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Abstract

We present a new method for computing two-dimensional Stokes flow with moving
interfaces that respond elastically to stretching. The interface is moved by semi-
Lagrangian contouring: a distance function is introduced on a tree of cells near the
interface, transported by a semi-Lagrangian time step and then used to contour
the new interface. The velocity field in a periodic box is calculated as a potential
integral resulting from interfacial and body forces, using a technique based on Ewald
summation with analytically derived local corrections. The interfacial stretching is
found from a surprisingly natural formula. A test problem with an exact solution is
constructed and used to verify the speed, accuracy and robustness of the approach.
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1 Introduction

We present a new numerical method for computing time-dependent Stokes flow
in two dimensions, with a moving material interface which responds elastically
to stretching. The resulting elastic force creates jumps in the fluid velocity gra-
dient and pressure at the interface. We move the interface by semi-Lagrangian
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contouring [41,40,38,2]: Given the current interface location and velocity, an
implicit representation of the interface is constructed by building a signed dis-
tance function. The velocity is extended, and the distance function is trans-
ported by a second-order semi-Lagrangian formula. The updated interface is
found by contouring the zero set of the transported function. The fluid veloc-
ity, determined by the interface location and jump conditions, is computed as
a potential integral in a periodic box by Ewald summation, which splits the
velocity into two parts. The smooth part is calculated by a rapidly-converging
Fourier series, while the local part is approximated using asymptotic analysis,
resulting in a local correction formula. The velocity can be evaluated accu-
rately at arbitrary points in the fluid region. The stretching of the interface,
which determines the elastic force, is evolved by a surprisingly simple formula.
We derive an exact solution of the full problem, time-periodic, in which the
interface is an ellipse of varying eccentricity. Numerical experiments with this
exact solution confirm second-order accuracy. The method is designed so that
it can be extended to Navier-Stokes flow and to three-dimensional flow. The
immersed boundary method of Peskin [29] has been used extensively to model
biological problems in Stokes or Naver-Stokes flow with elastic interfaces, and
the immersed interface method is an alternative. These and other methods are
discussed below.

We consider fluid flow in a periodic box Q, modeled by Stokes flow, that is,
viscous, incompressible flow with the material derivative in the usual Navier-
Stokes equations neglected. Stokes flow is an appropriate model at small scales,
where viscous forces dominate, and is common in biological problems [29]. The
velocity vector v(x, t) and pressure p(x, t) satisfy the equations

−ν∆v + ∇p = F, ∇ · v = 0 (1.1)

with a force

F = fδΓ + Fb (1.2)

consisting of an interfacial force f on the interface Γ and a body force Fb

defined on the whole box Q. The interface Γ is a closed curve (or several of
them) consisting of elastic material immersed in the fluid and moving with
the fluid velocity. The interfacial force is defined distributionally by its action
on a test function w,

∫

Q
f(x)δΓ(x)w(x) dx =

∫

Γ
f(x(s))w(x(s)) ds (1.3)

where s is the arclength parameter on Γ at the current time. We assume the
viscosity is a constant ν and the fluid density ρ = 1 inside and outside Γ; the
fluid is the same on both sides.

The interfacial force fδΓ corresponds to a jump in the normal stress across
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the interface [30],
[Tij ]nj = −fi, i = 1, 2 (1.4)

with an implied sum over the repeated index j. Here Tij is the stress tensor

Tij = −pδij + ν (vi,j + vj,i) , (1.5)

square brackets [·] denote the outside value minus the inside, and the nor-
mal vector n points outward. Resolving this jump into normal and tangential
components gives well-known jump conditions [30,26,27] for p and ∂v/∂n:

[p] = f · n, ν

[
∂v

∂n

]
= −(f · τ)τ (1.6)

with viscosity ν constant. We suppose the force f at the interface is determined
by surface tension and thus has the form

f =
∂

∂s
(γτ) (1.7)

where γ is the (variable) coefficient of surface tension and s is the arclength at
the current time. (For derivation from classical force balance arguments, see
e.g. [24,21,31].) An equivalent form of Eq. (1.7) is

f = (∂γ/∂s)τ − γκn (1.8)

where κ is the curvature, defined by ∂τ/∂s = −κn. We assume that the
interfacial tension comes from the elastic response of the interface material,
so that γ is a function of the form

γ = γ(sα − 1). (1.9)

Here α is a material coordinate, equal to arclength in the equilibrium config-
uration; if the curve is parametrized by x = X(α, t), then

sα = ∂s/∂α = |∂X/∂α|. (1.10)

In our examples we suppose γ is linear when the stretching is positive:

γ = γ0(sα − 1)+ = γ0 max(0, sα − 1). (1.11)

Our formulation is the same as that of Peskin [29], except that our α corre-
sponds to Peskin’s s, and our f differs from his by the factor sα. We have
included the body force Fb to simplify the generation of exact test problems,
as was done in [27].

The rest of the paper is organized as follows. Sec. 2 describes the evolution
of the stretching factor sα. Cottet et al. [10,11] related it to the gradient of
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a signed distance function transported by the physical velocity. Eqs. (2.2)
and (2.7) give a generalization, valid for any extension of the physical ve-
locity off the interface, which expresses the evolution of sα in a surprisingly
simple way. This generalization incorporates the evolution of sα into the inter-
face motion, without tracking the material coordinate α. Sec. 3 summarizes
semi-Lagrangian contouring for moving interfaces, and outlines the overall al-
gorithm used in this work. The velocity determined by the Stokes equations
is the singular integral of Eq. (3.1), using the fundamental solution in a pe-
riodic box. Sec. 4 derives a new Ewald splitting of this periodic fundamental
solution, based on Ewald summation of the Green functions for the Laplacian
and biharmonic operators. The integral for the Stokes velocity then has two
parts, one with a smooth kernel and one with a local kernel. In Sec. 5 approx-
imations are derived for the local contribution from a single layer potential on
the curve, or from a body force which has a jump at the curve.

In Sec. 6 we construct a test problem with an exact periodic solution for the
elastic interface problem described by Eqs. (1.1), (1.6), (1.7) and (1.11). The
interface is an ellipse with time-varying eccentricity. There is a body force
which is discontinuous at the interface. We give the derivation of the test
problem in the hope that it might provide a useful test in other work. We do
not know of an exact solution which has been used for a comparable problem.
Sec. 7 presents our numerical results, including tests with the exact solution
which unambiguously verify the accuracy of the method. In Sec. 8 possible
extensions of this work are discussed.

The most widely used numerical method for biological problems modeled with
elastic interfaces in fluids is the immersed boundary method [29]. The fluid
velocity is calculated on a grid, and the force on the curve is spread to the
grid points by replacing it with a sum of smoothed delta functions with a care-
fully designed shape. Although the method is generally first-order accurate,
a second-order version has been designed for the case where the interface is
replaced by a layer of positive thickness [18]. The accuracy of the method is
also considered in [28,30,45,33,17,20]. In [9] the smoothed delta functions are
analytically projected onto the space of divergence-free vector fields, rather
than discretizing before projecting, thus removing an important source of er-
ror. In the method of [10,11] the location of the curve is found from a signed
distance function advected with the fluid; the smoothed delta function is com-
posed with the signed distance function. The general purpose front tracking
method introduced in [46] also uses a smoothed delta function.

While the design of the immersed boundary method makes it useful for a va-
riety of realistic problems, in principle better accuracy should be obtained,
at least in some cases, by keeping the interface sharp. The primary method
available with this property, for the same class of problems, is the immersed
interface method of R. LeVeque and Z. Li [25–27]. The velocity is again com-
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puted on a regular grid, using finite differences, but the force at the interface is
incorporated through the immersed interface method: jump terms are added
to the difference operators when the stencil crosses the boundary. The force
on the fluid (1.7)–(1.9) due to the curve must be computed from its configu-
ration. This can be direct if the curve is tracked, although a level set function
was used for the curve motion in [27]. Thorough applications of the immersed
interface method to rigid and moving boundaries were made in [23,47]. High
order accuracy requires a number of correction terms for spatial and temporal
derivatives when differences cross the interface. The present work is another
approach in which the interface is kept sharp, but the interfacial curve is
moved by the semi-Lagrangian contouring method, the velocity is computed
from the integral representation, and the force is found in a natural way. We
expect these features allow greater flexibility for the treatment of the bound-
ary motion; in particular, the influence of the force on the nearby fluid is less
tied to the grid. Recent work for boundary value problems [7,6] has aspects of
several of these methods. Higher order accuracy has been achieved for some
problems with moving fluid interfaces by other methods, e.g. the coupled level
set, volume-of-fluid method of [43].

Boundary integral methods have been used extensively for Stokes flow in free
space, in two or three dimensions, often with different viscosities, to model par-
ticles, drops, or bubbles [32,31]. Usually the force is normal and proportional to
curvature, as in the second term in Eq. (1.8). The integral formulation is natu-
ral, since the free space kernels are known explicitly, and since for Stokes flow
the singular integrals for the velocity are needed only on the moving bound-
ary. In this work we formulate the problem in a periodic box, rather than free
space, since we intend for this approach to be used for Navier-Stokes flow, and
boundary conditions are necessary in that case. Also for Navier-Stokes the ve-
locity has to be found at points on a regular grid in the fluid region, leading to
nearly singular integrals for points near the curve. The present method solves
the general problem of computing the Stokes velocity at arbitrary points in
periodic geometry. The possible extension from Stokes flow to Navier-Stokes
is discussed in Sec. 8. Other methods have been developed for periodic Stokes
flow; see [15] and references therein.

In [22] the boundary integral method was used for moving boundaries in Stokes
flow with equal arclength parametrization of the interface. With normal force,
it was found that the inherent stability requirement for explicit treatment
of the boundary motion was k ≤ Ch, where k is the time step and h is the
spacing on the boundary. We expect that similar considerations apply with the
general force of Eqs. (1.7) and (1.8). However, stiffness may be a more serious
problem with Navier-Stokes flow and with more general elastic response [44].

The Ewald splitting of the Stokes velocity kernel is akin to regularization of the
kernel of a singular or nearly singular integral with a local correction [4,3,8]. In
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fact, for the free space Laplacian, Gaussian regularization as in [4,3] gives the
same splitting as the Ewald method [36]. Approximations for the local parts of
nearly singular integrals have been derived in [4,3,16,36]. A general approach to
Ewald splitting and local corrections for systems of elliptic equations has been
developed in [42]. Cortez [8] used regularization of the Stokes fundamental
solution in a variety of Stokes problems, with corrections from [4] added for
forces on curves.

2 The stretching factor

We describe the evolution of the stretching factor which occurs in the expres-
sion for the elastic boundary force. The moving interface Γ is parametrized
by a material coordinate α, corresponding to arclength in the unstretched po-
sition. If s = s(α, t) is the arclength along the curve at the current time, the
stretching factor is sα(α, t) = |Xα(α, t)|, as in Eq. (1.10).

Suppose a neighborhood of the interface is moved by a velocity field V which
agrees with the fluid velocity v on Γ but may be different elsewhere. Although
the exact evolution of sα depends only on the velocity on the interface, it can
be related to the extended velocity V and the signed distance function ϕ near
Γ. Assuming Γ(t0) is sufficiently smooth, each point x0 near the interface has
the form x0 = X(α, t0)+ϕ(x0, t0)n(α, t0) for some α, where n(α, t0) is the unit
normal vector at X(α, t0), according to the Tubular Neighborhood Theorem,
and the inverse mapping (α, ϕ) 7→ x0 is differentiable near Γ(t0). (E.g. see [14],
Prop. 0.2.) The Jacobian determinant det(Xα, Xϕ) of the mapping (α, ϕ) 7→ x0

at a point on the curve is ±|Xα||n| = ±|Xα| = ±sα, since Xα ⊥ n. The sign
depends on the conventions for α, ϕ and n.

Since the neighborhood evolves in time with velocity V , any point x satis-
fies the ordinary differential equation dx/dt = V (x, t) with initial condition
x(t0; x0) = x0 at time t0. Let J = J(x0, t) be the Jacobian determinant of
∂x/∂x0. We can think of α, ϕ as coordinates for a neighborhood of Γ(t) via
the composite function (α, ϕ) 7→ x0 7→ x. The Jacobian of this composite
function for ϕ = 0 is ±Js0

α, where s0
α = sα(α, t0). Thus the derivative of the

inverse function x = (x1, x2) 7→ (α, ϕ) is the inverse matrix of the derivative
of (α, ϕ) 7→ x,



∂1α ∂2α

∂1ϕ ∂2ϕ


 =

1

±Js0
α




x2,ϕ −x1,ϕ

−x2,α x1,α


 . (2.1)

The second row of this formula implies that |∇ϕ| = |Xα|/(Js0
α). Solving for

sα = |Xα| gives sα = |∇ϕ|Js0
α. For a material point on the interface, the
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marker α is preserved by the flow, so

sα(α, t) = |∇ϕ(x, t)|J(x0, t)sα(α, t0), x0 = X(α, t0), x = X(α, t). (2.2)

Thus the stretching sα at any time t is determined by its initial value, the
mapping induced by V , and ∇ϕ (which in turn is determined by the in-
duced mapping). Further simplification depends on the choice of V . If V is
the physical velocity v, with ∇ · v ≡ 0, then J ≡ 1, and Eq. (2.2) reduces
to sα(α, t) = |∇ϕ(x, t)|sα(α, t0) as in Cor. 2.1 of [11], and Lemma 3.1 of [10].
However, we will use a different extension here.

For the present work it is convenient to extend the velocity field V (x, t) so
that its normal derivative is zero on the curve at each time t:

(n · ∇)V (x, t) = 0, x ∈ Γ(t). (2.3)

Then, the initial condition |∇ϕ| ≡ 1 at time t0 on Γ(t0) guarantees that

|∇ϕ(x, t)| = 1, x ∈ Γ(t). (2.4)

This is essentially Lemma A.1 in [48]; it is readily verified by differentiating
|∇φ|2 with respect to time and using the transport equation ϕt + V · ∇ϕ = 0.
In this case Eq. (2.2) for the stretching reduces to

sα(α, t) = J(x0, t)sα(α, t0). (2.5)

Moreover, the well-known fact

d

dt
J(x0, t) = ∇ · V (x, t)J(x0, t). (2.6)

and Eq. (2.5) imply the following simple differential stretching law:

d

dt
sα(α, t) = ∇ · V (x, t)sα(α, t), x = X(α, t). (2.7)

Our algorithm described below updates sα by this law.

For a surface in R3, Eq. (2.2) has a direct analogue with an entirely similar
derivation. If the material coordinates are α = (α1, α2), the stretching factor
is sα = |(∂X/∂α1)× (∂X/∂α2)|. The 3D analogue of Eq. (2.1) has as its third
row the equation ∇ϕ = (Xα1

×Xα2
)/(Js0

α), leading again to Eq. (2.2).

3 The numerical method

Our algorithm evolves the interface Γ and the stretching factor sα on the
interface. The interface moves with the velocity field v, determined from Eq.
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(1.1). The interfacial force in Eqs. (1.7) through (1.9) is determined by sα.
We extend the interfacial velocity along normal lines, rather than sampling
the physical velocity. Thus condition (2.3) holds, and we can use Eq. (2.7) to
update sα.

The velocity in Stokes flow has an integral representation derived from poten-
tial theory, in terms of the (periodic) fundamental solution Sij of the Stokes
equations [31]. The velocity v = (v1, v2) solving Eq. (1.1) in the periodic do-
main Q is

vi(y) =
∫

Γ

2∑

j=1

Sij(y − x(s))fj(s) ds+
∫

Q

2∑

j=1

Sij(y − x)Fbj(x) dx. (3.1)

This representation is derived in Sec. 4, and an efficient new method for com-
puting the velocity is derived in Secs. 4 and 5. The velocity on Γ suffices
to evolve Γ, but the velocity field can be evaluated at any desired point by
integration.

Given an interfacial velocity v, the interface is evolved by the four-step semi-
Lagrangian contouring method developed in [41,40,37,39,38,2]:

Implicit representation. A quadtree data structure called the distance tree,
consisting of square cells with pointers to nearby elements of Γ, is built. In
the course of this construction, a cell is split if the concentric triple intersects
Γ, the signed distance function ϕ is efficiently computed on the vertices of the
tree, and data is stored to permit efficient evaluation of ϕ anywhere in the
domain. The tree and ϕ values provide an efficient implicit representation of
the interface Γ. (See Sec. 1.3 of [40], and for more detail in an earlier version,
Secs. 3 and 4 of [37].)

Velocity extension. Given the interfacial velocity v on Γ and the distance
tree, define the extension V on the vertices x (and Steiner points) of the
distance tree by

V (x) = v(y), (3.2)

where y is a nearest point on Γ to x. Then define V at arbitrary points by inter-
polation from the tree vertices (and Steiner points). This “numerical Whitney
extension” provides an efficient representation of the extended velocity V . (See
[40], Sec. 2.)

Semi-Lagrangian evolution. Evolve ϕ (and implicitly the interface) along
characteristics of the extended velocity V , from time t to t+k, by the approx-
imate semi-Lagrangian formula

ψ(x̃) = ϕ(x̃− kV (x̃)) ≈ ϕ(x̃, t+ k). (3.3)

The predicted interface Γ̃ at time t+k is then the zero set of ψ. (For a second-
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order predictor-corrector version, see [40], Sec. 1.2, or steps (5), (10), and (11)
in the algorithm below.)

Contouring. Given the approximate implicit interface representation ψ, find
its zero set Γ̃ by the following contouring algorithm: Build a new distance
tree as if ψ were a signed distance function, by splitting each cell whose edge
length exceeds the minimum value of ψ on the cell. Triangulate the resulting
tree and find the exact polygonal zero set of the piecewise linear interpolant
to the values of ψ at the vertices of the triangulation. Refine the zero set by
moving and adding vertices to reduce |ψ| at each interface vertex below a
user-specified tolerance. (See [41], Sec. 2.)

Our algorithm for Stokes flow extends the semi-Lagrangian contouring scheme
to evolve the function q ≡ sα as well as the interface. (A similar semi-
Lagrangian approach to evolving interface data has been developed in [2],
in the context of realistic three-dimensional computer graphics.) One time
step of our algorithm evolves Γ and q from time t to t + k by the following
substeps:

(1) Input at time t: the interface Γ, the signed distance function ϕ to Γ, the
distance tree T , and the stretching factor q on Γ.

(2) Interfacial force computation: Build a local uniform mesh covering a tubu-
lar neighborhood of Γ. Compute the normal n (or tangent τ) and cur-
vature κ by high-order ENO differentiation of ϕ on the local mesh. Use
Eqs. (1.7) and (1.8) to compute the force f on the interface Γ.

(3) Interfacial velocity evaluation: From f on Γ and body force Fb(t), find
the interfacial velocity v on Γ from Eq. (3.1).

(4) Velocity extension: Extend v to V on the distance tree T built for the
interface Γ.

(5) Contouring: Find Γ̃ as the set of x̃ with ϕ(x) = 0, where x = x̃− kV (x̃).
(6) Distancing: Build new distance tree T̃ and compute ϕ̃, the signed distance

function to Γ̃, on T̃ .
(7) Stretching update: Compute ∇ ·V (x) for x ∈ Γ via a local uniform mesh

near Γ. Update q to q̃(x̃) = (1+k∇·V (x))q(x) for x̃ on Γ̃. (This completes
the predictor half-cycle.)

(8) Interfacial force computation: Construct a local uniform mesh near Γ̃.
Compute the new normal, tangent, curvature and the force f̃ determined
by q̃ on the predicted interface Γ̃.

(9) Interfacial velocity evaluation: From f̃ on Γ̃ and a body force Fb(t+ k),
find the interfacial velocity ṽ on Γ̃ from Eq. (3.1).

(10) Averaged velocity extension: Extend ṽ to Ṽ on the distance tree T̃ built
for the curve Γ̃. Construct the second-order averaged velocity on T̃

V (x) = 1
2
Ṽ (x) + 1

2
V (x− kV (x)) (3.4)

(11) Contouring: Find Γ as the set of x with ϕ(x) = 0, where x = x− kV (x).
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(12) Distancing: Build a new tree T and compute ϕ, the signed distance func-
tion to Γ, on T .

(13) Stretching update: For x ∈ Γ find ∇·V (x) via a local uniform mesh near
Γ. For x ∈ Γ find ∇ · Ṽ (x) via a local uniform mesh near Γ and update
q by the second-order formula

q(x) = q(x) + 1
2
k∇ · V (x)q(x) + 1

2
k∇ · Ṽ (x)q(x) (3.5)

with the last term locally implicit, or equivalently

q(x) =
1 + 1

2
k∇ · V (x)

1 − 1
2
k∇ · Ṽ (x)

q(x) (3.6)

Here x = x − kV (x) as in step (11). (This ends the complete predictor-
corrector cycle.)

4 Ewald summation for Stokes flow

Ewald summation is a family of classical techniques for fast summation of pe-
riodic Green functions for elliptic operators. Techniques for specific operators
such as the Laplacian and Stokes operators have been derived in many clas-
sical works [13,19] and applied in many modern computations [1,36,34], while
general techniques for elliptic systems have been developed in [42]. We present
a new Ewald summation technique for the Stokes equations. It leads to a new
local correction scheme remarkably similar to several previous schemes which
have been derived from a completely different point of view [4].

4.1 The steady Stokes equations

The steady Stokes equations on a d-dimensional periodic box Q = [−π, π]d ⊂
Rd for the velocity v : Q→ Rd and pressure p : Q→ R are

−ν∆v + ∇p = F, ∇ · v = 0, (4.1)

where F is a force with mean zero (for consistency). Applying the divergence
operator yields ∆p = ∇·F = ∂jFj, and substituting back in gives a biharmonic
equation

ν∆2vi = ∂i∂jFj − ∆Fi (4.2)

where ∂i = ∂/∂xi and repeated indices imply summation. Let

∆G = δ − 1/|Q|,
∫

Q
G dx = 0, (4.3)
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define the periodic mean-zero Green function for the Laplace equation and

∆B = G,
∫

Q
B dx = 0, (4.4)

define the periodic mean-zero Green function for the biharmonic equation
(4.2). Here |Q| = (2π)d is the box volume and δ is the usual Dirac delta
function. Then

νvi = ∂i∂jB ⋆ Fj − ∆B ⋆ Fi (4.5)

where ⋆ denotes the usual convolution of periodic functions:

f ⋆ g(x) =
∫

Q
f(x− y)g(y) dy. (4.6)

We now seek convenient formulas for G, B and ∂i∂jB.

4.2 Ewald summation for the Laplacian

The obvious Fourier series

G(x) = −(2π)−d
∑

k 6=0

1

|k|2 e
ik·x (4.7)

for G does not converge quickly enough to be useful in computation. Ewald
summation expresses G as the sum of two rapidly-converging series, one smooth
and one singular but localized. The technique can be derived in a variety of
ways which suggest various extensions. The following derivation appears to be
new. Let Kt be the fundamental solution of the periodic heat equation given
in two different forms as

Kt(x) = (2π)−d
∑

k

e−t|k|2eik·x = (4πt)−d/2
∑

m∈Zd

e−r2
m/4t, (4.8)

where rm = |x − 2πm|. As t → 0, Kt(x) → K0(x) = δ(x), a periodic delta
function. Note thatKt has mean 1/|Q| for all t ≥ 0. Fix a smoothing parameter
σ > 0 and write

G = G ⋆ (δ − 1/|Q|) = G ⋆ (Kσ − 1/|Q|) +G ⋆ (δ −Kσ) (4.9)

where the fundamental theorem of calculus, the heat equation, and the defi-
nition of G give
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G ⋆ (δ −Kσ)=G ⋆ (K0 −Kσ)

=−G ⋆
∫ σ

0
∂tKt dt

=−G ⋆
∫ σ

0
∆Kt dt

=−
∫ σ

0
Kt dt+ σ/|Q|. (4.10)

The integral is sharply peaked in space, so we collect up global terms and local
terms separately to write G as the sum G = GF + GL of Fourier and local
parts. Here GF is defined as

GF = G ⋆ (Kσ − 1/|Q|) + σ/|Q| (4.11)

so that

GF (x) = (2π)−d


σ −

∑

k 6=0

e−σ|k|2

|k|2 eik·x


 . (4.12)

The k = 0 term in the Fourier series for GF is nonzero. This does not matter
when convolving with a function F which has mean zero, but will make a
difference when evaluating pointwise values of the full Green function.

By integration, we find the complementary local part,

GL(x) = −
∫ σ

0
Kt(x) dt=−

∑

m

∫ σ

0
(4πt)−d/2e−r2

m/4t dt

=−1

4
π−d/2

∑

m

r2−d
m Γ

(
d/2 − 1,

r2
m

4σ

)
. (4.13)

Here Γ(a, z) =
∫∞
z e−ssa−1 ds is the usual incomplete gamma function, which

is appropriately singular as z → 0 but decays exponentially as z → ∞. Thus
we can omit the images 2πm, m 6= 0, whenever x is well inside the box Q.

4.3 Biharmonic Ewald summation by squaring

The straightforward approach to Ewald summation for the biharmonic equa-
tion requires the inverse Fourier transform of e−t|k|4, which is difficult to eval-
uate. Thus we consider two different approaches, squaring and subtraction,
both based on the Ewald splitting of the Green function G for the Laplacian.
The present work employs subtraction. In the squaring approach, we observe
that

B=G ⋆ G = (GF +GL) ⋆ (GF +GL)

=GF ⋆ (GF + 2GL) +GL ⋆ GL ≡ BF +BL (4.14)
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where (since convolution multiplies Fourier coefficients)

BF (x) = (2π)−d


−σ2 +

∑

k 6=0

e−σ|k|2(2 − e−σ|k|2)

|k|4 eik·x


 (4.15)

and

BL(x) =
∫ σ

0

∫ σ

0
(Kt ⋆ Ks)(x) ds dt =

∫ σ

0

∫ σ

0
Kt+s(x) ds dt (4.16)

since the heat kernel defines a semigroup. Consider GL(x; σ) as a function of
the smoothing parameter σ, (as well as x) and let H(x; t) =

∫ t
0 G

L(x; σ)dσ be
an antiderivative; then

BL(x) =
∫ σ

0
∂tH(x; t+ σ) − ∂tH(x; t) dt = H(2σ) − 2H(σ) (4.17)

where a tedious calculation gives

H(t) =
1

16πd/2

∑

m

r4−d
m

(
4t

r2
m

Γ

(
d/2 − 1,

r2
m

4t

)
+ Γ

(
d/2 − 2,

r2
m

4t

))
(4.18)

The occurrence of four separate incomplete gamma functions in expression
(4.18) is computationally inconvenient and complicates local correction for-
mulas such as Eq. (5.34) below, so we also employ another approach which
leads to simpler formulas.

4.4 Biharmonic Ewald summation by subtraction

We also derive a more convenient approach in which the local part of the
biharmonic Ewald sum is defined by modifying the free-space Green function
in a way that preserves the local singularity. We take the two-dimensional case
d = 2 for simplicity. The free-space Green function for the Laplace equation
is

G∞(x) =
1

2π
log |x|, (4.19)

and the corresponding free-space Green function for the biharmonic is

B∞(x) =
1

8π
|x|2(log |x| − 1). (4.20)

The derivation of harmonic Ewald summation and the singularity

Γ(0, z) =
∫ ∞

z
e−sds

s
∼ − log z as z → 0 (4.21)
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suggests that we define

BL(x) = − 1

16π

∑

m∈Z2

r2
mΓ

(
0,
r2
m

4σ

)
(4.22)

to provide a periodic rapidly-decaying function which matches the local sin-
gularity of B. We then use the Poisson summation formula to evaluate the
smooth remainder BF = B−BL as a Fourier series. Neither BF nor BL have
mean zero, but their sum B does. Reversing the computation of GL(x) shows
that

BL(x) =−1

4

∫ σ

0

∑

m

r2
m(4πt)−1e−r2

m/4t dt

=− 1

4π

∫ σ

0
t
d

dt

∑

m

e−r2
m/4t dt

=−(2π)−2
∑

k

∫ σ

0
t
d

dt
(te−t|k|2) dt eik·x (4.23)

where we have integrated by parts and used the equality (4.8), a special case
of the Poisson summation formula [12]. Then, since BF = B −BL and

B(x) = (2π)−2
∑

k 6=0

1

|k|4 e
ik·x, (4.24)

we obtain the following rapidly-converging Fourier series representation:

BF (x) = (2π)−2


σ

2

2
+
∑

k 6=0

1

|k|4 (1 + σ|k|2 + σ2|k|4)e−σ|k|2eik·x


 . (4.25)

Its second partial derivatives are given by

∂i∂jB
F (x) = −(2π)−2

∑

k 6=0

kikj

|k|4 (1 + σ|k|2 + σ2|k|4)e−σ|k|2eik·x. (4.26)

4.5 Application to the Stokes velocity

The decomposition B = BF +BL above leads to a corresponding decomposi-
tion of the operator producing the Stokes velocity into a smooth part and a
local part. We write Eq. (4.5) in the form

νvi = ΣjSij ⋆ Fj (4.27)

with
Sij = ∂i∂jB − δij∆B. (4.28)
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It is natural to write Sij as the sum

Sij = SF
ij + SL

ij (4.29)

with

SF
ij = ∂i∂jB

F − δij∆B
F , SL

ij = ∂i∂jB
L − δij∆B

L. (4.30)

The smooth part SF has the Fourier representation

SF
ij (x)= (2π)−2

∑

k 6=0

sij(k)e
ik·x,

sij(k)=
δij |k|2 − kikj

|k|4 (1 + σ|k|2 + σ2|k|4)e−σ|k|2. (4.31)

The local part will be written explicitly in the next section.

5 Computation of the Stokes velocity

In the last section the velocity v, determined by the Stokes equations (4.1)
with given force F , was written as the convolution

νvi =
∑

j

Sij ⋆ Fj . (5.1)

The velocity kernel S given by Eq. (4.28) was decomposed into a smooth part
and a local part, S = SF + SL. The two parts will be treated separately. For
convenience we write the velocity as v = vF + vL.

5.1 The Fourier part

The velocity term vF contributed by the smooth part of the kernel is computed
as a Fourier series. The method is similar to that of [36]. Writing F in a Fourier
series,

F (x) =
∑

k

F̂ (k)eikx, F̂ (k) = (2π)−2
∫

Q
F (x)e−ikx dx (5.2)

and using the Fourier representation (4.30) of SF , we have

νvF
i (x) =

∑

j

∑

k

sij(k)F̂j(k)e
ikx. (5.3)

Because of the exponential decay of sij(k) in Eq. (4.31), we can truncate
the series. We choose a truncation index p and sum over k = (k1, k2) with
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|k1|, |k2| ≤ p. The error EF due to this truncation is at most

|EF | ≤
√

2π
e−p2σ

p3σ3/2
. (5.4)

(See [36], p. 253.) The error bound (5.4) depends only on p2σ and decays
rapidly as p2σ → ∞. For example, p2σ = 20 gives an error less than 10−10.

If the force F is on the curve, in the form F = fδΓ, the Fourier coefficient of
F is an integral over the curve,

F̂ (k) = (2π)−2
∫

Γ
f(x)e−ikx ds(x). (5.5)

We compute these coefficients by a quadrature rule over the line segments of
which Γ is constructed. (Compare [36], p. 255.) If F is a body force, we use a
trapezoidal rule for the integral (5.5). If F has a jump discontinuity at Γ, we
approximate Γ by a line segment in each grid square it cuts and choose some
value of F on the correct side for each part of the square. The resulting Fourier
coefficients are second-order accurate in the grid spacing. The complexity of
the computation is cubic in the grid spacing, since each interface element
affects every Fourier coefficient; thus optimal complexity requires geometric
nonuniform FFT techniques [35].

5.2 The local part

We derive approximations to the contribution vL valid for small σ. This is
possible because the kernel SL decays like a Gaussian away from the singular-
ity. It is convenient to replace the Ewald parameter σ with a new parameter
δ, defined by

δ2 = 4σ. (5.6)

It is the radius of smoothing in GF and BF and the length scale for the decay
in SL. We obtain an expansion in powers of δ. Similar expansions have been
used in [16], [36], [4], [3]. The analytical technique here is close to that in [4].

We ignore the periodic reflections in the formulas (4.13) and (4.22) for GL and
BL, presuming that the sources are well inside the periodic boundary. Thus,
with r = |x|,

GL(r) ≈ − 1

4π
Γ(0, r2/δ2), BL(r) ≈ − r2

16π
Γ(0, r2/δ2). (5.7)

Corresponding to BL, the local part of the Stokes velocity is vL
i = ΣjS

L
ij ⋆ Fj

with
SL

ij = ∂i∂jB
L − δij∆B

L. (5.8)
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To obtain detailed expressions we start with derivatives of GL, BL:

∂rG
L =

1

2πr
e−r2/δ2

(5.9)

∂jB
L =

1

4

(
2xjG

L +
xj

2π
e−r2/δ2

)
(5.10)

and with ρ = r/δ,

∂i∂jB
L = δij

(
1

2
GL +

e−ρ2

8π

)
+
xixj

4πr2
(1 − ρ2)e−ρ2

(5.11)

and in particular

∆BL =
∑

j

∂2
jB

L = GL +
1

2π

(
1 − ρ2

2

)
e−ρ2

. (5.12)

Now substituting Eqs. (5.11) and (5.12) in Eq. (4.28) we can write SL explicitly
as

SL
ij = −δij

2
GL + δije

−ρ2

(
− 3

8π
+
ρ2

4π

)
+
xixj

4πr2

(
1 − ρ2

)
e−ρ2

(5.13)

To proceed further we consider separately the two types of force.

5.3 The local integral over a curve

Consider the local part vL of the velocity induced by a force F = fδΓ on a
curve Γ. At an arbitrary point y

νvL
i (y) =

∫

Γ

∑

j

SL
ij(y − x(s))fj(s)ds (5.14)

where s is the arclength parameter on the curve. We will derive an approxi-
mation valid to O(δ3). Since SL is localized we are only concerned with y near
the curve Γ and the part of the integral with x(s) near y. For such y we can
write y = x(s0) + bn(s0) where x(s0) is a point on Γ and n(s0) is the unit
normal at that point. For simplicity we assume s0 = 0. We write τ = x′(0) for
the unit tangent, and n = n(0) for the normal, denoting the s-derivative with
′. We have x′′(0) = −κn, where κ is the curvature at x(0). (See Fig. 1.)

We use Taylor expansions in s and b to identify the largest terms in Eq. (5.14).
We begin with

x(s) − y = τs− (1
2
κs2 + b)n +O(s3). (5.15)

Let r2 = |x(s) − y|2 and R2 = s2 + b2. Then

r2 = s2 + b2 + κbs2 +O(R4) (5.16)
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x(s)

x(0)  

y

bn

r = |x(s) − y|

Fig. 1. Integral over the curve evaluated at y

We now introduce a new variable ξ = ξ(s, b) defined by r2 = ξ2 + b2 in order
to simplify the dependence of the integrand on r. Solving for ξ in Eq. (5.16)
gives ξ2 = (1 + κb)s2 +O(R4) or

ξ = (1 + 1
2
κb)s +O(R3). (5.17)

We can now solve for s = s(ξ, b), obtaining

s = (1 − 1
2
κb)ξ +O(r3) (5.18)

and
ds

dξ
= 1 − 1

2
κb+O(r2). (5.19)

Now substituting for s in terms of ξ in Eq. (5.15) gives

x(s) − y = (1 − 1
2
κb)ξτ − (1

2
κξ2 + b)n +O(r3) (5.20)

and similarly for f

f = f(0) + f ′(0)s+O(s2) = f(0) + f ′(0)ξ +O(r2). (5.21)

In evaluating various parts of the integral (5.14) we use the substitution ξ = δζ
and b = δβ, noting that ρ = r/δ =

√
ζ2 + β2. Four integrals related to the

Gaussian will be needed. If

Ip =
∫ ∞

−∞

e−(ζ2+β2)

ζ2 + β2
ζpdζ, Jp =

∫ ∞

−∞
e−(ζ2+β2)ζpdζ, (5.22)

then

I0 = (π/|β|)erfc|β|, I2 =
√
πe−β2 − π|β|erfc|β|, (5.23)

J0 =
√
πe−β2

, J2 = (
√
π/2)e−β2

. (5.24)
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We begin with the integral of GLfi, corresponding to the part of Eq. (5.14)
coming from the first term of Eq. (5.13)

∫
GL(r/δ)fi

ds

dξ
dξ =

∫
GL(r/δ)

[
(f0i + f ′

0iξ) (1 − 1
2
κb) + +O(r2)

]
dξ

= (1 − 1
2
κb)f0i

∫
GL(r/δ) dξ + odd term + remainder (5.25)

We evaluate the last integral as follows:

∫
GL(r/δ)dξ= δ

∫
GL(ρ)dζ

=−δ
∫
∂GL

∂ζ
ζdζ

=−δ
∫
∂GL

∂ρ

ζ

ρ
· ζdζ

=−δ
∫

1

2πρ
e−ρ2 ζ2

ρ
dζ

=− δ

2π
I2. (5.26)

The term in Eq. (5.25) with f ′
0iξ is odd in ξ and integrates to 0. The O(r2)

remainder in Eq. (5.25) is a sum of terms, each a monomial of degree 2 in ξ, b
times a bounded function, and the integral is O(δ · δ2) = O(δ3). Thus

A1i ≡
∫
GL(r/δ)fids = − δ

2π
(1 − 1

2
κb)I2f0i +O(δ3) (5.27)

Looking at the next terms in Eq. (5.13) we see in a similar but simpler way
that

A2i ≡
∫
e−ρ2

fidξ = δ(1 − 1
2
κb)J0f0i +O(δ3), (5.28)

A3i ≡
∫
e−ρ2

ρ2fidξ = δ(1 − 1
2
κb)(J2 + β2J0)f0i +O(δ3). (5.29)

To handle the remaining part of SL, we note that

∑

j

(xj −yj)fj = (1− 1
2
κb)

(
fτξ + f ′

τξ
2
)
− (1

2
κξ2 + b) (fn + f ′

nξ)+O(r3) (5.30)

where fτ =
∑

j f0jτj , fn =
∑

j f0jnj and similarly f ′
τ , f

′
n are tangential and

normal components of f ′
0. Then

∑

j

(xi − yi)(xj − yj)fj
ds

dξ
= (1 − 3

2
κb)ξ2fττi +

(
b2 − 1

2
κb3 + bκξ2

)
fnni

− bξ2 (f ′
nτi + f ′

τni) + odd terms +O(r4) (5.31)
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and proceeding as with the earlier terms we find, with Mp = Ip − Jp,

A4i ≡
∫ ∑

j

(xi − yi)(xj − yj)

r2
(1 − ρ2)e−ρ2

fjdξ

= δ(1 − 3
2
κb)M2fττi + δβ2(1 − 1

2
κb)M0fnni + δ2βκM2fnni

− δ2βM2(f
′
nτi + f ′

τni) +O(δ3). (5.32)

We can now substitute Eqs. (5.27–5.29) and (5.32) into Eqs. (5.13) and (5.14)
to get an expression for the local part of the velocity,

νvL
i = −1

2
A1i −

3

8π
A2i +

1

4π
A3i +

1

4π
A4i +O(δ3). (5.33)

It is convenient to combine the first three terms and rewrite this as

4πνvL
i = δ(1 − 1

2
κb)

(
I2 − (1 − β2)J0

)
f0i + A4i +O(δ3). (5.34)

In the special case when b = 0, i.e. y is on the curve, this expression simplifies
to

4πνvL
i = 1

2
δ
√
πfττi +O(δ3) (5.35)

5.4 The local integral of a body force

Next we approximate the local velocity resulting from a body force F which
may be discontinuous across a curve Γ. We first suppose that F is nonzero
only inside the domain D bounded by Γ. In place of Eq. (5.14) we have the
integral

νvL
i (y) =

∫

D

∑

j

SL
ij(y − x)Fj(x) dx. (5.36)

If y is away from Γ, it can be seen that this local velocity is O(δ4) because
of the form (5.8) expressing SL in terms of second derivatives of BL, the fact
that BL in Eq. (5.7) is δ2 times a function of ρ = r/δ, and the rapid decay of
BL. Thus we consider a point y near the curve. For simplicity we assume y is
along a vertical normal line to the curve at distance b, and we set y = (0, 0)
without loss of generality. Thus we suppose the curve has the form

x2 = Y (x1) = −b+ 1
2
Y ′′

0 x
2
1 +O(x3

1) (5.37)

so that the curve passes through (0,−b) with normal (0, 1). (See Fig. 2 .)

The integrand is significant only for x near 0. Assuming b is small, we will
introduce new coordinates ξ = (ξ1, ξ2) so that the exterior x2 > Y (x1) corre-
sponds to ξ2 > −b and the radial distance is preserved, that is,

ξ2
1 + ξ2

2 = x2
1 + x2

2 ≡ r2. (5.38)
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y = (0,0)

(0,−b)

2 1= Y(x )x

 
1(x ,x )2

1r = |(x ,x )|2

Fig. 2. Integral over the region inside the curve

To do this, given x, we first define ξ2 as

ξ2 = x2 − Y (x1) − b = x2 − 1
2
Y ′′

0 x
2
1 +O(x3

1) (5.39)

so that Eq. (5.38) reduces to ξ2
1 = x2

1 +2ξ2(Y + b)+ (Y + b)2. Since (Y + b)/x2
1

is smooth, this equation defines ξ1, with the convention that ξ1 and x1 have
the same sign. We have ξ2

1 = x2
1(Y

′′
0 ξ2 +O(x)) or

ξ1 = (1 + 1
2
Y ′′

0 ξ2)x1 +O(x2). (5.40)

From the approximations (5.39) and (5.40) it follows that

x = ξ +O(r2), J ≡ det

(
∂x

∂ξ

)
= 1 +O(r). (5.41)

We now convert the integral (5.36) to the new variables,

νvL
i =

∫ −b

−∞

∫ ∞

−∞

∑

j

SL
ij(x)Fj(x)Jdξ1dξ2 (5.42)

and note that the dependence on r/δ is unaffected by the conversion. We will
evaluate to O(δ3) with crude approximations, but it will be clear that further
terms are of the order neglected. Thus we replace Fj(x) with F0j = Fj(0, 0)
and J with 1. We ignore the distinction between x and ξ to get

νvL
i ≈

∫ −b

−∞

∫ ∞

−∞

∑

j

SL
ij(x)F0j dx. (5.43)

For i = 2 we can use Eq. (5.8) to write the integrand as ∂21B
LF01−∂11B

LF02;
since this is an x1-derivative, the integral is zero. For i = 1, the integrand is
∂12B

LF02−∂22B
LF01; the first term again integrates to zero, and for the same

reason we can replace the second term by −(∆BL)F01. We now have

νvL
1 ≈ −F01

∫ −b

−∞

∫ ∞

−∞
∆BL dx. (5.44)
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One term in ∆BL is GL. We rewrite the x1-integral of this term as

∫ ∞

−∞
GL(x1, x2) dx1 = −

∫ ∞

−∞
x1
dGL

dx1
dx1 = −

∫ ∞

−∞

x2
1

2πr2
e−r2/δ2

dx1. (5.45)

Substituting from Eq. (5.12) and combining terms we have

νvL
1 ≈ F01

2π

∫ −b

−∞

∫ ∞

−∞

(
−x2

2

x2
1 + x2

2

+
1

2
(x2

1 + x2
2)

)
e−r2/δ2

dx1 dx2. (5.46)

We now rescale the variables by (x1, x2) 7→ (δx1, δx2) and set β = b/δ, so that

νvL
1 ≈ δ2F01

2π

∫ −β

−∞

∫ ∞

−∞

(
−x2

2

x2
1 + x2

2

+
1

2
(x2

1 + x2
2)

)
e−r2

dx1 dx2. (5.47)

We note that the integrand is even in x2 and the integral from 0 to ∞ is zero.
Thus for β > 0, the integral from −∞ to −β is minus that from 0 to β, and
for β < 0, the integral is equal to that from 0 to |β|. Evaluating the integral
we find

νvL
1 ≈ −δ

2F01

8π
β
(√

πe−β2 − 2π|β|erfc|β|
)
. (5.48)

The term just found was O(δ2) because of the rescaling of the area form. If
we considered further terms we would have additional factors of ξ, which after
rescaling would contribute terms to the integral of order δp · δ2 with p ≥ 1.
Returning to general coordinates, we summarize the conclusion for the local
velocity (5.36): For a point y = x+ bn near the curve, where n is the normal
at the nearest point x on the curve to y,

νvL = − δ2

8π
β
(√

πe−β2 − 2π|β|erfc|β|
)
Fττ +O(δ3) (5.49)

where β = b/δ, τ is the tangent at x, and Fτ is the tangential component of
F at x.

Finally, we consider the case of an integral over the full periodic domain but
with a discontinuity in F at the curve Γ. In the analysis above, if our integral
were outside D rather than inside, the y-integral would have been from −b to
∞ rather than −∞ to −b. The result would be the same except for a change
of sign. Thus, for an integral with discontinuity across Γ, the result would be
the difference of two terms as in Eq. (5.49)

νvL =
δ2

8π
β
(√

πe−β2 − 2π|β|erfc|β|
)

[Fτ ]τ +O(δ3) (5.50)

where [Fτ ] means the outside value minus the inside of Fτ .
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6 An exact solution with elastic force

We construct an exact solution in a 2π-periodic box Q, for which the elastic
interface is a moving ellipse

x = a(t) cos θ, y = b(t) sin θ (6.1)

parametrized by θ, so at any time the ellipse is

x2

a2
+
y2

b2
= 1. (6.2)

The area must remain constant since the flow is incompressible, and we take
a(t)b(t) = 1 to preserve the area. To be specific, we take

a(t) = 1 +
1

4
cosωt (6.3)

with some frequency ω so that 3/4 ≤ a ≤ 5/4 and 4/5 ≤ b ≤ 4/3, and thus
the ellipse stays well within the central half-square −π/2 ≤ x, y ≤ π/2 of Q.
We assume that the points move along rays θ = constant, so that the velocity
of a point on the ellipse is

(a′ cos θ, b′ sin θ). (6.4)

We note for later use that

σ ≡ ds/dθ =
√
a2 sin θ2 + b2 cos θ2 =

√
b4x2 + a4y2 (6.5)

where s = arclength. Furthermore, the unit tangent and normal vectors to
this curve are

τ = (−a2y, b2x)/σ, n = (b2x, a2y)/σ, (6.6)

∂τ/∂s = −κn and the curvature is given by κ = σ−3.

The next step is to find a velocity field which gives the motion specified for
the ellipse. We choose a stream function ψ(0) and then define the velocity
as (ψ(0)

y ,−ψ(0)
x ), so that the divergence is zero. Note that a′/a = −b′/b since

ab = 1. For −π/2 ≤ x, y ≤ π/2 we define

ψ(0) =
a′

a
xy (6.7)

so that

v(0) = (
a′

a
x,
b′

b
y) (6.8)

in this smaller region, matching the velocity already specified on the curve.
Later we extend ψ(0) to the whole box Q so that it is 2π-periodic in each
variable. We note for later use that ∆v(0) = 0.
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We suppose that the equilibrium state of the membrane is the circle of radius
1/2, with total length π, so that α = θ/2 is a material coordinate. Then
ds/dα = (ds/dθ)(dθ/dα) = 2σ. The force f on the curve is given in terms of
τ , n, and sα = ds/dα by

f = ∂s[(sα − 1)τ ] = 2∂s(sθ)τ − (2sθ − 1)κn = fττ + fnn (6.9)

with
fτ = 2∂s(sθ), fn = −(2sθ − 1)κ (6.10)

and since σ = sθ,

fτ = 2sθθ/σ = 2σ−2(a2 − b2)xy (6.11)

fn = −σ−3(2σ − 1) = −2σ−2 + σ−3. (6.12)

We must choose v and p with the jump conditions (outside minus inside)

f = [p]n− ν

[
∂v

∂n

]
(6.13)

or, separating tangent and normal components,

[
∂v

∂n

]
= −fττ, [p] = fn. (6.14)

To create tangential force on the boundary, we will add a term to the velocity
inside the ellipse, giving the requisite jump in normal velocity. Since the ve-
locity must be continuous, the new term must be zero on the curve. We again
define it through a stream function. We define ρ by

ρ2 =
x2

a2
+
y2

b2
(6.15)

so that the ellipse corresponds to ρ = 1. Let g be any function defined near
the ellipse. Define

ψ(1) = g(ρ2 − 1)2, v(1) = (ψ(1)
y ,−ψ(1)

x ). (6.16)

For any choice of g, the velocity will be continuous with a jump in ∂v/∂n
depending on g. We find ∆(ρ2 − 1)2 = 8σ2. Since ψ = 0 and ∇ψ = 0 on the
ellipse we get

∂v(1)

∂n
= −g(∆(ρ2 − 1)2)τ = −8σ2gτ. (6.17)

Looking at fτ above, we need −8σ2g = fτ on the ellipse, or

g = − 1

4σ4
(a2 − b2) sin θ cos θ = −σ−4(a2 − b2)

xy

4ab
(6.18)
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on the ellipse. We will extend σ positively to the interior ρ < 1 and then
define, for ρ < 1,

ψ(1) = −σ−4(a2 − b2)
xy

4ab
(ρ2 − 1)2 (6.19)

Similarly, we define p inside as the extension of −fn = σ−3(2σ−1), with p = 0
outside, so that the jump condition for pressure in Eq. (6.14) is satisfied. We
have now defined the velocity and pressure so that the ellipse moves with the
fluid velocity and the jump conditions (6.14) hold.

To extend σ to ρ < 1, keeping it positive, we define σ2 inside as

σ2 = 1 + (a2 − 1)
y2

b2
+ (b2 − 1)

x2

a2
. (6.20)

Then σ2 → 1 as (x, y) → (0, 0). Also

σ2 = 1 − ρ2 + a2 y
2

b2
+ b2

x2

a2
(6.21)

and for ρ = 1 this agrees with Eq. (6.5) since ab = 1. We check σ is strictly
positive: Choose c0 > 0 so that a, b ≥ c0 at each time. (For our example,
c0 = 3/4.) Then

σ2 ≥ 1 − ρ2 + c0ρ
2 = 1 − (1 − c0)ρ

2 ≥ c0 (6.22)

for ρ2 ≤ 1, as desired.

We need third derivatives of ψ(1), since v(1) = (ψ(1)
y ,−ψ(1)

x ) and the body force

depends on ∆v(1). To record various derivatives, we write

ψ(1) = C0xyQR, C0 = (b2 − a2)/(4ab), (6.23)

Q = σ−4, R = (ρ2 − 1)2 (6.24)

with σ extended to ρ ≤ 1 as in Eqs. (6.20) and (6.21). For convenience write

ρ2 = b2x2 + a2y2, σ2 = 1 + b2(b2 − 1)x2 + a2(a2 − 1)y2 (6.25)

or

σ2 = 1 +Bx2 + Ay2, B = b2(b2 − 1), A = a2(a2 − 1) (6.26)

Then

Rx = 4(ρ2 − 1)b2x, Ry = 4(ρ2 − 1)a2y, Rxy = 8xy (6.27)

Rxx = 8b4x2 + 4(ρ2 − 1)b2, Ryy = 8a4y2 + 4(ρ2 − 1)a2, (6.28)

∆Rx = 8x(1 + 3b4), ∆Ry = 8y(1 + 3a4) (6.29)
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Qx = −4σ−6Bx, Qy = −4σ−6Ay, Qxy = 24σ−8ABxy (6.30)

Qxx = 4σ−8B(5Bx2 − 1 − Ay2), Qyy = 4σ−8A(5Ay2 − 1 − Bx2) (6.31)

∆Qx = 24σ−10Bx(3B − 5B2x2 + 3ABy2 + A + ABx2 − 7A2y2) (6.32)

∆Qy = 24σ−10Ay(3A− 5A2y2 + 3ABx2 +B + ABy2 − 7B2x2) (6.33)

Using derivatives of R and Q we can write

v
(1)
1 =ψ(1)

y = C0xQR + C0xy(QyR +QRy) (6.34)

v
(1)
2 =−ψ(1)

x = −C0yQR− C0xy(QxR+QRx) (6.35)

∆v
(1)
1 /C0 = ∆ψ(1)

y /C0 = 2QRx + 2QxR

+ 2y(QxyR+QxRy +QRxy +QyRx)

+ x(6QyRy + 3QRyy + 3QyyR+QxxR+QRxx + 2QxRx)

+ xy((∆Qy)R+ 3QyyRy + 3QyRyy +Q∆Ry

+QxxRy + 2QxyRx + 2QxRxy +QyRxx) (6.36)

−∆v
(1)
2 /C0 =∆ψ(1)

x /C0 = 2QRy + 2QyR

+2x(QxyR+QyRx +QRxy +QxRy)

+ y(6QxRx + 3QRxx + 3QxxR+QyyR+QRyy + 2QyRy)

+xy((∆Qx)R+ 3QxxRx + 3QxRxx +Q∆Rx

+QyyRx + 2QxyRy + 2QyRxy +QxRyy) (6.37)

With these pieces in place, we can write explicitly the velocity v, pressure p,
and body forces, inside and outside the ellipse. Inside we use Eqs. (6.8), (6.34)
and (6.35) to define

v = v(0) + v(1), ρ < 1 (6.38)

and p as stated before, using the extended σ in Eq. (6.20),

p = σ−3(2σ − 1), ρ < 1 (6.39)

so that

∇p = σ−5(3 − 4σ)(Bx,Ay), ρ < 1. (6.40)

To define v outside the ellipse, we use a periodic extension of ζ(x) = x for
|x| ≤ π/2, extended to |x| ≤ π, as defined below. Outside the ellipse we define,
in place of (6.7),

ψ(0)(x, y) =
a′

a
ζ(x)ζ(y) (6.41)
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so that the outside velocity is

v = (ψ(0)
y ,−ψ(0)

x ) =
a′

a
(ζ(x)ζ ′(y),−ζ ′(x)ζ(y)), ρ > 1. (6.42)

We take the pressure to be zero outside,

p = 0, ρ > 1. (6.43)

To use this example as a test problem, we need to give the nonhomogeneous
terms, or body force, as well as the force on the boundary, in order to compute
v and p, and compare with the exact ones above. The Stokes equations (1.1)
with force (1.2) F = fδΓ+Fb where Fb is the body force (interior and exterior)
and fδΓ is the force on the boundary. The boundary force is f = fnn + fττ ,
with n, τ given by Eq. (6.8) and fn, fτ given by Eq. (6.10) or Eqs. (6.11) and
(6.12). As for the body force Fb, we have with the choices above,

Fb = −ν∆v(1) + ∇p, ρ < 1 (6.44)

and

Fb = −ν(∆ψ(0)
y ,−∆ψ(0)

x ), ρ > 1. (6.45)

Inside, the components of Fb are given by Eqs. (6.36), (6.37) and (6.40), taking
into account the factors C0 and −ν.) Outside they are

Fb1 = −ν a
′

a
(ζ ′′(x)ζ ′(y) + ζ(x)ζ ′′′(y)) , ρ > 1 (6.46)

Fb2 = ν
a′

a
(ζ ′′′(x)ζ(y) + ζ ′(x)ζ ′′(y)) , ρ > 1. (6.47)

Finally we give the definition of ζ . We first construct an odd polynomial q(x)
on [−π/2, π/2], so that after translation ζ will be odd about x = ±π. We
specify q′(π/2) = 1; q′′(π/2) = 0; q′′′(π/2) = 0. With

q(x) = c1x+ c2x
3 + c3x

5 + c4x
7 (6.48)

we get

c1 = −27

8
, c2 =

35

2π2
, c3 = −42

π4
, c4 =

40

π6
. (6.49)

Now define

ζ(x) = x, −π/2 ≤ x ≤ π/2 (6.50)

ζ(x) = q(x− π), π/2 ≤ x ≤ π (6.51)

ζ(x) = q(x+ π), −π ≤ x ≤ −π/2 (6.52)

We have defined ζ so that ζ ′′′ is continuous but not differentiable at x = ±π/2.
Thus the body force Fb has the same property.

27



7 Numerical results

The algorithm of Sec. 3 was implemented in the C programming language and
tested on a collection of interfacial Stokes flows, including the exact elastic
elliptical solution derived in Sec. 6 and shown in Fig. 3. We present quantita-
tive evidence of its robustness and second-order accuracy. Our current version
is suboptimally efficient since the p2 Fourier coefficients of the body force are
computed in O(p2NΓ) time when the interface contains NΓ elements, so we
do not report CPU times. Once geometric nonuniform FFT techniques [35]
are incorporated, the computational cost for the velocity on the interface and
the interface motion at one time step will be about O(NΓ). To compute the
velocity field on a grid at one time will add a cost proportional to the number
of grid points. The overall complexity of our algorithm will then be optimal,
and large-scale simulations will be practical.

Table 1 presents 1-norm errors

EΓ =
1

NΓ

NΓ∑

j=1

|ϕ(γj, t)| (7.1)

and

Ev =
1

N2

N∑

i=1

N∑

j=1

‖vij − ṽij‖ (7.2)

in the interface location and fluid velocity respectively, after S time steps
up to the final time T = 11 corresponding to one full cycle of the elliptical
motion. Here Γ is the computed interface, composed of line segments with
NΓ endpoints γj , ϕ is the signed distance to the exact interface at time T ,
and vij and ṽij are the exact and computed fluid velocities at points (i, j)
of a uniform N × N grid. An L-level distance tree was employed as a basis
for contouring, with D steps of subgrid resolution to tolerance ǫ = 2−D. The
velocity evaluation used p× p Fourier modes, while three different smoothing
parameters σ, σ/2 and σ/8 were tested, and shown in successive columns in
Table 1, to ensure convergence of the local correction. Since the velocity is
of order unity, the absolute error is reported. Errors were also measured in
the maximum norm; for the velocity, the maximum and 1-norm errors were
about the same, while the maximum interface errors were about a factor of
two or three larger. The interface errors measured at segment midpoints were
also within ten percent of the reported errors. The area π of the ellipse is
conserved by the exact flow. In these tests the area did not vary much over
time; for the bottom row in Table 1 the error in the computed area was about
.003, or .1%, regardless of σ.

Table 1 supports several conclusions about the convergence rate of our meth-
ods as a function of the time step k = T/S, the average interface resolution
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Step 0 22

44 88

Fig. 3. Moving elastic elliptical interfaces and 7-level quadtrees which organize them
for efficient distance evaluation.

h = |Γ|/NΓ ≈ 2−L−D, and the velocity resolution control parameters p and
σ. We can verify second-order convergence in k by selecting entries in which
the O(p2) and O(σ) quadrature and Ewald summation errors decrease faster
than O(k2 + h2). For example, as we proceed down the first column with the
largest σ, the interface location error decreases by factors of approximately
four from .02200 through .00495 and .00098 to .00036, while the velocity error
decreases similarly from .07180 through .02260 and .00261 to .00097, as S
doubles from 22 to 176, p doubles from 15 to 80, and L+D increases from 8
to 14. Factors near four can be seen more clearly by proceeeding diagonally,
e.g., with S = 44, p = 20, σ = .064; S = 88, p = 30, σ = .016; S = 176,
p = 80, σ = .0005. Thus second-order convergence in time is verified. The
asymptotic order of convergence in the Ewald parameters p and σ is more
complicated, because it is often dominated by the other discretization errors.

29



Table 1
Interface and velocity errors EΓ and Ev after one oscillation of an elastic ellipse.

L D S p σ EΓ Ev σ EΓ Ev σ EΓ Ev

6 2 22 15 .128 .02200 .07180 .064 .01610 .05240 .0160 .01040 .02130

20 .064 .00675 .02380 .032 .00420 .01280 .0080 .00484 .01440

30 .032 .00394 .01210 .016 .00390 .01050 .0040 .00387 .01380

7 3 44 20 .064 .00495 .02260 .032 .00299 .01140 .0080 .00237 .01120

30 .032 .00213 .01020 .016 .00154 .00640 .0040 .00174 .00932

40 .016 .00154 .00327 .008 .00155 .00455 .0020 .00160 .00646

8 4 88 30 .032 .00196 .00956 .016 .00125 .00557 .0040 .00116 .00838

40 .016 .00098 .00261 .008 .00082 .00310 .0020 .00079 .00502

60 .008 .00071 .00158 .004 .00072 .00257 .0010 .00039 .00288

9 5 176 40 .016 .00089 .00245 .008 .00054 .00265 .0020 .00047 .00430

60 .008 .00037 .00085 .004 .00036 .00127 .0010 .00035 .00180

80 .004 .00036 .00097 .002 .00036 .00139 .0005 .00037 .00160

Thus we report velocity errors Ev at the initial time t = 0, where the time
discretization error is irrelevant, in Table 2. The O(δ3) convergence predicted
by Eq. (5.50) is evident in the approximate factor of eight decrease in the first
column of errors from 0.0417 through .0184 and .00259 to .000328 as σ = δ2/4
is reduced by factors of four from .128 to .004.

We also verified topological robustness and numerical accuracy on a variety of
more complicated flows, with samples shown in Figures 4 and 5. Detailed con-
vergence studies by parameter refinement also support the conclusions above.
In addition, Figure 4 demonstrates that the connectivity of the initial interface
is often preserved under sufficiently accurate computations of Stokes flow. The
initial interface has three holes, which are preserved as they become circular
in the Stokes flow.

Figure 5 demonstrates the effect of a body force

Fb(x1, x2) =
1

4
(− sin 2x2, cos 2x1) (7.3)

simulating a shearing flow around the box center. Interfaces in such flows are
subject to competing influences, since the Stokes flow driven by curvature of
the interface tends to circularize the interfaces, while the shearing body force
tends to spin them into complex shapes. In this example, the initial complex
interfaces rapidly become circular under Stokes flow, but then collide and
merge into a larger circular bubble. Thus connectivity is not always conserved
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Table 2
Velocity errors Ev at initial time t = 0.

L D p σ Ev σ Ev σ Ev σ Ev

6 2 15 .128 .0417 .064 .0227 .032 .0141 .0160 .013

20 .064 .0178 .032 .00997 .016 .0074 .0080 .00926

30 .032 .00848 .016 .0048 .008 .0057 .0040 .00654

7 3 20 .064 .0184 .032 .0101 .016 .00738 .0080 .00919

30 .032 .00864 .016 .00485 .008 .00573 .0040 .00661

40 .016 .00233 .008 .00237 .004 .00344 .0020 .00381

8 4 30 .032 .00923 .016 .00525 .008 .00605 .0040 .00698

40 .016 .00259 .008 .0025 .004 .00358 .0020 .00396

60 .008 .000884 .004 .000682 .002 .00107 .0010 .00115

9 5 40 .016 .0026 .008 .00254 .004 .00362 .0020 .004

60 .008 .000883 .004 .000688 .002 .00108 .0010 .00116

80 .004 .000328 .002 .000675 .001 .000862 .0005 .00085

in this model. It appears that the higher-order derivatives involved in the
interface forces fΓ take effect over shorter time scales than the body forces
Fb, and therefore the smoothing effect of the singular Stokes flow dominates
the interfacial evolution when computed with sufficient accuracy. Here, Table
3 shows that area is eventually conserved to about 1% accuracy, a reasonable
result for the change in connectivity of this singular interface.

Table 3
Area A enclosed by two merging propellers at the initial and final times.

S L D p A0 σ A σ A σ A

88 6 2 30 1.299362 .0160 1.08076 .0080 1.15143 .0040 1.14558

176 7 3 40 1.331076 .0080 1.22488 .0040 1.24753 .0020 1.24803

352 8 4 60 1.326567 .0040 1.28719 .0020 1.29007 .0010 1.29088

704 9 5 80 1.327284 .0020 1.30807 .0010 1.30923 .0005 1.31007

8 Future Directions

The algorithm used in this work extends directly to three dimensions. If the
force on a moving surface is determined by stretching of area, the description of
the evolution in Sec. 2 applies directly. The Stokes velocity resulting from the
interfacial force is a single layer potential on the surface with 1/r singularity.
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Step 0 10

30 300

Fig. 4. Complex elastic interfaces evolving under Stokes flow.

The Ewald splitting applies to the fundamental solution, and the treatment
of the Fourier part of the integral is the same [36]. The local part can be
approximated as in Sec. 5; a method of this type for surface layer potentials
for the Laplacian was developed in [3] and a general approach constructed in
[42]. Semi-Lagrangian contouring in three dimensions has been implemented
in an open-source code [2].

We have assumed that the viscosity is the same on both sides of the interface.
Boundary integral methods have been used for Stokes flow with different vis-
cosities (e.g. see [31,32]). The calculation of the velocity determined by the
force on the moving boundary requires the solution of an integral equation on
the boundary as a preliminary step (e.g., see [31,32,5]). The present method
should extend to the case of differing viscosities in this way.

The Stokes equations (1.1) describe fluid flow only for very low Reynolds
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280 330 630

Fig. 5. Interfacial Stokes flow with a simulated shearing force.

number. In modeling flows with higher Reynolds numbers, Eqs. (1.1) should
be replaced by the Navier-Stokes equations

vt + v · ∇v + ∇p = ν∆v + fδΓ, ∇ · v = 0. (8.1)

We expect the present method can be extended to Navier-Stokes flow with
an elastic interface. One way to proceed begins with the observation that the
jump conditions (1.6) are the same in the two cases. At each time we can write
the Navier-Stokes velocity v determined by Eqs. (8.1) as a sum v = vs + vr

where vs is the Stokes velocity determined by Eq. (1.1). Then vr is C1 at the
interface; the jump in the normal derivative has been removed. The evolution
equation for the regular part vr is similar to Eq. (8.1), without the interfacial
force, but with a forcing term determined by vs. Since the singular interfacial
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force has been removed to the Stokes term vs, it should be possible to solve
for the smoother velocity vr accurately on a regular grid. With this additional
step, the method presented here for Stokes flow could be used to solve the
Navier-Stokes equations (8.1).
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