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Abstract

When solving elliptic boundary value problems using integral equation methods one
may need to evaluate potentials represented by a convolution of discretized layer
density sources against a kernel. Standard quadrature accelerated with a fast hier-
archical method for potential field evaluation gives accurate results far away from
the sources. Close to the sources this is not so. Cancellation and nearly singular
kernels may cause serious degradation. This paper presents a new scheme based
on a mix of composite polynomial quadrature, layer density interpolation, kernel
approximation, rational quadrature, high polynomial order corrected interpolation
and differentiation, temporary panel mergers and splits, and a particular implemen-
tation of the GMRES solver. Criteria for which mix is fastest and most accurate
in various situations are also supplied. The paper focuses on the solution of the
Dirichlet problem for Laplace’s equation in the plane. In a series of examples we
demonstrate the efficiency of the new scheme for interior domains and domains exte-
rior to up to 2000 close-to-touching contours. Densities are computed and potentials
are evaluated, rapidly and accurate to almost machine precision, at points that lie
arbitrarily close to the boundaries.
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1 Introduction

The accurate and fast numerical evaluation of layer potentials close to their
sources is of importance when solving elliptic boundary value problems using
integral equation methods. Assume that D is a domain in the plane with
boundary L. Let z be a point in D, let τ be a point on L, and assume that
the solution U(z) to a given boundary value problem in D is represented as

U(z) =
∫

L
µ(τ)k(τ, z) dστ , z ∈ D , (1)

where dσ denotes an element of arc length along L and µ(τ) is a density which
can be obtained from an integral equation of Fredholm’s second kind

µ(z) +
∫

L
µ(τ)k(τ, z) dστ = f(z) , z ∈ L . (2)

Here f(z) represents boundary conditions on L. If D should be simply con-
nected and k(τ, z) is the normal derivative of the free-space Green’s function
for the Laplacian with respect to τ , then (1) is the double layer potential
and (2) is the classic integral equation for the interior Dirichlet problem. Nu-
merous similar, but more involved, recent examples exist with applications
to electrostatics [15,25], elasticity [7,9,10,22], Stokes flow [4,14], and materials
science at large [6,32].

The kernel k(τ, z) of (1,2) often contains a denominator, loosely speaking, of
the type “τ − z”. When z is close to τ this could cause numerical difficulties.
To see this, consider the evaluation of (1). If z is close to L, the kernel k(τ, z)
may undergo rapid changes as τ passes by on L. This behavior cannot be
resolved by standard quadrature. Furthermore, the accuracy in k(τ, z) could
be destroyed due to cancellation and so could the accuracy of U(z). Now
consider the solution of (2). Things typically go well when z is close to τ in
space and in arc length and when L is smooth. The singularity in k(τ, z) may,
for example, vanish. But if z is close to τ in space while distant in arc length,
such as when L consists of closely spaced disjoint contours or in some other
way falls back on itself, or if L has corners, the problems are similar as for (1).
Actually, the problem with z being close to τ could be harder when (2) is to
be solved than when (1) is to be evaluated. Knowledge of µ(τ) helps a lot. The
process of evaluating (1) amounts merely to a matrix-vector multiplication.
In (2) a linear system has to be solved. This problem is more sensitive with
respect to details in the quadrature.

Finding highly accurate and fast numerical methods for the situations de-
scribed in the previous paragraph is an active research topic. A simple method
for the evaluation of (1) close to L is interpolation between boundary values
and values which can be obtained accurately using standard quadrature [37].
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More elaborate methods suggested for both (1) and (2) rely on interpolation of
µ(τ) and intense resolution of k(τ, z), possibly in combination with singularity
subtraction techniques [1,19]. Such schemes can be made high order accurate
and, if adaptive, moderately fast but do not overcome the cancellation prob-
lem. Combinations of singularity subtraction, smoothing, and various types of
error correction, but without use of special quadrature points or overresolu-
tion, have also been suggested [3,26,27], as have schemes where variable trans-
formations help to simplify the integrand [11,24]. Other interesting research
directions involve generalized Gaussian quadrature [36] and interpolation of
µ(τ) only in combination with analytical integration [28,33] which is related
to rational quadrature [9,12,29,35]. Here some implementations, involving the
homotopy methods and various recurrence relations, could be costly and may
require extended precision arithmetic for stability. A complicating circum-
stance, pointed out in Section 3 of [9], is the inherent conflict associated with
solving (2) and evaluating (1) using the same set of discretization points –
points τ which are optimal for (2) may not be good for certain z in (1).

There seem to be three major choices of basic quadrature techniques for (1,2):
Fourier methods, the composite trapezoidal rule, and composite Gaussian
quadrature. Fourier methods [5,7] are efficient for circles. The trapezoidal
rule [1,3,4,6,14,15,17,20,25,26,32] is spectrally accurate for smooth and for
Cauchy-singular integrands (alternate point rule) on closed contours. It al-
lows for accurate differentiation via the fast Fourier transform. Drawbacks are
that it is clumsy when it comes to adaptive mesh refinement and local mod-
ifications, and that the spectral accuracy may be lost on open boundaries.
Composite n-point Gaussian quadrature [9,19,22] is about as accurate as the
trapezoidal rule for n = 16 and smooth integrands on closed contours, it can
be modified locally with greater ease, it lends itself better to adaptive mesh
refinement, it works well for open boundaries and also for surfaces in higher
dimensions. Disadvantages include lower order accuracy for Cauchy-singular
kernels and for differentiation, unless global methods are used. In this pa-
per, aiming at the treatment of difficult setups, we shall work with composite
Gaussian quadrature.

Our paper differs from most previous work in that we, on one hand, are more
specialized. For brevity, we chiefly discuss the double layer potential with ap-
plication to the Dirichlet problem in the plane. On the other hand, we go fur-
ther to adapt efficiently to a wide range of situations. We present quadrature
formulas and implementations along with criteria for their use. Some are vari-
ants of standard ideas. Some are new and, maybe, daring, and have bearing on
the solution to several elliptic problems with piece-wise constant coefficients
arising in materials science. In passing we give a more efficient formulation
for mode II of Mikhlin’s method for the exterior problem [17,20], and a new
twist to the GMRES method with Gram-Schmidt orthogonalization which for
systems that stem from the discretization of Fredholm second kind integral
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equations achieves stability properties on par with, or better than, those of
more expensive implementations relying on Householder reflections [34]. The
organization is as follows: Section 2 presents integral equations. Section 3 de-
scribes an elegant globally compensated quadrature for simple potential evalua-
tion at arbitrary points z when L consists of closed contours. Section 4 defines
three more general quadratures for the double layer potential, all based on
Gauss-Legendre nodes. One of these, the special quadrature (34), is new and
fundamental for high accuracy close to L. It contains interpolations of the
kernel and the density of different orders. Section 5 deals with the efficient
computation of quadrature weights. A central relation is (54), which expresses
the special quadrature as an easily computed and numerically stable ratio-
nal quadrature. Section 6 gives a criterion for which z are to be considered
as lying close to L. The criterion contains a basic integral, called p1, which
also lies at the heart of the special quadrature. Its evaluation is discussed in
Section 7. Section 8 is on GMRES and Section 9 discusses a competitive al-
ternative to Nyström interpolation. Large-scale numerical examples are saved
for Section 10.

2 Two boundary value problems

We shall solve two particular problems involving Laplace’s equation in the
plane: the Dirichlet problem on a simply connected interior domain and the
Dirichlet problem on a multiply connected exterior domain. To simplify the
transition between real and complex notation we shall make no distinction
between points in the real plane R2 and points in the complex plane C. Points
in C will be denoted z and τ .

The interior problem reads: find U(z) such that

∆U(z) = 0 , z ∈ D , (3)

lim
D∋z→τ

U(z) = f(τ) , τ ∈ L , (4)

where D is the interior domain, L is its boundary with positive orientation,
and f(z) is the prescribed boundary value at L. The classic Fredholm integral
equation formulation for this problem can be derived using the double layer
potential representation which in complex variables reads

U(z) =
1

2π

∫

L
µ(τ)ℑ

{

dτ

τ − z

}

, z ∈ D , (5)

where µ(z) is a real valued density. The integral equation itself is

µ(z) +
1

π

∫

L
µ(τ)ℑ

{

dτ

τ − z

}

= 2f(z) , z ∈ L . (6)
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Discretization of (6) with a Nyström scheme yields a linear system of equations

(I + K)µ = 2f , (7)

where I is the identity matrix and K is a discretization of the kernel in (6).

The exterior problem reads: find U(z) such that

∆U(z) = 0 , z ∈ D , (8)

lim
D∋z→τ

U(z) = f(τ) , τ ∈ L , (9)

|U(z)| ≤ λ , z ∈ D , (10)

where λ is a real number that bounds the solution, D is a domain exterior to
M closed contours Lk, k = 1, . . . , M , each of which has positive orientation,
and L is the union of all Lk. For this problem we shall use the modified Mikhlin
representation

U(z) =
1

2π

∫

L
µ(τ)ℑ

{

dτ

τ − z

}

+ c0 +
M
∑

k=1

ak log |z − zk| , z ∈ D , (11)

where zk is a point placed inside Lk, µ(z) is a real valued density, and c0 and
the ak are real constants determined by

µ(z) −
1

π

∫

L
µ(τ)ℑ

{

dτ

τ − z

}

− 2c0 − 2
M
∑

k=1

ak log |z − zk| = −2f(z) , (12)

M
∑

k=1

ak = 0 , (13)

1

2|Lk|

∫

Lk

µ(τ) dσ = 0 , k = 1, . . . , M . (14)

Discretization of (12,13,14) with a Nyström scheme yields a linear system of
equations on block form







I − K B̃

C̃ D̃





















µ






c0

a





















=







−2f

0





 , (15)

where K is the same type of matrix as in (7).

The system (15) has a condition number which, among other things, depends
on the number M of contours and their shapes and relative distances. As-
suming that the shapes and relative distances are not significantly changed
as M increases, then the condition number grows linearly with M . Tradition-
ally, the system is solved with left preconditioning [17], called Mode II in [20],
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whose purpose is to alleviate this ill-conditioning due to large M . Here we
shall introduce right preconditioning for the same purpose















I 0

0 I





−







K 0

0 0













I B̃

C̃ D̃







−1








ω =







−2f

0





 , (16)

The solution to (15) can the be recovered via















µ






c0

a





















=







I B̃

C̃ D̃







−1

ω . (17)

Ill-conditioning due to groups of boundaries lying close to each other is harder
to cope with. A promising approach, developed in a different setting, can be
found in [5].

An interesting feature with (16) is that the last M + 1 entries of ω can be
solved for analytically. They are zero. Introducing ω̃ for the vector ω with the
last M + 1 entries removed, we can rewrite (16) as

(

I − K
(

I + B̃(D̃ − C̃B̃)−1C̃
))

ω̃ = −2f . (18)

The equation (18) appears to be new. It is simpler than the corresponding
equation obtained by traditional left preconditioning since it has fewer un-
knowns. It may also be more accurate since it focuses solely on enforcing
the boundary conditions at L – not a mix of boundary conditions at L and
somewhat arbitrarily modeled boundary conditions at infinity.

In Section 10 we shall solve (7) and (18) numerically and evaluate U(z) of (5)
and (11) for a few setups and a large number of points z. As for the Nyström
scheme we shall use composite Gauss-Legendre quadrature as basic tool. In
situations like those mentioned in the Introduction, however, we need an im-
proved quadrature. Its construction will be the topic of the next four sections.

3 A globally compensated quadrature

We start out with a quadrature that is narrow in scope, but remarkably simple
and also accurate and extremely robust under certain conditions. Assume
that the situation (the regularity of the contour, the grading of the mesh, the
regularity of the data etc.) is such that we have solved the interior problem (7)
and obtained a discretized approximation of µ(τ) to high accuracy (in the
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sense that composite n-point polynomial interpolation based on the discrete
values of this approximation interpolate µ(τ) accurately) and that we now
want to evaluate U(z) from (5) for z close to L. Assume, further, that we
can accurately convert the solution µ(τ) into the boundary values F+(τ) of a
function F (z), analytic in D, and such that

ℜ
{

F+(τ)
}

≡ lim
D∋z→τ

ℜ{F (z)} = f(τ) , τ ∈ L . (19)

Then

U(z) = ℜ{F (z)} = ℜ

{

1

2πi

∫

L

F+(τ) dτ

τ − z

}

, z ∈ D . (20)

This trivial formula may not look like much of an improvement. The inte-
grand in (20) will suffer from the same difficulties with kernel resolution and
cancellation as the integrand in (5). But if we instead, following Ioakimidis,
Papadakis, and Perdios [21], consider the identity

1

2πi

∫

L

(F+(τ) − F (z)) dτ

τ − z
= 0 , z ∈ D , (21)

we have a smooth integrand. Let tk and wk, k = 1, . . . , N , be all the nodes
and weights of a composite n-point Gaussian quadrature for functions on L
integrated with respect to a parameter t. In particular, let the boundary be
parameterized as τ(t) and let D1

t be an operator that differentiates with respect
to t. Introduce τk = τ(tk), and τ ′

k = (D1
t τ)(tk). Then (21) can be written

N
∑

k=1

(F+(τk) − F (z))τ ′
kwk

τk − z
= 0 , z ∈ D . (22)

The identity (22) should hold to about the same accuracy as that with which
F+(τ) can be integrated on L with the chosen nodes and weights. Since F (z)
is the only unknown in (22), we can use (22) to solve accurately for F (z) and
insert this value into the first equality of (20). An explicit formula for the
evaluation of U(z) is then

U(z) = ℜ











∑N
k=1

F+(τk)τ ′

k
wk

τk−z
∑N

k=1
τ ′

k
wk

τk−z











, z ∈ D . (23)

One could say that the denominator in this formula compensates for the error
in the numerator. The error compensation includes quadrature error as well
as cancellation error. As an illustration of the latter, consider the limit process
D ∋ z → τj . The numerator and the denominator of (23) will both be dom-
inated by the jth term in the sums. The floating point representation of the
small quantity τj − z will contain an increasingly large relative error, but the
actual number fl(τj − z) is identical in the numerator and in the denominator.
Therefore U(z) → ℜ{F+(τj)} as z → τj and U(z) can be accurate up to the
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point where fl(τj − z) = 0 and the process breaks down. Apparently this is a
breakdown of a benign sort. One can set U(z) = ℜ{F+(τj)} = f(τj) when z
and τj coincide in finite precision arithmetic.

It remains to accurately convert µ(τ) into F+(τ). We could take

F+(z) = f(z) + iℑ

{

1

2πi

∫

L

µ(τ) dτ

τ − z

}

, z ∈ L . (24)

Let µ(t) = µ(τ(t)), µk = µ(tk), and z = τj . Then

1

2πi

∫

L

µ(τ) dτ

τ − τj

≈
µj

2
+

1

2πi

N
∑

k=1

k 6=j

(µk − µj)τ
′
kwk

τk − τj

+
1

2πi
wj(D

1
t µ)(tj) , (25)

and we can find F+(τ(t)) at all nodes tk. The operator D1
t can act analyti-

cally on τ(t) but has to be implemented numerically, for example via n-point
polynomial interpolation, when acting on µ(t).

This globally compensated quadrature can also be applied to the exterior prob-
lem. Assume that the situation is such that we have solved (18) and, via (17),
obtained a discretized approximation of µ(τ) to high accuracy and that we
now want to evaluate U(z) from (11) for z close to L. Only the first term on
the right hand side of (11) poses difficulties. Let us call it U1(z). Proceeding
as above we can define

F−(z) = −
µ(z)

2
+

1

2πi

∫

L

µ(τ) dτ

τ − z
, z ∈ L , (26)

and compute U1(z) from

U1(z) = ℜ











∑N
k=1

F−(τk)τ ′

k
wk

τk−z

−2πi +
∑N

k=1
τ ′

k
wk

τk−z











, z ∈ D . (27)

The globally compensated quadrature, as described so far and within the com-
posite Gaussian setting, may have a minor disadvantage in terms of economy
of discretization points when compared with the interpolatory quadratures
described in the next section. The reason is the term (D1

t µ)(tj) in (25), which,
if computed via n-point polynomial interpolation, for simple problems may
reduce the global order of the accuracy. The globally compensated quadrature
can, however, be made competitive also in this respect with the use of local
high polynomial order corrections, see the end of Section 9, or with the use of
a more expensive global formula derived from (6)

(D1
t µ)(tj) = 2(D1

t f)(tj) −
1

π

∫

L
µ(τ)ℑ

{

τ ′
j dτ

(τ − τj)2

}

, (28)
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which has a continuous kernel and retains the order of accuracy.

We remark that F+(z) of (24) could be cast in the same form as F−(z) of (26),
but not vice versa. The advantage of the form (24) over the form (26) is
that (24) contains cleaner data. The free term f(z) in (24) is the given bound-
ary value, while the free term −µ(z)/2 in (26) is a computed solution, possibly
polluted with error.

4 Interpolatory quadrature and approximation

Let g(t) be a function of the real variable t ∈ [−1, 1]. Let s(t) be a continuous
differentiable injective map from t ∈ [−1, 1] into the complex plane. Let Pn de-
note the set of polynomials of degree at most n. Let tnk and wnk, k = 1, . . . , n,
denote the nodes and weights associated with n-point Gauss-Legendre quadra-
ture. Let Pn[g(t)](s) ∈ Pn−1 denote the polynomial in s(t) interpolating g(t)
at tnk, k = 1, . . . , n.

Often one wants to make an accurate numerical approximation to an integral
of g(t) over t ∈ [−1, 1]. Gauss-Legendre quadrature

∫ 1

−1
g(t) dt ≈

n
∑

k=1

g(tnk)wnk =
∫ 1

−1
Pn[g(t)](t) dt , (29)

will be then be exact for any g(t) ∈ P2n−1.

Now we want to make accurate numerical approximations to integrals

Ii(z) =
∫

li
µ(τ)ℑ

{

dτ

τ − z

}

, (30)

where li is a segment, called panel, of some larger smooth contour L in the
complex plane, arising in the context of composite quadrature. For simplicity
the panel li is assumed to start at τ = −1 and end at τ = 1. The density µ(τ)
is a smooth real function of the complex variable τ on L. The point z could
be anywhere in the plane. Actually, we could be more general and remove
ℑ{·} in (30) to get a complex cauchy-singular kernel. All quadratures that
we are about to construct apply equally well in this case. The smoothness
of the double layer kernel, for τ and z both on li, has no relevance for z
away from L. Furthermore, with minor modifications one could let µ(τ) be
a complex function, possibly the limit on li of an analytic function or the
product of a real function and a complex function such as the outward unit
normal on li. One such generalization is tested in the final numerical example
of Section 10.2 in connection with equation (71). But since this paper is chiefly
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about the double layer potential, as for now we stick to real µ(τ) and (30) as
it stands.

Assume that there exists a parameterization τ(t) which traverses li for t ∈
[−1, 1] and let µ(t) = µ(τ(t)). Introducing

k(t, z) = ℑ

{

τ ′(t)

τ(t) − z

}

, (31)

and with t being the variable of integration we can approximate (30) as

Ii(z) ≈
n
∑

k=1

µ(tnk)k(tnk, z)wnk =
∫ 1

−1
Pn[µ(t)k(t, z)](t) dt . (32)

This will be referred to as straight-up quadrature and is the preferred choice
when µ(t) is a more rapidly changing function of t than is k(t, z). This holds,
for example, when z is far away from li, but also when z ∈ L and z is on li or
close to li in space as well as in arc length.

When z is moderately close to li, but distant in arc length if z ∈ L, one could
expect µ(t) and k(t, z) to be equally rapidly changing functions of t. Given
µ(tnk) one can improve on (32) as follows: approximate µ(t) with a polynomial
in Pn−1, multiply with k(t, z), use m-point Gauss-Legendre quadrature with
m ≥ n for the integral. In other words, we keep the nodes tnk but find new
weights ŵnk, depending on li and z, so that

Ii(z) ≈
n
∑

k=1

µ(tnk)ŵnk =
∫ 1

−1
Pm[Pn[µ(t)](t)k(t, z)](t) dt . (33)

This will be referred to as extended quadrature.

When z is very close to li, but distant in arc length if z ∈ L, one could expect
k(t, z) to be a much more rapidly changing function of t than µ(t). Then
polynomial quadrature is not a good idea. Given µ(tnk) a better option is to
find new weights w̃nk, depending on li and z, so that

Ii(z) ≈
n
∑

k=1

µ(tnk)w̃nk =
∫

li
ℑ

{

Pm[Pn[µ(t)](t)](τ) dτ

τ − z

}

. (34)

This will be referred to as special quadrature and could be seen as a quadrature
for (30) where µ(t) is approximated with a polynomial in t and where k(t, z)
also is approximated as to facilitate analytical evaluation for li with non-
zero curvature. The higher the value of m, the better the integrand captures
Pn[µ(t)](t). Should the interpolation Pm[·](τ) not be included, the integral
in (34) has to be evaluated numerically. This is costly.

Finding the weights w̃nk is straight-forward in theory. One simply requires that
the equality in (34) holds for a set of µ(t) forming an independent basis for
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Pn−1, for example monomials or Legendre or Chebyshev polynomials. Different
choices of basis functions involve different number of floating point operations
(FLOPs) and different condition numbers of intermediary matrices. But also,
given a basis, the order in which operations are carried out plays a major role
for accuracy and for speed. We shall choose monomials, which seems to be the
fastest route. We counterbalance the effect of ill-conditioning, used as a major
argument against monomials in Section 2 of Ref. [35], by being careful about
the order in which matrices act. In particular, we avoid the explicit construc-
tion of inverses of Vandermonde matrices and mixed Vandermonde-Cauchy
matrices. We shall let Vandermonde matrices act as system matrices only in
linear systems whose right hand sides have substantial components in direc-
tions corresponding to the first few left singular vectors. For such systems,
linear solvers which are backward stable in practice produce solutions with
very small residuals. This is most often sufficient for high accuracy in con-
texts involving interpolation of smooth functions determined by their values
at Legendre nodes. See, further, Appendix A.

The density µ(t) in (33,34) is assumed known at the points tnk on the panel li,
interpolated by Pn[µ(t)](t), and evaluated at the points tmk. Polynomial inter-
polation at tnk cannot produce a better approximation to µ(t) than Pn[µ(t)](t).
But if information on µ(t) from neighboring panels is incorporated in the
quadrature rule for li, then Pn[µ(t)](t) at tmk could be replaced with more
accurate values. An extreme variant of this, when µ(t) is the solution to a
Fredholm integral equation, is Nyström interpolation. This option, used by
Atkinson [1] for the evaluation of (5), involves global information on µ(t) and
has the theoretical advantage that it carries the accuracy of µ(tnk) over to
µ(tmk). Unfortunately, Nyström interpolation is hard to apply in the process
of solving integral equations. It could suffer from cancellation and in our tests
it does not quite live up to expectations. Section 9 presents a related idea,
which often works better in practice. We also remark that for the special case
of m ≡ n = 2, the quadrature (34) resembles the interpolatory quadrature
suggested by McKenney [28].

5 Computing weights and sums

This section compares different implementations of the quadratures (33,34)
for Ii(z). The comparisons contain crude complexity estimates. For simplicity
we do not distinguish between real and complex FLOPs and we tacitly assume
that n and m are some medium sized numbers differing with a factor of ap-
proximately two. The O(·) symbol indicates how the number of FLOPs scales
with n or m or combinations thereof to leading order including a constant of
proportionality. In the numerical examples of Section 10 we choose n = 16
and m = 32. We first turn our attention to some useful definitions.
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5.1 Intermediary matrices and vectors

Let p ∈ Cm denote the column vector with entries given by

pj =
∫

li

τ j−1dτ

τ − z
, j = 1, . . . , m . (35)

Once p1 has been computed, the other entries of p can be computed by a simple
recurrence relation costing, on average, 3/2 FLOPs per entry: Let c ∈ Rm

denote the column vector with entries given by

cj =
1 − (−1)j

j
, j = 1, . . . , m . (36)

Then
pj+1 = zpj + cj , j = 1, . . . , m − 1 . (37)

Let τnk = τ(tnk), τmk = τ(tmk), τ ′
nk = (D1

t τ)(tnk), and τ ′
mk = (D1

t τ)(tmk). Let
V ∈ Rn×n, W ∈ Rm×n, and C ∈ Cm×m denote the Vandermonde matrices
with entries given by

Vkj = tj−1
nk , k, j = 1, . . . , n , (38)

Wkj = tj−1
mk , k = 1, . . . , m , j = 1, . . . , n , (39)

Ckj = τ j−1
mk , k, j = 1, . . . , m . (40)

Let a ∈ Cn and â ∈ Cm denote the column vectors with entries given by

ak =
τ ′
nkwnk

τnk − z
k = 1, . . . , n , (41)

âk =
τ ′
mkwmk

τmk − z
k = 1, . . . , m . (42)

Let µi, w̃, and ŵ denote the column vectors in Rn with entries given by µ(tnk),
w̃nk, and ŵnk, k = 1, . . . , n. The extended quadrature (33) can now be written

Ii(z) ≈ ŵT
µi = ℑ

{

âT
}

WV −1
µi , (43)

where ŵT is the transpose of ŵ. The special quadrature (34) can be written

Ii(z) ≈ w̃T
µi = ℑ

{

pTC−1
}

WV −1
µi . (44)

We remark that m × m Vandermonde systems can be solved in O(5m2/2)
FLOPs using methods that rely on Newton interpolation [13]. The well con-
ditioned matrix WV −1 can be precomputed to full accuracy once and for
all. For n = 16 and m = 32 its condition number is 1.63. When the matrix
WV −1 acts on a vector to the right it performs polynomial interpolation. This
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costs O(2mn) FLOPs in a straight-forward implementation, but asymptot-
ically faster algorithms certainly do exist [8]. We settle for precomputation
in quadruple precision (even though it is not really needed, see Appendix A)
followed by rounding to double precision and a simple speedup, applicable for
even n and m based on the observation that only half of the entries of WV −1

are distinct. It is possible to factorize

WV −1 =







Im/2 Im/2

Jm/2 −Jm/2













(WV −1)1 0

0 (WV −1)2













In/2 Jn/2

In/2 −Jn/2





 . (45)

Here Im/2 and In/2 are m/2 × m/2 and n/2 × n/2 identity matrices and
Jm/2 and Jn/2 are anti-diagonal identity matrices of the same dimensions. The
m/2×n/2 matrices (WV −1)1 and (WV −1)2 contain the precomputed entries.
Equation (45) leads to a cost of mn + n FLOPs for application of the matrix
WV −1 to a column vector to the right and mn + m FLOPs for application to
a row vector on the left.

We wish to stress at this point that even though we are to use the symbols
C−1, V −1, and C−T frequently, nowhere are the matrices C and V intended
to be inverted numerically as to produce explicit inverse matrices. The matrix
WV −1 is precomputed once and for all and applied to vectors according to
the previous paragraph. The action of C−1 on a vector of function values
µ̂ is achieved via the Björk-Pereyra algorithm which should give monomial
coefficients yielding accurate interpolation up to m ≈ 40, see Appendix A and
Section 5.2. The action of C−T on a vector of integrated rational functions
p is achieved via a mix of a reduced Björk-Pereyra algorithm and analytical
methods within a certain approximation, see Section 5.3, and should give
quadrature weights yielding accurate integration up to m ≈ 40 provided p is
accurate.

5.2 Several points z

Assume that we need accurate approximations to Ii(z) for several points z
close to li but not on L. Then we can use (43) for those z that are moderately
close and (44) for those z that are very close. An interesting aspect of the
rightmost expressions of (43) and (44) is that only the vectors â and p contain
information about z. We can therefore first precompute

µ̂ = (WV −1)µi , (46)

and
y = C−1

µ̂ . (47)

Then only the vector â or p needs to be computed for each z.
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The precomputation of µ̂ costs O(mn) FLOPs and y costs O(5m2/2) FLOPs
once µ̂ is available. Including the computation of â and p, the sums

ŵT
µi = ℑ

{

âT
}

µ̂ , (48)

and
w̃T

µi = ℑ
{

pTy
}

, (49)

both cost approximately O(4m) FLOPs per z, once µ̂ or y and p1 are avail-
able. The vector of monomial coefficients y may be inaccurate, but the right
hand side of (49) will be accurate if the integrated rational functions in p are
accurate since the coefficients in y represent µi well for interpolation purposes
and since integration is a smoothing process.

5.3 Several densities µi and points z

When solving a discretized integral equation iteratively, new accurate approx-
imations to Ii(z) are needed at each iteration. That is, one may need Ii(z) for
several densities µi as well as for several points z ∈ L close to li in space but
distant in arc length. An efficient implementation of (43) and (44) could then
be to precompute the weights

ŵT = ℑ
{

âT
}

(WV −1) , (50)

or

w̃T = ℑ
{

(

C−Tp
)T
}

(WV −1) , (51)

for each z and store them. Forming ŵT
µi or w̃T

µi only costs O(2n) FLOPs
per z and iteration. The cost of computing ŵ, given â, is O(mn) FLOPs per z.
The cost of computing w̃, given p, seems at first glance to be O(mn+5m2/2)
FLOPs per z.

Interestingly, the cost of computing C−Tp in (51) can be reduced from O(5m2/2)
per z in the estimate above to O(7m), or less, once p1 and some other quantities
are available. To see this, assume that the two vectors u,v ∈ Cm depending
solely on li,

u = C−Tc , v = C−Tem , (52)

are precomputed. Here em ∈ C
m denotes a vector where all entries are zero

except for the last entry which can be an arbitrary non-zero number, for
example unity or τmm − τm1, and c is as in (36). Let ã, d̃ ∈ Cm be given by

ãk =
uk

τmk − z
, d̃k =

vk

τmk − z
, k = 1, . . . , m . (53)

Using rational quadrature based on partial fraction expansions [9,35] as a
starting point one can, with help of the Sherman-Morrison formula, show the
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remarkably simple relation

C−Tp = ã− αd̃ , (54)

where

α =
sum(ã) − p1

sum(d̃)
. (55)

Here sum(ã) means summation of the entries of ã. The construction of C−Tp

via (53,54,55) only costs O(7m) FLOPs per z. In addition, it has excellent
numerical stability. See Section 6.

The precomputation of ã and d̃ of (53) can be done cheaply. The cost of form-
ing v in (52) is O(3m2/2) FLOPs. If the segment li can be well approximated
with a low degree polynomial in t, which often is the case for discretized and
well resolved integral equations, then ã ≈ â holds to high accuracy, omitting
the need to precompute ã via (52,53) altogether. Furthermore, in our process
of determining whether extended quadrature ŵT

µi is accurate or if special
quadrature w̃T

µi should be activated, the quantities â and sum(â) − p1 need
to be computed anyhow, see Section 6. The construction of C−Tp, from this
point of view, only costs 4m FLOPs per z and the cost of computing w̃ is
O(mn) FLOPs per z.

Should it happen that a point z lies very close to a point, τmk say, the k:th
entry of vectors ã and d̃ may be inaccurate due to cancellation, while α still is
good, and we need to modify the k:th entry of (54) according to the following

(

C−Tp
)

k
= −sum(ã0k) + sum(d̃0k)α + p1 , (56)

where ã0k and d̃0k are the ã and d̃ vectors with the k:th entries set to zero.
This situation seldom occurs, so the cost of doing the modification is negligible.
But the cost of checking if z is close to τmk is O(6m) FLOPs. Our criterion
for when a point z lies very close to a point τmk is that the distance should be
less than 1/1000 of the panel length.

5.4 Transformations

When discretizing boundary integral equations using composite quadrature
one often uses a global parameterization τ(t) where t is a global parameter.
The canonical Gauss-Legendre nodes tnk and tmk therefore have to be trans-
lated and scaled so that they fit each actual panel li. An actual panel li will
then, in general, not start at τ(−1) = −1 and end at τ(1) = 1, as assumed up
until now. Since the kernel of (30) is invariant under rotations, scalings, and
translations of the plane and since τ ′(t) dt is invariant under translations and
scalings of t, it is simple to modify our three quadratures to account for this.
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One can use actual τnk, z, and τ ′
nk in the straight-up quadrature if the weights

wnk are multiplied with the ratio between the length of the actual range of the
parameter t on li and the length of the canonical range [−1, 1]. The extended
quadrature is modified in a similar fashion. Actual τmk, z, and τ ′

mk can be used
if the entries of â are scaled. In the special quadrature and when computing
p and the action of C−1 and C−T, we do indeed transform the plane for each
panel so that li starts at τ = −1 and ends at τ = 1. The transformation h(z)
from the actual plane to the transformed plane is

h(z) =
2z − (τe + τs)

(τe − τs)
, (57)

where τs and τe denote the points where panel li starts and ends in the ac-
tual plane. The transformation h(z) prevents the condition number of C from
becoming unnecessarily high. The vectors ã and d̃ of (53) have the same in-
variance properties as the kernel of (30). Since the numerators are computed
in the transformed plane the same must hold for the denominators. But in
practice we not have to worry about transformations here: ã is approximated
with â and d̃ is not unique anyhow – it can only be determined up to mul-
tiplication with an arbitrary complex number and we can use the actual τmk

and z in its denominator.

5.5 Panel mergers and splits

Should it happen that the point z lies very close to either of the tips of the panel
li, the computation of p1 will suffer from cancellation. Although a rare event,
this may destroy the accuracy in the special quadrature for Ii(z). Actually,
the cancellation problem will occur for two panels – if z is close to a tip of one
panel it is also close to a tip of a neighboring panel. The following procedure
takes care of the situation for both involved panels in the context of (47,49)
assuming that µ(τ) is smooth: Merge the panels. Divide the merged panel
into three temporary panels of equal length and distribute temporary points
τmk. Interpolate the two different µi corresponding to the original panels at
the points τmk on each temporary panel in the style of (46,47). This gives
three vectors y. Compute the three vectors p corresponding to the temporary
panels. Compute (49) for the two original panels as a sum of three expressions

ℑ
{

pTy
}

. Our criterion for when a point z lies very close to a panel tip is that

the distance should be less than 1/1000 of the panel length.

We remark that McKenney [28] also uses merger of neighboring panels when
evaluating Cauchy integrals at points z close to panels tips.
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6 When is a point z close to a panel li?

Assume that L is centered at the origin. Let tol be a tolerance indicative of the
relative accuracy we seek in our overall computation. Our criterion for when
straight-up quadrature is sufficiently accurate for Ii(z) of (30) is

|sum(a) − p1| < max

(

tol,
|L|ǫmach

|li|

)

, (58)

where |li| is the length of the panel li, |L| is the size of the geometry, for
example the diameter of the smallest circle enclosing L, and ǫmach is machine
epsilon. Our criterion for when extended quadrature is sufficiently accurate
is (58) with a replaced by â.

The criterion (58) appears to be efficient in tests. Since p1 is of order unity,
the left hand side of (58) can be interpreted as the relative error produced
by straight-up quadrature for a modification of (30) with complex kernel and
unit µ. Admittedly, a constant density is simpler to integrate than a general
density, but the complex kernel is more difficult to integrate than its imaginary
part. Furthermore, if µ(t) is expanded in Legendre polynomials, low order
polynomials should have larger coefficients than high order polynomials and
accurate integration of the former is of greater importance. In integrals such
as (5), contributions Ii(z) from a large number of panels are summed up. If z
lies very close to a panel li, the contribution Ii(z) from that particular panel
could be as large as that from all other panels together. Therefore it makes
sense to relate the accuracy in the overall computation to the accuracy of the
contribution from a panel that is particularly close to a particular z.

It will be expensive to check (58) for all combinations of points z and panels li.
We speed up the process by performing a heuristic screening of the point-panel
pairs, based on the experimental observation that straight-up quadrature at a
point z with respect to the panel li is accurate enough when z lies more than a
distance |li| away from the mid-point of li. We first divide the computational
domain into a square grid. The size of the squares is the mean panel length.
Each panel li then belongs to every square such that a portion of it is at a
distance of less than or equal to |li| from the mid-point of the panel. Now, for
each point z we determine in which square it is situated and only check for
closeness against the panels belonging to that particular square.

It is important to know what happens if extended or special quadrature is ac-
tivated by mistake, that is, when straight-up quadrature gives better results.
If extended quadrature is activated by mistake, the consequences are barely
noticeable. If the special quadrature of Section 5.3 is activated for z far away
from li, it may happen that the denominator in (55) becomes exactly zero.
Apart from this, it is robust when used to evaluate an integral with a well
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resolved density just once. A few digits, at most, seem to be lost in inappro-
priate contexts. The opposite holds for the special quadrature of Section 5.2.
It is sensitive to mistakes as it stands. If z is far away from li and m is large,
then roundoff error in p1 amplifies greatly in the forward recurrence (37) and
p becomes completely wrong. But for |z| < 1 in the transformed plane (57),
and for 1 ≤ |z| < 2 and m not too big, the situation is under control. Actually,
for |z| > 1.2 and m = 32, a more accurate p results from running the recur-
rence (37) backwards, with pm computed using extended quadrature in (35).
We shall do this.

We remark that McKenney [28] determines the need for modified quadrature
from a geometric criterion coupled to the internal structure of the fast mul-
tipole method [16], while Atkinson [1] uses repeated refinement doublings in
combination with an aposteriori error estimate.

7 The computation of p1

The quantity p1 of (35) is needed in several situations such as in (55) and (58).
It is also needed to initiate the forward recurrence (37) for p which is subse-
quently used in (49). In the transformed plane we have

p1 =
∫ 1

−1

dτ

τ − z
. (59)

The path of integration should follow the transformed panel li, but it can be
deformed without consequences as long as the singularity at z is not passed.
We integrate along the real axis and check if the singularity is located between
the panel and the real axis. If so, the residue 2πi is added or subtracted to the
value of the integral depending on whether the singularity is above or below
the real axis. We get

p1 =







log(1 − z) − log(−1 − z) ± 2πi, if z is between panel and real axis,

log(1 − z) − log(−1 − z), if it is not.

(60)

In our numerical examples, and when doing plots of solutions, we assume that
the point z is always in the computational domain D. This assumption sim-
plifies the process of determining whether or not the singularity is located
between the panel and the real axis and automatically gives the correct sign
of the residue – positive for the interior problem and negative for the exte-
rior problem. In the vast majority of conceivable setups for both problems,
provided that the boundaries are properly resolved, the following two require-
ments are enough to determine if the singularity is located between the panel
and the real axis:
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• z is below the real axis for interior domains or above for exterior domains,
• z is inside the smallest rectangle containing li.

For convex boundaries, this is sufficient regardless of the boundary resolution.
For more complex boundaries, the need for proper resolution increases. But the
boundary needs to be well resolved anyway to get acceptable overall accuracy.
The calculation of p1 does not require over-resolution of the boundary in any
of our numerical tests.

To obtain an equispaced grid of points z with the property z ∈ D, we simply
”draw” the boundaries in a matrix of appropriate size and fill the computa-
tional domain using a flood fill-type routine. Every filled element of the matrix
then corresponds to a point z ∈ D.

8 Avoiding low-threshold stagnation in the GMRES

The generalized minimal residual algorithm (GMRES) is an iterative solver
for linear systems Ax = b [30]. At iteration step s an approximation x̃s is
found in the Krylov subspace Ks = span {b, Ab, . . . , As−1b} which minimizes
the residual ||rs||2 = ||b−Ax̃s||2. In practice this is done via the Arnoldi pro-
cess which performs partial reduction of A to Hessenberg form and produces
matrices H̃s and Qs such that AQs = Qs+1H̃s. The columns of Qs, denoted
qi, i = 1, . . . , s, is an ortonormal basis for Ks. The approximation x̃s is repre-
sented as x̃s = Qsys where the vector ys is the solution to a (s + 1) × s least
squares problem with the upper Hessenberg matrix H̃s as system matrix. The
solution ys can be produced cheaply using QR factorization by Givens rota-
tions. From a computational viewpoint one can see the Arnoldi process as QR
factorization performed using column-oriented modified Gram-Schmidt on a
matrix with columns given by {b, Aq1, . . . , Aqs−1}.

A number of implementations for GMRES exist. Gram-Schmidt can be re-
placed with Householder in the Arnoldi process [34]. Various strategies for
stagnation control and restart are available. Linear systems arising from the
discretization of integral equations of Fredholm’s second kind have A = I+Kc,
where Kc is a matrix which is small in the sense that the spectrum of Kc

is clustered around the origin. This is good and makes GMRES converge
fast. Since no restart is necessary we shall use a simple version of GMRES
which chiefly deviates from the classic description [2] in only one respect:
we shall feed the Arnoldi process with a matrix whose columns are given by
{b, Kcq1, . . . , Kcqs−1}. Clearly, this gives the same Qs, mathematically, as the
standard approach. But the accuracy often is better since for the new column
vector that is introduced at step s we avoid a contribution qs−1 that in its en-
tirety lies in Ks−1. Besides, this modification saves some computational work.
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As to compensate for using Kc rather than A, unity must be added to the
diagonal entries of H̃s.

The relative residual ||rs||2/||b||2 at step s can be expressed and computed in
several mathematically equivalent ways. We choose the cheapest expression
which is a product of the entries of the Givens rotations. As it turns out, the
combination of this expression and the Krylov subspace generation based on
Kc allows us to use a stopping criterion threshold in the relative residual that
can be almost arbitrarily low without leading to stagnation. In practice, this
may be the most important new feature of our GMRES implementation.

9 High polynomial order corrections

Decompose µ(t) = Pn[µ(t)](t) +µr(t) on panel li and assume that there exists
a function h(t) = Pn[h(t)](t) + hr(t) such that µr(t) ≈ hr(t). In other words,
if µ(t) and h(t) are expanded in Legendre polynomials their high order co-
efficients will be similar. Assume that µ(t) is known at the nodes tnk while
h(t) is known both at the nodes tnk and the nodes tmk and that hn ∈ Rn and
hm ∈ Rm are vectors with entries given by h(tnk), k = 1, . . . , n and h(tmk),
k = 1, . . . , m. Then, rather than interpolating µ(t) at tmk via (WV −1)µi one
can use the corrected formula (WV −1)(µi − hn) + hm and modify the special
quadrature of (44) to

Ii(z) ≈ ℑ
{

pTC−1
}

(WV −1)(µi − hn) + ℑ
{

pTC−1
}

hm . (61)

This modification should give improved accuracy for short-ranged interaction
since high order polynomial components of µ(t), not captured by the non-
modified quadrature are cancelled by similar components in h(t), and then
corrected by a more accurate quadrature for h(t).

We shall use the corrected quadrature (61) when evaluating (5) after solv-
ing (7) for the interior problem. The function h(t) here corresponds to 2f(z(t)).
Since the integral operator of (6) is compact the difference µ(t)−2f(t) should
have a particularly small high order polynomial content.

The usefulness of (61) is further illustrated in Figure 1, which compares poly-
nomial interpolation via (WV −1)µi with the high polynomial order corrected
interpolation and also with Nyström interpolation. The setting is (6) with
L parameterized as in (63) and f(z) = ℜ{1/(z − 1 − i)}. The boundary is
discretized using 40 panels of equal parameter length and with n = 16 and
m = 32. The density µ(t) is first solved via (7) at the 640 discretization points
tnk. Actually, µ(t) is partly overresolved in the sense that some panels are
shorter than what is needed for full pointwise convergence of µ(t). The com-
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Fig. 1. Accuracy for various interpolations of the solution µ to (7) for an interior
problem. The boundary is divided into 40 panels with 16 discretization points each.

puted µ from (7) is interpolated to the 1280 points tmk and compared with
a reference solution obtained by solving (7) again. This time on a grid con-
sisting of the points tmk. The estimated relative error is computed pointwise
in max-norm and averaged over each panel. Three observations can be made
in Figure 1: Polynomial interpolation via (WV −1)µi is accurate where µ(t) is
overresolved but not so accurate where µ(t) is just resolved. Nyström inter-
polation falls short of its theoretical promises with a factor of about 100. The
high polynomial order corrected interpolation is the most accurate.

High polynomial order corrections could also have large impact in the con-
text of differentiation, assuming that h(t) rather than being known at extra
nodes tmk can be differentiated analytically at the nodes tnk. For the numerical
evaluation of (D1

t µ)(tj) in (25) one can use the corrected expression

(D1
t (µ − h))(tj) + (D1

t h)(tj) , (62)

where the first term is computed numerically and the second term analyti-
cally. In the interior problem h(t) corresponds to 2f(z(t)) and in the exterior
problem h(t) corresponds to −2f(z(t)) + 2

∑

ak log |z(t) − zk|.

10 Numerical Examples

The techniques proposed will now be demonstrated numerically. Most of the
programming is done in Matlab 7.3, but time critical parts, such as the
fast multipole method (FMM), are written in C, compiled with Matlab’s
in-built compiler, and interfaced with the Matlab environment using MEX.
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Our computer is an Intel Core2 6400 at 2.13 GHz with 4 gigabytes of installed
memory. The FMM is used extensively. Our implementation follows Ref. [16]
with precision ǫ = 10−13. The multiplication by K in (7) and (18) is done
by the FMM as is the evaluation of the discretized integrals in (5) and (11).
The effect of the FMM is that of using the straight-up quadrature of (32) ev-
erywhere. Corrections due to point-panel pairs requiring other quadrature are
applied subsequently. The FMM is also used when evaluating the logarithmic
terms of (11) and (18).

Except for when explicitly stated otherwise we choose a mesh that is suffi-
ciently refined with respect to the regularity of the boundary and the bound-
ary data so that the unknown density, should it be known, could be accu-
rately interpolated with composite 16-point polynomial interpolation at the
discretization points.

10.1 The interior Dirichlet problem

We compute the solution to an interior Dirichlet problem. The boundary has
parameterization

z(t) = (1 + 0.3 cos 5t)eit , −π ≤ t ≤ π . (63)

We wish to determine the error in the numerical solution accurately and choose
boundary conditions compatible with a reference solution Uref(z), known on
closed form. We take

Uref(z) = ℜ

{

3
∑

k=1

1

z − zk

}

, z ∈ D , (64)

where z1 = 1.5 + 1.5i, z2 = −0.25 + 1.5i, and z3 = −0.5 − 1.5i are sources
outside of D. The discretization is carried out using 35 panels of equal length
in the parameter t. This gives 560 discretization points over the boundary.
When computing µ of (7) we use GMRES without restart as described in Sec-
tion 8 and the FMM. This scheme, in our implementation, is somewhat more
accurate than Matlab’s backslash operator and also faster already at this
system size. The precise breakeven size depends, of course, on many imple-
mentational details. The stopping criterion threshold of 10−16 in the relative
residual is reached after 16 iterations.

We now evaluate U(z) of (5) on a grid with 483519 equispaced points z in D.
For comparison we first use only straight-up quadrature. Figure 2 depicts the
relative pointwise error

e(z) =
|Uref(z) − U(z)|

||Uref(z)||∞
, (65)

22



ℜ {z}

ℑ
{z

}

 

 

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−15

−10

−5

0

Fig. 2. The 10-logarithm of the pointwise error e(z) of (65) when solving the interior
Dirichlet problem with boundary conditions from (64) and using only straight-up quadra-
ture for evaluating U(z) of (5). There are 560 discretization points on the boundary
and U(z) is evaluated at 483519 points. The maximum value of e(z) is 2.78.

where ||Uref(z)||∞ is the maximum absolute value of Uref(z) over all grid points.
Figure 2 shows that the quality of the solution deteriorates rapidly as z ap-
proaches the boundary, as stated in the second paragraph of the introduction.
The maximum relative pointwise error is 2.78. The relative Euclidean error is
7.6 · 10−2.
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Fig. 3. Same as in Figure 2, but globally compensated quadrature is used. The maximum
value of e(z) is 9.2 · 10−15.
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The result of a similar evaluation using the globally compensated quadrature
of Section 3 with high order polynomial corrections as at the end of Section 9
is shown in Figure 3. The difference is enormous. Compare with Figure 2 and
note the very different scales in the colorbar. The maximum relative pointwise
error here is only 9.2 ·10−15. The relative Euclidean error is down to 5.6 ·10−16.
One could almost say that there is no error.

As for timings, we present results for a sparser grid with 19015 equispaced
points in D. The linear 560 × 560 system (7) is solved for µ in 0.19 seconds.
Evaluation of U(z) of (5) with straight-up quadrature also takes 0.19 seconds.
Evaluation of U(z) of (5) with globally compensated quadrature takes 0.36
seconds. The time for generating the grid points themselves not included.
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Fig. 4. The relative Euclidean error in U(z) of (5) as a function of the relative proximity
of z to the boundary (63) and of the numbers of panels.

The 483519 gridpoint problem is not really challenging as far as extreme close-
ness is concerned. The smallest distance from a point z to the boundary is on
the order of 10−3. As a harder test, we calculate the solution at points zp of a
scaled-down version of the discretized boundary

zp = (1 − r)z , (66)

where z are 1000 points of (63) equispaced in parameter and where the relative
proximity to the boundary r is varied in the interval 10−15 ≤ r ≤ 100. This
test will take us right up to the numerical limit of closeness. We use globally
compensated quadrature. Figure 4 shows a relative Euclidean error that, for
30 panels or more, is bounded by 40ǫmach. This seems to be an improvement
in several ways over, for example, Table 1 of Ref. [1] where r varies in the
interval 10−2 ≤ r ≤ 100 and D is an ellipse.

All tests above for the evaluation of U(z) of (5) have also been carried out using
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the quadratures of Section 5.2 with panel mergers and splits, high polynomial
order corrections, the parameter tol of Section 6 set to ǫmach, and backward
recursion for p whenever |z| > 1.2 in the transformed plane. We show no
plots. The results are similar to, or only marginally worse than, those obtained
with globally compensated quadrature. With 36 panels, corresponding to 576
discretization points on the boundary, for the 483519 gridpoint problem we get
a maximum relative pointwise error of 5.6·10−14 and a relative Euclidean error
of 1.4 · 10−15. The evaluation of U(z) for the 19015 gridpoint problem takes
0.39 seconds. But again, the globally compensated quadrature is specially
crafted for the Dirichlet problem on closed contours, while the quadratures
of Section 5.2 are more generally applicable. In conclusion, our techniques
are robust and capable of computing the solution to very high accuracy in
the entirety of the domain using relatively few discretization points. These
favorable traits also come at a reasonable price, speed-wise.

10.2 The exterior Dirichlet problem

The exterior Dirichlet problem will be solved on two different types of domains.
We begin with a domain D exterior to a collection of M circles with centers
in a unit cell and choose boundary conditions compatible with the reference
solution

Uref(z) = c +
M
∑

k=1

dk log(|z − sk|
2) , z ∈ D , (67)

where sk is a point within each circle. We take c = 1 and

dk = 2(k − 1)/(M − 1) − 1 . (68)

The condition number of this type of problem seems to increase as the relative
distance between neighboring boundaries gets smaller [23]. It is then of interest
to compare the performance of our methods on setups where the distances
between the circles are somehow controlled. The relative closeness of two circles
can be expressed in terms of a closeness factor

fcl =
2πrl

|zl − zs| − rl − rs
, (69)

where rl, zl, rs, and zs are the radii and centra of the larger and smaller circles,
respectively. Setting an upper limit, fclup, to fcl prohibits circles getting too
close, and in particular small circles getting close to large ones. The higher
the value of fclup, the lesser these restrictions become.

We let M ∈ [10, 2000] and fclup ∈ [10, 10000]. Different setups are created
as follows: For a given fclup, start with M = 2000 and choose a number β.
Then for each k = 1, . . . , M , pick a random radius rk in the interval [β, 30β]
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Fig. 5. A domain exterior to M = 2000 circles with centers in a unit cell and with
closeness factor upper limit fclup = 10000.

and a random position zk in the unit cell, place the circle centered at zk if
allowed by fclup, otherwise pick a new radius and a new position and repeat
until the circle fits and choose sk randomly in a smaller circle, centered at zk

and with radius 0.4rk. Once all circles are placed, the values dk are assigned
to these randomly. The number β is chosen high, but with the constraint that
M circles can be placed with reasonable ease. This results in area fractions
of circles in the unit cell varying from around 35% for fclup = 10 to 80% for
fclup = 10000. Geometries with M < 2000 are created as magnified parts of
the M = 2000 geometry. The values dk are again assigned randomly. Figure 5
shows the most challenging geometry.

The numerical solution U(z) is calculated via (11,17,18) at those points on
a 1200 × 1200 Cartesian grid, covering the unit cell, that belong to D. For
the integral equation, we use 16 panels corresponding to 256 discretization
points on each circle and activate the quadratures of Section 5.3 whenever
their corresponding criteria are met according to Section 6 with tol = ǫmach.
The quadratures of Section 5.2 are used for (11). Results for a large number of
M and different fclup are shown in Figures 6 and 7. The error does not depend
much on fclup. The accuracy in Figure 6 is equally high irrespective of whether
the circles are close or far apart from each other. The error seems to depend
only on M and grows linearly with the relative error in the positions of the
discretization points due to finite precision arithmetic. Figure 7 shows that,
for a given fclup, the number of GMRES iterations required to reach a relative
residual of 10−16 converges with increasing M . There is also some indication
that, for a given M , the number of iterations converges with increasing fclup.
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Fig. 6. The relative Euclidean error in the numerical solution U(z) to the exterior
problem (8,9,10) as a function of the number of circles M . The error does not depend
on the closeness of the circles. Its growth seems to be quite close to the ideal O(M0.5).
There are 256 discretization points on each circle.
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Fig. 7. Number of GMRES iterations needed to solve the system (18), with a stopping
criterion threshold in the relative residual of 10−16, as a function of the number of
circles M and for various closeness factor upper limits fclup.

In terms of speed and memory requirements our methods are cheap indeed.
To illustrate this, we time the solution for a setup with M = fclup = 1000. The
number of unknowns in the linear system (18) is 256000. A total of 622640
corrections to the entries of the system matrix are required due to activated
extended or special quadrature. Actually, the matrix entries are doubly cor-
rected: first the correct entries are computed and then the erroneous values
that would result from straight-up quadrature are subtracted. In this way the
output from the FMM only has to be corrected once in the iterative solver. It
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takes 45 seconds to locate and to precompute the doubly corrected entries with
the methods of Sections 5.3 and 6. Their storage requires about 5 megabytes
of memory. GMRES needs 87 iterations to reach the stopping criterion thresh-
old of 10−16 in the relative residual, and requires 2 megabytes of memory for
each new Krylov subspace vector. The total memory usage of GMRES comes
to around 174 megabytes, so the storage of precomputed entries is only 3%
of this. Speed-wise, the total time for solving the integral equation is 1388
seconds, about 3% of which, thus, is spent on precomputing corrected entries
and 1% is spent on applying corrected entries in the GMRES solver.

Finally, we shall solve a problem which does not have a closed form solution.
As for Dirichlet data (9), we choose the Gibbs-Thompson boundary conditions

f(τ) = κ(τ) , τ ∈ L , (70)

where κ(τ) denotes curvature. Rather than evaluating the solution U(z) we
shall compute its normal derivative at L, the Dirichlet–Neumann map

nz · ∇U(z) = ℑ







nz

2πi

∫

L

n̄τ
dµ(τ)
dστ

dτ

τ − z







+
M
∑

k=1

akℜ
{

nz

z − zk

}

, z ∈ L , (71)

where nz = (nx, ny) = nx + iny is the outward unit normal of L at z and n̄z

is its complex conjugate.

Fig. 8. The geometry used when computing the Dirichlet-Neumann map (71).There are
200 boundaries, a fifth of which are starfish-looking and parameterized as modifications
of (63). The rest are circles.

We use a geometry exterior to 200 boundaries, about a fifth of which are
parameterized as slight modifications of (63) and the rest are circles. See Fig-
ure 8. Computing the Dirichlet-Neumann map over this geometry is a rather
hard problem. The normal derivative of U(z) at L oscillates rapidly due to
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the varying curvature of the boundaries, and also because small circles lie
close to larger ones. Ideally, adaptive mesh refinement in combination with
some preconditioning should be used. Anyhow, we stick to a uniform mesh
and increase resolution of the boundaries to 64 panels corresponding to 1024
discretization points on each circle and 320 panels corresponding to 5120 dis-
cretization points on each boundary of the modified (63). Using a reference
solution computed on a mesh with twice this resolution, we achieve an esti-
mated relative Euclidean error of 2 · 10−10.

A few closing words about robustness are in order. We have tried to challenge
our quadrature formulas by a series of additional experiment on problems with
smooth boundaries and boundary data; using panels of wildly different sizes,
odd refinements and boundaries that fall back onto and almost touch them-
selves. Still, we have not succeeded in inducing failures. Provided one follows
the guidelines given throughout the paper, the computed solution should be
about as accurate as allowed by the prescribed tolerance and the conditioning
of the underlying mathematical problem in all but very exotic circumstances.

11 Discussion

Elliptic boundary value problems are often well-conditioned in a mathemat-
ical sense. It should be possible to solve them extremely rapidly and with a
minimal loss of precision, at least on smooth domains in the plane. A number
of generally efficient boundary integral solvers have been developed over the
years [37]. Still, in our opinion, there is room for improvement when it comes
to finding the best integral equation for a given problem, finding strategies
for mesh refinement, and treating points and boundaries that lie close to each
other. This paper is chiefly on the last topic.

A special situation is when a double layer density can be accurately converted
into the boundary value of an analytic function on a closed contour. Section 3,
here, suggests a globally compensated quadrature for the evaluation of the
potential in the entire computational domain. Considering its efficiency and
striking simplicity one would think that it should already have appeared in
the literature on solving Laplace’s equation. Perhaps it has? But we have only
been able to find the barely cited paper [21], containing the basic idea on the
evaluation of analytic functions by Cauchy’s theorem.

The bulk of the paper is on more general and almost equally efficient quadra-
tures for double layer potentials which should be applicable not only to the
Dirichlet problem for Laplace’s equation but also to problems in Stokes flow
and elasticity where similar double layers are used [4,9,14,22]. Of particular
interests here are applications to large-scale problems for composite materials
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and fracture mechanics. Inclusions that lie close to each other or have cor-
ners, adjacent grains that meet at triple-junctions [31], and growing cracks
with kinks [10] are common features which, in theory, can be resolved with
established integral equation methods, but where problems related to that the
boundary lies close to itself destroy the performance so much that these meth-
ods are seldom used but for rather small problems. The techniques presented
in this paper can not alone solve all the problems associated with such ge-
ometries efficiently, but they could be key ingredients in successful and more
complex algorithms and in this way help to change this situation.

We also give a new twist to the GMRES method, a competitive alternative
to Nyström interpolation, and an efficient formulation of Mikhlin’s method in
mode II. These improvements help in getting the most out of the calculations.

Appendix

A High-degree polynomial interpolation

We briefly review the mechanisms of polynomial interpolation in order to ex-
plain why high-degree interpolation of sufficiently smooth functions on the
interval [−1, 1] can give accurate results once the underlying function is re-
solved. At least up to degree 40 in double precision arithmetic.
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Fig. A.1. Polynomial interpolation of degree n−1 of the function f(x) = cos(2(x+1))
in the interval x ∈ [−1, 1]. The n data points are bunched near the ends of the interval.
The interpolating polynomial is evaluated at 1000 equispaced points and the relative
Euclidean error is computed. Polynomial coefficients are computed by solving a Vander-
monde system by Matlab’s backslash operator and by the Björk-Pereyra method.
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High-degree polynomial interpolation involves solving an ill-conditioned Van-
dermonde system for unknown coefficients. The condition number of the Van-
dermonde matrix grows exponentially with the number of data points n. The
error in the computed coefficients of the interpolating polynomial will grow in
a similar fashion. Still, the actual interpolation can be very accurate, at least
if the data points are bunched near the ends of the interval (e.g. Chebyshev
points or Legendre points), if the underlying function is sufficiently smooth,
and if a backward stable linear solver is used. This is well known, see, for
example, Chapters 2 and 7 of Ref [18] and in particular pages 62-63, 315, and
325. The key observation is that even though the solution to the linear system
is inaccurate, the relative residual is small. A small residual means that the
numerical interpolation error, that is, the difference between the interpolating
polynomial with computed coefficients and the interpolating polynomial with
exact coefficients, is a polynomial of degree n − 1 that practically vanishes at
n points. Using an argument based on Lagrange basis functions one can show
that the numerical interpolation error then is very small everywhere in the
interval.

As an illustration we interpolate the function f(x) = cos(2(x + 1)) in the
interval x ∈ [−1, 1] and let the x-values of the n data points be taken as the
nodes of the Legendre polynomial of order n. The condition number of the
Vandermonde system starts at unity for n = 1 and reaches O(1016) for n = 43.
Figure A.1 depicts the relative error of interpolating functions with coefficients
computed using Matlab’s backslash operator (O(2n3/3) FLOPs) and with
coefficients computed using the Björk-Pereyra method Algorithm 4.6.1 in
Ref. [13] (O(5n2/2) FLOPs). The interpolating polynomials are evaluated at
1000 equidistant points in the interval and compared with true values of f(x).
The relative error is in Euclidean norm. Figure A.1 shows that the function
f(x) is resolved with n = 18 data points and that both Matlab’s backslash
and the Björk-Pereyra method produce excellent results up to at least n ≈ 40
data points.
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