
ar
X

iv
:0

70
6.

32
93

v1
 [

co
nd

-m
at

.s
tr

-e
l]

 2
2

Ju
n

20
07

Optimized implementation of the Lanczos

method for magnetic systems

Jürgen Schnack a,∗

aUniversität Bielefeld, Fakultät für Physik, Postfach 100131, D-33501 Bielefeld,

Germany

Peter Hage and Heinz-Jürgen Schmidt b

bUniversität Osnabrück, Fachbereich Physik, D-49069 Osnabrück, Germany

Abstract

Numerically exact investigations of interacting spin systems provide a major tool
for an understanding of their magnetic properties. For medium size systems the ap-
proximate Lanczos diagonalization is the most common method. In this article we
suggest two improvements: efficient basis coding in subspaces and simple restruc-
turing for openMP parallelization.

Key words: Spin systems, Lanczos diagonalization, Basis coding, Parallelization
PACS: 75.10.Jm, 75.40.Mg

1 Introduction

Many magnetic materials can accurately be described by the Heisenberg or
related effective spin models. Due to the vastly increasing size of the under-
lying Hilbert space, which grows as (2s + 1)N for N spins of spin quantum
number s, only small spin systems can be modeled exactly, i.e. their complete
eigenspectrum can be determined. For larger systems approximate methods
such as the Lanczos [1] or related methods like the Arnoldi, the projection, or
the Density Matrix Renormalization Group (DMRG) method [2,3,4] are used.
They usually aim at properties of ground states in orthogonal subspaces, which
are provided by symmetry, see e.g. [5,6,7]. But also thermal properties can be

∗ Tel: ++49 521 106-6193; fax: -6455; Email: jschnack@uni-bielefeld.de

Preprint submitted to Journal of Computational Physics 30 October 2018

http://arxiv.org/abs/0706.3293v1

addressed by means of a finite-temperature Lanczos method [8] as done for
instance for the evaluation of certain Kondo lattice models in Ref. [9].

For all these methods it is of course advantageous to use the present symme-
tries in order to reduce the size of the Hamiltonian matrix as much as possible
by decomposing the Hilbert space into mutually orthogonal subspaces. One
obvious symmetry is the rotational invariance of many models with respect to
rotations about the z-axis in spin space. This leads to a decomposition of the
total Hilbert space H into orthogonal subspaces H(M) characterized by their
total magnetic quantum numberM . The related basis, which is a subset of the
full basis, should then efficiently be encoded. In nowadays applications these
basis states are either stored in tables and assessed via hash search methods,
see e.g. [10], or encoded using the two-dimensional representation by Lin [11],
which needs two vectors of size ≈ (2s + 1)(N/2) for encoding. In this article
we will provide direct algorithms for encoding and decoding of basis states in
subspaces H(M).

Thanks to available SMP (symmetric multiprocessing) computers with large
shared memory Lanczos vectors of considerable size can be processed. An
example is given in Ref. [7] where Lanczos vectors with about 109 entries were
used. We show that by a simple reformulation of the typical implementation
of the Lanczos algorithm a very sufficient parallelization with openMP can be
achieved that avoids write conflicts.

The article is organized as follows. The next section shortly introduces the
Heisenberg model as an archetypical example. In section 3 we introduce the
new basis encoding in subspaces H(M). The last section 4 deals with paral-
lelization issues.

2 Heisenberg Hamiltonian and basis encoding

Spin systems are very often modeled by effective spin Hamiltonian such as the
isotropic Heisenberg Hamiltonian

H
∼
=−

∑

u,v

Juv ~s∼(u) · ~s∼(v) . (1)

~s
∼
(u) are the individual spin operators at sites u. Juv are the matrix elements

of the symmetric coupling matrix. In the following we will assume that all
spin quantum numbers are equal, i.e. s1 = s2 = · · · = sN = s.

The starting point for any diagonalization is the product basis of the single-
particle eigenstates of all s

∼z(u)

2

s
∼z(u) |m1, . . . , mu, . . . , mN 〉 = mu |m1, . . . , mu, . . . , mN 〉 . (2)

These states are sometimes called Ising states. They span the full Hilbert
space and are used to construct symmetry-related basis states. For encoding
purposes, and since mu can be half-integer, they are usually rewritten in terms
of quantum numbers au = s − mu instead of mu, where au = 0, 1, . . . , 2s.
The number of basis states, i.e. the dimension of the full Hilbert space, is
dim (H) = (2s + 1)N . The complete basis set | a1, . . . , au, . . . , aN 〉 provides
itself a natural encoding given by the number system with basis (2s+ 1). To
give an example, the basis of a system of 8 spins s = 1 can be completely
and easily encoded using all 8-digit numbers where each digit can assume the
values 0, 1, 2:

| 0, 0, 0, 0, 0, 0, 0, 0 〉 (3)

| 1, 0, 0, 0, 0, 0, 0, 0 〉

| 2, 0, 0, 0, 0, 0, 0, 0 〉

| 0, 1, 0, 0, 0, 0, 0, 0 〉

. . .

| 2, 2, 2, 2, 2, 2, 2, 2 〉 .

3 Basis encoding in H(M)

The basis in the subspace H(M) is given by all product states | a1, . . . , aN 〉
with M = Ns −

∑
u au. For usage in a computer program they need to be

assigned to integer numbers 1, . . . , dim (H(M)). The reason is that one usu-
ally does not need the basis only once at initialization, but at every Lanczos
iteration, since the sparse Hamiltonian matrix is not stored, but its non-zero
matrix elements are evaluated whenever needed using

〈 i |H
∼
| j 〉≡ 〈 ai1, . . . , a

i
N |H

∼
| aj1, . . . , a

j
N 〉 . (4)

For a direct coding algorithm of basis states in subspaces H(M) it is advan-
tageous that the the sizes of the subspaces H(M) are known analytically [12].
Thus an array can be built at startup that contains for a fixed s the sizes of
these subspaces H(M = Ns − A) for given N and A. We will call this array
D(N,A). It will be used to determine the sequential number of a basis vec-
tor in H(M). The recursive buildup is performed using the following relation
between the sizes of subspaces

D(N,A)=
2s∑

k=0

D(N − 1, A− k) , (5)

3

with D(N = 1, A = 0, 1, . . . , 2s) = 1, D(N,A = 0) = 1, and D(N,A = 1) =
N . If A /∈ {0, 1, . . . , 2Ns} then D(N,A) = 0.

3.1 i⇒ | ai1, . . . , a
i
N 〉

One coding direction, i ⇒ | ai1, . . . , a
i
N 〉, which is the more trivial direction,

can be realized in several ways. If the basis is not too big one simply gener-
ates all basis states of the subspace H(M) in lexicographical order, compare
(3), and stores the quantum numbers aik of the ith vector in an array. The
generation can either be performed by running through all basis states (3)
and sorting out those which comply with the condition M = Ns −

∑
u au or

by algorithms that generate only those basis states that obey the condition
already.

A direct algorithm i ⇒ | ai1, . . . , a
i
N 〉 using the known dimensions of the sub-

spaces H(M = Ns−A) could be realized as follows 1

m=0

Ak = A

do k=N,2,-1

do n=0,2*s

if(i.le.(m+D(k-1,Ak-n+1))) then

BasisVector(k) = n

Ak = Ak - n

goto 100

else

m = m + D(k-1,Ak-n+1)

endif

enddo

100 continue

enddo

BasisVector(1) = Ak

BasisVector contains the N entries ak. This algorithm will be made clearer
when we explain the inverse algorithm in subsection 3.2.

Nevertheless, since a Lanczos routine would run through a state vector along
the lexicographical order of basis states one would actually only need a func-
tion that generates for a given basis state the succeeding basis state. To un-

1 The given code uses FORTRAN notation. Nevertheless, it can be easily trans-
formed into C. One should only pay attention to the fact that field indices in FOR-
TRAN start at 1 not at 0. Therefore, the definition of the second field index of D
has been modified accordingly.

4

derstand how this works it is helpful to picture the basis states | ai1, . . . , a
i
N 〉

as distributions of exactly A =
∑

u au balls in N boxes, where each box can
contain at most 2s balls. Thus the lexicographically lowest state is given by the
distribution where the boxes are filled sequentially starting with the leftmost
box, i.e. entry number 1.

How does one advance from one basis state to the succeeding one?

(1) Find the leftmost position k for which the entry is nonzero and the next
entry is less than 2s. If such a position does not exist, then there is no
succeeding basis state.

(2) Take one (ball) out of entry (box) k and add it to the next entry to the
right, i.e. entry (box) with index k + 1.

(3) Empty all entries (boxes) 1 to k and fill this content (these balls) into
the entries (boxes) starting from the left in lexicographical order.

Take as an example forN = 8, s = 3/2, andA = 6 the state | 0, 0, 0, 2, 3, 1, 0, 0 〉.
Entry number k = 5 from the left is the first position to fulfill the first con-
dition. One out of the 3 is put into k = 6 yielding 2 there. Then the content
of entries k = 1, . . . , 5 is taken and filled into the entries starting from the
left. This content is 4 in the present example. Three out of the four can be
filled into entry number 1. The rest fits into entry number 2. Therefore, the
resulting basis state is | 3, 1, 0, 0, 0, 2, 0, 0 〉.

3.2 | ai1, . . . , a
i
N 〉 ⇒ i

The inverse direction is actually the nontrivial one, since the basis vectors
are only a subset of the full basis set (3). Therefore, for the latter coding
direction search algorithms are employed, e.g. [10], or the two-dimensional
representation of Lin [11] is used, which needs two vectors of size ≈ (2s+1)(N/2)

to encode all basis states.

The position of a basis vector | a1, . . . , aN 〉 in the lexicographically ordered
list of vectors will be determined by evaluating how many vectors lay before
this vector. For this purpose the known dimensions of the subspaces H(M =
Ns−A) are used again. We explain this procedure with an instructive example.
Assume we investigate a spin system with N = 4 and s = 3/2 in a subspace
of A = 6, i.e. M = 0. Our example basis vector is | 1, 0, 2, 3 〉. In the list of
basis vectors all vectors fulfilling one of the following criteria are listed before
the example vector, the respective dimensions will be added:

• Vectors with 0, 1, or 2 instead of 3 as the first (rightmost) figure: Their
dimensions areD(3, 6),D(3, 5), andD(3, 4), respectively, since the condition
that

∑
i ai = A must be fulfilled in total.

5

• Out of all vectors where the first figure is 3, those where the second figure
is 0 or 1 are listed before, thus their respective dimensions of D(2, 3) and
D(2, 2) must be added.

• This procedure continues until the last figure. In the present example this
yields 0 for the third figure and simply 0 for the last figure.

• Thus the number of the present vector is given by the sum of the mentioned
dimensions plus one.

In a computer program one can evaluate the position i of | a1, . . . , aN 〉 in the
list of basis vectors according to

Ak = A

i = 1

do k=N,2,-1

do n=0,BasisVector(k)-1

i = i + D(k-1,Ak-n+1)

enddo

Ak = Ak - BasisVector(k)

enddo

BasisVector contains the N entries ak. If the array of dimension D(N,A) is
properly initialized, i.e. the field value is zero for non-valid combinations of N
and A, then the sum can be performed in a computer program without paying
attention to the restrictions for the indices.

4 Parallel Lanczos implementation on SMP machines

Parallelization of the Lanczos or similar methods aims at a parallelization of
the basic matrix-vector operations. This has been reported as being extremely
difficult due to prohibitive communication costs [13,14]. In this section we show
that parallelization is possible if (1) the sparse matrix is not stored but matrix
elements are evaluated whenever needed and (2) the loops for matrix-vector
multiplication are rearranged.

The basic step of a Lanczos or a similar method consists in the (repeated)
application of the sparse matrix, i.e. the Hamiltonian, onto an initial trial
vector

〈 i |ψ2 〉=
dim(H(M))∑

j=1

〈 i |H
∼
| j 〉〈 j |ψ1 〉 . (6)

Here 〈 j |ψ1 〉 are the entries of the initial column vector |ψ1 〉; the resulting
vector is |ψ2 〉.

6

(1) Although the Hamiltonian matrix 〈 i |H
∼
| j 〉 is sparse, it typically contains

an order of N1...2 × dim (H(M)) non-zero entries, for instance for Heisenberg
systems. For very large dimensions, e.g. of order 109, this would easily amount
to several dozens of Gigabytes. Therefore, it would be better not to store the
matrix, but to evaluate the matrix elements whenever needed.

(2) A typical implementation would have the loop about j as the outermost
loop. An entry 〈 j |ψ1 〉 of the initial vector would be read, then the non-zero
matrix elements 〈 i |H

∼
| j 〉 would be determined, and the resulting products

would be written into the respective entries 〈 i |ψ2 〉. When parallelizing the
loop about j this leads to write conflicts since different initial entries may
result in the same final one.

It turns out that both problems can be solved together in cases where the
application of the Hamiltonian onto each basis state is known analytically.
In these cases only the non-vanishing matrix elements will be generated by
applying the Hamiltonian, e.g. (1), onto the final basis state | i 〉. This yields
for a given final index i a set of initial indices {j(i)} where only these indices
contribute in the sum in Eq. (6).

〈 i |ψ2 〉=
∑

{j(i)}

〈 i |H
∼
| j 〉〈 j |ψ1 〉 . (7)

Therefore, one would rewrite Eq. (6) as Eq. (7) and in a parallel computer
program let i be the outer loop. Then one determines for every final entry
〈 i |ψ2 〉 those initial entries 〈 j |ψ1 〉 that contribute with non-zero 〈 i |H

∼
| j 〉

in the sum (7). It may happen that at runtime different threads read the same
entry of the initial vector, but this is harmless.

Fig. 1. Scaling of CPU time for 200 Lanczos iterations with number of allowed
threads. The machine has eight cores.

Figure 1 shows as an example the scaling of CPU time for 200 Lanczos it-
erations with a vector of length 484, 500. The program and all subroutines
are written in Fortran and compiled with the INTEL Fortran compiler using

7

openMP directives. The linear scaling is almost perfect. Slight deviations are
due the non-parallel parts of the program, especially the initialization.

Summarizing, in this article we provide a coding algorithm for spin basis states
in subspaces H(M) and demonstrate that a rearrangement of loops allows an
efficient parallelization of the Lanczos algorithm. The proposed improvements
can easily be ported to similar methods such as Arnoldi or projection method.

Acknowledgment

We thank J. Schulenburg and B. Schmidt for discussing their Lanczos imple-
mentations with us. We also thank J. Richter for drawing our attention to the
encoding of H.Q. Lin. J. S. thanks M. Brüger and R. Schnalle for discussing
encoding problems with him on a train ride.

References

[1] C. Lanczos, An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators, J. Res. Nat. Bur. Stand. 45 (1950)
255–282.

[2] S. R. White, Density-matrix algorithms for quantum renormalization groups,
Phys. Rev. B 48 (1993) 10345.

[3] S. R. White, D. Huse, Numerical renormalization-group study of low-lying
eigenstates of the antiferromagnetic s = 1 heisenberg chain, Phys. Rev. B 48
(1993) 3844.

[4] U. Schollwöck, The density-matrix renormalization group, Rev. Mod. Phys. 77
(2005) 259–315.

[5] J. Schulenburg, A. Honecker, J. Schnack, J. Richter, H.-J. Schmidt, Macroscopic
magnetization jumps due to independent magnons in frustrated quantum spin
lattices, Phys. Rev. Lett. 88 (2002) 167207.

[6] J. Schnack, H. Nojiri, P. Kögerler, G. J. T. Cooper, L. Cronin,
Magnetic characterization of the frustrated three-leg ladder compound
[(cucl2tachh)3cl]cl2, Phys. Rev. B 70 (2004) 174420.

[7] C. Schröder, H.-J. Schmidt, J. Schnack, M. Luban, Metamagnetic phase
transition of the antiferromagnetic heisenberg icosahedron, Phys. Rev. Lett.
94 (2005) 207203.

[8] J. Jaklič, P. Prelovšek, Finite-temperature properties of doped
antiferromagnets, Advances in Physics 49 (2000) 1–92.

8

[9] I. Zerec, B. Schmidt, P. Thalmeier, Kondo lattice model studied with the finite
temperature lanczos method, Phys. Rev. B 73 (2006) 245108.

[10] E. R. Gagliano, E. Dagotto, A. Moreo, F. C. Alcaraz, Correlation functions of
the antiferromagnetic heisenberg model using a modified lanczos method, Phys.
Rev. B 34 (3) (1986) 1677–1682.

[11] H. Q. Lin, Exact diagonalization of quantum-spin models, Phys. Rev. B 42
(1990) 6561–6567.

[12] K. Bärwinkel, H.-J. Schmidt, J. Schnack, Structure and relevant dimension of
the Heisenberg model and applications to spin rings, J. Magn. Magn. Mater.
212 (2000) 240.

[13] R. Geus, S. Rollin, Towards a fast parallel sparse symmetric matrix-vector
multiplication, Parallel Comput. 27 (2001) 883–896.

[14] W. W. Chen, B. Poirier, Parallel implementation of efficient preconditioned
linear solver for grid-based applications in chemical physics. ii: QMR linear
solver, J. Comput. Phys. 219 (2006) 198–209.

9

	Introduction
	Heisenberg Hamiltonian and basis encoding
	Basis encoding in H(M)
	i | a1i, …, aNi "526930B
	 | a1i, …, aNi "526930B i

	Parallel Lanczos implementation on SMP machines
	References

