
Available online at www.sciencedirect.com
Journal of Computational Physics 227 (2007) 1024–1045

www.elsevier.com/locate/jcp
h-Multigrid for space-time discontinuous Galerkin
discretizations of the compressible Navier–Stokes equations

C.M. Klaij a, M.H. van Raalte b, H. van der Ven c, J.J.W. van der Vegt a,*

a University of Twente, Department of Applied Mathematics, P.O. Box 217, 7500 AE Enschede, The Netherlands
b Centrum voor Wiskunde en Informatica, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
c National Aerospace Laboratory NLR, P.O. Box 90502, 1006 BM Amsterdam, The Netherlands

Received 13 April 2007; received in revised form 8 August 2007; accepted 21 August 2007
Available online 14 September 2007
Abstract

Being implicit in time, the space-time discontinuous Galerkin discretization of the compressible Navier–Stokes
equations requires the solution of a non-linear system of algebraic equations at each time-step. The overall performance,
therefore, highly depends on the efficiency of the solver. In this article, we solve the system of algebraic equations with a
h-multigrid method using explicit Runge–Kutta relaxation. Two-level Fourier analysis of this method for the scalar advec-
tion–diffusion equation shows convergence factors between 0.5 and 0.75. This motivates its application to the 3D
compressible Navier–Stokes equations where numerical experiments show that the computational effort is significantly
reduced, up to a factor 10 w.r.t. single-grid iterations.
� 2007 Elsevier Inc. All rights reserved.

PACS: 02.60.Cb; 02.70.Dh; 03.40.Gc

Keywords: Space-time discontinuous Galerkin method; Pseudo-time stepping methods; Multigrid; Two-level fourier analysis
1. Introduction

Discontinuous Galerkin (DG) methods have grown very popular over recent years because of the relative
ease with which the mesh and/or the polynomial order of the basis functions can be (locally) adapted. Con-
trary to continuous finite element methods, DG methods do not require any inter-element continuity, making
such local hp-refinement less difficult. In this article, we consider the compressible Navier–Stokes equations
discretized by a second order accurate DG method both in the spatial direction and in the time direction
[17]. Although originally developed for hyperbolic equations, DG methods were successfully extended to
(incompletely) parabolic equations, and the feasibility and benefits of DG methods for the compressible
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Navier–Stokes equations have been demonstrated by various authors including Bassi and Rebay [2,4], Bau-
man and Oden [6], Dolejšı́ [9], Fidkowski et al. [10] and Hartmann and Houston [12].

Recently, attention shifted to the development of efficient solvers for the system of algebraic equations aris-
ing from DG discretizations, notably multigrid methods because of their expected optimal efficiency [21,26]. In
the context of DG discretizations, multigrid methods with block iterative relaxation schemes were analyzed for
model problems such as the Laplace equation and the advection–diffusion equation by Gopalakrishnan and
Kantschatz in [11] and by Hemker, Hoffmann and Van Raalte in [13–15,25]. These multigrid methods use a
sequence of meshes (h-multigrid) and are based on the embedding of function spaces associated with these
meshes. On non-uniform grids where the embedding of spaces does not formally hold, an alternative is the
approach followed by Fidkowski et al. [10], who keep the mesh fixed and use a sequence of different order
polynomials (p-multigrid).

In [22], h- and p-multigrid were combined to solve the non-linear system of algebraic equations arising from
the space-time DG discretization of the (hyperbolic) Euler equations: the discretization is second order on the
fine grid and first order on the coarse grids. For the (incompletely parabolic) Navier–Stokes equations, how-
ever, this approach proves inadequate. Therefore, in this article, we consider h-multigrid with a second order
DG discretization on all grid levels. As relaxation schemes for the multigrid algorithm, we use the explicit
Runge–Kutta methods presented in [16]. With explicit relaxation the iterative solution process remains local
and does not need large data storage, thus ensuring low computational costs.

In order to predict the multigrid behavior, we introduce a similar two-level local mode Fourier analysis as
described in [13,24] for a model problem: the scalar advection–diffusion equation. Although we limit ourselves
to a second order space-time discretization, the resulting analysis can be used for arbitrary polynomial basis
and is directly extendable to higher-dimensional problems by the tensor product principle [15]. For various
Courant numbers and cell Reynolds numbers, we compute multigrid convergence rates and we find that expli-
cit Runge–Kutta smoothing is efficient for solving time-dependent advection–diffusion equations: two-level
convergence factors between 0.5 and 0.75 are obtained. This motivates us to apply the h-multigrid method
to the space-time DG discretization of the compressible Navier–Stokes equations. The performance of the
h-multigrid method is then investigated using numerical experiments for laminar, (un)steady flow in 2D
and 3D. We find that the computational effort is significantly reduced, up to a factor 10 w.r.t. single grid
iteration.

The outline of this article is as follows. In Section 2, we summarize the space-time DG discretization [17]
and discuss the Runge–Kutta methods [16] used for the pseudo-time integration of the non-linear system of
algebraic equations. The multigrid algorithm is presented in Section 3 and studied in Section 4 with two-level
Fourier analysis for a model problem. Appendix A contains the two-level analysis for the (deprecated)
approach with constant basis functions on the coarse grid. The results for the compressible Navier–Stokes
equations in 2D and 3D simulations are presented in Section 5. Conclusions are drawn in Section 6.

2. Summary of space-time DG method for the compressible Navier–Stokes equation

In this section, we first summarize the space-time discontinuous Galerkin method presented in [17]. The
compressible Navier–Stokes equations are considered directly in the space-time domain; which implies that
the basis-functions are discontinuous in space-time. The discretization results in a non-linear system of alge-
braic equations. Second, we summarize the pseudo-time integration with explicit Runge–Kutta methods [16].
These will serve as relaxation schemes in our multigrid method later on.

2.1. Space-time formulation

In [17], the compressible Navier–Stokes equations are directly considered in an open domain E � R4. The
Cartesian coordinates ðx0; x1; x2; x3Þ of a point in this domain give the position �x ¼ ðx1; x2; x3Þ at time t = x0. At
time t, the flow domain X(t) is defined as XðtÞ � f�x 2 R3 : ðt;�xÞ 2 Eg. Considering the time interval t0 < t < T,
the boundary oE of the space-time domain is given by the hypersurfaces Xðt0Þ � fx 2 oE : x0 ¼ t0g,
XðT Þ � fx 2 oE : x0 ¼ Tg, and Q � fx 2 oE : t0 < x0 < Tg. Using this notation, we can write the compressible
Navier–Stokes equations as:
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Ui;0 þ F e
ikðUÞ;k � ðAikrsðUÞUr;sÞ;k ¼ 0 on E;

U ¼ U 0 on Xðt0Þ;
U ¼ BðU ;U bÞ on Q;

8><>:

with the summation convention on repeated indices i, r = 1, . . ., 5 and k, s = 1, 2, 3. The comma notation re-
fers to partial differentiation to the indicated Cartesian coordinate direction. Here, U 2 R5 is the vector of con-
servative variables and F e 2 R5�3 the inviscid flux. The homogeneity tensor A 2 R5�3�5�3 is defined as the
derivative of the viscous flux F v 2 R5�3 with respect to the gradient rU 2 R5�3 of the conservative variables:
AikrsðUÞ �
oF v

ikðU ;rUÞ
oU r;s

;

and is given in [17]. The initial flow field is U 0 2 R5 and the boundary operator B 2 R5 depends on the internal
data U and the prescribed boundary data Ub. The conservative variables, the inviscid flux and the viscous flux
are given by:
U ¼
q

quj

qE

264
375; F e

k ¼
quk

qujuk þ pdjk

ukðqE þ pÞ

264
375; F v

k ¼
0

sjk

skjuj � qk

264
375;
with q the density, q~u the momentum density vector, qE the total energy density, p the pressure, d the Kro-
necker delta function. The shear stresses s are defined as: sjk = kui,idjk + l(uj,k + uk,j) with the viscosity coef-
ficients l and k related through the Stokes hypothesis 3k + 2l = 0. The heat flux q is defined as: qk = �jT,k.
The system is closed with the following equations of state:
p ¼ ðc� 1Þ qE � 1

2
quiui

� �
; T ¼ 1

cv
E � 1

2
uiui

� �
;

where c = cp/cv is the ratio of specific heats.

2.2. Discretization

The approximation Xh(tn) of X(tn) is divided into Nn non-overlapping hexahedral spatial elements
Kn

j ¼ KjðtnÞ. Each element Kn
j is related to the master element bK ¼ ð�1; 1Þ3 through the mapping F n

K :
F n
K : bK ! Kn

j : �n 7!�x ¼
X8

i¼1

xiðKn
j Þvið�nÞ;
with xi the spatial coordinates of the vertices of the hexahedron Kn
j and vi the usual tri-linear finite element

shape functions for hexahedra. A similar approach is followed for X(tn+1). Linear interpolation in time con-
nects Kj(tn) with Kj(tn+1), defining the space-time elements Kn

j of En. This is expressed by the mapping GK from

the master element bK ¼ ð�1; 1Þ4 to the space-time element Kn
j :
Gn
K : bK ! Kn

j : n 7!ðt;�xÞ ¼ 1

2
ðtnþ1 þ tnÞ þ

1

2
ðtnþ1 � tnÞn0;

1

2
ð1� n0ÞF n

Kð�nÞ þ
1

2
ð1þ n0ÞF nþ1

K ð�nÞ
� �

: ð1Þ
The flow domain E, limited to the time interval (tn, tn+1), defines a space-time slab which is divided into
space-time elements K according to the tessellation T n

h ¼ fKg. We will need the corresponding function space:
W h � fW 2 ðL2ðEhÞÞ5 : W jK � GK 2 ðP mðbKÞÞ5; 8K 2 T hg;

where P mðbKÞ denotes the space of polynomials of degree at most m on the master element bK ¼ ð�1; 1Þ4,
mapped to element K 2 T n

h by GK. In a space-time slab, we distinguish a set Sn
I of internal faces and a set

Sn
B of boundary faces. On an internal face S ¼ KL \KR, the traces from the left and right element are denoted

by (Æ)L and (Æ)R, respectively, and we define the average operator as Æ = ((Æ)L + (Æ)R)/2 and the jump operator

as s � tk ¼ ð�Þ
LnL

k þ ð�Þ
RnR

k , with n the outward normal vector of the element.
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Using this notation, the weak formulation of the compressible Navier–Stokes equations becomes: find a

U 2Wh, such that for all W 2Wh:
�
X
K2T n

h

Z
K

ðW i;0U i þ W i;kðF e
ik � AikrsðU r;s þRikÞÞÞdKþ

X
K2T n

h

Z
Kðt�

nþ1
Þ
W L

i U L
i dK �

Z
Kðtþn Þ

W L
i UR

i dK

 !

þ
X
S2Sn

I

Z
S

ðW L
i � W R

i ÞH i dS þ
X
S2Sn

B

Z
S

W L
i H b

i dS �
X
S2Sn

I

Z
S

sW itk AikrsðU r;s � gSR
S
ikÞ dS

�
X
S2Sn

B

Z
S

W L
i ðAb

ikrsðUb
r;s � gSR

S
ikÞÞ�nL

k dS ¼ 0: ð2Þ
The inviscid numerical flux H 2 R5 is based on the HLLC approximate Riemann solver for moving meshes
[22]. The stabilization parameter for the discretization of the viscous terms is denoted by gS and the superscript
b indicates dependence on the prescribed boundary data Ub. The weak form (2) is slightly different from the
one presented in [17]: the homogeneity tensor A is no longer included in the definition of the lifting operators
R and RS . This makes its computation less expensive. The current weak form can be obtained by following
the derivation in [17] with the auxiliary variables defined as Ur,s instead of AikrsUr,s. This viscous flux discret-
ization is the generalization to the space-time context of the approach originally proposed by Bassi et al. [3,5]
for g = 1 and analyzed for an elliptic model problem in [1,7]. A detailed theoretical analysis of the present
space-time DG algorithm for the advection–diffusion equation, including an hp-error analysis, can be found
in [20].

The definition of the local lifting operator RS 2 R5�3 requires the function space:
V h � V 2 ðL2ðEhÞÞ5�3
: V jK � GK 2 ðP mðbKÞÞ5�3

; 8K 2 T h

n o
;

such that $hWh � Vh with ðrhW hÞjK ¼ rðW hjKÞ the broken derivative. Then, the local lifting operator is de-
fined as [17]: find an RS 2 V h, such that for all V 2 Vh:
X

K2T n
h

Z
K

V ikR
S
ik dK ¼

R
S

V ik sU itk dS for S 2 Sn
I ;R

S
V L

ikðU L
i � Ub

i Þ�nk dS for S 2 Sn
B;

(

and relates to the global lifting operator R 2 R5�3 through: R ¼

P
S2Sn

I[S
n
B
RS . The stabilization parameter

gS is constant and (at least) equal to the number of spatial faces of an element [7,20]: four in 2D and six
in 3D for hexahedra. We refer to [17] and [22] for a more complete description of the space-time
discretization.

The system of algebraic equations for the expansion coefficients of U is obtained by replacing U and W in
the weak formulation with their polynomial expansions and using the fact that the test functions W are arbi-
trary. In this paper, we limit ourselves to linear polynomials to represent the trial function U and the test func-
tion W in each element K 2 T n

h:
Uðt;�xÞjK ¼ bU mwmðt;�xÞ; ð3Þ
W ðt;�xÞjK ¼ bW lwlðt;�xÞ; ð4Þ
with m, l = 0, . . ., 4. The expansion coefficients are denoted by ð̂�Þ and the basis functions w are given by:
wm ¼
1; for m ¼ 0

/mðt;�xÞ � 1
jKjðt�nþ1

Þj
R

Kjðt�nþ1
Þ /mðt;�xÞdK; for m ¼ 1; . . . ; 4

(

where the functions / in an element K are related to the basis functions /̂ on the master element bK through the
mapping (1) as /m ¼ /̂m � G�1

K with /̂mðnÞ ¼ nm for m = 1, . . ., 4 and n the local coordinates in bK. This poly-
nomial basis is of interest because of two reasons: the basis functions are chosen such that the test and trial
functions can be split into an element mean U at t = tn+1 and a fluctuating part eU [22]:
Uðt;�xÞ ¼ U þ eU ðt;�xÞ; 8ðt;�xÞ 2 K
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with U ¼ bU 0 and
Z
K

eU ðt;�xÞdx ¼ 0:
As a consequence the relation between DG and finite volume discretizations is exposed: the equations
for the element mean in the space-time DG discretization are the same as those of a finite volume discret-
ization. The second reason is that it suits the definition of the artificial dissipation operator used in [22] as
an alternative for slope limiters to guarantee monotone solutions around discontinuities and sharp
gradients.
2.3. Pseudo-time integration

For each physical time step the system of algebraic equations can be written as [17]:
Lð bU n; bU n�1Þ ¼ 0:
This system is then solved using pseudo-time integration, i.e. we add a pseudo-time derivative:
jKnj o
bU

os
¼ � 1

Dt
Lð bU ; bU n�1Þ; ð5Þ
and iterate in pseudo-time s to steady-state using explicit Runge–Kutta methods. Here, Dt = tn+1 � tn and jKnj
is the diagonal matrix with entries jKj(tn+1)j. At steady-state we have bU n ¼ bU .

In [16], we proposed a combination of two explicit Runge–Kutta schemes for the pseudo-time integration,
one designed for the inviscid part of the flow domain, the other for the viscous part. Redefining L as j Knj�1

L,
the scheme for the inviscid part is given by:

Algorithm 1 (EXI). Explicit Runge–Kutta method for inviscid flow with Melson correction.

(1) Initialize bV 0 ¼ bU .
(2) For all stages s = 1 to 5 compute bV s as:
ðI þ askIÞbV s ¼ bV 0 þ askðbV s�1 � LðbV s�1; bU n�1ÞÞ:

(3) Return bU ¼ bV 5.

The Runge–Kutta coefficients at stage s are denoted by as and defined as: a1 = 0.0791451, a2 = 0.163551,
a3 = 0.283663, a4 = 0.5 and a5 = 1.0. The matrix I represents the identity matrix. The factor k is the ratio
between the pseudo-time step and the physical time step: k = Ds/Dt. The scheme for the viscous part is given
by:

Algorithm 2 (EXV). Explicit Runge–Kutta method for viscous flows.

(1) Initialize bV 0 ¼ bU .
(2) For all stages s = 1 to 4 compute bV s as:
bV s ¼ bV 0 � askLðbV s�1; bU n�1Þ:

(3) Return bU ¼ bV 4.

Here, the Runge–Kutta coefficients at stage s are defined as: a1 = 0.0178571, a2 = 0.0568106, a3 = 0.174513
and a4 = 1.0.

Since accuracy is not important in pseudo-time, we can apply local pseudo-time stepping and deploy which-
ever scheme gives the mildest stability constraint. The EXI scheme has the mildest stability constraint for rel-
atively high cell Reynolds numbers and the EXV scheme for relatively low cell Reynolds numbers. For further
details on the stability of both methods and the threshold between them we refer to [16].
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Now that the discretization and the pseudo-time integration are set, we are ready to introduce the h-mul-
tigrid method for space-time DG discretizations.

3. h-Multigrid method

In this section, we present the h-multigrid pseudo-time integration method for solving the non-linear system
of algebraic equations arising from the space-time discretization of the compressible Navier–Stokes equations.

3.1. Two-level algorithm

At the core of any multigrid method is the two-level algorithm, which we consider first. Let the subscripts
(Æ)h and (Æ)H denote a quantity (Æ) on the fine and coarse grid, respectively. Let bU denote an approximation of
the solution bU n of (5). Let R denote the restriction operator for the solution, R the restriction operator for the
residuals and P the prolongation operator, to be defined later on. The two-level algorithm which iterates sys-
tem (5) to steady-state in pseudo-time can be written as:

Algorithm 3 (TLA). Two-level algorithm.

(1) Take one pseudo-time step on the fine grid with the combined EXI and EXV methods, this gives the
approximation bU h.

(2) Restrict this approximation to the coarse grid: bU H ¼ Rð bU hÞ.
(3) Compute the forcing:
F H � Lð bU H ; bU n�1
H Þ � RðLð bU h; bU n�1

h ÞÞ:

(4) Solve the coarse grid problem for the unknown bU �H :
LðÛ �H ; bU n�1
H Þ � F H ¼ 0;
(5) Compute the coarse grid error EH ¼ bU �
H � bU H and correct the fine grid approximation:bU h  bU h þ PðEH Þ.

Here, the value bU n�1 is retained from the previous physical time step (see (5)); for the first iteration (n = 1) it
is obtained from the initial condition U0. When converged in pseudo-time, this algorithm yields bU n and the
next physical time step can be taken.

Solving the coarse grid problem at stage four of Algorithm 3 can again be done with the two-level algo-
rithm. This recursively defines the V-cycle multi-level algorithm in terms of the two-level algorithm. It is com-
mon practice to take m1 pseudo-time steps at stage one of Algorithm 3 and another m2 pseudo-time steps after
stage five. In that case, m1 and m2 are called the number of pre- and post-relaxations, respectively. In practice,
the exact solution of the problem on the coarsest grid is not always feasible; instead one simply takes m1 + m2

relaxation steps.
Next, we define the inter-grid transfer operators R, R and P.

3.2. Inter-grid transfer operators

The inter-grid transfer operators stem from the L2-projection of the coarse grid solution UH in an element
KH on the corresponding set of fine elements fKhg. The solution Uh in element Kh can be found by solving:
Z

Kh

W iU h
i dK ¼

Z
Kh

W iU H
i dK; 8W 2 W h: ð6Þ
This relation supposes the embedding of spaces, i.e. WH � Wh, to ensure that UH is defined on Kh. As illus-
trated in Fig. 1, the embedding of spaces does not hold for curvilinear grids with iso-parametric mapping: the
fine elements overlap only partially with the coarse element. However, in order to construct the inter-grid
transfer operators we will assume that the integral on the r.h.s. of (6) exists and proceed as follows. Replacing
the test and trial functions in (6) by their polynomial expansions (3) gives:



Fig. 1. Relation between two grid levels in computational and physical space.
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Z
Kh

wh
l w

h
m dK

� �bU h
im ¼

Z
Kh

wh
l w

H
n dK

� �bU H
in;
with l, m, n = 0, . . ., 4. On the l.h.s., we recognize the mass matrix Mh of element Kh so the projection of UH

onto Kh can be computed in terms of the expansion coefficients as:
bU h
im ¼ ðM�1

h Þml

Z
Kh

wh
l w

H
n dK

� �bU H
in: ð7Þ
Consider the integral on the r.h.s. of (7) and transform to computational space using the mapping GK:
Z
Kh

wh
l w

H
n dK ¼

Z
bKh

bwh
l
bwH

n jJ Gjdn;
with JG the Jacobian determinant of the transformation (1). Note that in computational space we have:
nh
i ¼

1

2
nH

i 	
1

2
; i ¼ 1; . . . ; 4
where the sign depends on the position of the fine element within the coarse element. In Fig. 1 for example,
nh

1 ¼ 1
2
nH

1 � 1
2

and nh
2 ¼ 1

2
nH

2 þ 1
2
. Since the basis functions ŵ are expressed in terms of n (Section 2.2), the integral

(7) can easily be computed and thereby the L2 projection of the coarse grid solution onto the fine grid. This
defines the prolongation operator P. The restriction operator for the residuals is then defined as the transpose
of the prolongation operator: R ¼ P T. The restriction operator R for the solution is defined as R = P�1 such
that the property UH = R(P(UH)) holds, meaning that the inter-grid transfer does not modify the solution.

Remark 1. In this article, we limit ourselves to h-multigrid in a single space-time slab. The time-step Dt is equal

on both levels; the coefficients bU i4 which correspond to the gradient in time are therefore identical: bU H
i4 ¼ bU h

i4.
Multi-time multigrid methods are also feasible, see [23], but not considered in this article.

Now that the h-multigrid method is well defined, we continue by analyzing its stability and performance.

4. Two-level fourier analysis for a model problem

In this section, the convergence behavior of Algorithm 3 is studied with Fourier analysis for the space-time
discontinuous Galerkin discretization of the scalar advection–diffusion equation.

4.1. Discretization of the model problem

Consider the time-dependent scalar advection–diffusion equation:
ut þ aux � duxx ¼ 0; x 2 R; t 2 Rþ

uðx; 0Þ ¼ u0; x 2 R;

�

where a, d > 0 denote the advection and diffusion constants, respectively. The flow domain Eh ¼ R� Rþ re-
stricted to the time interval (tn, tn+1) has a tessellation T n

h consisting of uniform elements K ¼ ðxj; xjþ1Þ�
ðtn; tnþ1Þ with j 2 Z and n 2 N. The corresponding functions space is:
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wh � w 2 L2ðEhÞ : wjK � GK 2 P mðbKÞ; 8K 2 T n
h

n o
:

The weak form becomes the following. Find a u 2 wh, such that for all w 2 wh:
�
X
K2T n

h

Z
K

ðwtuþ wxðau� dðux �RÞÞÞdKþ
X
K2T n

h

Z
Kðt�

nþ1
Þ
wLuL dK �

Z
Kðtþn Þ

wLuR dK

 !

þ
X
S2Sn

I

Z
S

swtðaû� d ux � gRS ÞdS ¼ 0;
where standard upwinding is used for the numerical flux aû. The definition of the local lifting operator RS 2 R

now becomes:
X
K2T n

h

Z
K

wRS dK ¼
Z
S

w sutdS for S 2 Sn
I ;
with global lifting operator R ¼
P

S2Sn
I
RS . For stability of the discretization we take g = 2. The mapping (1)

from the master element bK ¼ ð�1; 1Þ2 to the element K reduces to:
GK : bK ! K : ðn1; n2Þ7!ðx; tÞ ¼
1

2
ðxjþ1 þ xjÞ þ

1

2
ðxjþ1 � xjÞn1;

1

2
ðtnþ1 þ tnÞ þ

1

2
ðtnþ1 � tnÞn2

� �
;

and the linear basis functions are w ¼ ŵ � G�1
K with ŵ0 ¼ 1, ŵ1 ¼ n1 and ŵ2 ¼ n2 � 1. The polynomial expan-

sions (3) and (4) of the trial and test functions now read:
uðt; xÞjK ¼ ûmwmðt; xÞ; wðt; xÞjK ¼ bwlwlðt; xÞ;

with l, m = 0, 1, 2.

Replacing u and w in the weak form by these expansions yields a discrete system1 for the vector of expan-
sion coefficients û of u at time level n:
Lhðûn; ûn�1Þ � ðLa
h þ Ld

hÞûn þ Lt
hûn�1 ¼ 0;
with h = xj+1 � xj. This 3Z� 3Z system has a block Toeplitz structure with 3 · 3 blocks and its stencil has the
form:
Lh ffi Lh j Dh j U h½ �; ð8Þ

where Lh represents the left block, Dh the diagonal block and Uh the right block. The advective part La

h of the
discretization depends on the Courant number
r ¼ aDt
h
; ð9Þ
and gives the following block tridiagonal contribution to the system:
La
h ffi

�r �r r

r r �r

r r � 4
3
r

264
�������

1þ r r �r

�r 1
3
þ r r

�2� r �r 2þ 4
3
r

�������
0 0 0

0 0 0

0 0 0

375:

The right block is zero because the advective numerical flux is upwind (a > 0). The diffusive part Ld

h of
the discretization depends on the Courant number, the stabilization constant g and the cell Reynolds
number:
Reh ¼
ah
d
; ð10Þ
e scaling with |Kn|�1 from Section 2.3 amounts to a division by h which yields the expression for Lh presented here.
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and also gives a block tridiagonal contribution to the system:
Ld
h ffi

r
Reh

�2g 1� 2g 2g

�1þ 2g �2þ 2g 1� 2g

2g �1þ 2g � 13
6
g

264
�������

4g 0 �4g

0 4g 0

�4g 0 13
3
g

�������
�2g �1þ 2g 2g

1� 2g �2þ 2g �1þ 2g

2g 1� 2g � 13
6
g

375:

The contribution Lt

h related to the previous space-time slab is block diagonal:
Lt
h ffi

0 0 0

0 0 0

0 0 0

264
�������
�1 0 0

0 � 1
3

0

2 0 0

�������
0 0 0

0 0 0

0 0 0

375:

The linear system associated with the space-time DG discretization of the scalar advection–diffusion equa-

tion must be solved for each time slab. We do so with the multigrid method presented in Section 3.

4.2. The two-level algorithm

At the core of any multigrid method is the two-level algorithm. Multilevel methods are obtained by recur-
sively applying the two-level algorithm in, for example, a V-cycle. Therefore, we study the error amplification
operator of the two-level algorithm MTLA

h , which is given by [13,24]:
MTLA
h ¼ MCGC

h MREL
h ;
with MREL
h the error amplification operator associated with either the EXI or the EXV scheme presented in

Section 2. The explicit form of these operators is obtained from their recursive definitions (Algorithm 1
and 2) and reads:
MEXI
h ¼ I

1þ a5k
þ a5kðI � LhÞ
ð1þ a4kÞð1þ a5kÞ

þ � � � þ a2a3 � � � a5ðkðI � LhÞÞ4

ð1þ a2kÞð� � �Þð1þ a5kÞ
þ a1a2 � � � a5ðkðI � LhÞÞ5

ð1þ a1kÞð� � �Þð1þ a5kÞ
: ð11Þ
and
MEXV
h ¼ I � a4kLh þ a3a4ðkLhÞ2 � � � � þ a1a2a3a4ðkLhÞ4; ð12Þ
with I the identity matrix. The coarse grid correction (CGC) of Algorithm 3 is given by:
MCGC ¼ I � PL�1
H RLh:
On the uniform grid, the prolongation operator defined in Section 3.2 becomes:
P ffi
1 1

2
0

0 1
2

0

0 0 1

264
�������
1 � 1

2
0

0 1
2

0

0 0 1

�������
0 0 0

0 0 0

0 0 0

375:

The right block is zero because the coarse grid element Kn

H ¼ ðxj�1; xjþ1Þ � ðtn; tnþ1Þ corresponds to the fine
elements ðKn

hÞL ¼ ðxj�1; xjÞ � ðtn; tnþ1Þ and ðKn
hÞD ¼ ðxj; xjþ1Þ � ðtn; tnþ1Þ. This choice is arbitrary considering the

infinite domain. Note the block Toeplitz structure with 3 · 3 blocks; since R ¼ P T the restriction operator for
the residuals is also block Toeplitz.

Remark 2. The parameter g has a significant effect on the stability of the Runge–Kutta methods: as g
increases, the permissible pseudo-timestep decreases proportionally. Therefore g should be taken as small as
allowed in the discontinuous Galerkin discretization, in general equal to the number of faces of an element
[7,20].

The convergence behaviour of the two-level algorithm for the space-time DG discretization is given by the
spectral radius of the error amplification operator, i.e. qðMTLA

h Þ, which represents the expected convergence
factor per iteration. In the following section, we will apply Fourier analysis to compute the eigenvalue spectra
of the two-level algorithm.
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4.3. Fourier analysis of the two-level algorithm

As shown in [24,25], the eigenvalue spectra of the two-level algorithm is {ki(x)} with i = 1, . . ., 6 and ki(x)

the eigenvalues of the Fourier transform dMTLA
h for x 2 [�p/H,p/H), . The Fourier2 transform cLh of the block

Toeplitz operator Lh with stencil (8) for a frequency x is:
2 In
coeffic
cLhðxÞ ¼ Lhe�ixh þ Dh þ Uheþixh;
with i ¼
ffiffiffiffiffiffiffi
�1
p

. Since the operators MREL
h , P and R are also block Toeplitz, their Fourier transforms bP and bR

are computed similarly. The Fourier transform of the two-level error amplification operator is then given by
[24,25]:
dMTLA
h ðxÞ ¼

Ih 0

0 Ih

� �
�

bP ðxÞbP ðxþ p=hÞ

" # cLH ðxÞ�1
h i bRðxÞ bRðxþ p=hÞ

h i cLhðxÞ 0

0 cLhðxþ p=hÞ

" #

�
dMREL

h ðxÞ 0

0 dMREL
h ðxþ p=hÞ

24 35;

with Ih the 3 · 3 identity matrix. Here, x 2 [�p/H,p/H) corresponds to the low frequencies and x + p/h to the
associated high frequencies. The Fourier transforms of the error amplification operators (11) and (12) are:
dMEXI
h ðxÞ ¼ Ih

1þ a5k
þ a5kðIh � cLhðxÞÞ
ð1þ a4kÞð1þ a5kÞ

þ � � � þ a2a3 � � � a5ðkðIh � cLhðxÞÞÞ4

ð1þ a2kÞð� � �Þð1þ a5kÞ

þ a1a2 � � � a5ðkðIh � cLhðxÞÞÞ5

ð1þ a1kÞð� � �Þð1þ a5kÞ
;

and
 dMEXV
h ðxÞ ¼ Ih � a4kcLhðxÞ þ a3a4ðkcLhðxÞÞ2 � � � � þ a1a2a3a4ðkcLhðxÞÞ4:
Now, the eigenvalue spectra and radii of the two-level algorithm can be computed, depending on the Cou-
rant number (9) and cell Reynolds number (10) occuring in Lh. The Courant number expresses the time-accu-
racy of the discretization and the cell Reynolds number the importance of diffusion relative to advection. Since
the space-time DG discretization is implicit in physical time, the method is unconditionally stable [20] for any
physical time step. This allows us to take the Courant number r = 100 for steady-state cases and r = 1 for
time-dependent cases. We will further consider cell Reynolds numbers between Reh = 0.01 and Reh = 100,
which represent the diffusion and advection dominated cases, respectively. The Runge–Kutta methods are
explicit in pseudo time and their stability depends on the ratio k between the pseudo timestep and the physical
timestep k = Ds/Dt. It is often convenient to express the stability condition in terms of the pseudo-time CFL
number rDs and the pseudo-time diffusive Von Neumann condition dDs:
Ds 6 Dsa � rDsh
a

and Ds 6 Dsd � dDsh
2

d
:

The pseudo-time CFL number is given by rDs = kr and the pseudo-time diffusive Von Neumann number by
dDs = kr/Reh.

In Table 1, the spectral radii of the two-level algorithm with EXI smoother for steady cases (r = 100) are
given for various values of Reh. We see that as Reh decreases, the spectral radius of the two-level algorithm
increases; in other words as diffusion becomes more important, the rate of convergence deteriorates. This is
to be expected as the EXI method was optimized for inviscid cases. The EXV method, on the other hand,
was optimized for diffusion dominated cases and in Table 2, we see that the two-level algorithm with EXV
smoother maintains good convergence factors in the diffusion dominated cases. For unsteady cases (r = 1),
this section, the ð̂�Þ notation indicates Fourier transform of a block Toeplitz operator, not to be confused with the expansion
ients û or the basis functions ŵ on the master element K̂.



Table 1
Spectral radii of the two-level algorithm with the EXI smoother for steady cases (r = 100)

Reh Ds/Dt qðMEXI
h Þ qðMTLA

h Þ
100 1.8e�02 0.991 0.622
10 8.0e�03 0.996 0.716
1 1.4e�03 0.999 0.906
0.1 1.6e�04 0.999 0.932
0.01 1.6e�05 0.999 0.935

The TLA convergence with EXI smoothing is better than with EXV smoothing (Table 2) for Reh = 100 and 10.

Table 2
Spectral radii of the two-level algorithm with the EXV smoother for steady cases (r = 100)

Reh Ds/Dt qðMEXV
h Þ qðMTLA

h Þ
100 2.0e�03 0.999 0.914
10 3.0e�03 0.998 0.871
1 7.0e�03 0.996 0.697
0.1 8.0e�04 0.999 0.753
0.01 8.0e�05 0.999 0.744

The TLA convergence with EXV smoothing is better than with EXI smoothing (Table 1) for Reh = 1, 0.1 and 0.01.
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the values are different (see Tables 3 and 4) but the trend is similar: EXI smoothing is preferable for advection
dominated cases (Reh > 1) and EXV smoothing for diffusion dominated cases (Reh 6 1). This allows us to
choose the optimal scheme depending on the cell Reynolds number.

In Figs. 2–5, we show the eigenvalue spectra of the preferable smoother and of the two-level algorithm for
steady and unsteady, advection and diffusion dominated cases. We have plotted the eigenvalues corresponding
to a discrete series of low frequencies xi = �p/H, � 0.96p/H, . . ., p/H and associated high frequencies xi + p/
h. For the smoothers, the eigenvalues corresponding to low frequencies are denoted by �; those corresponding
to high frequencies by +. In the eigenvalue spectra of two-level algorithms we do not distinguish between low
and high frequencies: the two-level algorithm must damp all frequencies. From these figures we see that the
Runge–Kutta methods have the smoothing property, i.e. the high frequencies are damped. The observed
smoothing factor of approximately 0.8 (which is often used as an estimate for multigrid convergence [8]) is
rather inaccurate in comparison to the true smoothing factor obtained with two-level analysis (see Tables
1–4).
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Fig. 2. Eigenvalue spectra of the EXI smoother and two-level algorithm in the steady advection dominated case (r = 100 and Reh = 100,
first row of Table 1).
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Fig. 3. Eigenvalue spectra of the EXV smoother and two-level algorithm in the steady diffusion dominated case (r = 100 and Reh = 0.01,
last row of Table 2).
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Fig. 4. Eigenvalue spectra of the EXI smoother and two-level algorithm in the unsteady advection dominated case (r = 1 and Reh = 100,
first row of Table 3).
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Table 3
Spectral radii of the two-level algorithm with the EXI smoother for unsteady cases (r = 1)

Reh Ds/Dt qðMEXI
h Þ qðMTLA

h Þ
100 1.6e�00 0.796 0.479
10 8.0e�01 0.918 0.599
1 1.4e�01 0.904 0.837
0.1 1.6e�02 0.987 0.923
0.01 1.6e�03 0.998 0.934

The TLA convergence with EXI smoothing is better than with EXV smoothing (Table 4) for Reh = 100 and 10.

Table 4
Spectral radii of the two-level algorithm with the EXV smoother for unsteady cases (r = 1)

Reh Ds/Dt qðMEXV
h Þ qðMTLA

h Þ
100 1.0e�00 0.924 0.660
10 7.0e�01 0.812 0.704
1 7.0e�01 0.805 0.719
0.1 8.0e�02 0.936 0.755
0.01 8.0e�03 0.993 0.744

The TLA convergence with EXV smoothing is better than with EXI smoothing (Table 3) for Reh = 1, 0.1 and 0.01.
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The two-level analysis of h-multigrid iteration for the space-time DG discretization of the advection–diffu-
sion equation shows significantly improved convergence factors w.r.t. single-grid iteration. Multigrid conver-
gence factors range between 0.5 and 0.75, whereas single-grid convergence factors range between 0.8 and 0.99,
depending on the case.3 This motivates the application of multigrid to the compressible Navier–Stokes equa-
tions in Section 5.

4.4. Numerical illustration

To illustrate the results of the multigrid analysis, we consider the space-time discretization of the scalar
advection–diffusion equation for the following simple initial boundary value problem:
3 No
ut þ aux ¼ duxx; x 2 ð0; 1Þ; t 2 Rþ;

uð0; tÞ ¼ 1; uð1; tÞ ¼ 0; t 2 Rþ;

uðx; 0Þ ¼ 1� x; x 2 ð0; 1Þ:

8><>:

The exact (steady state) solution is given by:
uðxÞ ¼ ea=d � eax=d

ea=d � 1
;

and features an exponential boundary layer near x = 1. Such a case is best solved on a so-called Shishkin mesh
[19]. With N elements, this mesh is piecewise equidistant with nodes xj given by:
xj ¼
2ð1� cÞj=N for j ¼ 0; 1; . . . ;N=2;

1� cþ 2c=Nðj� N=2Þ for j ¼ N=2;N=2þ 1; . . . ;N ;

�

where c = (2/a)d ln (N). For our example, we take a = 1, d = 0.025 and N = 32. Advection dominates in the
first part of the mesh, so we use the EXI scheme there and the EXV scheme in the second part. We use three
level multigrid in a V-cycle with two pre- and post-relaxations. The coarse grid problem is solved approxi-
te that the single-grid convergence factors for time-dependent, advection dominated cases, being around 0.8, are already quite good.
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mately with four relaxations, which is more realistic in view of applications to complex problems where the
exact coarse grid solution cannot be attained.

The problem can be solved in two ways: time accurate with Dt = 0.05 which corresponds to CDt � Oð1Þ
or directly as a steady-state problem with Dt = 5 which corresponds to CDt � Oð100Þ. In Fig. 6, the space-
time solution and the convergence in pseudo-time for a few physical time steps are shown. With eight
orders of convergence in 50 cycles, an effective damping factor of 0.7 is achieved. In Fig. 7, the
steady-state solution is shown. With a single time step the convergence in pseudo-time is 10 orders in
150 cycles which corresponds to a damping factor of 0.85. Despite the presence of boundary conditions
and the inaccurate solution of the coarse grid problem, these convergence rates are in agreement with
the rate obtained from the analysis.
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Fig. 6. The space-time solution of the advection–diffusion equation (a = 1, d = 0.025) on a Shishkin mesh with 32 elements and the
convergence in pseudo-time of the MG algorithm for a few physical time steps Dt = 0.05.

x

u
(x

)

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
exact solution
approximation

MG cycles

R
es

id
u

al
s 

(L
2-

n
o

rm
)

50 100 150 200
10-12

10-10

10-8

10-6

10-4

10-2

Fig. 7. The steady-state solution of the advection–diffusion equation (a = 1, d = 0.025) on a Shishkin mesh with 32 elements and the
convergence in pseudo-time of the MG algorithm for a single physical time step Dt = 5.



1038 C.M. Klaij et al. / Journal of Computational Physics 227 (2007) 1024–1045
These results show that the EXI and EXV methods can indeed be combined to form a cheap local smoother
for a full multigrid setting as expected from the analysis.

5. Numerical simulations

In this section, we verify through numerical experiments whether the improved convergence predicted by
the two-level analysis of the advection–diffusion equation also holds for the compressible Navier–Stokes
equations.

5.1. Definition of work units

To measure the efficiency of the multigrid algorithm, we have to define a basic work unit. The CPU time
does not reflect the true work load as it is greatly affected by the implementation, optimization and the
machine the code runs on. Therefore, we employ a more transparent definition: one work unit corresponds
to one Runge–Kutta step on the fine grid. To account for the work done on the coarse grids in terms of this
work unit, we make use of the following observation.

In a well written code, the computational effort of an explicit Runge–Kutta step is proportional to the num-
ber of degrees of freedom (DoF). The number of DoF on the fine mesh is NeNqNc with Ne the number of ele-
ments, Nq the number of equations and Nc the number of expansion coefficients. On the coarse mesh, the
number of elements is Ne/fe with fe the mesh coarsening factor. Therefore, the number of DoF on the coarse
mesh is 1/fe with respect to fine mesh. For example, fe = 8 in 3D, hence eight coarse grid Runge–Kutta steps
are counted as one work unit. A similar counting is done for multiple levels. The prolongation and restriction
are trivial and this effort is neglected.
Fig. 8. Slice through the 3D grid with 64 · 64 · 4 elements around the circular cylinder and steady-state streamlines at M1 = 0.3 and
Re1 = 40.



Fig. 9. Convergence to steady-state for the cylinder at M1 = 0.3 and Re1 = 40 on the 64 · 64 · 4 grid.
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5.2. Flow around a circular cylinder

First, we consider the flow around a circular cylinder with Reynolds number Re1 = 40 based on the diam-
eter of the cylinder. We solve the compressible Navier–Stokes equations with the space-time discontinuous
Galerkin method summarized in Section 2, taking the Mach number M1 = 0.3. The flow is laminar, steady
and characterized by a closed near-wake region with separation and recirculation forming twin eddies, see
for example [27]. In Fig. 8, we show a slice through the computational grid with 64 · 64 · 4 elements and
the streamlines at steady-state.

To evaluate the performance of the h-multigrid iteration (Algorithm 3) for solving the system of algebraic
equations, we express the convergence in terms of the previously defined work units and compare with single-
grid iteration in Fig. 9. With two pre- and post-relaxations on each level4, we find that multigrid attains three
orders of convergence in 2000 WU whereas single-grid only attains two orders of convergence in 12,500 WU.
In this case, multigrid iteration is approximately 10 times cheaper than single-grid iteration.

Second, we increase the Reynolds number to Re1 = 200 and refine the grid to 80 · 84 · 4 elements. The
flow now becomes unsteady and is characterized by periodic vortex shedding. The Strouhal number is
St ” fd/u1 = 0.2 with f the frequency of the vortex shedding, d the diameter of the cylinder and u1 the far-
field velocity [18,27]. This gives us the corresponding period T = 1/f and we choose our time-step Dt such that
we have 32 time-steps per period. In Fig. 10 we show a snapshot of the vorticity and the streamlines and in
Fig. 11 the periodic evolution of the lift and drag coefficients CL and CD. In this time-dependent case, we solve
the algebraic system for every physical time-step using Algorithm 3 with 2 pre- and post-relaxations on each of
the three levels of the 80 · 84 · 4 grid. In Fig. 12, we show the typical convergence in pseudo-time. Single-grid
iteration stagnates after 30 work units while multigrid iteration has already met our convergence criterion of
order 10�6 residuals.

5.3. Flow around an ONERA M6 wing

Finally, we consider the steady laminar flow around an ONERA M6 wing at M1 = 0.4, Re1 = 104 and
angle of attack a = 1�. The fine grid consists of 125,000 hexahedral elements. An impression of the grid is given
in Fig. 13 where we also show the Mach number isolines in the plane perpendicular to the wing and the pres-
4 Increasing the number of relaxations and/or changing from V-cycle to W-cycle did not significantly improve the performance in terms
of work units.
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Fig. 10. Snapshot of the vorticity and streamlines around the circular cylinder and streamlines at M1 = 0.3 and Re1 = 200.

Fig. 11. Periodic evolution of the lift and drag coefficients CL and CD for the cylinder at M1 = 0.3 and Re1 = 200.
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sure coefficient Cp on the wing. This simulation was done with the NLR DG algorithm HEXADAP, in which
the algorithms discussed in this article have been implemented.

In Fig. 14, we compare a multigrid iteration consisting of three level V- and W-cycles with single-grid iter-
ation. The V-cycle has a total of four relaxations on each grid level, while the W-cycle has four relaxations on
the fine grid and 8 on the medium and coarse grid. In terms of work units both attain residuals of order 10�6 in



Fig. 12. Typical convergence in pseudo-time for a physical time-step a1Dt/d = 0.5 for the cylinder at M1 = 0.3 and Re1 = 200 on the
80 · 84 · 4 grid.
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Fig. 13. Impression of the grid, the Mach number isolines and the pressure coefficient Cp on the ONERA M6 wing at M1 = 0.4,
Re1 = 104 and a = 1�.
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2000 work units, while the residuals with single grid iteration are still of order 10�4 after 5000 work units. With
the h-multigrid algorithm, this simulation can be run with HEXADAP in six hours on a single CPU of NEC
SX-8R at 5.3 Gflop/s.

The performance of the single- and multigrid iteration for the numerical experiments presented in this sec-
tion is summarized in Table 5. For these cases, multigrid iteration significantly reduces the computational
effort, up to a factor of 10 w.r.t. the single-grid iteration.



Fig. 14. Convergence in pseudo-time for the ONERA M6 wing at M1 = 0.4, Re1 = 104 and a = 1�.

Table 5
Summary of the computational effort for the numerical experiments

Case Single-grid performance Multigrid performance Cost reduction

Cylinder (steady) 2 orders in 12,500 WU 3 orders in 2000 WU 9.4
Cylinder (unsteady) 3 orders in 150 WU 3 orders in 30 WU 5.0
ONERA M6 2 orders in 5000 WU 3 orders in 2000 WU 3.7

Multigrid iteration reduces the costs by a factor 4–10 w.r.t. single-grid iteration.
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6. Discussion and conclusions

In this article, we investigated a h-multigrid algorithm for the pseudo-time integration of the system of non-
linear equations arising from the space-time DG discretization of the compressible Navier–Stokes equations.
The discretization is second order accurate on all grid levels and the relaxation is done with explicit Runge–
Kutta methods in order to keep the multigrid algorithm local. The locality of the solver thereby matches the
locality of the discretization, which may be important in view of real-life applications where the assembly and
storage of global systems may not be feasible.

We applied two-level Fourier analysis to the space-time DG discretization of the scalar advection–diffusion
equation to get an impression of the stability and convergence of the algorithm. This analysis shows that con-
vergence factors between 0.5 and 0.75 can be obtained, depending on the case under consideration, which is
quite good for a fully explicit multigrid algorithm.

The construction of intergrid transfer operators is based on the L2 projection of the coarse grid solution on
the fine grid and assumes the embedding of spaces. Although the embedding of spaces does not formally hold
on curvilinear grids, we found that the multigrid algorithm still performs well: three level multigrid iteration
with two pre- and post-relaxations is up to 10 times less expensive than single-grid iteration for our 2D and 3D
test cases. These include steady and unsteady laminar flow around a circular cylinder and steady laminar flow
around an ONERA M6 wing.

Although there is a clear performance gain compared to single-grid computations, the full potential of
multigrid was not yet reached, in view of the multigrid results obtained for second-order finite volume
schemes (see [21] and the references therein) or other DG schemes (for example [10]). The main difference
is in the smoother: the line or plane smoothers commonly used in multigrid literature involve the iterative
solution of a linear system in an inner loop. This reduces the number of fine mesh residual evaluations,
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but adds the costs of constructing and solving a linear system. Whether the advantage of improved con-
vergence rates outweighs the disadvantage of the additional cost associated with such smoothers is very
difficult to answer. Most important is the fact that our approach maintains the locality of the DG algo-
rithm, thereby preserving well-known benefits as efficient parallelization and straightforward hp-adapta-
tion. Future research should therefore be directed to the development of more efficient smoothers
which respect the locality of the DG scheme. A performance comparison with other smoothers or with
the Newton-GMRES approach would be highly desirable. Other techniques, such as semi-coarsening in
viscous boundary layers or optimization of the coefficients in the Runge–Kutta schemes should also be
considered.

Although we applied the h-multigrid pseudo-time integration method in the space-time DG context, we
would like to point out that it is equally suitable for solving the system of non-linear algebraic equations aris-
ing from spatial DG discretizations of the steady compressible Navier–Stokes equations.
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Appendix A. First order discretization on the coarse grids

For the space-time discontinuous Galerkin discretization of the Euler equations, constant basis functions
were used on the coarse grids in the multigrid algorithm presented in [22]. This approach, however, is inad-
equate for the Navier–Stokes equations, as we show in this section.

The basis functions in Section 2.2 are such that the test and trial functions are split into an element mean at
time tn+1 and a fluctuating part. In [22], only the element means are used on the coarse grids, which proved
effective for the discretization of the Euler equations. An additional benefit is the simplicity of the associated
inter-grid transfer operators, which facilitates the implementation for non-uniform, locally refined grids. The
restriction and prolongation operators for the solution are defined as [22]:
Rð bU ÞjKH
¼
P bU 0ðKhÞjKhjP

jKhj
; P ð bU ÞjKh

¼ Û 0ðKH Þ; ðA:1Þ
where the coarse grid element KH corresponds to a set fKhg of fine grid elements. The restriction operator R
for the residual is the same as for the solution (R ¼ R).

We can analyze this approach for the scalar advection–diffusion equation with the method presented in Sec-
tion 4. The discretization on the coarse grid with H = 2h now only involves the element means û ¼ û0 and
reduces to:
LH ð�un; �un�1Þ � ðLa
H þ Ld

HÞ�un þ Lt
H �un�1 ¼ 0;
with
La
H ffi �aDt j aDt þ H j 0½ �; Ld

H ffi
dDt
H
�2gS j 4gS j �2gS½ �;



Table A.1
Spectral radii in the advection dominated cases

Physics Stability Convergence

r Reh Ds/Dt qðMEXI
h Þ qðMTLA

h Þ
100 100 1.8e�02 0.991 0.979

1 100 1.6e�00 0.796 0.794

Table A.2
Spectral radii in the diffusion dominated cases

Physics Stability Convergence

r Reh Ds/Dt qðMEXV
h Þ qðMTLA

h Þ
100 0.01 8.0e�05 0.999 0.998

1 0.01 8.0e�03 0.993 0.985
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and
Lt
H ffi 0 j �H j 0½ �:
This Z� Z system has a block Toeplitz structure with 1 · 1 blocks, with associated stencil:
LH ffi LH j DH j U H½ �:

On this uniform grid, the 3Z� Z system associated with the prolongation P defined in (A.1) has a block

Toeplitz structure with 3 · 1 blocks:
P ¼
1

0

0

264
�������
1

0

0

�������
0

0

0

375;

and the restriction operator for the residual is R ¼ P T. The spectral radius of the two-level operator can now
be computed in the same manner as described in Section 4.

The spectral radii of the relaxation schemes and the two-level algorithm with constant basis functions on
the coarse grid are given in Tables A.1 and A.2. For steady-state cases, the spectral radius of the relaxation
scheme is typically 0.99 and the TLA hardly improves the situation: only in the advection dominated case the
spectral radius of the TLA is 0.98. For the other cases, the TLA does not improve the convergence factor, but
note that the EXI method is already very efficient for the unsteady advection dominated cases: its spectral
radius is 0.79.

Based on this analysis, we do not expect the multigrid algorithm with constant basis functions on the coarse
grids to significantly improve the convergence. This was confirmed by numerical experiments, both for the
advection–diffusion equation and the compressible Navier–Stokes equations.
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