2
EN;m þ

�
2

PN;m

� �
þ 6hz

11
Dð4Þqq þ

1
qm

Dð4Þq

� �
EN;m ¼ 0: ð40bÞ
3.3. Local transverse boundary conditions

In this section, we briefly describe a discrete approximation of the transverse boundary conditions (21c). In doing so, we
follow the approach of [21], where additional details can be found.

Let us first consider the radiation boundary conditions (21a) and (21b) at the ‘‘upper” boundary m ¼ M � 1=2. We will use
their discrete counterparts to express the values of the field at the ghost nodes En;M and En;Mþ1 via the values at the inner
nodes En;M�3; En;M�2, and En;M�1, and thus eliminate the ghost nodes. A fourth-order approximation of either Cartesian or cylin-
drical radiation boundary condition centered around m ¼ M � 1=2 (which corresponds to x ¼ X max or q ¼ qmax) is given by
En;M�2 � 27En;M�1 þ 27En;M � En;Mþ1

24h?
� a
�En;M�2 þ 9En;M�1 þ 9En;M � En;Mþ1

16
¼ 0;
where in the Cartesian case a ¼ im0k0, see formula (21a), and in the cylindrical case a is defined in (21b), see [21]. Equiva-
lently, we can write:
½c�2; . . . ; c1� �

En;M�2

..

.

En;Mþ1

2664
3775 ¼ 0;
where
½c�2; . . . ; c1� ¼ ½1;�27;27;�1� � 2ah?
3
½�1;9;9;�1�:
However, specifying this boundary condition alone is not sufficient, because the fourth-order finite difference equation that
we use in the x? direction requires an additional boundary condition. The choice of the latter allows for more flexibility as
long as the resulting method is fourth-order accurate and stable.6 Hereafter, we choose this second condition as the fourth-
order accurate extrapolation of the ghost value En;Mþ1 via fEn;M�3; . . . ; En;Mg, which can be conveniently written as
En;Mþ1 ¼
X0

j¼�3

ð�1Þj
4

1� j

� �
En;Mþj:
ility of these approximations can be studied by the methodology of [32].
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Combining the two discrete boundary conditions as
0; c�2; c�1; c0; c1

�1 4 �6 4 �1


 � En;M�3

..

.

En;Mþ1

2664
3775 ¼ 0

0


 �
;

we can express the ghost values En;M and En;Mþ1 in terms of the interior values:
En;M

En;Mþ1


 �
¼ � 1

c0 þ 4c1

�c1 c�2 þ 4c1 c�1 � 6c1

c0 4c�2 � 4c0 4c�1 þ 6c0


 �
�

En;M�3

En;M�2

En;M�1

264
375: ð41aÞ
In the Cartesian case, the derivation is repeated to obtain the discrete discrete radiation boundary condition at x ¼ �X max,
i.e., at m ¼ 0:
En;�2

En;�1


 �
¼ � 1

c0 þ 4c1

4c�1 þ 6c0 4c�2 � 4c0 c0

c�1 � 6c1 c�2 þ 4c1 �c1


 �
�

En;0

En;1

En;2

264
375: ð41bÞ
In the cylindrical case, the symmetry (21c) is enforced as follows:
En;�1 ¼ En;0; En;�2 ¼ En;1: ð42Þ
Note also that in the Cartesian case there is an alternative way of building the discrete transverse boundary conditions. It
does not require a finite difference approximation of the continuous boundary conditions (21a), and is rather based on ana-
lyzing the roots of the fourth-order characteristic equation that corresponds to the five node discretization in the x direction.
The idea is similar to that behind boundary conditions (17a), and the reader is referred to [20] for more detail.

3.4. Nonlocal longitudinal boundary conditions

In this section, we construct a discrete counterpart for the two-way ABCs (25b). In the continuous case of Section 3.1, we
separated the variables in the linear Helmholtz equation (20b) outside the Kerr region, and then obtained the ABCs in the
transformed space. In the discrete case, we also begin by separating the variables in the Cartesian (31) and cylindrical
(38) difference Helmholtz equation at the exterior grid nodes:
m ¼ 0; . . . ;M � 1; n ¼ 0;�1;�2; n ¼ N; N þ 1; N þ 2:
Subsequently, we derive the ABCs in the transformed space. This derivation is identical for the Cartesian geometry of Section
3.2.1 and the cylindrical geometry of Section 3.2.2.

We first identify the transverse components in the finite difference operators of (31) and (38). The transverse part of the
discrete Laplacian for the Cartesian case is
L? ¼ Dð4Þxx �
k2

0h2
z

12
Dð2Þxx �

h2
z

12
Dð2Þxxxx; ð43aÞ
whereas for the cylindrically symmetric case it is given by
L? ¼ Dð4Þqq þ
1
qm

Dð4Þq �
k2

0h2
z

12
Dð2Þqq þ

1
qm

Dð2Þq

� �
� k2

0h2
z

12
q�3

m Dð2Þq � q�2
m Dð2Þqq þ 2q�1

m Dð2Þqqq þ Dð2Þqqqq

� �
: ð43bÞ
The separation of variables in Eqs. (31) and (38) will be rendered by expanding the solution with respect to the transverse
eigenvectors wðlÞ ¼ ½wðlÞ0 ;w

ðlÞ
1 ; . . . ;wðlÞM�1�

T
: Each eigenvector wðlÞ satisfies the following difference equation on the grid (cf. Eq.

(22)):
L?wðlÞm ¼ �ðk
ðlÞ
? Þ

2wðlÞm ; m ¼ 0;1; . . . ;M � 1: ð44Þ
In the Cartesian case, the operator L? in (44) is defined by formula (43a), and the solution wðlÞ is subject to boundary condi-
tions (41a) and (41b). In the cylindrically symmetric case, the operator L? in (44) is defined by formula (43b), and the solu-
tion wðlÞ is subject to boundary conditions (41a) and (42). The argument behind linear independence of fwðlÞg in the Cartesian
case is based on bi-orthogonality (real orthogonality) of the eigenvectors and can be found in [20]. For the cylindrically sym-
metric case, the continuous eigenfunctions are also real orthogonal, but the discrete eigenvectors are not, see [21]. Yet we
observe numerically that they are linearly independent.

The M linearly independent eigenvectors are convenient to arrange as a column matrix:
W ¼def
wð0Þ;wð1Þ; . . . ;wðM�1Þ
h i

¼
wð0Þ0 � � � wðM�1Þ

0

..

. . .
. ..

.

wð0ÞM�1 � � � wðM�1Þ
M�1

2664
3775;
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that will diagonalize the discrete transverse Laplacian, i.e., L?W ¼ WK, where
K ¼ diag �ðkð0Þ? Þ
2
;�ðkð1Þ? Þ

2
; . . . ;�ðkðM�1Þ

? Þ2
n o
and the eigenvalues �ðkðlÞ? Þ
2 are defined in (44).

It will also be convenient to consider the following M-dimensional vectors:
En ¼def En;0; En;1; . . . ; En;M�1½ �T ;
that contain the values of the field arranged in the transverse direction. With this notation, we can recast both scheme (31)
and scheme (38) in the vector form:
1þ k2
0h2

z

12

 !
Enþ1 � 2En þ En�1

h2
z

þ L?En þ k2
0En ¼ 0: ð45Þ
For each n, let us introduce the vector variable
Un ¼ W�1En: ð46aÞ
Equality En ¼ WUn is the expansion of En with respect to the eigenvectors wðlÞ, where the coefficients are given by the com-
ponents of Un. Similarly, we can expand the incoming beam profiles:
U0
inc ¼ W�1E0

inc; U0
inc ¼

def

u0
inc;0

..

.

u0
inc;M�1

2664
3775; E0

inc ¼
def

E0
inc;0

..

.

E0
inc;M�1

26664
37775; ð46bÞ

UZmax
inc ¼ W�1EZmax

inc ; UZmax
inc ¼def

uZmax
inc;0

..

.

uZmax
inc;M�1

2664
3775; EZmax

inc ¼def

EZmax
inc;0

..

.

EZmax
inc;M�1

26664
37775: ð46cÞ
Formulae (46a) are discrete counterparts of (23). Substituting expansions (46a) into Eq. (45) and diagonalizing
L?: L?En ¼ L?WUn ¼ WKUn, we have:
W 1þ k2
0h2

z

12

 !
Unþ1 � 2Un þ Un�1

h2
z

þWKUn þWk2
0Un ¼ 0: ð47Þ
Finally, multiplying Eq. (47) by the inverse matrix W�1 from the left we separate the variables. Recasting the result via indi-
vidual components of Un ¼ ½un;0;un;1; . . . ;un;M�1�T , we obtain:
1þ k2
0h2

z

12

 !
unþ1;l � 2un;l þ un�1;l

h2
z

� ðkðlÞ? Þ
2un;l þ k2

0un;l ¼ 0; l ¼ 0;1; . . . ;M � 1: ð48Þ
Formula (48) is a system of M uncoupled ordinary difference equations, which is a discrete counterpart of the continuous
uncoupled system (24).

Each of the uncoupled difference equation (48) is identical to the one-dimensional difference equation (15) if we redefine
k2 of (15) as
k2 ¼ k2
0 � ðk

ðlÞ
? Þ

2

1þ k2
0h2

z
12

�
ðkðlÞk Þ

2

1þ k2
0h2

z
12

:

Therefore, similarly to (17a) we can write for the ghost node n ¼ �4:
u�4;l ¼ q�1
l � ql

� �
q�3

l u0
inc;l þ qlu�3;l;
where ql and q�1
l denote roots of the characteristic equation for a given l, and the incoming components u0

inc;l are defined in
(46a).

Recasting the previous equality in the matrix form and transforming back into the configuration space, E ¼ WU, we obtain
the two-way discrete ABCs:
E�4 ¼ W

q�1
0 �q0

q3
0

. .
.

q�1
M�1�qM�1

q3
M�1

266664
377775W�1E0

inc þW

q0

. .
.

qM�1

2664
3775W�1E�3: ð49aÞ
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Likewise, for the ghost node n ¼ N þ 4 we write similarly to (17b):
uNþ4;l ¼ q�1
l � ql

� �
q�3

l uZmax
inc;l þ qluNþ3;l;
and arrive at the following two-way discrete ABCs:
ENþ4 ¼ W

q�1
0 �q0

q3
0

. .
.

q�1
M�1�qM�1

q3
M�1

266664
377775W�1EZmax

inc þW

q0

. .
.

qM�1

2664
3775W�1ENþ3: ð49bÞ
Relations (49a) provide a fourth-order accurate approximation to the boundary conditions (25b) for d ¼ 3hz. In the Cartesian
or cylindrical case, relation (49a) is substituted into Eq. (31) or (38), respectively, for n ¼ �3, and relation (49b) is substituted
into Eq. (31) or (38), respectively, for n ¼ N þ 3. This eliminates the ghost values from the schemes (31) and (38) and thus
closes the system of finite-difference equations on the grids (26) and (34).

3.5. Extension to the multi-layer material

In the case of a grated Kerr material described in Section 1.3, there are additional discontinuity points defined by formula
(5a). The interface conditions at each discontinuity point ~z are the same as at z ¼ 0 and z ¼ Zmax:
Eð~zþ; x?Þ ¼ Eð~z�; x?Þ;
@E
@z
ð~zþ; x?Þ ¼

@E
@z
ð~z�; x?Þ:
In the simple case when ~z coincides with one of the grid nodes, the discrete approximation of the continuity conditions is
given by the same formula as (33) for the Cartesian case and by the same formula as (39) for the cylindrical case. Hence,
to solve the one-dimensional NLH for the multi-layer case one needs to apply the corresponding discrete interface condition
of type (33) or (39) at each plane (5a). The extension to the case when a discontinuity plane does not coincide with any of the
uniform grid surfaces (26) or (34) can be obtained by building separate grids for different layers.

4. Newton’s solver

Here we briefly outline our approach to building a Newton type solver for the NLH. The reader is referred to [19, Section 3]
for a detailed description.

The schemes for the NLH that we constructed in Sections 2 and 3 lead to systems of nonlinear difference equations that
we symbolically write as
FðEÞ ¼ 0;
where the quantities F and E are complex. In the one-dimensional case, they are vectors of dimension N þ 7, which is the
dimension of grid (9), F; E 2 CNþ7. In the two-dimensional case, F and E can be interpreted as matrices of dimension
ðN þ 7Þ �M, which is the dimension of grid (26), and for convenience we reshape them as ðN þ 7ÞM-dimensional vectors:
F; E 2 CðNþ7ÞM :

To linearize the transformation FðEÞ, we first notice that the Kerr nonlinearity P ¼ jEj2rE is Frechét nondifferentiable as
long as E is complex. To overcome this, we separate the real and imaginary parts and recast the field E and mapping F as
real vectors of twice the dimension:
E 2 CðNþ7ÞM ! bE 2 R2ðNþ7ÞM ;

FðEÞ : CðNþ7ÞM#CðNþ7ÞM ! bF ðbEÞ : R2ðNþ7ÞM#R2ðNþ7ÞM :
The new transformation bFðbEÞ is differentiable in the conventional real sense. Differentiation results in Newton’s linearization
of bF that involves the Jacobian bbJ , and leads to Newton’s iterations:
bEðjþ1Þ � bEðjÞ ¼def
dEðjþ1Þ ¼ � bbJ ðEðjÞÞ
 ��1bF ðEðjÞÞ: ð50Þ
The convergence of Newton’s method is known to be very sensitive to the choice of the initial guess. In our experiments, we
take the simplest initial guess Eð0Þ � 0. We have also observed numerically that the algorithm was more likely to converge if,
during the first stage of the iteration process, when the iterations EðjÞ are ‘‘far” from the solution, we introduce the relaxation
mechanism:
bEðjþ1Þ � bEðjÞ ¼ x

max 1; kdEðjþ1Þk1
n o dEðjþ1Þ; ð51Þ
where x 2 ð0;1�; typically x ¼ 0:5. While this mechanism enables the algorithm to converge for a wider range of cases, it
also slows down the convergence (from quadratic to linear rate). Therefore, once the iterates EðjÞ are ‘‘sufficiently close” to
the solution so that kdEðjÞk1 < 0:01, we change back to x ¼ 1, thereby reverting to the original Newton’s method (50).

The criterion for convergence that we employ is the inter-iteration distance threshold jdEðjÞj < 10�12.
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5. Summary of the numerical method

The NLH (20c) subject to local transverse boundary conditions (21c) and nonlocal two-way longitudinal boundary condi-
tions (25b) is discretized on the grid (26) or (34). In the Cartesian case, we obtain semi-compact schemes (30) and (31) in the
interior and exterior of the Kerr material, respectively, and discretization (33a) for the continuity conditions at the interface. In
the cylindrically symmetric case, we arrive at the semi-compact schemes (37) and (38) at the interior and exterior nodes,
respectively, and discretization (40a) for the continuity conditions at the interface. For both geometries, we also employ dis-
cretization (41a) for the local transverse radiation boundary condition, and discretization (49a) for the non-local two-way
boundary conditions at z ¼ �3hz and z ¼ Zmax þ 3hz. In addition, discretization (42) is used at the axis of the cylindrical system.

The resulting system of nonlinear difference equations with respect to complex unknowns En;m is recast in the real form at
the expense of doubling its dimension. Then, Newton’s linearization is applied, see formula (50), which yields a
2ðN þ 7ÞM � 2ðN þ 7ÞM sparse Jacobian matrix, with the bandwidth of 2M for the interior and exterior grid points, where
n – 0;N. For the points at the interfaces, where n ¼ 0 or n ¼ N, the bandwidth is 6M.

At each Newton’s iteration (50) or (51), this Jacobian needs to be inverted. Currently, we are using a sparse direct solver to
invert the Jacobians. This entails an OðN �M2Þmemory cost and hence imposes a fairly strict limit on the grid dimension. For
example, a typical grid dimension of N �M ¼ 1000� 320 results in the memory requirement of about 6 Gb.

6. Finding an NLS-compatible incoming beam

As indicated in Section 1.1, the NLH is the simplest nonparaxial model that generalizes the NLS. Accordingly, one of our
key goals is to investigate how the addition of nonparaxiality affects the solution. In order to do so, we shall use the NLS
solutions as ‘‘benchmarks,” and compare them with NLH solutions computed for ‘‘similar” input parameters.

We note that for an incoming beam E0;NLH
inc which impinges on the material interface at z ¼ 0�, only a part of it that we

denote by Erefracted passes through whereas the rest gets reflected. In contradistinction to that, in the NLS framework all of
the incoming beam E0;NLS

inc propagates forward.
Therefore, in order to have comparable incoming beams for these two models, we should choose the NLH incoming beam

E0;NLH
inc so that the refracted part of it at z ¼ 0þ be close to the NLS initial data E0;NLS

inc , i.e.,
ENLH
refractedð0þ; x?Þ 	 E0;NLS

inc ðx?Þ: ð52Þ
A comprehensive solution to this problem is nontrivial, because the reflection at the nonlinear interface z ¼ 0 depends on the
NLH solution itself for z > 0. Therefore, in this paper we use an approximate treatment which experimentally proves
sufficient.

In order to present this approximate treatment, let us first consider the one-dimensional linear problem:
d2EðzÞ
dz2 þ m2ðzÞE ¼ 0; mðzÞ ¼

1; z < 0;
m; z > 0;

�
ð53aÞ
with the wave E0;NLH
inc eiz impinging on the interface from the left. The overall field has the form:
EðzÞ ¼
E0;NLH

inc eiz þ Re�iz; �1 < z 6 0;

Teimz; 0 6 z <1;

(
ð53bÞ
where R and T are the reflection and transmission (refraction) coefficients. The values of R and T are obtained from the con-
tinuity condition at the interface
Eð0�Þ ¼ Eð0þÞ; dE
dz
ð0�Þ ¼ dE

dz
ð0þÞ; ð53cÞ
which yields:
jENLH
refractedð0þÞj ¼ jTj ¼

2
1þ m

jE0;NLH
inc j: ð54Þ
Formula (54) is a standard result for the transmission of plane waves with normal incidence at a single linear interface, see,
e.g., [33, Section 7.3, Eq. (7.42)].

We shall use this simple refraction formula to approximate the refracted beam of our weakly nonlinear multi-dimen-
sional problem:
ENLH
refractedð0þ; x?Þ 	

2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ � Eð0þ; x?Þj j2r

q E0;NLH
inc ðx?Þ:
Next, we assume that the NLH solution is close to the refracted incoming beam, Eð0þ; x?Þ 	 Erefractedð0þ; x?Þ; and obtain:
ENLH
refractedð0þ; x?Þ 	

2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ � Erefractedð0þ; x?Þj j2r

q E0;NLH
inc ðx?Þ:
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Finally, requirement (52) implies:
7 In t
E0;NLH
inc ðx?Þ ¼

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ � E0;NLS

inc ðx?Þ
��� ���2rr
2

E0;NLS
inc ðx?Þ: ð55Þ
Eq. (55) will be used throughout Section 7 for all collimated incoming beams.

7. Numerical experiments

7.1. 2D cubic NLH (solitons)

7.1.1. A single collimated beam (nonparaxial soliton)
The Cartesian configuration (D ¼ 2) models propagation in planar waveguides. In the case of a cubic nonlinearity (r ¼ 1)

and m ¼ 1, the one-dimensional NLS (4) has solitary wave solutions:
Eðz; xÞ ¼ 2f 2

�

� �1=2 exp ik0zð1þ f 2

2 Þ
� �

cosh fk0xð Þ ¼
ffiffiffi
2
p

k0r0
ffiffiffi
�
p

exp ik0zð1þ 1
2 ðk0r0Þ�2Þ

� �
cosh x=r0ð Þ ð56Þ
which are called solitons. In formula (56), r0 is the soliton width and f ¼ ðk0r0Þ�1 is the nonparaxiality parameter, which can
also be interpreted as the reciprocal beam width measured in linear wavelengths: 2pf ¼ k0=r0.

We solve the Cartesian NLH (18a) on an elongated domain: Zmax ¼ 240;X max ¼ 12, and for k0 ¼ 2p=k0 ¼ 4; m ¼ 1, and
� ¼ k�2

0 .
The problem is driven by the incoming beam
E0
incðxÞ ¼

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �sech2 x=

ffiffiffi
2
p� �r

2
sech x=

ffiffiffi
2
p� �
for which the refracted beam is (approximately) an NLS soliton profile of the width r0 ¼
ffiffiffi
2
p

:

E0
refracted 	 sech x=

ffiffiffi
2
p� �

;

see formula (55). The corresponding nonparaxiality parameter is f ¼ 1=
ffiffiffiffiffiffi
32
p

	 0:177, which means r0 ¼ 0:90 � k0 and which is
considered a very narrow beam.

In this simulation, the field was assumed symmetric with respect to the x-axis, EðxÞ ¼ Eð�xÞ. This allows us to increase the
resolution in the x direction by a factor of two. A non-symmetric simulation at half the resolution provides very similar re-
sults. The grid dimension that we took was N �M ¼ 4480� 112, which translates into the resolution of k0=hz ¼ 30 and
k0=hx ¼ 15, i.e., 30 grid points per linear wavelength in the z direction (axial) and 15 grid points per linear wavelength in
the x direction (transverse).

In Fig. 4(a), we plot the on-axis amplitude of the Cartesian NLH solution. The square amplitude jEj2 exhibits fast oscilla-
tions in the z direction, as can be seen in the insert of Fig. 4(a), and in Fig. 4(b). Although at a first glance these oscillations
may appear a manifestation of numerical instability, in fact they are physical and indicate the presence of a backward prop-
agating component of the field. Indeed, for a field with both forward and backward propagating components:
E 	 Aeik0z þ Beik0z; ð57Þ
the square amplitude is given by the expression:
jEj2 	 jAj2 þ 2Re AB
e2ik0z
� �

þ jBj2; ð58Þ
which has a � 2k0 oscillating term. We note that the amplitude oscillations in Fig. 4(a) and (b) are indeed � 2k0, as predicted
by formula (58). We further note that these oscillations are also exhibited by the explicit solutions of the 1D NLH [8].

We recall that for the NLS the square amplitude jAj2 is proportional to the energy flux density,7 and that the L2 norm of the
solution kAk2

2 ¼
R
jAj2dx? is a conserved quantity proportional to the total energy flux or, equivalently, the beam power. For the

NLH, however, the proper measure of the energy flux density is the Poynting vector:
S ¼ k�1
0 Im E
rEð Þ
rather than the square amplitude. Accordingly, the conserved beam power (i.e., the total energy flux) is the integral its z com-
ponent over the beam cross-section:
N ¼
Z

Szdx?; Sz ¼ k�1
0 Im E
Ezð Þ:
he Gaussian system, the quantity c
4p jEj

2 has the units of energy flux: erg
cm2 �sec, i.e., of energy per unit area per unit of time.
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Then, for the field (57) with both forward and backward propagating components, the energy flux density reduces to
Table 1
Grid co

ðhz; hqÞ

kEð2hÞ �
log2kEð2
Sz 	 jAj2 � jBj2
� �

; ð59Þ
i.e., to the difference of the forward and backward square amplitudes. Clearly, expression (59) contains no (rapidly) oscillat-
ing terms. The Poynting flux Sz for the 2D NLH solution is given in Fig. 4(c), and is indeed much smoother than the amplitude,
see Fig. 4(a). We therefore suggest that the energy flux density provides a more adequate quantitative measure of the long-
scale (collapse) dynamics in the NLH model.

The key physical question that the simulations in this section attempt to answer was whether there exist any solitons
beyond the paraxial limit, i.e., of the Oðk0Þ radius. Considering the energy flux of the 2D NLH solution with r ¼ 1 shown
in Fig. 4(c), we see that it indeed resembles a soliton propagating essentially unchanged in the positive z direction. We
can therefore conclude that such a nonparaxial soliton does exist.

Let us also note that nonparaxial solitons (solutions of the NLH, rather than NLS) for a single collimated beam were ob-
tained in [34] for the case of a semi-infinite Kerr medium. Our formulation is different as it involves a finite-width Kerr mate-
rial slab with the interfaces that may partially reflect the waves. Hence, a direct comparison of our results with those of [34]
is not appropriate. However, a comparison from the standpoint of physics may be of interest for the future.

7.1.2. Grid convergence study
In order to demonstrate the fourth-order grid convergence in the nonlinear regime, we simultaneously refine the grid in

the transverse and longitudinal direction, and monitor the maximum difference between the computed fields for each pair of
consecutive grids, the coarser and the finer, that differ by a factor of 2 in size. For the grids with fewer than roughly 7 points
per linear wavelength, the iterations diverge, apparently due to insufficient resolution. Hence, we choose our coarsest grid to
have k0=hz ¼ 7:5 nodes per wavelength, and compare the results with those on the twice as fine grid, k0=hz ¼ 15. Then, we
keep decreasing the size and hence increasing the dimension of the grid, and the largest dimension that we can take is lim-
ited by the memory requirements of the LU solver that we employ for inverting the Jacobians (see Sections 4 and 5). Cur-
rently, it is close to N �M ¼ 4480� 112, which corresponds to 30 points per linear wavelength in the z direction. The
results of the grid convergence study are summarized in Table 1. The convergence rate that we find is Oðh3:8Þ, which is close
to the design rate of Oðh4Þ.

7.1.3. Collision of nonparaxial solitons
The NLH is an elliptic equation with no preferred direction of propagation. Therefore, it can be used to model the inter-

action of beams traveling at different angles, and specifically counter-propagating beams. To demonstrate this capability, we
solve the 2D NLH with r ¼ 1 for two configurations. In the first one, two perpendicular nonparaxial solitons collide, while in
the second one, two counter-propagating beams collide almost head-on, at the angle of 150�. Note that the paraxial approx-
imation is invalid in the region of interaction between the beams for either case.

For the perpendicular beam configuration, we solve the 2D NLH with k0 ¼ 6, Zmax ¼ 20;X max ¼ 30; m2 ¼ 1, and � ¼ k�2
0 .

The forward-traveling incoming beam enters the material slab at z ¼ 0; x ¼ 10, and propagates in the �45� direction, while
nvergence study for the 2D Cartesian NLH with r ¼ 1, k0 ¼ 4; � ¼ k�2
0 ; Zmax ¼ 240, and X max ¼ 40.

ðk0
15 ;

k0
7:5Þ ðk0

21 ;
k0
10Þ ðk0

30 ;
k0
15Þ

EðhÞk1 1:1 0:30 0:080
hÞ � EðhÞk1 0:20 �1:7 �3:6
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its counterpart enters at z ¼ Zmax; x ¼ 10, and propagates in the �135� direction. The resolutions were k0=hz ¼ k0=hx ¼ 10
points per linear wavelength. A surface plot of the energy flux density Sz is shown in Fig. 5(a). Positive values of Sz (forward
propagation) are red, while negative values (backward propagation) are blue. As in the paraxial NLS model, the two nonpar-
axial solitons are almost unchanged by the collision. A surface plot of jEj2 is shown in Fig. 5(b); the oscillations in the inter-
action region are due to the presence of counter-propagation waves.

For the head-on collision configuration, we solve the 2D NLH with k0 ¼ 4, Zmax ¼ 30;X max ¼ 12; m2 ¼ 1 and � ¼ k�2
0 . The

forward-traveling incoming beam enters the material slab at z ¼ 0; x ¼ 4, and propagates in the �15� direction, while its
counterpart enters at z ¼ Zmax; x ¼ 4, and propagates in the �165� direction, resulting in a collision at the angle of 150�.
The resolutions were k0=hz ¼ k0=hx ¼ 16 points per linear wavelength. The results presented in Fig. 5(c) and Fig. 5(d) show
that as in the previous case, the solitons re-emerge essentially intact after the collision.

7.2. Arrest of collapse in the NLH

7.2.1. 3D cylindrically symmetric case
We solve the cylindrically symmetric NLH (19a) for r ¼ 1; k0 ¼ 2p=k0 ¼ 8; m ¼ 1; Zmax ¼ 9, and qmax ¼ 3:5. The problem is

driven by the incoming beam E0
incðqÞ ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�e�2q2
p

2 e�q2
; for which the refracted beam is approximately a Gaussian:

E0
refracted 	 e�q2 , see formula (55).

The grid dimension is N �M ¼ 1080� 360, which translates into the resolution of k0=hz ¼ 94 and k0=hq ¼ 81, i.e., 94 grid
points per linear wavelength in the z direction (axial) and 81 grid points per linear wavelength in the q direction (radial).

While this estimate shows that the waves in the linear region are very well resolved, we note that the NLH
8 For
DEþ k2
NL jEj

2
� �

E ¼ 0; k2
NL ¼ k2

0 1þ �jEj2
� �

;

supports waves with nonlinear wavenumber kNL. In order to ensure that these nonlinear waves are also well resolved, a sim-
ilar resolution estimate should be performed for the nonlinear wavelength kNL ¼ k0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �jEj2

q
. Below, we will see experi-

mentally that at the maximum self focusing point (with the maximal amplitude), we have �jEj2 	 4:6. Hence, the
nonlinear waves with the minimum wavelength of kNL 	 k0=2:4 are well resolved, with kNL=hz 	 40 points per nonlinear
wavelength in the z direction, and kNL=hq 	 31 points per nonlinear wavelength in the q direction.8

The nonlinearity coefficient was � ¼ 0:15. The parameter that controls the beam collapse in the corresponding critical NLS
(4) is the ratio of the incoming beam power P0 ¼

R1
0 qe�2q2

dq ¼ 1
4 to the critical power Pc 	 1:8623=ð�k2

0Þ, see [35]. For the
NLH (19a) with the values of the parameters we have chosen, this power ratio is related to the nonlinearity coefficient � as
p ¼ P0

Pc
	 �

4 � 1:8623
k0 ¼ 1:29:
In Fig. 6(a), we compare the cylindrically symmetric NLH solution with the corresponding NLS solution at the axis of sym-
metry q ¼ 0. Since the beam power is 29% above Pc, the solution to the NLS blows up and its on-axis amplitude tends to
infinity at z 	 5:5. The corresponding NLH solution, however, remains bounded and its amplitude attains its maximum
maxn;mjEn;mj 	 5:5 at z 	 6:25. This yields the maximum Kerr nonlinearity of maxn;mf�jEn;mj2g 	 4:6.

The square amplitude and energy flux density of the cylindrically symmetric NLH solution are displayed in Fig. 7. As in the
‘‘soliton” case, fast oscillations in the z direction are clearly observed for the square amplitude, but not for the energy flux,
which appears smooth.
the soliton simulations in Section 7.1, the nonlinearity was smaller and kNL 	 k0, so that a separate resolution estimate for kNL was not needed.
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7.2.1.1. Grid convergence study. In order to demonstrate the fourth-order grid convergence for the cylindrical geometry case,
we conduct a grid convergence study similar to that of Section 7.1.2. For the grids with fewer than roughly 18 points per
linear wavelength, the iterations diverge. This is apparently due to insufficient resolution in the region of strong focusing,
where it will only be about 18=2:4 ¼ 7:5 nodes per wavelength. As such, the coarsest grid we have taken had 17:5 points
per linear wavelength in the z direction, and the finest grid was N �M ¼ 1140� 380, which corresponds to 100 points
per linear wavelength in the z direction. The results of the grid convergence study are summarized in Table 2. The conver-
gence rate that we find is Oðh4:88Þ, which is even somewhat better than the Oðh4Þ theoretical rate.

7.2.1.2. Effect of the domain size. Our simulations show that the convergence of Newton’s iterations depends on the domain
size, and specifically on the length Zmax of the Kerr material slab. To investigate this dependence, we attempt to solve the
ð2þ 1ÞD NLH for several domain sizes Zmax ¼ 1;2;3; . . . ;15. In order to limit possible effects of the transverse boundaries



Table 2
Grid convergence study for the cylindrically symmetric NLH with r ¼ 1; p ¼ 1:29; Zmax ¼ 9, and qmax ¼ 3:5.

ðhz; hqÞ ðk0
35 ;

k0
30Þ ðk0

50 ;
k0
43Þ ðk0

70 ;
k0
60Þ

k0
100 ;

k0
86

� �
kEð2hÞ � EðhÞk1 3:63 0:965 0:176 0:0225
log2kEð2hÞ � EðhÞk1 1:86 �0:051 �2:51 �5:47

Table 3
Convergence of Newton’s method for the cylindrically symmetric NLH with r ¼ 1; k0 ¼ 8, and � ¼ 0:15 on the series of domains with Zmax ¼ 1;2; . . . ;15 and
qmax ¼ 5. The criterion of convergence is jdEðjÞ j < 10�12 and x ¼ 0:5.

Zmax 1–3 4–7 8, 9 10–15

Convergence YES NO YES NO
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on the convergence, it was positioned relatively far from the axis, at qmax ¼ 5. In order to limit possible effects of under-res-
olution, we have chosen moderate resolutions of k0=hz ¼ 53 points per linear wavelength in the longitudinal z direction and
k0=hq ¼ 31 points per linear wavelength in the transverse q direction. The results are displayed in Table 3. It can be seen that
for some domain lengths the algorithm converges, while for others it diverges. It may be possible that the divergence ob-
served for the domain lengths between 4 and 7 is related to the boundary z ¼ Zmax being positioned too close to the region
of maximum self-focusing, see Fig. 6(a).

7.2.2. The 2D quintic nonlinearity case
We solve the Cartesian NLH (18a) for r ¼ 2; k0 ¼ 2p=k0 ¼ 8; m ¼ 1; Zmax ¼ 6, and X max ¼ 3. The problem is driven by the

collimated incoming beam E0
incðxÞ ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�e�4x2
p

2 e�x2
; for which the refracted beam is approximately a Gaussian:

E0
refracted 	 e�x2 , see formula (55). The grid dimension is N �M ¼ 900� 300, which translates into the resolution of

k0=hz ¼ 120 grid points per linear wavelength in the z direction and k0=hx ¼ 80, grid points per linear wavelength in the x

direction. The shortest nonlinear wavelength was kNL ¼ k0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �max jEj4

q
� k0=1:85: The nonlinear waves are therefore still

well resolved, with kNL=hz ¼ 65 and kNL=hx ¼ 43. The nonlinearity coefficient was chosen � ¼ 0:125, and the ratio of the
incoming beam power was P0=Pc 	 1:30. The results are displayed in Fig. 6(b), and are similar to the 3D cylindrically sym-
metric critical case.

7.2.3. An inclined beam: focusing–defocusing oscillations
We solve the 2D NLH with r ¼ 2; k0 ¼ 8 and m2 ¼ 1 on the domain with Zmax ¼ 12 and X max ¼ 12 for a Gaussian incoming

beam entering the Kerr material at z ¼ 0; x ¼ 4 and propagating at the angle of p=5:3. The nonlinearity coefficient was
� ¼ 0:12, which yields the input power of 28% above critical. The grid was N �M ¼ 400� 800, which corresponds to reso-
lutions of k0=hz ¼ k0=hx ¼ 26 points per linear wavelength, and 14 points per nonlinear wavelength kNL.

As shown in Fig. 8, the beam undergoes two focusing–defocusing oscillations, which qualitatively agrees with the predic-
tions of the modulation theory for the NLS [17]. This is the first time that two focusing-defocusing oscillations are observed
in a critical NLH model.

7.3. The effect of adjusting the incoming beam

As indicated in Section 6, the incoming beam for the NLH needs to be adjusted so that to enable a more accurate com-
parison of the results with those obtained for the corresponding NLS. In this section, we investigate the difference between
the NLH solutions obtained with or without adjusting the incoming beam. Namely, we analyze the critical case D ¼ 3;r ¼ 1,
and rerun the simulation of Section 7.2.1 with Zmax ¼ 8:5 and for the incoming beam E0

inc ¼ e�q2 , i.e., without adjusting the
incoming beam. The resolutions are k0=hz ¼ 83 and k0=hx ¼ 67 points per linear wavelength. The results presented in Fig. 9
show that in this case the collapse occurs later and achieves a smaller maximum self-focusing than for the adjusted incoming
beam. The insert of Fig. 9 also shows that near the boundary (after the refraction by the interface) the solution with the ad-
justed incoming beam is indeed much closer to the corresponding NLS profile.

7.4. Comparison with the previous method

In the nested iteration scheme of [2,20,21], at each outer iteration the Kerr nonlinearity is considered fixed, or frozen,
which yields the linear homogeneous variable coefficient equation
Dþ k2
0 þ �k

2
0jE
ðjÞj2r

� �
Eðjþ1Þ ¼ 0: ð60Þ



Fig. 8. Arrest of collapse for an inclined beam in the 2D Cartesian NLH. Plots of the square amplitude (top) and the energy flux density (bottom).
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Eq. (60) is also solved iteratively, by building a sequence of Born approximations. In doing so, at each inner iteration an inho-
mogeneous linear constant coefficient equation
Dþ k2
0

� �
Eðjþ1;kþ1Þ ¼ ��k2

0jE
ðj;KÞj2rEðjþ1;kÞ ð61Þ
is solved using the separation of variables. We will call this approach the ‘‘nested iterations method”.
The efficacy of this method can be improved by getting rid of the inner iterations (61) and solving Eq. (60) by the Gaussian

elimination. We will call this the ‘‘freezing iterations method”.
In the one-dimensional case of [19], the freezing iterations diverged above a certain nonlinearity threshold, while New-

ton’s iterations converged for the entire range of nonlinearities of interest.



Table 4
A comparison of the efficacy of the three methods for the soliton case D ¼ 2; r ¼ 1. Each method converges for Zmax < Zthreshold

max and diverges for Zmax P Zthreshold
max .

Method nested freezing (60), (61) freezing (60), LU solver Newton’s

Zthreshold
max 42 135 > 500
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In the current multi-D cases that correspond to the critical NLS, i.e., D ¼ 3;r ¼ 1 and D ¼ 2;r ¼ 2, both the nested iter-
ations method and the freezing iterations method diverge when the NLS solution collapses, i.e., when the input power is
above Pc, while Newton’s algorithm converges, at least for some configurations, thereby showing a much better efficacy.

Another case of interest from the standpoint of applications is the subcritical NLS, D ¼ 2;r ¼ 1, which admits solutions in
the form of spatial solitons. To compare the three methods in this case, we use each of them to repeat the simulation of Sec-
tion 7.1.1 while varying the domain size Zmax. The quantity of interest is the threshold value Zmax ¼ Zthreshold

max , below which a
given solver converges and above which it diverges. The results are given in Table 4. We can see that the nested iterations
method of [2,20,21] converges only for relatively short domains Zmax < Zthreshold

max ¼ 42. Replacing the inner iteration by a direct
solver brings along a certain improvement: Zmax < Zthreshold

max ¼ 135. However, similarly to the one-dimensional case, Newton’s
iterations converge for the widest selection of cases, at least until Zmax ¼ 500. Moreover, this limit is due to the memory con-
straints rather than divergence, and the actual Zthreshold

max may be even larger.

8. Discussion and future plans

In this study, we propose a novel numerical method for solving the scalar nonlinear Helmholtz equation, which governs the
propagation of linearly polarized monochromatic light in Kerr dielectrics. The NLH is the simplest model in nonlinear optics
that allows for the propagation of electromagnetic waves in all directions and, in particular, for backscattering, and accounts
for nonparaxial effects. Our key result is that the NLH eliminates the singularity that characterizes solutions of the nonlinear
Schrödinger equation, which is a reduced model based on the paraxial approximation. Another important finding is the dis-
covery of narrow nonparaxial solitons and the development of numerical capability for simulating their collisions.

Mathematically, the NLH is an elliptic equation, and must be solved as a nonlinear boundary-value problem. This presents
additional difficulties for both analysis and computations compared to the traditional treatment based on the NLS. The latter
has a predominant direction of propagation and requires a Cauchy problem. Physically, we consider the propagation of laser
light in a layered medium with interfaces across which both the linear and nonlinear components of the refraction index
may undergo jumps. The presence of material discontinuities necessitates setting the condition that the field and its first
normal derivative be continuous at the interface.

To solve the NLH numerically, we develop a fourth-order finite difference scheme for one, two, and three space dimen-
sions (in the latter case we assume cylindrical symmetry). Finite differences are chosen over other possible approximation
strategies because of their simplicity and ease of implementation. Indeed, the geometry of the problem enables a straight-
forward discretization on a uniform rectangular grid. On the other hand, having a high order scheme is important because it
alleviates the point-per-wavelength constraint for large domains and also helps resolve the small-scale phenomenon of
backscattering. In particular, high order accuracy must be maintained across the material discontinuities. This is achieved
by using special one-sided differences. In doing so, to simplify the overall discretization we move the outer boundaries away
from the interfaces so that the artificial boundary conditions do not ‘‘interfere” with the interface treatment. The scheme
used in the interior is of a semi-compact type, it is written on three nodes in the longitudinal direction and five nodes in
the transverse direction. Having a compact three-node stencil in the longitudinal direction greatly simplifies both the treat-
ment of the interfaces (no special ‘‘near interface” nodes) and the treatment of the outer boundaries (no non-physical eva-
nescent modes). At the same time, a compact stencil in the transverse direction is not required because there are no material
discontinuities. This circumstance greatly simplifies the design of the overall scheme.

The second key component of the proposed algorithm is the nonlinear solver, which is based on Newton’s method. The
simulations of [19] have demonstrated a clear superiority of Newton’s method in the one-dimensional case. In this paper, we
generalize our Newton’s solver to the multi-dimensional case, with the expectation that it will let us solve the NLH for those
settings when the NLS breaks down, namely, when the NLS solution becomes singular (rðD� 1Þ ¼ 2 with input powers
above critical), or when the beam width becomes very narrow in the subcritical case (D ¼ 2;r ¼ 1), or when counter-prop-
agating nonparaxial solitons interact.

The Newton’s solver that we developed has indeed lived up to the promise. In the critical cases, it enables the central re-
sult of this work, which is the discovery of bounded NLH solutions for those cases when the corresponding NLS solution
blows up. Physically, it shows that nonparaxiality can suppress the singularity formation and hence arrest the collapse of
focusing nonlinear waves. While there may be other physical mechanisms that also help arrest the collapse (neglected along
the way when the NLH was derived from the Maxwell’s equations), it was not known until now whether the solution be-
comes regular already in the framework of the scalar NLH model, which is the simplest nonparaxial model that incorporates
the backward traveling waves.

Predictions of the NLH in the subcritical case include the existence of narrow nonparaxial solitons, and analysis of the
interactions (collisions) of such beams, specifically in counter-propagation. These results may be of relevance to potential
applications, e.g., the design of the next generation of all-optical circuits. Note that in our previous work [20] we have already
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been able to compute narrow spatial solitons. However, the new method proposed in this paper allows us to do that over
much longer propagation distances, see Section 7.4.

Let us also note that a different configuration with counter-propagating solitons has been studied by Cohen et. al. in [22]
using a system of coupled NLS equations which approximates the NLH. As, however, mentioned in [22], the coupled NLS
model is not problem free as it is neither an initial-value problem nor a boundary-value problem. In contrast, since the
NLH is solved as a boundary-value problem, it is a natural mathematical setting for such counter-propagating configurations.

The computational cost of the proposed algorithm still remains relatively high; it is dominated (both in memory and CPU
time) by the cost of inverting the Jacobian matrix using a direct method. This cost can be reduced if the LU decomposition is
replaced with an iterative method. As, however, the Helmholtz operator subject to the radiation boundary conditions is not
self-adjoint, the only viable choice of an iteration scheme will be a method of the Krylov subspace type. For this method to
work, the system must be preconditioned, and it is the design of a good preconditioner that will be in the focus of our future
work on the linear solver. Several candidate techniques will be investigated, including the constant coefficient Helmholtz
operator to be inverted by the separation of variables and a paraxial preconditioner based on the Schrödinger operator.

As far as the dependence of Newton’s convergence on the domain size, see Section 7.2.1.2, we attribute it to the generally
known ‘‘fragility” and, in particular, sensitivity of Newton’s convergence to the choice of the initial guess. On one hand, it is
intuitively reasonable to expect that if the outer boundary is located in the region of maximum self-focusing, then the iter-
ations may experience difficulties to converge, see Table 3. On the other hand, at the moment we do not have a clear and
unambiguous mathematical explanation as to why exactly that happens. We have tried a few simple remedies, such as using
a continuation approach in the nonlinearity coefficient � and using a damped NLS solution as the initial guess, but none of
those has made a substantial difference. We note that in the one-dimensional case the exact solution was available in the
closed form [19] and hence we could at least test Newton’s convergence by substituting this exact solution as the initial
guess. In multi-D, however, we are not aware of any closed form solutions for the slab of finite thickness and therefore, a
similar validation procedure becomes problematic.

The piecewise constant formulation that we have considered in the paper in fact presents no loss of generality, at least
from the standpoint of numerical solution. It can be very easily extended to the NLH with piecewise smooth material coef-
ficients m2ðxÞ and �ðxÞ. All one needs to do is replace the constants m and � in the definition of the scheme with the values at
the corresponding grid nodes: mn;m � mðzn; x?;mÞ and �n;m � �ðzn; x?;mÞ. However, while the resulting scheme will approximate
the variable coefficient scalar NLH (1) with fourth-order accuracy, the validity of Eq. (1) itself from the standpoint of physics
may be in question. Indeed, the derivation of the scalar NLH from Maxwell’s equations in the case of variable coefficients
introduces additional terms (spatial derivatives of m and �jEj2) which are not included in Eq. (1).

The layered structure and simple geometry that we have adopted present no substantial loss of generality, because this
formulation corresponds to many actual physical (e.g., laboratory) settings. The plain-parallel setup studied in the paper cer-
tainly simplifies the discretization. At the same time, we are reasonably confident that the proposed scheme can be general-
ized to more elaborate geometries without compromising its high order accuracy, which is of key importance. One natural
approach to doing that is to use Calderon’s projections and the method of difference potentials [36].

From the standpoint of physics, the scalar NLH is certainly not the most comprehensive model. It is rather a reduced mod-
el based on a number of simplifications. Most notably, the vector nature of electromagnetic field is not taken into account by
the scalar NLH because of the assumption of linear polarization. Vectorial effects, on the other hand, are known to become
important close to when the nonparaxiality does, i.e., once the beam width becomes comparable to the carrier wavelength.
Moreover, the scalar NLH governs monochromatic fields (continuous-wave laser), whereas the actual fields are always time-
dependent (typically, pulses of certain duration). Nonetheless, if the duration of the pulse is sufficiently long (many oscilla-
tion periods), then the time-periodic model will provide a good approximation.

To take into account the entire range of relevant physical phenomena one needs, of course, to go back and solve the full
nonlinear Maxwell’s equations. This, however, is a very challenging computational task and besides, the solutions of full
Maxwell’s equations may be hard to analyze or verify precisely because of all too many additional physical effects. That’s
why the analysis of the simplest nonparaxial model (i.e., the NLH) may provide a very useful insight into the relevant physics
as, in particular, it allows to study the important phenomenon of nonlinear backscattering.

Given the previous considerations, we believe that in the context of physics, the next most natural and most beneficial
extension of the work presented in this paper will be taking into account the vectorial effects. The current work provides
a solid foundation for this extension as many key elements of the algorithm, e.g., the nonlocal artificial boundary conditions,
will only require technical rather than conceptual changes. On the pure numerical side, in addition to the previously men-
tioned major modifications to the linear solver, we can consider a number of strategies aimed at further improving the
numerical resolution in the regions of foremost interest (e.g., around the maximum self-focusing) while not increasing
the overall computational cost. Examples include local grid requirement and/or combined approaches when most of the do-
main is to be done using the NLS whereas the local area of collision between the solitons is computed using the NLH.
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Appendix A. Continuity conditions at material interfaces

For optical frequencies, we can disregard all magnetization effects in the medium (see [37, Chapter IX]) and write down
the time-harmonic Maxwell’s equations as follows:
ix
c

B ¼ curlE; � ix
c

D ¼ curlB; ð62Þ
where the specific form of how the electric induction D depends on the field E is not important for the derivation of the inter-
face conditions. Note, however, that as our medium is a dielectric, both fields E and B, as well as the induction D, remain finite
everywhere including the interfaces.

Let an interface plane be normal to the coordinate z of the Cartesian system ðx; y; zÞ. Then, the first equation of (62) implies
that the quantity ðcurlEÞx ¼ @Ez

@y �
@Ey

@z is bounded at the interface. As the derivative @Ez
@y , which is taken along the interface, is

bounded in its own right, we conclude that @Ey

@z is bounded. This immediately yields the continuity of Ey across the interface.
The continuity of Ex can be established the same way, by taking into account the boundedness of ðcurlEÞy ¼ @Ex

@z �
@Ez
@x . Alto-

gether, this means that the tangential component of the electric field E must remain continuous. Likewise, the continuity
of the tangential component of B across the interface can be derived by employing the second equation of (62) and the
boundedness of D.

Next, consider the case of linear polarization:
E ¼ ½Ex; 0;0� and B ¼ ½0; By; 0�:
Then, the continuity of By immediately implies the continuity of @Ex
@z , because from the Faraday law (the first equation of (62))

we now have: ix
c By ¼ @Ex

@z . Altogether, we conclude that for the linearly polarized light propagating through a (transparent)
dielectric with material discontinuities, both the electric field E and its first normal derivative must be continuous at all
the interfaces.

Appendix B. Notation for central difference operators

We denote the central difference operators by the letter D with the order of differentiation in the subscript and the order
of accuracy in the superscript. The full list for the finite differences in the x (or q) direction is as follows:
Dð2Þx E ¼def En;mþ1 � En;m�1

2hx
¼ @xEn;m þ O h2

� �
;

Dð2Þxx E ¼def En;mþ1 � 2En;m þ En;m�1

h2
x

¼ @xxEn;m þ O h2
� �

;

Dð2ÞxxxE ¼def En;mþ2 � 2En;mþ1 þ 2En;m�1 � En;m�2

2h3
x

¼ @xxxEn;m þ O h2
� �

;

Dð2ÞxxxxE ¼def En;mþ2 � 4En;mþ1 þ 6En;m � 4En;m�1 þ En;m�2

h4
x

¼ @xxxxEn;m þ O h2
� �

;

Dð4Þx E ¼def �En;mþ2 þ 8En;mþ1 � 8En;m�1 þ En;m�2

12hx
¼ @xEn;m þ O h4

� �
;

Dð4Þxx E ¼def �En;mþ2 þ 16En;mþ1 � 30En;m þ 16En;m�1 � En;m�2

12h2
x

¼ @xxEn;m þ O h4
� �

:

Because of the semi-compact approximation we use, only the second-order operator is required in the z direction
Dð2Þzz E ¼def Enþ1;m � 2En;m þ En�1;m

h2
z

¼ @zzEn;m þ O h2
� �

:
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