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Abstract

We present a scheme to solve the nonlinear multigroup radiation dif-
fusion (MGD) equations. The method is incorporated into a massively
parallel, multidimensional, Eulerian radiation-hydrodynamic code with
adaptive mesh refinement (AMR). The patch-based AMR algorithm re-
fines in both space and time creating a hierarchy of levels, coarsest to
finest. The physics modules are time-advanced using operator splitting.
On each level, separate “level-solve” packages advance the modules. Our
multigroup level-solve adapts an implicit procedure which leads to a two-
step iterative scheme that alternates between elliptic solves for each group
with intra-cell group coupling. For robustness, we introduce pseudo tran-
sient continuation (Ψtc). We analyze the magnitude of the Ψtc parameter
to ensure positivity of the resulting linear system, diagonal dominance and
convergence of the two-step scheme. For AMR, a level defines a subdo-
main for refinement. For diffusive processes such as MGD, the refined level
uses Dirichet boundary data at the coarse-fine interface and the data is de-
rived from the coarse level solution. After advancing on the fine level, an
additional procedure, the sync-solve (SS), is required in order to enforce
conservation. The MGD SS reduces to an elliptic solve on a combined
grid for a system of G equations, where G is the number of groups. We
adapt the “partial temperature” scheme for the SS; hence, we reuse the
infrastructure developed for scalar equations. Results are presented. We
consider a multigroup test problem with a known analytic solution. We
demonstrate utility of Ψtc by running with increasingly larger timesteps.
Lastly, we simulate the sudden release of energy Y inside an Al sphere

∗This work was performed under the auspices of the U.S. Department of Energy by the
University of California Lawrence Livermore National Laboratory under contract No. W-
7405-Eng-48.
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(r = 15 cm) suspended in air at STP. For Y = 11 kT, we find that gray
radiation diffusion and MGD produce similar results. However, if Y = 1
MT, the two packages yield different results. Our large Y simulation con-
tradicts a long-standing theory and demonstrates the inadequacy of gray
diffusion.

1 Introduction

This paper describes a numerical method to solve the radiation multigroup
diffusion (MGD) equations. Two themes are presented. One is the scheme
itself. We add Pseudo Transient Continuation (Ψtc) to the familiar “fully im-
plicit” method of Axelrod et al [2]. The second theme is code-specific. Our
MGD solver is embedded in a multidimensional, massively parallel, Eulerian
radiation-hydrodynamic code, which has patch-based, time-and-space Adaptive
Mesh Refinement (AMR) capability. Our code’s AMR framework stems from
the Berger and Oliger idea [3] developed for hyperbolic, compressible hydrody-
namic schemes. The idea was expanded by Almgren et al [1] and applied to
the type of elliptic solvers required for the incompressible equations of Navier-
Stokes. Howell and Greenough [7] applied the Almgren et al framework to the
scalar, parabolic “gray” radiation diffusion equation, thereby creating the start
of our radiation-hydrodynamic code.

The AMR framework works as follows. A domain, referred to as the “coarse”
or L0 level, is discretized using a uniform, coarse spatial mesh size hc.1 After
advancing with a timestep ∆tc, the result is scanned for possible improvement.
One may refine subregions containing a chosen material, at material interface(s),
or at shocks, etc. Whatever refinement criteria are used, after the subdomains
are identified, specific routines define a collection of “patches,” which cover the
subdomains. In two dimensions, the patches are unions of rectangles; in 3D,
they are unions of hexahedra. The patches need not be connected, but they
must be contained within the coarse level. The patches denote the “fine” or
L1 level and are discretized with a uniform, spatial mesh size hf . A typical
refinement ratio hc/hf equals two, but higher multiples of two are also allowed.

Because the original framework was designed for temporally explicit hyper-
bolic schemes, ∆tc is restricted by a CFL condition. This implies a similar
restriction for the L1 level timestep ∆tf . For the case, hc/hf = 2, level L1
time-advances twice using ∆tf = ∆tc/2. Boundary conditions for level L1 are
supplied as follows. Wherever level L1 extends to the physical boundary, the
level uses the conditions prescribed by the problem. Portions of level L1’s bound-
ary which lie inside the physical domain have conditions prescribed by time and
space interpolated data obtained from the L0 solution. For diffusion equations,
these conditions are of Dirichlet type. The numerical solution consists of both
coarse and fine grid results. Unfortunately, as it stands, the composite solution
does not guarantee conservative fluxes across the level boundaries. To maintain

1In multiple dimensions, coordinates have their own mesh spacing.
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conservation, a separate procedure, dubbed a sync-solve (SS) is required. The
SS reduces to an elliptic unstructured grid solve on the composite grid of L0 and
L1 levels. The AMR procedure may be recursive. That is, a level L1 grid may
generate its own subdomain for refinement, i.e., a level L2. In that case, one SS
couples results from levels L1 and L2. Once the levels advance to the L0 level
time, a SS coupling all three levels ensues. For the multigroup equations, the
SS requires an unstructured grid solve for a coupled system of reaction-diffusion
equations. Our scheme for a multigroup SS is an important theme of this paper.

The MGD equations stem from a discretization of the multifrequency ra-
diation diffusion equations. The latter is an approximation to the equations
of radiation transfer, obtained by assuming the matter to be optically thick,
which suppresses the directional dependence of the radiation intensity. Details
of the derivation may be found in various sources: Mihalas and Mihalas [12],
Zel’dovich and Raizer [26], Pomraning [17].

The gray radiation diffusion equation is a simplification of the MGD equa-
tions. It is essentially a one-group equation and is derived by integrating over all
frequencies. Surprisingly, it gives very good results in many cases. However, it
clearly cannot display frequency-dependent effects. When those are important,
it gives incorrect results. Unfortunately, unless one solves a problem with both
gray and MGD, one never knows when the former is adequate.

We now summarize the paper. Our MGD scheme consists of two parts.
Sections 2 and 3 develop the level-solve algorithm, which is applied on each
level. Section 2 develops the equations, the discretization, and our Ψtc scheme.
Section 3 proves three lemmas which determine the initial magnitude of the Ψtc
parameter σ. Our philosophy for σ is as follows. The result of the level solve is
the time-advanced radiation group energy density, which physics dictates to be
nonnegative. Zeroing anomalously negative values is not an option since they
are the correct conservative solution to the linear system that stems from the
discretization of the system. Thus, the unphysical result nonetheless conserves
energy. The difficulty is avoided if in the original formulation of the linear system
Ax = b, A is an M-matrix and the right-hand-side (RS) is nonnegative. Since
we solve Ax = b using an iterative scheme, the magnitude of σ is determined
to ensure b ≥ 0, a diagonally dominant A, and that the iterations converge.
To a large extent, we are guided by Pert [16], who discusses how and why the
solution to a discretization of an equation may be unacceptable from a physical
standpoint. For a first reading, section 3 may be skipped; the analysis of the
required magnitude of σ is not needed for the subsequent sections.

We note that Ψtc is widely used to solve nonlinear systems of equations.
It is closely related to the Inexact Newton Backtracking Method by Shahid et
al [18]. When applying Ψtc to a Newton solver, the basic idea is to limit the
change to the iterates when one is far from the root but not restrict the change
as one approaches the root. With Ψtc, limiting is done by the magnitude of the
pseudo-timestep. Kelley and Keyes [8] put Ψtc on a solid analytic framework by
examining the three regimes of Ψtc: small, medium, and large pseudo-timesteps.
In the last regime, Ψtc recovers Newton’s second order of convergence.

Our Ψtc implementation differs from the norm. Standard applications typ-
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ically detect when a problem is “hard” and then reduce the timestep or some
other parameter by an arbitrary amount. However, this method will not work
for us because our solver is embedded in a time-dependent multiphysics code
with separate modules for compressible gasdynamics, heat conduction, radia-
tion transport. Our MGD solver is called numerous times during the course of a
simulation. (If running, with AMR, multiple times per physical time advance.)
Although the physical ∆t is controlled by various means, and depending on the
problem can vary many orders of magnitude, we require a MGD solver that
works under all conditions. Our Ψtc approach is similar to the one of Shestakov
et al [20]. We set the initial magnitude of the Ψtc parameter to ensure that
for the first step, our iteration scheme converges and that the result is physical.
We note that our usage of Ψtc is nearly equivalent to having the MGD module
time-advance not in a single (physical) step ∆t, but in smaller time increments
until the desired time t0 + ∆t is reached. Some colleagues refer to the process
as “sub-cycling” the radiation module. It is easy to show that the lemmas of
Sec. 3 still apply for sub-cycling.

Section 4 describes the second part of our solver, viz., the sync-solve. Sec-
tion 5 contains results. Three problems are presented. The first, in Sec. 5.1,
displays the accuracy of the method and its convergence properties: first order
in time and second order in space. Section 5.2 demonstrates the utility afforded
by Ψtc. For hard problems, it accelerates convergence; for very hard problems,
Ψtc is indispensable. Section 5.3 models the explosive expansion of a hot metal
sphere suspended in cold air. The simulation couples all of the code’s physics
modules. The problem is an ideal candidate for AMR since effects propagate
a large distance away from the source, yet in early times, resolution is needed
only near the sphere. The problem also demonstrates the necessity of multi-
group diffusion. We find that if the sphere’s energy is very high, gray diffusion
gives the wrong answer. For a 1 MT energy source, our MGD simulation contra-
dicts results of Brode [5], who used gray diffusion. Section 6 contains concluding
remarks.

There are three appendices. Appendix A gives a table of exact values for
the test problem described in section 5.1. Appendix B discusses situations
that may complicate attaining a diagonally dominant matrix when discretizing
the multigroup system. Appendix C presents a spatial convergence analysis
of the multigroup system when running in “production” mode, that is, with a
dominant flux limiter and with AMR.

2 Level Solve

Ignoring velocity terms and Compton scattering, the multifrequency radiation
equations (CGS units) (Mihalas and Mihalas [12]) are:

∂tuν = ∇ ·Dν ∇uν + c ρ κν (Bν − uν) , (1)

ρ ∂te = −c ρ
∫ ∞

0

dν κν (Bν − uν) , (2)
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In (1)–(2), uν and e represent the spectral radiation energy density and matter
specific energy, respectively. The former is a function of position x, time t and
frequency ν, while e is a function of the mass density ρ and material temperature
T , quantities which themselves depend on x and t. Evolution of ρ is governed
by hydrodynamics. Hence, in our context, ρ is a known function. Introducing
the specific heat cv = ∂e/∂T turns (2) into an evolutionary equation for T ;
hence, the left-hand-side (LS) becomes ρcv∂tT . The subscript ν designates that
the term varies with frequency. In (1)–(2), c denotes the speed of light, κν the
absorption opacity, and Bν the Planck function,

Bν = (8π h/c3) ν3/ [exp(hν/kT )− 1] (erg sec cm−3) ,

where h and k are the Planck and Boltzmann constants, respectively. The
diffusion coefficient Dν depends on the total inverse mean free path χν = ρκν +
ρκν,s, where κν and κν,s are the absorption and scattering opacities, respectively.
(The opacities are also functions of material composition, ρ and T .) In (1),
the term −Dν∇u denotes the spectral radiation energy flux. To limit energy
streaming faster than c, a flux limiter is introduced, e.g.,

Dν = c / [ 3χν + |∇(uν)|/uν ] . (3)

The multigroup equations are derived as follows. The frequency domain is
discretized into G groups with boundaries {νg}Gg=0 satisfying

0 ≤ ν0 < ν1 < . . . < νG <∞ .

The equations are integrated over groups. We define

ug(x, t) =
∫
g

uν =
∫ νg

νg−1

dν uν .

Time derivatives are replaced by differences and the system is multiplied by the
timestep ∆t. Integration of the transport and absorption terms requires defin-
ing group-averaged opacities. Linearizing the Planck function about a known
temperature T ∗, the absorption term is expressed as∫

g

κν (Bν − uν) = κg [Bg +B′g(T − T ∗)− ug ] ,

where κg is the group-averaged absorption opacity, Bg =
∫
g
Bν |T=T∗ , and

B′g =
∫
g
(∂Bν/∂T )|T=T∗ . In a semi-implicit scheme, T ∗ = T 0, where T 0 is

the temperature at the start of the time cycle. For fully implicit differencing,
we must iterate until T ∗ converges to T . For the transport term, we define

∆t
∫
g

∇ ·Dν ∇u = ∇ ·Dg∇ug ,

where Dg depends on a group-averaged inverse mean free path χg. Note that
∆t has been absorbed into Dg.
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The above definitions yield the multigroup equations,

0 = u0
g − ug +∇ ·Dg∇ug +Kg(u, T ) , g = 1, . . . , G (4)

0 = ρ cv(T 0 − T )−
G∑
`=1

K`(u, T ) , (5)

where u0
g and T 0 denote values at the start of the time-advance,

Kg(u, T ) = ag [Bg +B′g (T − T ∗ )− ug ] ,
ag = ∆t c ρ κg .

Equations (4)–(5) comprise a nonlinear system with the strongest nonlin-
earity due to the emission term B. To a lesser extent, opacities also have a
temperature dependence and for nonideal gases, so does cv. However, for ease of
solution, we may choose to view (4)–(5) as a linear system in which case all coeffi-
cients are evaluated at the old temperature T 0. For simulations in which matter
and radiation are tightly coupled, i.e., where we expect to have uν = Bν , the
solution to the semi-implicit difference equations is ug = Bg+B′g (T −T 0), with
Bg and B′g evaluated at T = T 0. For high frequencies, limν→∞(Bν/B′ν) ∼ 1/ν;
hence, Bg � B′g for large g. Unfortunately, if the temperature is decreasing,
i.e., if (T −T 0) < 0, the linearized emission term is negative for large g, leading
to the unphysical result: ug < 0. On the other hand, if we are able to iterate
on T ∗ so that it converges to T , then in tightly coupled simulations, we obtain
the desired solution ug = Bg with Bg evaluated at the advanced temperature.

In our code we provide both options, i.e., solving a linear system, or con-
verging on the implicit source.2 In either case, solving (4)–(5) on a large domain
with many groups presents a formidable task. To facilitate the task, we intro-
duce pseudo transient continuation (Ψtc) and replace the zeros on the LS of
(4)–(5) with the Ψtc derivatives,

τ (ug − u∗g) and ρ cv τ (T − T ∗) ,

where τ ≥ 0, the inverse of the pseudo-timestep, is the Ψtc parameter whose
magnitude is at our disposal.

The variables u∗g and T ∗ represent advances in pseudo time; they always
appear on the LS of (4)–(5). As mentioned above, we provide the option of
running in either semi-implicit (SI) or fully-implicit (FI) mode. With SI, since
Bg is linearized about T = T 0, in the definition of the coupling term Kg, we
substitute T 0 for T ∗. However for FI, Kg is defined as above; Bg is linearized
about the pseudo time temperature T ∗. The two modes lead to subtle differences
in the scheme, as shown below.

For the FI scheme, if the matter equation is solved for the temperature
change, we obtain

δ−1 (T − T ∗ ) = ρ cv (T 0 − T ∗)−
G∑
`=1

a` (B` − u`) , (6)

2At the time of this writing, opacities and cv were time-lagged.
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where

δ−1 = ρ cv σ +
G∑
`=1

a`B
′
` and σ

.= 1 + τ . (7)

The domain of relevance τ ≥ 0 corresponds to σ ≥ 1.
For the SI scheme, the temperature change is,

δ−1 (T − T 0 ) = ρ cv (σ − 1) (T ∗ − T 0)−
G∑
`=1

a` (B` − u`) . (8)

The term δ is defined as above, but Bg and B′g are evaluated at T = T 0.
For the FI scheme, if (6) is substituted into the equation for ug, we obtain

−∇ ·Dg∇ug + (σ + ag )ug − fg
G∑
`=1

a` u` =

u0
g + (σ − 1 )u∗g + ag Bg + fg

(
ρ cv (T 0 − T ∗)−

G∑
`=1

a`B`

)
, (9)

where fg
.= δ ag B

′
g. Equation (7) implies fg < 1, for all g. For the SI scheme,

the RS of (9) changes: ρ cv (T 0 − T ∗) is replaced with ρ cv (σ − 1) (T ∗ − T 0).
Equation (9) corresponds to a linear system

Au = w

of order (N × G), where N is the number of mesh cells and G the number
of groups. The first term on the LS of (9) consists of second order, central
differences over space. We write this term as

−∇ ·Dg∇ug = +Dd,g ug −Do,g ug .

The first part represents multiplication of the vector ug by a diagonal matrix;
the second term denotes multiplication by the off-diagonal part. The coefficients
of Dd and Do are nonnegative.

On the LS of (9), the term −fg
∑G
`=1 a` u` is referred to as the “re-emission

source” [13], since it represents radiation energy absorbed by matter and re-
emitted. If we define the column vectors f and a with components fg and ag,
respectively, the re-emission term is expressed as the matrix-vector product

− ( f aT )u , (10)

where aT = transpose (a), and u is the column vector of unknowns. Since the
re-emission term does not couple cells, (10) corresponds to separate products:
one per cell, with each product of order G.

These observations allow expressing the matrix as

A = Λ−M1 −M2, (11)
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where Λ is diagonal, M1 contains the offdiagonal terms due to the (spatial)
diffusion term, and M2 contains the offdiagonal terms due to interfrequency
coupling. The corresponding elements are

Λg = Dd,g + σ + ag − fg ag ,
(M1 u)g = Do,g ug ,

(M2 u)g = fg

G∑
` 6=g

a` u` .

The decomposition (11) leads to the iterative scheme proposed by Axelrod et al
[2], which improves a guess u(i) by successively solving

( Λ−M2 )u(i+1/2) = w +M1 u
(i) (12)

( Λ−M1 )u(i+1) = w +M2 u
(i+1/2) . (13)

We solve (12)–(13) until u(i) converges. Convergence is gauged by evaluating
the 1-norms of w and the residual r = w −Au; the latter defined as,

r = w −Au(i+1) = M2 (u(i+1) − u(i+1/2)) .

The procedure is fast since multiplication by M2 is local to each cell, which is
very convenient if the spatial domain is decomposed on multiple processors.

We now review the derivation of the system Au = w. First, we assume that
Ψtc is not used, i.e., that σ = 1 in (7)-(9). For the SI scheme, the terms B`
and B′` are evaluated at T = T 0. For FI differencing, we require two types of
iterations. Equations (12) and (13) comprise the inner iteration. It is initialized
with u(0) equal to u0. Once the inner iteration has converged to sufficient accu-
racy, (6) yields the new temperature. The SI scheme essentially ends after the
inner iteration converges (see below). For FI differencing, after T is computed,
the outer iteration sets T ∗ = T , recomputes B` and B′` at T = T ∗ and returns
to the inner iteration. The outer iteration halts when T ∗ converges.

If Ψtc is invoked, more care is required because when σ > 1, the system
Au = w is not a true discretization of the multigroup equations. Despite this
complication, Ψtc brings robustness to the scheme. The Ψtc parameter τ plays
the role of an inverse timestep in pseudo-time. In principle, we could set τ to a
large value and solve a succession of linear systems. The solution of each system
represents an advance in pseudo-time. We continue advancing until we reach
the pseudo-time steady-state. This is easily seen by letting u∗g = ug on the RS of
(9) and moving the term to the LS. However, making τ large is not practical as
it involves many pseudo-time advances. Furthermore, the intermediate pseudo-
time results are of no interest. Consequently, we adopt the strategy of making
τ as small as possible. We discuss the strategy in section 3.

Ψtc may be used with either SI or FI differencing. In the former, once (12)
and (13) are converged, (8) yields the new temperature T . We then compute
the 1-norm of the “nonlinear” residual of the linearized equation for the matter
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energy,

rnl = V

(
ρ cv (T − T 0)−

G∑
`=1

a` [B` +B′` (T − T 0)− u`]

)
, (14)

where V is the cell volume. The residual is compared with the 1-norm of the
matter “energy” V ρ cv T , and in order to monitor stagnation, it is also compared
with the energy change over the pseudo-timestep V ρ cv (T − T ∗). With FI, the
temperature T , obtained from (6), is used to compute the emission B`. The
residual rnl is defined as in (14), except without the B′` (T − T 0) term.

Unfortunately, unless the iterations converge to round-off accuracy, energy
may not be conserved. Lack of conservation stems from values of user-set
parameters that control stopping criteria for the iterations. For example, it
may be efficient to halt once ||rnl||1 < 10−6, and the norm of the iterates
||(∆T )/T ||∞ < 10−2 since continuing brings little noticeable (visual) improve-
ment to the solution. However, if one were to stop at that point, energy may
not be conserved to desired accuracy. To restore conservation, we provide the
option of an additional step. After the iterations stop, we assume that the last
computed temperature T is “frozen” and use it to compute emission. In the
SI scheme, emission into the gth group is defined as Sg = Bg + B′g(T − T 0),
where Bg and B′g are evaluated using T 0. (To prevent unphysical behavior, Sg
is not allowed to be negative.) In the FI scheme, we evaluate Bg using T and set
Sg = Bg. Having a known emission allows us to compute the energy-conserving
radiation field. The groups decouple. For g = 1, . . . , G, we solve

−∇ ·Dg∇ug + ( 1 + ag )ug = u0
g + ag Sg .

After computing ug, the matter energy density change is

∆E = −
G∑
`=1

a`(Bg − ug ) ,

where, if using the SI scheme, Bg is linearized about T = T 0, or with FI, is
evaluated at T . The quantity V ∆E represents the average energy change of
the matter. In cells with more than one material, we adapt a suggestion of
Zimmerman [28], which simulates intra-cell gray diffusion. The scheme as-
sumes each material resides in its own sub-volume. We solve for separate,
frequency-averaged radiation energy densities and matter temperatures in the
sub-volumes. The energy change of the materials depends on the individual,
frequency-averaged opacities as well as on ∆E .

We now briefly describe the spatial discretization. We largely follow proce-
dures described by Howell and Greenough [7] (H&G) and Shestakov et al [20].
Our MGD solver is embedded in an Eulerian radiation-hydrodynamic code with
cell-centered fundamental variables: ρ, ug, etc. The code has distinct 1, 2, and
3D executables; mesh cells are line intervals, rectangles, and rectangular hexa-
hedra, respectively.
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In 2 and 3D, we discretize the diffusion term ∇ · Dg∇ug using the H&G
subroutines since those are readily available. We note in passing that H&G use
the Levermore-Pomraning flux limiter [10] instead of the simple expression in
(3). For 1D we have our own discretization; ∇ ·Dg∇ug is written as

[Di+1/2 (ui+1 − ui)/h−Di−1/2 (ui − ui−1)/h ] / h , (15)

where the group index g is suppressed and where i is the cell index.
The face-centered diffusion coefficient Di+1/2 is computed as follows. First,

we modify (3) by adding the term β/h to the denominator, where β is a small,
user-specified constant, e.g., 10−6. After factoring h, we obtain

D = ch / [ 3χh+ |∆(u)|/u+ β] ,

where we suppress the group index and note that the expression is to be evalu-
ated on a face. The denominator is now dimensionless. The second term is the
relative difference of u; we discuss its discretization momentarily. The product
χh is an optical depth. In this light, β provides a floor to the cell’s optical
depth. The aim is to avoid complications with the matrix solve in case χ → 0
and at the same time, uν is nearly spatially constant, which may easily happen
for high frequency groups. The face-centered opacity is an average of the ad-
joining cell-centered opacities. We offer several options. For the simulations in
this paper, we typically use inverse averaging, but other options (arithmetric,
square root) are also allowed.3 The term |∆(u)|/u is written as

2 |ui+1 − ui|/(ui+1 + ui) .

Other options are also available, e.g., instead of the arithmetic average, one
may substitute max(ui+1, ui) in the denominator. We plan to extend the above
discretization to higher dimensions.

Cell-centered data, such as cv, are obtained as in [7].
For coupling to the radiation field in mixed-material cells, we need averaged

material properties, e.g., opacities. These are obtained by mass averaging. Sup-
pressing the group index, if n is the material index and denoting averaging with
an overbar, the opacity (cm2/g) is given by mκ̄ =

∑
nmnκn, where mn is the

mass of the nth material. Equivalently,

ρ̄ κ̄
.=
∑
n

fnρnκn ,

3If the two opacities are very different, inverse averaging: κi+1/2
.
= 2κiκi+1/(κi+κi+1)→

2 min(κi, κi+1). Assuming the opacity is monotone with T , the result is nearly the same as
what is commonly done in gray diffusion, viz., forming a face-centered temperature, Ti+1/2

.
=

(Ti + Ti+1)/2, and calculating κi+1/2 directly with Ti+1/2. For example, if κ = κ0/Tn and
Ti � Ti+1, inverse averaging gives 2κ0/Tni while the face-centered T result is 2nκ0/Tni .
For the free-free gray opacity, n = 3.5; hence, the two results are similar. Of course, if the
opacity is not monotone with T , the face-centered technique is better. We plan to incorporate
that option in the future. However, we note that multigroup opacities are usually not strong
functions of T .
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where fn
.= Vn/V is the volume fraction.

This concludes the description of the algorithm used to advance the multi-
group equations on an AMR level. In the following section, we analyze the
convergence of (12)-(13), and we focus on how the Ψtc parameter σ ensures
stable, robust iterations, to yield a physical, i.e., nonnegative result.

3 Analysis of Ψtc

In this section we develop three criteria that set the Ψtc parameter. Disinter-
ested readers can safely skip the analysis and continue to section 4 where we
discuss the implementation of the multigroup scheme in the context of AMR.

Recalling that σ = 1 + τ , we develop lemmas that set the initial magnitude
of τ , where by initial we mean the following. A new value of τ is determined
at each time advance for each AMR level. The level advance consists of nested
loops. For the “inner” iterations, τ is fixed. After convergence, τ is reset to
τ → αττ , where ατ is a user-set input whose default value is 1/2. Section 5.2
describes an experiment with another setting of ατ . Our strategy for the initial
τ is to ensure a nonnegative w, diagonal dominance, and a convergent inner
iteration. For the derivation, it is convenient to define

B .=
G∑
`=1

a`B` , B′ .=
G∑
`=1

a`B
′
` , (16)

C ′g
.= agB

′
g/ρ cv , C .= B/ρ cv , C′ .= B′/ρ cv . (17)

3.1 Positivity of w

Before analyzing the effect of Ψtc, we examine the scheme’s behavior without
it. If σ = 1, the term u∗g disappears from (9). In the following discussion,
we ignore the T 0 − T ∗ term since for the SI scheme, or for the first FI inner
iteration, T ∗ = T 0. Since u0

g ∼ Bg, if either ∆t is large or the coupling is strong,
ag Bg � u0

g. Hence, in this case, the RS of the system, w ≈ ag Bg − fg B, where
B is defined in (16). If σ = 1, fg = agB

′
g/(ρ cv + B′) = C ′g/(1 + C′). Hence,

w ≈ ag (Bg +Bg C′ −B′g C) /(1 + C′) .

Since C and C′ are proportional to ∆t times the opacity, the sole Bg term in the
numerator is swamped by the other two terms when ∆t is large or the matter
is optically thick. In this limit, the sign of w equals the sign of (Bg C′ − B′g C),
which may be negative.

However, with Ψtc, nonnegativity of w is equivalent to the inequality

0 ≤ p(σ) = u∗g σ
2 + 2b̃ σ + c̃ ,

where

2 b̃ = u0
g − u∗g + ag Bg + C′ u∗g ,

c̃ = C′ (u0
g − u∗g + ag Bg ) + ag B

′
g [T 0 − T ∗ − C ] ,
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for the fully-implicit (FI) scheme. The SI scheme, adds the term ag B
′
g (T ∗−T 0)

to the definition of 2 b̃. If σ = 1, we recover the non-Ψtc scheme, which as shown,
may have indeterminate sign(w). At the end of the section we show that the SI
scheme is less robust. We first analyze the FI scheme.

For large σ, p is positive—even if u∗g = 0. The derivative dp/dσ increases
monotonically and is positive for σ = 1. If u∗j = 0, p increases linearly with σ

and has slope u0
g + ag Bg > 0. Hence, we have proved:

Lemma 1 If p|σ=1 ≥ 0, the RS of (9) is nonnegative for all σ ≥ 1. Otherwise,
(1) If u∗j > 0, the RS of (9) is nonnegative if

σ ≥ σmin = max
[(√

b̃2 − u∗g c̃− b̃
)/

u∗g

]
.

(2) If u∗j = 0, the RS of (9) is nonnegative if σ ≥ σmin = −max(c̃/2 b̃).

The lemma’s limit is very restrictive for large ∆t, as we now show. As
∆t→∞, the terms ag, C and C′ dominate the definitions of b̃ and c̃. Hence,

lim
∆t→∞

2 b̃ = ag Bg + C′ u∗g ,

lim
∆t→∞

c̃ = ag Bg C′ − ag B′g C .

Substituting into the expression for the root and factoring out agu∗g yields

lim
∆t→∞

σmin = max
ag
2

(√
(α− β)2 + 4γ − (α+ β)

)
,

where α = Bg/u
∗
g, β =

∑
` κ`,gB

′
`/ρcv, γ = (B′g/u

∗
g)
∑
` κ`,gB

′
`/ρcv and κ`,g =

κ`/κg. The term ag = c∆t ρ κg equals `c/`g, where `c is the maximum distance
a photon can travel in time ∆t and `g is the absorption mean free path for
the gth group. We now show the remaining expression is of order one. If the
radiation field is at equilibrium, α = 1. The term B′` is of order B`/T . If it is
exactly equal to B`/T , the expression multiplying ag/2 vanishes.

If u∗g = u0
g = 0 and p|σ=1 < 0, then for large ∆t, σmin → (B′gC − BgC′)/Bg,

which equals c∆t times a term of order one.
We now consider the SI scheme. As noted above, SI adds the expression

ag B
′
g (T ∗ − T 0) to the definition of 2 b̃. Effectively, the extra term means that

rather than having 2 b̃ depend on the emission source Bg (which is evaluated
at T ∗), the coefficient depends on the linearization Bg +B′g (T ∗ − T 0), with Bg
and B′g evaluated at T 0. If the temperature is decreasing the expression may be
negative. As a consequence, we are not assured that dp/dσ is positive. If u∗g is
nonzero, we can find a suitable σ. However, if u∗g = 0, p(σ) is a linear function
with possibly a negative derivative. If that case arises as we query the cells, we
set σ = 1 for the cell in question. Because of these uncertainties, by default, we
run with the FI scheme.
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3.2 Diagonal dominance

To prove diagonal dominance, we compute row sums. The diffusion terms sum
to zero, since the matrix composed of just these terms must annihilate the vector
(1, 1, . . .).4 Thus, for diagonal dominance,

σ + ag − fg
G∑
`=1

a` > d ≥ 0 .

Recalling the definition of fg, the relation is equivalent to

0 ≤ q(σ) = σ2 + 2b̃ σ + c̃ ,

where

2 b̃ = ag + C′ − d ,

c̃ = agC′ − C ′g
G∑
`=1

a` − C′ d ,

and C′, C ′g are defined in (17). As before, σ ≥ 1 is the domain of interest. The
quadratic q(σ) is nonnegative for sufficiently large σ. However,

q|σ=1 = (1 + C′) (1 + ag − d )− C ′g
G∑
`=1

a` .

The ag and C′ terms are proportional to ∆t. Hence, as ∆t→∞, the sign of the
expression is dominated by sign(C′−C ′g

∑G
`=1 a`). Since the expression varies as∑G

`=1 a`(B
′
` −B′g), the sign is indeterminate. However, (d q/dσ)|σ=1 is positive

for d < 2. We have proved:

Lemma 2 If q|σ=1 ≥ 0 and d > 0, A is strictly diagonally dominant for all
σ ≥ 1. Otherwise, A is strictly diagonally dominant if

σ ≥ σmin =
√
b̃2 − c̃− b̃ .

Remark For large ∆t,

lim
∆t→∞

σmin = max
ag
2

(√
(1− β)2 + 4δ − (1 + β)

)
,

where δ = (B′g/ρcv)
∑
` κ`,g and, as before, β =

∑
` κ`,gB

′
`/ρcv, and κ`,g =

κ`/κg. As in Lemma 1, when ∆t is large, σmin = `c/`g times a term which
should be of order one.

4In extreme cases, because of finite precision, the diffusion terms may swamp the other
terms. We discuss the possibility in Appendix B.
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3.3 Two-step iterative scheme

We’ve shown that for sufficiently large σ, A is an M-matrix. Hence, (Λ−M1)−
M2 and (Λ −M2) −M1 are regular splittings, and each half of the two-step
scheme (12)–(13) is a convergent iteration [25], Thm. 3.13, p. 89. Here we
analyze how the scheme reduces the error. Of particular interest is that for
large ∆t, the scheme (12)–(13) may not converge unless the Ψtc parameter σ is
sufficiently large.

It is convenient to change variables,

vj
.= aj uj .

The system of interest is then A′v = w, where

A′ = Λ−M1 −M2

and Λ is diagonal,

Λg = (Dd,g/ag)− fg + 1 + σ/ag

(M1 v)g = Do,g vg/ag

(M2 v)g = fg

G∑
6̀=g

v` .

If e(i) = v − v(i) defines the error for (12)–(13), the error satisfies

( Λ−M1 ) e(i+1/2) = M2 e
(i)

( Λ−M2 ) e(i+1) = M1 e
(i+1/2) . (18)

We express the error as a product of spatial and frequency components. For a
2D spatial domain,

e
(i)
k,m,g = ε(i)g e

√
−1 (kθk+mθm) , (19)

where the indices k and m refer to distinct spatial axes. We now analyze the
iteration error

e(i+1) = (Λ−M2)−1M1 (Λ−M1)−1M2 e
(i) .

Consider the unit vector ê` consisting of N components, with unity in the `th
position and zeros for the rest. Since the initial error e(i) is a linear combination
of such vectors, it suffices to analyze the case when the frequency component of
e(i) equals ê`. We will prove that for a properly chosen σ ≥ 1,

||e(i+1)||1 ≤ ζ < 1 .

In other words, if σ is sufficiently large, one iteration of the two-step scheme
reduces the error, which we will show occurs for ζ ′ < ζ, σ(ζ ′) > σ(ζ). However,
larger σ denote a smaller Ψtc time step, resulting in a longer pseudo-time to
reach the desired steady-state.
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Assuming that the diffusion coefficient does not vary in space5 and that we
use a uniform 2D spatial mesh with mesh size h, the error after the first half
step is

ε(i+1/2)
g = fg / [ 1− fg + (σ/ag) + 2ηg (2− cos θk − cos θm) ] , (20)

where
ηg = Dg/agh

2 = lg,D lg,a/3h2 ,

lg,a = 1/ρκg is the absorption mean free path, and lg,D is the diffusion mean
free path; the latter is the sum of the absorption and scattering opacities. In
(20), the expression multiplying ηg is nonnegative.6 Since fg < 1, ε(i+1/2)

g is
nonnegative. Assuming the worst case θ = 0 yields,

0 < ε(i+1/2)
g ≤ fg / ( 1− fg + σ/ag ) , (21)

a result which also holds in 1 and 3 dimensions. The bound is sharp; i.e., ε(i+1/2)

equals the bound if the original error e(i) has no spatially varying component.
Since (19) holds for i, i + 1/2, and i + 1, we now analyze the second half

step. In 2 dimensions,

M1 e
(i+1/2) = (cos θk + cos θm) 2 ηg e(i+1/2) .

In n = 1, 2 or 3 dimensions, the parenthetical expression contains 1, 2 or 3
cosine terms. If we again assume θ = 0, the expression is bounded by n.

To determine e(i+1) from (18) we invert (Λ − M2) using the Sherman-
Morrison formula by noting that

Λ−M2 = Λ′ − f eT ,

where e is the vector consisting of all ones, the components of f are the previously
defined fg, and Λ′ is diagonal with

Λ′g = η′g + 1 + σ/ag , η′g
.= 2n ηg . (22)

In (22), we generalized by allowing for n = 1, 2, or 3 spatial dimensions. After
some algebra, we obtain

|ε(i+1)
g | ≤ 1

Λ′g

[
η′g ε

(i+1/2)
g +

(
fg

1− eT (Λ′)−1 f

) G∑
`=1

η′` ε
(i+1/2)
`

Λ′`

]
,

where

1− eT (Λ′)−1 f = 1−
G∑
`=1

f`/Λ′` . (23)

5Since, as we show, the worst error arises for spatially constant error, we are free to ignore
the diffusion flux limiter in the analysis.

6The corresponding expression in 1 and 3 spatial dimensions is also nonnegative and
bounded by 1.0 and 3.0, respectively.
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Summing yields the 1-norm,

||ε(i+1)||1 ≤
[

1− eT (Λ′)−1 f
]−1

G∑
`=1

η′` ε
(i+1/2)
`

Λ′`
.

Our task is done if we can show that the RS is bounded by ζ. Using (23) this
entails showing that

G∑
`=1

η′` ε
(i+1/2)
`

Λ′`
≤ ζ

(
1−

G∑
`=1

f`
Λ′`

)
.

After substituting the bound (21) and simplifying, the inequality becomes

G∑
g=1

(
C ′g
Λ′g

)(
η′g

1− fg + σ/ag

)
≤ ζ

[
σ +

G∑
g=1

(
C ′g
Λ′g

)
(Λ′g − 1)

]
. (24)

To summarize, if (24) is satisfied the two-step scheme (12)–(13) converges and
each iteration reduces the error by a factor ζ.

We now show that if Ψtc is not used, i.e., if σ = 1, and ∆t is large, the
scheme may not converge. If σ = 1, since ag ∝ ∆t, lim∆t→∞ Λ′g = η′g + 1 and
lim∆t→∞ fg = pg, where pg > 0 and

∑
g pg = 1. Also, if σ = 1, since C ′g ∝ ∆t,

for large ∆t, the lone σ on the RS of (24) is swamped by the sum. Dividing
both sides of (24) by c∆t, the LS becomes

G∑
g=1

(
ρ κg B

′
G η
′
g

ρcv(1 + η′g)

)
(1− pg)−1 .

On the other hand, if ζ = 1, the RS tends to the same sum, but without the
term (1 − pg)−1. This makes the LS larger than the RS, giving the desired
contradiction. We have proved:

Lemma 3 If σ = 1 and ∆t is large, (12)–(13) may not converge.

We now estimate how large to make σ in order to satisfy (24). The terms ag
and C ′g are proportional to ∆t; also, σ ≥ 1 and Λ′g > 1. Hence, (24) holds for
small ∆t. To obtain a tractable expression, we derive a relation that stems from
a more stringent inequality. Equation (24) holds if we derive a σ that satisfies
a relation insensitive to the lone σ on the RS and is obtained by requiring that
the individual terms in the sum satisfy the inequality. This allows canceling the
common term C ′g/Λ

′
g. Hence, we seek σ satisfying

η′g/(1− fg + σ/ag) ≤ ζ (Λ′g − 1) .

Recalling that fg = C ′g/(σ + C′) and using (22) leads to

0 ≤ s(σ) .= σ3 + αs σ
2 + βs σ + γs ,
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where

αs = ag (1 + η′g) + C′ ,
βs = ag [(1 + η′g) C′ − C ′g + agη

′
g (1− ζ−1)] ,

γs = a2
g η
′
g [(1− ζ−1) C′ − C ′g] .

As before, σ ≥ 1 is the domain of interest.
To simplify the analysis, we assume ζ = 1, i.e., we seek a σ that guarantees

marginal convergence. To this end, we define

β̃s = ag [ (1 + η′g) C′ − C ′g ] ,

γ̃s = −a2
g η
′
g C
′
g .

Consider the cubic
s(σ) = σ3 + αs σ

2 + β̃s σ + γ̃s .

For σ ≥ 1, all derivatives of s are positive. If

s(1) = 1 + αs + β̃s + γ̃s ≥ 0 ,

then the scheme (12)–(13) converges. However, if s(1) < 0, we need a σ > 1
that renders s ≥ 0. To avoid computing cubic roots, we approximate s by a
quadratic w(σ),

w(σ) = (3 + αs)σ2 + (β̃s − 3)σ + γ̃s + 1 ,

and determine the root of w. The polynomials w and s and their first two
derivatives agree at σ = 1. The difference s(σ)− w(σ) = (σ − 1)3, i.e., w(σ) <
s(σ) for σ > 1. Hence, the positive root of w(σ) overestimates the σ needed for
marginal stability. We have proved:

Lemma 4 If w|σ=1 ≥ 0, the scheme (12)–(13) converges. If w|σ=1 < 0, the
scheme converges if

1 + τ = σ ≥ σmin =

√
(β̃s − 3)2 − 4 (3 + αs) (γ̃s + 1) + 3− β̃s

6 + 2αs
.

4 Multigroup AMR scheme

In this section, we describe our implementation of AMR for the multigroup dif-
fusion (MGD) system. The scheme necessarily adheres to the code’s general
architecture. That is, on each grid level each physics module (hydrodynam-
ics, radiation) is called in order. These comprise the level solves. If AMR is
used, the code refines in both space and time, as described by Howell and Gree-
nough [7]. After a refined level is time-advanced to the next coarse level time, a
synchronization is required in order to maintain conservation. For a scalar dif-
fusion equation and only two levels, coarse and fine, the “sync-solve” is difficult
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enough since it reduces to effectively an unstructured grid solve over the com-
bined coarse and fine grids. For MGD, the difficulty is compounded by having
to sync-solve a coupled system of diffusion equations.

We begin by recalling the equations,

∂tug = ∇ ·Dg∇ug + κg (Bg − ug ) , g = 1, . . . , G (25)

cv∂tT = −
G∑
g=1

κg (Bg − ug ) , (26)

where cv is now the heat capacity, while Dg and κg are the diffusion and cou-
pling coefficients. For ease of exposition, it is convenient to consider the one-
dimensional case. The level solve module computes the solution to

ug,i − u0
g,i = (Fg,i+1/2 − Fg,i−1/2)/hi + γg,i [Bg(Ti)− ug,i] , (27)

cv,i(Ti − T 0
i ) = −

G∑
g=1

γg,i [Bg(Ti)− ug,i] , (28)

where i is the cell index, γg,i = ∆t κg,i, and Fg,i+1/2 is the fluence on the right
edge of the ith cell,

Fg,i+1/2 = ∆tDg,i+1/2 (ug,i+1 − ug,i)/hi .

For simplicity, assume there are only two levels, coarse and fine. Since (25)-
(26) are reaction-diffusion equations, advanced with backward Euler temporal
differencing, the discretization is unconditionally stable. Hence, in the following,
in order to simplify the derivation, we assume that both levels are advanced with
the same timestep. However, in the code we also time-cycle. If i = 1, . . . , N
define the indices of all coarse-level cells, let j = 1, . . . , J define the indices of
the refined cells and i = I, . . . , N define the indices of those coarse cells which
are not refined. Coarse cells indexed with i = 1, . . . , I − 1 are defined as the
“covered” cells. We first update the entire coarse level, then the fine level.
Both levels require boundary conditions (BC). The coarse level uses the user-
specified BC. In the following example, the refined domain abuts the left side
boundary and consists of J cells. Hence, the fine level uses the same BC on the
left edge. The fine cell indexed with j = J lies in the interior of the domain.
We reuse the Howell and Greenough [7] infrastructure to provide a Dirichlet
condition for the cell. The datum is obtained by interpolating coarse grid data.
Let kj and hi define the mesh widths of the fine and coarse cells, respectively.
After multiplying by the mesh widths and summing over all cells and groups,
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we obtain

J∑
j=1

kj

[
cv,j(Tj − T 0

j ) +
G∑
g=1

(ug,j − u0
g,j)

]
+

N∑
i=I

hi

[
cv,i(Ti − T 0

i ) +
G∑
g=1

(ug,i − u0
g,i)

]

=
G∑
g=1

(
Fg,N+1/2 − Fg,1/2 − δFg,cf

)
, (29)

where the last term is the fluence miss-match of the gth group at the coarse-fine
interface,

δFg,cf = Fg,J+1/2 − Fg,I−1/2 .

The AMR scheme assumes that the system is linear. Hence, the emission is
expressed as

Bg(Ti) = B•g,i + B́•g,i(Ti − T •i ) ,

where B•g,i and its derivative with respect to T , i.e., B́•g,i, are evaluated at
a temperature T •i , e.g., B•g,i = Bg(T •i ). For semi-implicit Euler differencing,
T •i = T 0

i ; if fully implicit, T •i = Ti. Either way, because δFg,cf need not be
zero, (29) shows that energy may not be conserved after the two level advances.
To restore conservation, we introduce the system for the corrections

u′g,i = (F ′g,i+1/2 − F
′
g,i−1/2)/hi + γg,i [B́•g,i T

′
i − u′g,i] + δFg,cf/hi , (30)

cv,iT
′
i = −

G∑
g=1

γg,i [B́•g,i T
′
i − u′g,i] , (31)

where F ′g,i±1/2 denote the implicit fluxes; they are functions of u′g.
Equation (30) holds for all groups g = 1, . . . , G. In (30)–(31), the mesh

index i varies over the coarse cells not marked for refinement (i = I, . . . , N) as
well as the fine cells (j = 1, . . . , J). Following the methodology of [7], we put
the fluence mis-match δFg,cf into the coarse cell(s) abutting the interface of the
coarse and fine domains.

Summing the level-advance and correction solutions yields conservation. If
u∗g,i = ug,i + u′g,i and T ∗i = Ti + T ′i , combining (30)–(31) with (27)–(28), mul-
tiplying by the mesh widths, and summing over cells and groups, yields the
desired conservation relation,

J∑
j=1

kj

[
cv,j(T ∗j − T 0

j ) +
G∑
g=1

(u∗g,j − u0
g,j)

]
+

N∑
i=I

hi

[
cv,i(T ∗i − T 0

i ) +
G∑
g=1

(u∗g,i − u0
g,i)

]
=

G∑
g=1

(
F ∗g,N+1/2 − F

∗
g,1/2

)
.
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Equations (30)–(31) present a formidable task as it requires solving a si-
multaneous system of equations for (G+ 1)N̄ unknowns, where N̄ denotes the
number of refined cells plus the number of coarse cells not marked for refine-
ment. The grid is effectively unstructured since it combines coarse and fine
discretizations of the domain. We attack the problem by applying a variant
of the “Partial Temperature” scheme [11], [19]. In this scheme, groups are as-
signed a random order. As we cycle through the groups, each group computes
a correction u′g and a partial temperature Tg. Note the group index g for the
temperature. Although the scheme decouples the groups from each other, the
partial temperature Tg changes as we cycle through the groups. To be precise,
for each group, we solve the system

u′g,i = (F ′g,i+1/2 − F
′
g,i−1/2)/hi +

γg,i [B́•g,i Tg,i − u′g,i] + δFg,cf/hi , (32)

cv,i (Tg,i − Tg−1,i) = −γg,i [B́•g,i Tg,i − u′g,i] , (33)

where, as above, the mesh index i ranges over all refined cells and all coarse
cells not covered by the fine grid. For the group index g1 that we first pick,
Tg−1,i = 0 on the LS of (33). Solving (32)–(33) for g = g1 yields the first partial
temperature Tg1 . This temperature replaces Tg−1,i on the LS of (33) for the
second randomly picked group g2. After cycling through the groups, the last
one, gG, gives the desired corrected temperature, i.e., T ′i = T ′gG,i

.
If (33) is summed over all g, the LS telescopes and we obtain,

cv,i T
′
i = −

G∑
g=1

γg,i [B́•g,i Tg,i − u′g,i] .

Because we have Tg,i on the RS instead of T ′i , this is not exactly (31). However, if
Tg,i doesn’t vary too much as we cycle through the groups, the result is no worse
than one obtained with the (commonly-used) partial temperature (PT) scheme
since we apply PT to only corrections of the level-solve solution. Cycling through
the groups in random order avoids biasing the deviation since the coupling in
(32)–(33) may lower T for one group while raising it for another. In any case,
the combined solution (u∗g, T

∗) is still conservative.
Equations (32)–(33) are solved using a Schur complement. Since (33) does

not involve spatial derivatives, we can easily solve for Tg,i. After substituting
the result into (32), we obtain a single scalar equation for u′g,i, albeit now, on
the unstructured grid composed of coarse and fine cells, viz.,

u′g,i = (F ′g,i+1/2 − F
′
g,i−1/2)/hi + γg,i ηg,i [B́•g,i Tg−1,i − u′g,i] + δFg,cf/hi ,

where, ηg,i = cv,i / (cv,i + γg,i B́
•
g,i). After solving for u′g,i, equation (32) yields

Tg,i. The fluence miss-match δFg,cf acts as a source to the corrections. For
groups with long mean free paths (mfp) and weak coupling, δFg,cf diffuses over
the mesh. For groups with short mfp and strong coupling, δFg,cf is spread
locally over the group energy u′g,i and “absorbed” into the matter.
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Before closing this section, we note an inconsistency in the above multilevel
scheme, indeed in any scheme embedded in a multi-physics code like ours, which
advances several modules (hydrodynamics, heat conduction, radiation) using
operator splitting. With splitting, on each level, the modules are advanced in
order. For simulations using hydrodynamics and radiation diffusion and running
with coarse L0 and fine L1 levels, the order of operations is as follows. Level
L0 first advances hydrodynamics, then radiation. Next, if refining by a factor
of two, L1 advances in the order: hydrodynamics, radiation, hydrodynamics,
radiation. The multilevel solve advances in the same order: hydrodynamics,
then radiation. This implies that the radiation multilevel solve uses coefficients,
e.g., ρ, that are not the same as those used by the radiation level solve mod-
ules. In principle, one cannot simply add the correction equations to the level
solve equations and claim that the sum satisfies a consistent set of equations.
Nonetheless, the solution remains conservative.

5 Simulations

This section presents results using the multigroup scheme. We consider three
problems. In Section 5.1, we present a test problem with a known analytic
solution. We compare numerical results with tabular data, previously published
by Shestakov and Bolstad [22]. Using Richardson extrapolation, we show that
our Ψtc scheme, i.e., what we apply on a level, is second (first) order correct in
space (time). When running with AMR, the temporal accuracy is first order.
Accuracy of the spatial order depends on the norm used to measure convergence.
In the most stringent ∞-norm, the order degrades to first, or worse, as shown
at the end of section 5.1. Section 5.2 develops a variation of the Section 5.1
test problem in order to demonstrate the benefits brought by Ψtc. We do
this by running with and without Ψtc. We make several runs, each for only
one timestep. Runs are made with successively larger ∆t. Because of fully
implicit differencing, as ∆t → ∞, the numerical solution should approach the
time-independent, steady-state. The problem in Section 5.3 brings everything
together. We simulate the explosive expansion of a metal sphere suspended in
air. The expansion is due to sourcing a large amount of energy in a short time
into the sphere. Simulations are done with the code’s full functionality, i.e., we
couple all of the physics modules and also use AMR.

5.1 Linear MGD test problem

In this section we present results for a MGD problem with a known solution.
Due to the nonlinearity of the equations, there are no test problems with an-
alytic solutions. Thus, to validate and verify our algorithm, we consider the
linearized multigroup equations developed by Shestakov and Bolstad (S&B)
[22] and compare with tabular data.

The S&B tables present results for a 64-group discretization of the linearized,
nondimensional, multifrequency diffusion equations derived by Hald and Shes-
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takov (H&S) [6]. In the following, we briefly derive the nondimensional system,
describe the test problem, explain how to set up the problem in a radiation-
hydrodynamic code, demonstrate the problem’s relevance to typical applica-
tions of multigroup diffusion, compare results with an improved-accuracy table
[4] (supplied in the Appendix), and conclude by proving that our multigroup
scheme’s convergence is first order in time and second order in space.

The nonlinear multifrequency H&S system is derived by assuming slab sym-
metry, constant density, an ideal gas EOS, and an opacity characteristic of
free-free transitions. One advantage of the H&S system is its nondimensional
form, which enables comparing results from codes using different dimensional
units. The equations are obtained by choosing characteristic values for den-
sity ρ0, temperature T0, and inverse mean free path (mfp) κ = κ0/ν

3 with
κ0 = const and ν the frequency variable. Radiation emission is given by a Wien
distribution7, i.e., BW = B0 ν

3 exp(−hν/kT ), where B0
.= 8π h/c3 is the same

constant defining the Planck function. The inverse mfp appears in both the dif-
fusion, D = c/3κ, and the radiation-matter coupling terms, c κ. (The diffusion
is not flux-limited.) The normalization proceeds as follows. The values ρ0, κ0,
and T0 define the other normalization constants,

ν0
.= kT0/h , `0

.= ν3
0/κ0 , x0

.= `0/
√

3 ,
t0

.= `0/c , u0
.= B0ν

3
0 , E0

.= u0 ν0 .

By defining nondimensional variables, x′ = x/x0, t′ = t/t0, u′ = u/u0, ν′ =
ν/ν0, etc., (and dropping the primes) we obtain the normalized system,8

∂tu = ∇ · ν3∇u+ (ν3e−ν/T − u ) / ν3 , (34)

R∂tT = −T +
∫ ∞

0

(u/ν3) dν , (35)

where the constant
R = (h/k) (ρ0cv/u0)

and cv is the specific heat. Henceforth, unless stated otherwise, we use nondi-
mensional variables.

The H&S system yields a precise definition of the multigroup equations since
the group integrals can be computed exactly, an impossible task for definite inte-
grals of the Planck function. Given a group structure {νg}Gg=0, after integrating

7It is noteworthy that H&S’s choice of opacity and Wien spectrum for B gives the same
emission source κBW as would be obtained by including stimulated emission (SE) effects
[26] and using the Planck function, since SE multiplies κ by the factor (1 − e−hν/kT ). Also
note that without SE, the resulting Planck-averaged gray opacity does not exist; the integral
diverges.

8If instead of BW , H&S had used the Planck function, the factor e−ν/T in Eq. (34) would
be replaced by (eν/T − 1)−1. However, H&S would then be unable to form Eq. (35), since
the integral over all ν (the total emission) diverges—see prior footnote.
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over groups,

∂tug = ν̄3
g∂xxug + pg T − ug/ν̄3

g , g = 1, . . . , G (36)

R∂tT = −T +
G∑
g=1

ug/ν̄
3
g (37)

where ug =
∫
g
u dν and ν̄g is a group’s representative frequency. S&B define

ν̄g as √νgνg−1 and ν̄1 as ν1/2 since the lowest group boundary is zero. The
emission coefficients are

pg
.= exp(−νg−1/T )− exp(−νg/T ) . (38)

If the group structure is broad enough,
∑
g pg = 1.

Equations (36)–(37) are nonlinear because of the product pg T . To derive
an analytic solution, S&B follow the approach of Su and Olson [23], [24], which
requires a linear system since it uses Fourier and Laplace transforms. S&B
linearize by defining a fixed temperature Tf and substituting Tf for T in (38).

Except for one item, it is easy to assemble the S&B linearized MGD sys-
tem in a conventional radiation-hydrodynamic code. Such codes usually allow
an ideal gas EOS and a desired analytic form for the opacity. One chooses
arbitrary values for ρ0, κ0, T0, and picks a specific heat cv to set R. In our sim-
ulations, ρ0 = 1.8212111 · 10−5 g cm−3, T0 = 0.1 keV, and κ0 = 4.0628337 · 1043

cm−1 s−3. To comply with S&B, we chose cv to obtain R = 1. Our ρ0, T0, and
κ0 choices were dictated purely by reasons of convenience. Since we compare
with a nondimensional result, other constants may be used instead.

The subtle item is how to force a code’s spectral emission rate to equal
pg(Tf )T . We accomplish the task as follows. The gth group’s emission is
ag [Bg+B′g (T−T ∗ )], where ag = ∆t c ρ κg and κg is the group-averaged opacity.
The terms Bg and B′g are integrals over the gth group, at temperature T ∗, of
the Planck function and its derivative w.r.t. T . The integrals are computed by
a FORTRAN subroutine, which takes T ∗ as an input variable. For the test
problem, we use a different subroutine, which when called, first defines

B′g = (ν̄gν0)3 (8πk/c3)[exp(−yg−1)− exp(−yg)] ,

where yg = hνgν0/kTfT0. After computing B′g, the routine sets Bg = B′g T
∗.

In the yg definition, νg and Tf are nondimensional, while ν0 and T0 are the
normalization constants. The (ν̄gν0)3 term cancels the 1/ν3 dependence of the
opacity.

For the test, we consider S&B’s problem 1. The nondimensional domain
is 0 < x < X, where we set X = 4. The initial condition is T = 1(0) for
x < (>) 0.5 and u = 0 everywhere. We use symmetry boundary conditions at
x = 0 and homogeneous Milne at x = X, i.e., ug + (2`g/3) ∂xug = 0, where `g
is the mean free path. We use the same group structure as S&B: 64 groups,
starting at zero, with widths increasing geometrically by the factor 1.1. We set
ν1 = 5 ·10−4 as the width of the first group.9 The test simulates an initially hot

9A misprint in [22] erroneously has ν1 = 10−4.
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Figure 1: Linear MGD test. Comparison of the linear solution (Tf = 1.0) with
the solution of the nonlinear MGD system with Planckian emission; t = 1.

slab of material encased by cold matter. Since u is initially zero throughout, the
solution evolves by first coupling in the hot subdomain. As radiation diffuses
out, it couples to cold matter thereby heating it. Because of the opacity’s 1/ν3

dependence, the group’s diffusion and coupling rates differ.
Although the problem appears contrived, it represents effects of radiation

diffusion. We prove the assertion in Fig. 1 where we display the temperature T
and the total radiation energy density Er (=

∑
g ug) for two simulations ending

at t = 1. Solid lines pertain to the linearized system, where Tf = 1.0. Dashed
lines are solutions of the “physical” nonlinear MGD system using Planckian
emission. The similarity of the solutions validates the relevance of the test
problem. We used Tf = 1.0 (instead of S&B’s Tf = 0.1) because over the short
duration of the simulation, the emission temperature in the hot subdomain is
of order 1.0 rather than 0.1.
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x ε(T ) · 103 ε(Er) · 103 x ε(T ) · 103 ε(Er) · 103

0.00 0.0016 0.3012 0.51 4.8468 0.2785
0.20 0.0015 0.3028 0.52 1.8220 0.0031
0.40 0.0005 0.3268 0.53 1.0528 0.1293
0.46 0.0081 0.3903 0.54 0.7320 0.2128
0.47 0.0174 0.4252 0.60 0.3316 0.5263
0.48 0.0467 0.4945 0.80 0.6099 1.3841
0.49 0.2205 0.6979 1.00 1.4253 2.2138
0.50 0.0019 0.3518

Table 1: Linear MGD test. Relative errors times 1000. Numerical result ob-
tained with Tf = 0.1, h = 1/400, ∆t = 1/200.

We now present our MGD result using S&B’s parameter Tf = 0.1. Table 1
displays the relative errors of T and Er for various x, at t = 1.0. For a variable
f , we define the error ε(f) = |(fx − fk)/fx|, where fk are our numerical results
and fx are the S&B table values, listed in the Appendix.10 Table 1 shows
that we obtain better than 0.5% accuracy over the domain 0 ≤ x ≤ 1. The
worst error 0.48% occurs for T at x = 0.51. At that point, according to the
table in the Appendix, T undergoes more than a 20-fold drop from its value at
x = 0.49. We focus attention at the domain near x = 0.5 since that is where the
variables undergo the sharpest change. At these points, we obtain better than
0.1% errors, except for T at x = 0.52 and 0.53. Errors near x = 1.0 are less
important for two reasons. First, the S&B domain extends to infinity while ours
extends to only X = 4. Hence, for large x, our results become less accurate.11

Second, our code requires having a positive min(T ). Hence, we cannot initialize
with T = 0 in the cold region. At the end of the run, at x = 1, our temperature
has risen by only a factor of 104, which precludes reaching much better than
0.1% accuracy there.

We were unable to use the S&B tables for a convergence study to verify
our scheme’s convergence properties w.r.t. timestep ∆t and mesh size h. We
speculate that the reason is that the truncation is a mix of errors due to finite
∆t and h. Hence, a refinement study of one may be polluted by an overly coarse
value for the other. However, we can use Richardson extrapolation to prove that
our scheme is correct to first order in time and second order in space. Let vk
denote a numerical solution to an equation discretized by a constant parameter
k. For an initial value ODE, k represents the timestep; for a time independent

10For each point, fk is the arithmetic average of the two adjoining cell-centered values.
11When we compare results of two simulations at the cells adjoining x = 1.0 where one run

uses X = 4 and for the other, X = 8, we find the relative differences: 8 · 10−6, 2 · 10−7 for
Er, T , respectively. Since these differences are 3-4 orders of magnitude less than the Table 1
errors at x = 1.0, increasing the domain beyond X = 4 would have little impact on the entries
of Table 1.
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Figure 2: Timestep and meshsize orders of convergence; ∆t (∆x) on left (right)
sides; t = 1.0; see text.

equation, k is the mesh width. If v is the analytic solution,

vk = v + αka +O(kb) ,

where 0 < a < b, and where α is independent of k. In the asymptotic regime, the
ka term dominates the error, which allows ignoring the O(kb) term. Assuming
we have three solutions vk, v2k, v4k, a ratio of differences yields

v2k − v4k

vk − v2k
= 2a .

The order of convergence a is found by taking logarithms.
We apply this procedure to estimate the orders of convergence. First, for

the ∆t study, we fix h = 0.01 and obtain three results using k = 0.5 · 10−8 s,
2k and 4k. For the ∆x study, we fix ∆t = 0.5 · 10−8 s and use k = 0.0025. In
both studies, runs are halted when t = t0. We compute a at 15 points across
the domain [ 0, 1] for both Er and T and focus attention at x = 0.5, where the
fields undergo the sharpest change. Results are presented in Fig. 2. The left plot
clearly displays first order temporal convergence since a ≈ 1 across the domain.
The right plot supports our contention of second order spatial convergence. The
low a ≈ 1.82 (1.89) values for Er (T ) arise only at the two points x = 0.49, 0.51.
We claim that at these points, we are not yet in the asymptotic regime.

The results of Fig. 2 pertain to a solution obtained on a single level, i.e.,
without using AMR. We now analyze how AMR affects the order of spatial and
temporal convergence. For each study, ∆x and ∆t, we make three simulations
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Figure 3: Timestep order of convergence on composite AMR mesh; see text.

(as before, we halt at t = 1.0) in order to apply our Richardson extrapolation
technique. In each study, the composite grid consists of a “base” level L0 mesh
over the entire domain and two AMR levels. Each level refines by a factor of
two. Both L1 and L2 levels refine around x = 0.5. We examine convergence at
points x in all levels.

For the ∆t study, all three runs use the same composite spatial mesh. We
make three runs; each with fixed timesteps ∆t0, 2∆t0 and 4∆t0, where ∆t0 =
1/400. The composite mesh uses ∆x = 1/100 on level L0. The L1 mesh extends
over 0.36 ≤ x ≤ 0.64, and the L2 mesh extends over 0.42 ≤ x ≤ 0.58. We obtain
nearly the same temporal order as for the level solve. Figure 3 displays a for the
128 cells on 0 < x < 1. The lowest order, a ≈ 0.94, occurs at x = 0.38 (0.62)
for Er (T ) near the L0 and L1 coarse-fine interface.

The ∆x study requires more care. For each run, the L1 mesh extends over
0.25 ≤ x ≤ 0.75, and the L2 mesh extends over 0.375 ≤ x ≤ 0.625. We refer
to the three runs as R1, R2 and R4, where R1 and R4 use the “coarsest” and
“finest” composite grids, respectively. For the three runs, the level L0 mesh
sizes are 1/40, 1/80 and 1/160, respectively. Because each AMR level refines
by a factor of two, for R1, the L0, L1 and L2 mesh sizes are also 1/40, 1/80
and 1/160. The R2 mesh widths are 1/80, 1/160, and 1/320; R4’s are 1/160,
1/320 and 1/640. The composite grids are constructed so that within each level,
the R1 cell boundaries are also cell boundaries of runs R2 and R4. Hence, by
arithmetic averaging adjoining cell-centered data, we obtain numerical results at
the same points for each run. These (averaged) values are used for Richardson
extrapolation. Figure 4 displays the ratio (fR2 − fR1)/(fR4 − fR2) for the 79
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Figure 4: Meshsize order of convergence on composite AMR mesh; see text.

faces on 0 < x < 1. The ratio is approximately 4 over most of the domain, which
indicates second order convergence. However at the coarse-fine interfaces, the
order drops significantly; especially for T at x = 0.25 and 0.375.

The loss of accuracy at the coarse-fine (C-F) interfaces is due to the dis-
cretization of the diffusion operator. We use the infrastructure developed by
Howell and Greenough [7] to assemble the linear systems. Unfortunately, the
difference stencils—which are not discussed in detail in [7]—have a shortcoming
near the interface. A more accurate discretization would yield an asymmetric
matrix; for reasons of efficiency, symmetric linear solvers were preferred.

The inaccuracy can be analyzed by considering a derivative such as uxx near
the C-F interface. Assume that level L0 lies to the left of L1. For i = 0, 1, 2, let
xi denote the first three cell centers on L1 and let h define the L1 mesh size. Let
xc denote the center of the coarse cell next to the C-F interface. On L1 interior
points, e.g., on x1, uxx is approximated by the difference: (u0 − 2u1 + u2)/h2.
Hence, 1/h2 is the off-diagonal matrix coefficient corresponding to u0 on the
x1 row. For the matrix to remain symmetric, the u1 coefficient on the x0 row
must equal 1/h2. At x0, uxx is written as a difference of the right and left
fluxes divided by the cell width h. The right flux is (u1 − u0)/h. The left flux
is expressed as the difference (u0− uc) divided by the distance between the cell
centers. If L1 refines by a factor of two, the distance x0 − xc = 3h/2. Thus, at
x0, to maintain symmetry, uxx is approximated by(

u1 − u0

h
− u0 − uc

3h/2

)/
h .
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Unfortunately, the left flux is not centered on L1’s left-most face (at x = x0 −
h/2). A Taylor expansion shows that the difference is inconsistent; it equals
(5/4)uxx + O(h) and this is the source of the error. However, the error is
localized. In a global sense, it is O(h), when computed by integrating over
the entire domain:

∫
uxx dV . This concludes the refinement study on an AMR

mesh.
To summarize, in this section we have shown: (a) With a proper choice of

Tf , the test problem mimics MGD physics. (b) We obtain excellent agreement
with the S&B tables. (c) Our scheme is correct to first order in time and second
order in space. (d) On an AMR mesh, the scheme incurs the same loss of
accuracy as the one presented by Howell and Greenough [7] since we use the
same discretization at coarse-fine interfaces.

5.2 Benefits of Ψtc

We now present results that illustrate the benefits obtained by using Ψtc. We
show that for sufficiently large ∆t, the conventional (ADR) scheme of Axelrod
et al [2] i.e., where σ = 1, fails to converge. Furthermore, if ∆t is only moder-
ately large, so that the ADR scheme does converge, introducing Ψtc accelerates
convergence.

We begin by considering a variation of the problem introduced in Section 5.1.
In this section, unless stated otherwise, we use normalized variables. First, we
replace the Wien distribution with the Planck function. After normalizing, we
obtain an equation similar to (34) except that e−ν/T is replaced by (eν/T −1)−1.
Without stimulated emission effects, the multifrequency system is ill posed since
the RS of the temperature equation integrates the coupling term over all ν. (The
integral of Bν/ν3 diverges.) Since this is only a test, we ignore this complication.
We use seven geometrically spaced groups, whose widths double with increasing
frequency. The leftmost group boundary is zero; the first group width ν1 = 0.5;
the last boundary ν7 = 63.5. As in Section 5.1, the first group’s opacity is
evaluated at ν1/2 and the rest are evaluated at the square root average. The
spatial domain is 0 < x < 2. The initial conditions are as before, viz., T =
1 (0) for x < (>) 0.5 and u is initially zero. We impose symmetry boundary
conditions on both left and right endpoints. Hence, at all times, the total energy
should equal the initial amount

∫ 1/2

0
RT dx = 1/2.

Our test consists of several runs, each for only one timestep. All runs use h =
0.01. We run in fully implicit mode; hence, upon convergence, the temperature
T and emission source Bν(T ) are consistent. For infinitely large ∆t, a single
time advance yields the steady-state with T = Tr, where the radiation energy
Er = aT 4

r . In the nondimensional system, since Bν is the Planck function,
a = π4/15. Hence, the equilibrium temperature is the solution to,

2 (Te + a T 4
e ) = 1/2 , i.e., Te = 0.2314 .

The Ψtc result, where ∆t = 1000, is displayed in Fig. 5. The figure shows that
the two fields are nearly in equilibrium and almost spatially constant; Tr and
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Figure 5: Ψtc robustness test; solution after one time advance; h = 0.01, ∆t =
1000.

T vary less than 1% and 2.4% respectively. The initially high T in x < 0.5 has
decayed more than fourfold. The radiation field, as it coupled in the initially
hot region, diffused outwards thereby heating the cold region.

The simulations were run with and without Ψtc. Both runs consist of nested
“inner” and “outer” loops. The inner iterations (12)–(13) progress until the
residual and the iterate difference ||u(i+1/2)−u(i)|| fall below specified tolerances
(which may not happen). At that point, the outer iteration computes a revised
temperature T using (6). We then reset T ∗ = T and use it to recompute the
B` and B′` coefficients. For the first outer iteration, T ∗ = T 0. The iterations
conclude when the temperature change and the nonlinear residual fall below
their specified tolerances.

The problem’s difficulty increases with ∆t. Without Ψtc, it becomes im-
possible to solve if ∆t is very large because of the computer’s finite precision.
For large ∆t, the time derivatives, e.g., (u − u0)/∆t, are dominated by the
other terms. Hence, the initial condition (u0, T 0) becomes less relevant. Un-
fortunately, energy conservation depends on “remembering” the initial condi-
tion. The boundary conditions enhance the difficulty. If the initial condition
is indeed “forgotten,” the solution is not unique. Any equilibrium temperature
Te = T = Tr is a steady-state.

For runs without Ψtc, we impose σ = 1 and determine for which magnitude
∆t the iterations fail to converge. Runs using Ψtc proceed as follows. We
first compute the three different σ required to have (1) a nonnegative RS, (2)
diagonal dominance, and (3) convergence of inner iterations. That is, the σ must
satisfy the lemmas of Sections 3.1, 3.2 and 3.3. The iterations commence using
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the largest σ. The parameter σ is fixed for each outer iteration. Experience
has shown that the lemmas give an overly large σ. Hence, we use the lemmas
to set σ for only the first outer iteration. Subsequent outer iterations decrease
σ as follows. Recall σ = 1 + τ and that only when τ = 0 do we solve the
correct discretization of the equations. Successive outer iterations multiply τ
by a constant factor, i.e., τ → ατ τ . The factor may be changed by the user.
For small ατ , τ decreases quickly, but the resulting linear system is harder to
solve. For the hardest test, where ∆t = 1000 (see below), we experimented and
found better results with ατ = 0.5 than with ατ = 0.25.

Our tests begin with ∆t = 20, a magnitude at which both modes, with and
without Ψtc, converge and give nearly identical results. For this moderately
large ∆t, Ψtc brings the benefit of faster convergence: 37 vs. 50 CPU sec, i.e.,
nearly 33% faster. For ∆t = 100, the two modes still converge and give very
similar results, but they are now at the limit of convergence. The Ψtc run is
significantly faster: 56 vs. 205 sec, an almost fourfold improvement. For ∆t =
200, the non Ψtc run does not converge. However, its final iterate temperatures
still look physical; Tr is 0.5% uniformly higher than the corresponding converged
Ψtc profile. Our Ψtc implementation has its own limit. The Fig. 5 result,
where ∆t = 1000, also fails to converge. Nonetheless, the result is physical and
conserves energy to nearly 11 decimal digits. Non-convergence is evidenced by
small dips in the matter temperature Tm at the cells abutting the left and right
boundaries. At the end points, Tm changes very slowly from one iteration to
the next. The iterations effectively stall. Although the residuals continue to
decrease, they have such a slow decay that the run halts when it reaches the
iteration limit. The run without Ψtc and ∆t = 1000 diverges due to negative
internal energies. To summarize, Ψtc not only decreases the runtime but also
brings an extra degree of robustness.

5.3 Expansion of a hot aluminum sphere

In our opinion, the hardest aspect of code development is integrating a module
into a multi-physics code and running “real” problems. For us, this implies
simulations of multiple materials, whose properties are listed in tables, using
hydrodynamics, heat conduction, radiation modules, and, naturally, AMR.

For the final test we consider the following problem. An Aluminum (Al)
sphere of radius 15.5 cm is suspended in air. The initial densities are ρ =
2.68118198 and 0.00129 g/cm3 for Al and air, respectively. Both materials are
initially at T = 375.936 K.12 There is initially no radiation energy: Er|t=0 = 0.
At t = 0, we inject energy into the radiation field, but only into the domain
containing Al. The energy is added over 0.1 ns, at which point we have loaded
a yield Y (erg) into the problem. Energy is added with a Planckian spectrum.
Unless stated otherwise, the simulations presented in this section use two AMR
levels; h = 2, 4 cm, and a base grid with h = 8 cm.

12Inputs are tailored so that our EOS returns equal pressures for both materials, approxi-
mately 1 bar.
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We compare simulations in which radiation transport is modeled by a single
diffusion equation for the radiation energy density (gray diffusion) to runs where
the transport is modeled with multigroup diffusion (MGD). We describe results
where Y ≈ 11 kT and Y ≈ 1 MT. 13

The problem simulates a strong explosion in air; the parameter choice corre-
sponds to a nuclear source. The effects are well-known: Zel’dovich and Raizer
[26] Ch. IX, Brode [5], Landshoff [9]. Initially, radiation dominates the dynam-
ics: a fast thermal wave propagates through the surrounding air. When the
wave slows to sonic speeds (of the hot air), the steep pressure gradient gives rise
to a strong shock. Finally, hydrodynamics dominates. Salient effects are similar
to the simulation of a point explosion using hydrodynamics and nonlinear heat
conduction (Shestakov [21], “Non-Self-Similar-Problem” section).

Before presenting our results, we summarize them. For the lower yield, gray
and MGD simulations are very similar. However, for Y = 1 MT, the gray and
MGD simulations differ significantly and this, we feel, is a new result. Although
it contradicts established theory (Brode [5]) we believe it to be correct since it is
explained by examining spectra of the radiation field (see below). Furthermore,
our MGD result is corroborated by the trusted computer code LASNEX [27].

Figures 6, 7 and 8 display densities, temperatures and velocities, respectively.
Each figure contains three curves. Two are from gray and MGD simulations with
Y = 11 kT. The third curve is from a simulation using gray diffusion and a yield
Y = 1 MT. The 1 MT curves are drawn after implementing Sachs scaling, i.e.,
by scaling time and radii by the cube root of the yield ratio RY = (Y1/Y2)1/3,
where Y1 = 11 and Y2 = 1000. Hence, while the Y = 11 results are taken at
t = 1 ms, the 1 MT results are at t = 4.48 ms and the 1 MT radii have been
divided by RY . Figure 6 displays log10(ρ/ρ0), where ρ0 = 0.00129 g/cm3 is the
ambient air density. Although the close agreement displayed in Figs. 6, 7 and 8
may not surprise, it is indeed remarkable how well the gray scaled 1 MT curves
compare with the lower yield results. The similarity of the Y = 11 kT gray and
MGD curves indicates that gray diffusion is adequate for small Y .

The results in Figs. 6, 7 and 8 are characteristic of an event transitioning from
a radiation dominated regime to one dominated by hydrodynamics. Figures 6
and 7 depict a strong shock at r = 31 m separating from a fireball of radius
26-27 m.

In order to validate our gray Y = 1 MT simulation, we continue the run
to t = 7 ms and find good qualitative agreement when we compare with Brode
[5]. Quantitatively, at t = 7 ms, we find a strong shock at r = 164 m, whereas
Brode finds it at r ≈ 190 m. Both simulations show a nearly tenfold density rise
at the shock, while inside the fireball, ρ ≈ 5 · 10−5 cm3. For the central (r = 0)
temperature we have T = 2.04 · 105 K at t = 7 ms vs. ≈ 2 · 105 K for Brode.
Our fireball radius is 138 m (≈ 160 for Brode), and our shock temperature is
1.65 · 104 K (≈ 1.6–1.7 · 104 K for Brode).

We now compare the gray and MGD results for Y = 11 kT yield at the earlier
13Using the conversion 4.18 · 1019 erg/kT, the actual yields are 10.9731 kT, 0.9870682 MT,

10.9665 kT, and 0.9862604 MT for the two gray and two MGD runs, respectively.
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time, t = 1 µs, when the solution is dominated by radiation. At this time, since
the thermal wave is supersonic, it suffices to only examine the temperatures T
and Tr, where, for both gray and MGD simulations, Tr

.= (Er/a)1/4 and a is the
radiation constant. (Although the Al ball has ballooned to nearly 1 m, which
launches a strong shock at the Al/air interface, there is little separation between
the interface and the shock. Thus, beyond 1 m, the air density is nearly the
same as it was initially.) Figure 9, which displays the temperatures, shows little
difference between gray and MGD. Both models display a fireball extending to
r = 8.1-8.4 m and a central T ≈ 2.5 · 106 K; both also display the start of the
shock at the Al/air interface, as evidenced by the spike at r ≈ 0.8 m.

However, for high yield, the gray and MGD simulations differ dramatically.
Figure 10 displays T and Tr for Y = 1 MT at t = 1µs.14 We see that for gray
diffusion, T = Tr; just as for Y = 11 kT. The gray diffusion thermal wave,
which is still supersonic, has a front at r ≈ 30 m. However, the MGD result
is strikingly different. Multigroup diffusion lowers the central temperatures by
more than 10%. More surprisingly, for MGD, T and Tr are tightly coupled only
out to r ≈ 20 m. Beyond that, at T ≈ 8.5 · 105 K, T and Tr decouple. The
radiation temperature extends to r ≈ 300 m, which is the free-streaming limit.

To examine why the high yield gray and MGD simulations differ, we turn
14The spatial scale of Figure 10 cannot resolve the small, but nevertheless significant hydro-

dynamic effects which expand the Al sphere to r ≈ 80 cm. For MGD, the temperature is not
monotone w.r.t. to r near the origin. It falls from a central value of 2.6 · 106 deg to 1.8 · 106

at the edge of the sphere (due to the rarefying Al) then rises to 2.06 · 106 in the air.
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Figure 11: Hot sphere problem. Spectral radiation energy (erg/cc/keV) vs.
frequency (keV) at various radii; multigroup physics only; Y = 1 MT, t = 1µs.

off hydrodynamics and heat conduction, repeat the simulation, and find tem-
peratures similar to Fig. 10. This is not surprising since the dynamics are
radiation-dominated. To gain more insight, we examine spectra. Figure 11 dis-
plays the spectral radiation energy vs. frequency at 5–160 m. Evidently, the
frequency-dependent air opacity is responsible. High frequency (30–200 keV)
photons travel largely unimpeded whereas near the origin, the spectrum devel-
ops a hole at 10 keV. Moving away from the center, the hole progresses to lower
frequencies so that at 100–200 m, the spectrum consists of two peaks, one at
the high frequencies, another near the visible range. Since the latter contains
little energy, the protruding radiation “tongue” of Fig. 10 is due to the high
frequencies.

We believe that the difference between the Y = 11 kT and Y = 1 MT MGD
simulations is due to the factor of 100 between the yields. Because the energy is
added with a Planckian spectrum, the initial maximum temperatures differ by
roughly the fourth root, or approximately 3. Since the initial temperatures are of
order 3–5 keV, the high frequencies have a nearly Wien distribution, ν3 e−ν/T .
Hence, we expect the Y = 11 kT spectrum to be e−ν/T/e−ν/3T or e−2ν/3T

times smaller than the high yield case. Substituting T = 3 and ν = 100 keV
gives a very small number. The conclusion is that the Y = 11 kT case has an
insignificant number of those energetic photons that are not absorbed by air.

We conclude the section by comparing results of the 1D spherical and 3D
Cartesian versions of our code. We return to running with full functionality,
i.e., with hydrodynamics, heat conduction, as well as with two AMR levels. For
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the Cartesian simulation, the Al “sphere” is a cube 31 cm per side (in contrast
to the 1D, 31 cm diameter ball.) The difference in volumes implies that the
initial central, Cartesian temperatures are necessarily smaller in order to have
the same yield. Figure 12 displays the radial 1D results and a x axis lineout of
the Cartesian run. The agreement of the profiles is self-evident.

To summarize, we have simulated real-life problems, viz., air bursts with
yields Y = 11 kT and 1 MT. We’ve shown that for low Y , gray and MGD
give similar results. However, for large Y , they differ for early times when the
dynamics are dominated by radiation. Our high yield MGD simulation contra-
dicts results of Brode [5]. However, Brode’s pioneering simulations were done
many years ago when the relatively limited computational resources precluded
using sophisticated modules such as MGD.

6 Conclusion/Summary

We have described a numerical scheme to solve the radiation multigroup diffu-
sion equations. The scheme is implemented in a radiation-hydrodynamic code
with the patch-based AMR methodology, originally proposed by Berger and
Oliger [3] for hyperbolic partial differential equations. Our scheme consists of
two parts. The first, described in Sections 2 and 3, is applied on a level of the
AMR grid layout and may be adapted to any code. This part consists of adding
Ψtc to the “fully-implicit” iterative scheme of Axelrod et al [2]. Ψtc brings
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an extra degree of robustness and enhances convergence of the Axelrod scheme.
We have developed lemmas that determine the minimum magnitude for the Ψtc
parameter τ to ensure that the iterations converge and the result is physically
meaningful. The appropriate magnitude depends on the problem.

Our implementation of Ψtc is not optimal—at least for our AMR code archi-
tecture. In our code, for each AMR level, we compute a single scalar parameter
τ . However, the levels consist of a collection of grids (rectangles in 2D) that
need not be connected. If the grids are not connected, they form independent
problems. Hence, it would be more efficient to use different τ for disconnected
grids.

The second part of our scheme, the sync-solve (SS), addresses a specific need
of our code, viz., the requirement of having an energy-conserving result on the
composite grid of multiple AMR levels. For the multigroup equations, this part
reduces to a coupled system of elliptic equations on the unstructured grid com-
bining all levels. Since the SS is intended to be a small correction to the result
of the level solves, we adapted the key element of the “partial temperature”
scheme of Lund and Wilson [11]. This allowed reducing the multigroup SS to a
collection of scalar SS’s. We were then able to reuse existing software.

This paper included simulations of three problems. The first two are ideal-
ized tests of only the multigroup module. The third is a “real” problem, which
uses the full capability of the code: AMR, multiple materials, etc. The first
problem was chosen because of its non-triviality and the availability of analytic
results with which to compare. We obtained excellent agreement and verified
the convergence properties of the scheme. The second problem illustrated the
benefits brought by Ψtc. We compared the conventional scheme of Axelrod et
al [2] with our Ψtc-modified version. For hard problems, Ψtc either decreased
run times or ensured convergence in regimes where the conventional scheme di-
verged. The third problem showed that our multigroup module has been fully
integrated into the code and has already extended the scientific frontier. For
a high yield air burst at STP, we found that gray diffusion gives an incorrect
result during the radiation-dominated regime because gray fails to capture the
frequency-dependent effects of the air opacity.

References

[1] A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. Welcome, “A
Conservative Adaptive Projection Method for variable density Incompress-
ible Navier-Stokes Equations,” J. Comp. Phys., 142, 1–46 (1988).

[2] T. S. Axelrod, P. F. Dubois, and C. E. Rhoades Jr. “An implicit scheme for
calculating time– and frequency–dependent flux limited radiation diffusion
in one dimension,” J. Comp. Phys., 54, 2, 205–220, (1984).

[3] M. J. Berger and J. Oliger, “Adaptive mesh refinement for hyperbolic par-
tial differential equations,” J. Comp. Phys., 53, 484, (1984).



REFERENCES 39

[4] J. H. Bolstad, private communication, Lawrence Livermore National Lab-
oratory (2006).

[5] H. L. Brode, “Review of Nuclear Weapon Effects,” Ann. Rev. Nuclear Sci-
ence, 18 (1968).

[6] O. H. Hald and A. I. Shestakov, “Stability of stationary solutions of the
multifrequency radiation diffusion equations,” SIAM J. Appl. Math., 65,
1, 175-193 (2004).

[7] L. H. Howell and J. A. Greenough, “Radiation diffusion for multi-fluid
Eulerian hydrodynamics with adaptive mesh refinement,” J. Comp. Phys.,
184, 53–78 (2003).

[8] C. T. Kelley and D. E. Keyes, “Convergenge analysis of pseudo-transient
continuation,” SIAM J. Num. Anal., 35, 508 (1998).

[9] R. K. M. Landshoff, “Thermal radiation Phenomena, v.5 Radiation Hydro-
dynamics of High Temperature Air,” DASA 1971-S 3-27-67-1.

[10] C. D. Levermore and G. C. Pomraning, “A flux-limited diffusion theory,”
Astrophys. J., 248, 321–334 (1981).

[11] C. M. Lund and J. R. Wilson, “Some Numerical Methods for Time-
Dependent Multifrequency Radiation Transport Calculations,” Lawrence
Livermore Natl. Lab. report UCRL-84678, July 29, (1980).

[12] D. Mihalas and B. Weibel-Mihalas, Foundations of Radiation Hydrodynam-
ics, Dover Publications, Inc., Mineola, New York, 1999, ISBN 0-486-40925-
2.

[13] J. E. Morel, E. W. Larsen, and M. K. Matzen, “A synthetic acceleration
scheme for radiative diffusion calculations,” J. Quant. Spectrosc. Radiat.
Transfer, 34, 3, 243–261 (1985).

[14] J. E. Morel, “Diffusion-limit asymptotics of the transport equation, the P1/3

equations, and two flux-limited diffusion theories,” ” J. Quant. Spectrosc.
Radiat. Transfer, 65, 5, 769–778 (2000).

[15] G. L. Olson, L. H. Auer, and M. L. Hall, “Diffusion, P1, and other approx-
imate forms of radiation transport,” J. Quant. Spectrosc. Radiat. Transfer,
64 619–634 (2000).

[16] G. J. Pert, “Physical constraints in numerical calculations of diffusion,” J.
Comp. Phys., 42, 20–52 (1981).

[17] G. C. Pomraning, The Equations of Radiation Hydrodynamics, Dover Pub-
lications, Inc., Mineola, New York, 2005, ISBN 0-486-44599-2.



REFERENCES 40

[18] J. N. Shahid, R. S. Tuminaro, and H. F. Walker, “An inexact Newton
Method for fully coupled Solution of the Navier-Stokes equations with heat
and mass transport,” J. Comp. Phys., 137, 155-185 (1997).

[19] A. I. Shestakov, J. A. Harte, and D. S. Kershaw, “Solution of the Diffu-
sion Equation by Finite Elements in Lagrangian Hydrodynamic Codes,” J.
Comp. Phys., 76, 2 (1988).

[20] A. I. Shestakov, L. H. Howell, and J. A. Greenough, “Solving the radiation
diffusion and energy balance equations using pseudo-transient continua-
tion,” J. Quant. Spectros. Rad. Transfer, 90, 1–28 (2005).

[21] A. I. Shestakov, “Time-dependent simulations of point explosions with heat
conduction,” Phys. Fluids, 11, 5 (1999).

[22] A. I. Shestakov and J. H. Bolstad, ”An exact solution for the linearized
multifrequency radiation diffusion equation,” J. Quant. Spectrosc. Radiat.
Transfer, 91, 2, 133–153 (2005).

[23] B. Su and G. L. Olson, “Non-grey benchmark results for two temperature
non-equilibrium radiative transfer,” J. Quant. Spec. Rad. Trans., 62 (1999)
279–302.

[24] B. Su and G. L. Olson, “An analytical benchmark for non-equilibrium ra-
diative transfer in an isotropically scattering medium,,” Ann. Nucl. Energy,
24, 13 (1997) 1035–1055.

[25] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1962.

[26] Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-
Temperature Hydrodynamic Phenomena, Dover 0-486-42002-7 (2001).

[27] G. B. Zimmerman and W. L. Kruer, comments in Plasma Physics and
Controlled Fusion, 2, 51 (1975).

[28] G. B. Zimmerman, private communication, Lawrence Livermore National
Laboratory (2005).



A REVISED S&B TABLE 41

A Revised S&B table

x T Er ε(T ) ε(Er)
0.0000000E+00 9.9373253E-01 5.6401674E-03 5.4E-09 5.9E-11
2.0000000E-01 9.9339523E-01 5.5646351E-03 1.8E-08 7.0E-11
4.0000000E-01 9.8969664E-01 5.1047352E-03 6.0E-09 6.2E-11
4.6000000E-01 9.8060848E-01 4.5542134E-03 9.8E-09 6.4E-11
4.7000000E-01 9.7609654E-01 4.3744933E-03 1.3E-08 6.9E-11
4.8000000E-01 9.6819424E-01 4.1294850E-03 8.2E-09 6.3E-11
4.9000000E-01 9.5044751E-01 3.7570008E-03 6.7E-09 6.3E-11
5.0000000E-01 4.9704000E-01 2.9096931E-03 7.7E-09 2.8E-11
5.1000000E-01 4.3632445E-02 2.0623647E-03 1.2E-08 6.3E-11
5.2000000E-01 2.5885608E-02 1.6898183E-03 1.3E-08 6.3E-11
5.3000000E-01 1.7983134E-02 1.4447063E-03 1.8E-08 7.0E-11
5.4000000E-01 1.3470947E-02 1.2648409E-03 1.5E-08 6.5E-11
6.0000000E-01 4.3797848E-03 7.1255738E-04 1.1E-08 6.4E-11
8.0000000E-01 6.4654865E-04 2.3412650E-04 2.3E-08 6.8E-11
1.0000000E+00 1.9181546E-04 1.0934921E-04 1.0E-08 6.1E-11

Revised S&B table (Bolstad [4]); time t = 1.0, Tf = 0.1. Columns 4 and 5
give maximum, absolute error estimates. Hence, at x = 0, entry T is correct to
±5.4E-09, i.e., has 8 trustworthy digits.

B Diagonal dominance; large mean-free-paths

As noted in the footnote of Section 3.2 (and remarked by a referee), long mean
free paths may lead to diffusion coefficients that overwhelm the other matrix
terms. Thus, the estimate for σ, obtained in Lemma 2, may be insufficient. The
matrix diagonal contains three terms of various magnitudes. The first stems
from the discretization of the ∂/∂t derivative. Because we multiply by ∆t, the
term equals 1. The second term is due to the coupling coefficient ag; the term
equals ∆t c/lg, where lg = (ρ κg)−1 is the mean free path. The third term is
the diffusion coefficient, which after including the time step and discretization
of ∂2/∂x2, is of the form ∆t c l′g/3h

2, where l′g is the flux-limiter-modified mean
free path;

l′g = 1/[(lg)−1 + (3h)−1(β + |∆ug|/ug)] ,

where β is a small, user-set constant, whose utility will become evident and
∆ug/ug is a normalized difference of adjoining cell-centered values.

In the limit lg →∞, the coupling term ag is negligible. Hence, we compare
the diffusion term with unity. As lg → ∞, l′g no longer depends on lg. After
factoring a factor of h, the diffusion term is of magnitude,

(∆t c/h) / (β + |∆ug|/ug) .

The quantity β−1 plays the role of the maximum number of mean free paths
allowed, in units of h. If the gradient of ug is not negligible, |∆ug|/ug dominates
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the diffusion term. If both lg � 1 and |∆ug|/ug � 1, β dominates. In that case,
we are left comparing 1 to ∆t c/h β. The parameter β is small; we often use 10−4.
(However, as shown in appendix C, 10−4 is too large.) Using c = 3 · 1010 cm/s
gives a diffusion term of order

3 · 1014 ∆t/h . (39)

If this exceeds machine precision, the σ estimate of Lemma 2 does not guar-
antee diagonal dominance. We are now left with problem-specific estimates.
Clearly, simulations requiring small h or large ∆t are problematic. Luckily, our
envisioned applications yield reasonable ∆t/h ratios.

Consider two topics, ICF hohlraums and simulations of the type described
in Section 5.3. For the former, mesh sizes are rarely less than 0.1 microns, i.e.,
min(h) = O(10−5) cm. Luckily, in ICF, typical total simulations times are of
order of tens of ns, requiring significantly smaller timesteps. Using max(∆t) =
O(10−9) s, makes (39) of order 1010, which, when compared to unity, is six
orders of magnitude above double precision.

For applications of the type presented in section 5.3, while timesteps vary
enormously, so do mesh sizes; hence, the ratio ∆t/h remains moderate. For long-
time simulations requiring ∆t exceeding 1 s, it is unlikely that it is necessary
to resolve details less than 100 cm. Substituting these values into (39) leaves
3 · 1012, which, is also resolved by double precision, but just barely.

C Full physics convergence analysis

This section presents a spatial convergence analysis of the scheme as it may be
used in practice. Particular attention is devoted to effects of the flux limiter
and AMR. In contrast to what was analyzed at the end of section 5.1, here we
refine about a moving front.

The exactness of the solution depends upon the magnitudes of ∆t and ∆x.
To ensure that the time step does not dominate the error, we use a very conser-
vative value for ∆t, which is much smaller than what would be used in practice.
When ∆t is small, Ψtc is not needed. Furthermore, we find that solutions using
the FI and SI schemes are indistinguishable for our chosen ∆t. We obtain the
same result by solving nonlinear problems for each time step (FI) as by lineariz-
ing the equations and solving linear systems (SI). In order to save computer
time, the simulations in this section use the SI scheme and do not use Ψtc.

To address concerns of a referee, we consider a stringent test and focus
attention on the problem described in section 5.3. An Al sphere of 15.5 cm radius
is suspended in air. Initially, both sphere and air are at STP; the radiation field
is initially zero. We load a Y = 1 MT source (approximately 4 · 1022 erg) into
the radiation field only in the region containing Al. The source is loaded into
a Planckian spectrum over a time interval ts = 0.1 ns. The interval is so short
that over its duration the main effects are to raise the radiation field to a high
temperature and to a lesser extent also increase the matter temperature due
to coupling. At t = ts, most of the energy is in the radiation field inside the
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Figure 13: Hot sphere problem. Radiation energy density Er (erg/cc), Y = 1
MT, t = 0.1µs, ∆x = 0.5 cm. Air region.

sphere. The radiation temperature Tr is largely uniform over the sphere and
equals approximately 1.3 · 108 deg, or nearly 12 keV.

To highlight effects of the flux limiter, we examine the solution at t = 10−7 s.
In order to analyze errors due to only our multigroup scheme, we turn off all
other physics, e.g., hydrodynamics. This yields profiles that are similar to those
obtained with a “full physics” simulation since at t = 10−7 s hydro effects
should be negligible. (Assuming maximum sound/shock speeds of O(107) cm/s,
the most that hydrodynamics can do is push the Al/air interface out a few cm
while the hot sphere can radiate out to 3000 cm.)

We examine the total radiation energy density; Fig. 13 displays Er for r >
40 cm. Inside the Al, Er is much larger than what is shown in Fig. 13; it decays
steeply from a central value of 2.6 · 1014 erg/cc, to 1.5 · 1012 at r = 16, which
designates the air cell adjoining the sphere. Hence, the radiation temperature
decays from a central value of Tr = 14 · 106 to 3.8 · 106 deg. The change in slope
at 1400 cm is explained by examining the temperatures Tr and T ; see Fig. 14.
The distance r = 1400 marks the approximate extent of the fireball. However,
radiation propagates out to r = 3000 cm, then drops sharply; the drop due to
the flux limiter.

We identify three distinct regions in the profiles of Figs. 13 and 14. The
innermost, out to r = 1400 denotes where we can expect the diffusion equa-
tions to yield an accurate representation of the physics. There, the domain is
largely optically thick, as evidenced by the close agreement of T and Tr. The
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Figure 14: Hot sphere problem. Radiation Tr and matter temperature T (deg),
Y = 1 MT, t = 0.1µs, ∆x = 0.5 cm. Air region.

region 1400 < r < 2900 denotes an optically thin region, where the diffusion
approximation is expected to fail. Lastly, in the region r > 2900 the solution
depends entirely on a kludge: the flux limiter. However, although at this time
the limiter is dominant only near r = 3000, it has affected the entire solution
because the propagation of the front is governed by the limiter and hence all
cells out to the present position of the front have been traversed by the leading
edge of the wave.

For the purposes of the convergence study, we define the results displayed
in Figs. 13 and 14 as the “converged” solution. We obtain it using a uniform
grid ∆x = 0.5 cm and an initial ∆t = 10−16 s. The timestep increases by 5%
each cycle but is not allowed to exceed 2 · 10−12 s. We take 50,183 steps to
reach the final time. The discretization yields a light-speed Courant number
Cc

.= c∆t/∆x = 0.12. Although the value may seem overly cautious, it is still
too large. A transport calculation would preclude any signal from propagating
beyond r = 3016 cm. However, our finest-grid diffusion result yields Tr =
1.8 · 106 and 12,000 deg at r = 3016 and 3116 cm, respectively. Although the
enhanced diffusion of our result may be due to our choice of a limiter, and as
analyzed by Morel [14] and Olson et al [15] there are other limiter choices, all
limiters reduce to discretizing the equation ut = cux.

We time-lag the limiter for two reasons. (1) Flux-limiting is a kludge. Thus,
a time-advanced limiter is not only more complicated to implement but it does
not yield a more accurate solution. (2) When a front propagates into cold ma-
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terial, a time-lagged limiter puts a front slightly behind where a time-advanced
limiter would place it.15 So, since the raison d’etre of a limiter is to retard the
flow, we time-lag.

Before describing the convergence study, we take up two topics. The first is a
truncation error analysis of a diffusion equation with a time-lagged flux limiter.
If the limiter is dominant, the face-centered diffusion coefficient is Di+1/2 =
[(ui+1 + ui)/2]/[|ui+1 − ui|/∆x], where i denotes the cell index. After inserting
this expression into the equation discretized with backward Euler we obtain,

u′i − ui = (Cc/2) [Gi+1/2 (ui+1 + ui)−Gi−1/2 (ui + ui−1) ] , (40)

where Gi+1/2 = (u′i+1 − u′i)/|ui+1 − ui| and primes denote the time-advanced
variable. We ignore the absolute value operator since it only serves to enforce
flow down the gradient. Since G is of the form f(t+∆t)/f(t), Gi±1/2 = 1+∆t F ,
where F has units of inverse time and its leading term is f ′(t)/f(t). Expanding
the LS of (40) about the time-retarded value yields, ∆t ∂tu + O(∆t)2, while
inserting the expansions of Gi±1/2 reduces the RS of (40) to

(Cc/2) [ (ui+1 − ui−1) + ∆t Ut ] .

The term Ut is of the form (∂tf/f) ∆x ∂xu and has units of u/t. The differ-
ence (ui+1 − ui−1) yields 2∆x ∂xu +O(∆x3). After simplifying, we obtain the
truncation error of (40),

∂tu+O(∆t) = c ∂xu+O(∆x2) + Cc Ut/2 .

The Cc term is important. It shows that even when both ∆t and ∆x are
small, the discretization has an additional error proportional to the light-speed
Courant number.

The second topic is related to the parameter β introduced at the end of
section 2. Appendix B shows that for large mean free paths the diffusion co-
efficient may depend solely on the sum β/∆x + |∇u|/u. Consider Fig. 13 and
the domain 1500 < r < 2500. From values at r = 1500, 2000, 3000, we estimate
the average of |∇Er|/Er to be 3.7 · 10−4. Thus, if a particular β is deemed
sufficiently small for some coarse mesh width, as the mesh is refined, the ratio
β/∆x may overwhelm the flux limiter. The statement has implications for both
a conventional uniform-grid convergence study as well as one with AMR, since
we use the same β on all levels. Unless stated otherwise, for all runs discussed
in this section β/∆x = 10−6.

We now describe the single-level convergence study. We make five runs
with successively finer grids, ∆x = 8, 4, 2, 1, and for the “converged” result,
∆x = 0.5 cm. All runs have the same initial ∆t time history. However, max(∆t)

15The result may be seen by comparing two face-centered, flux-limited diffusion coefficients
of the form u/|∂xu| and discretized as (h/2)(u0 +u1)/|u0−u1|. Assume the front propagates
into cell 0. Let the time-lagged u0 = 0 and the time advanced values be u′0 and u′1 with
u′0 � u′1. After dividing by h/2, the time-lagged and time-advanced coefficients equal 1 and
(1 + ε)/(1− ε), respectively, where ε = u′0/u

′
1. Thus, the time-lagged diffusion is smaller and

the front does not propagate as far.
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depends on the size of ∆x in order to maintain max(Cc) at 0.12. Hence, max(∆t)
varies from 3.2 · 10−11 to 2 · 10−12 between the coarsest and finest runs.

Our code computes cell-averaged quantities, e.g., Er (erg/cc). On the coars-
est grid, we obtain 500 values on cells centered at 4, 12, 20, . . ., cm. In order
to have an equitable comparison, for each run, we also determine 500 average
values by post-processing. In order to conserve energy, we use volume averaging.

The error is computed as follows. Let Ei,∆x denote the averaged energy
density in the ith coarse cell for a run with mesh size ∆x. By defining the
relative error,

e∆x =

[
500∑
i=1

(Ei,∆x − Ei, 0.5)2

]1/2/[
500∑
i=1

(Ei, 0.5)2

]1/2

, (41)

we obtain

[ e8, e4, e2, e1] = [ 0.4820, 0.2436, 0.06969, 0.03475] .

The ratio of successive errors,

[ (e8/e4), (e4/e2), (e2/e1)] = [ 1.98, 3.50, 2.01] .

Since the ratios are approximately two, our results suggest first (rather than
second) order convergence.

Lastly, we compare results of a run using AMR with an “equivalent” run that
uses a uniform grid. For the AMR run, we use a base L0 grid with ∆x = 8 cm.
We use two refinement levels, each refines by a factor of two. The run begins with
∆t = 10−16, and we increase ∆t as before until reaching max(∆t) = 3.2 · 10−11.
Because we refine in both space and time, Cc = 0.12 on all levels. The parameter
β = 8 ·10−6; hence, β/∆x varies from 10−6 to 4 ·10−6 between the coarsest and
finest levels. The refined levels adapt to the Al/air interface (at r = 15.5 cm)
and around the position of max[|∇(Er)|/Er]. At the end of the run, the grid
layout is: 0 < x < 96 and 2944 < x < 3392 for the L1 level (∆x = 4) while:
0 < x < 48 and 2976 < x < 3360 for L2 (∆x = 2). We compare errors of the
AMR run as above, by forming cell averages of the 500 cells centered at 4, 12,
20, . . ., cm. The error on the AMR run is

eAMR = 0.06963 .

Since for the AMR run, the finest level ∆x = 2 cm, we compare eAMR with
the error of a uniform-grid run where ∆x = 2 cm, i.e., with e2 = 0.06969. To
three significant digits, the errors are essentially equal. The uniform-grid run
uses 2000 cells, while at the end of the simulation, the AMR run has 676 cells.

To summarize, we find that when the solution depends on the flux limiter,
spatial convergence reduces to being first, instead of second order. The effect
reminds us of what happens to hydrodynamic schemes in the presence of shocks:
in smooth parts of the flow, the solution may be second order convergent, but
in regions traversed by shocks, the scheme reverts to first order. In closing, we
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note an additional source of error, which we did not quantify. The simulations
of this section use real materials whose properties (internal energies, opacities,
etc.) are given by tables. Table lookups have errors that depend on the schemes
used to interpolate between table data.
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