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Abstract
A sharp interface immersed boundary method for simulating incompressible viscous flow past three-
dimensional immersed bodies is described. The method employs a multi-dimensional ghost-cell
methodology to satisfy the boundary conditions on the immersed boundary and the method is
designed to handle highly complex three-dimensional, stationary, moving and/or deforming bodies.
The complex immersed surfaces are represented by grids consisting of unstructured triangular
elements; while the flow is computed on non-uniform Cartesian grids. The paper describes the salient
features of the methodology with special emphasis on the immersed boundary treatment for stationary
and moving boundaries. Simulations of a number of canonical two- and three-dimensional flows are
used to verify the accuracy and fidelity of the solver over a range of Reynolds numbers. Flow past
suddenly accelerated bodies are used to validate the solver for moving boundary problems. Finally
two cases inspired from biology with highly complex three-dimensional bodies are simulated in order
to demonstrate the versatility of the method.
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1 Introduction
Immersed boundary methods have emerged in recent years as a viable alternative to
conventional body-conformal grid methods especially in problems involving complex
stationary and/or moving boundaries. For such flows, the elimination of the need to establish
a new body-conformal grid at each time-step can significantly simplify and speedup the
solution procedure and also eliminates issues associated with regridding such as grid-quality
and grid-interpolation errors. Immersed boundary methods can broadly be characterized under
two categories [29]; first is the category of methods that employ “continuous forcing” wherein
a forcing term is added to the continuous Navier-Stokes equations before they are discretized.
Methods such as those of Peskin[36], Goldstein et al.[13] and Saiki and Biringen[39] fall in
this category.

The second category consists of methods that employ discrete forcing where the forcing is
either explicitly or implicitly applied to the discretized Navier-Stokes equations. These include
methods of Udaykumar et al.[44], Ye et al.[51], Fadlun et al. [9], Kim et al. [16], Gibou et al.
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[12], You et al.[52], Balaras [2], Marella et al.[22], Ghias et al.[11] and others. The key
advantage of the first category of methods is that they are formulated relatively independent
of the spatial discretization and therefore can be implemented into an existing Navier-Stokes
solver with relative ease. However, one of their drawbacks is that they produce a “diffuse”
boundary. This means that the boundary condition on the immersed surface is not precisely
satisfied at its actual location but within a localized region around the boundary. For the
methods in the second category, the forcing scheme is very much dependent on the spatial
discretization. However, one key advantage of the second category of methods is that for certain
formulations, they allow for a sharp representation of the immersed boundary.

In the current paper, we describe a finite-difference based immersed boundary method that
allows us to simulate incompressible flows with complex three-dimensional stationary or
moving immersed boundaries on Cartesian grids that do not conform to the immersed
boundary. The current method is based on the calculation of the variables on “ghost-cells”
inside the body such that the boundary conditions are satisfied precisely on the immersed
boundary. There are no ad-hoc constants introduced in this procedure and neither is any
momentum forcing term employed in any of the fluid cells. Consequently, the method results
in a sharp representation of the immersed boundary. The method is designed from the ground
up for simulations of flow with complex, moving, three-dimensional boundaries such as those
encountered in bio-fluid mechanics and this paper describes the salient features of the
methodology. The solver is validated by simulating a number of canonical two- (2D) and three-
dimensional (3D) flows with stationary and moving boundaries, and comparing with
established computed and/or experimental data. We also verify the spatial accuracy of the
solver through a grid refinement study. Finally in order to showcase the capability of the method
for handling general immersed boundaries, we present some computed results for flow with
highly complex, non-canonical geometries.

The paper is organized as follows: Section 2 describes the numerical methodology including
a detailed description of underlying flow solver and the overlaid immersed boundary
methodology. In Section 3 we present computed results for a broad range of cases that are
intended to validate the solver and to firmly establish its accuracy. In this section we also
include qualitative results from two biologically inspired simulations that involve highly
complex moving/deforming bodies and these are meant to demonstrate the ability of the solver
to handle complex immersed bodies. Finally, conclusions are presented in Section 4.

2 Numerical Method
2.1 Governing Equations and Discretization Scheme

The governing equations considered are the 3-D unsteady Navier-Stokes equations for a
viscous incompressible flow with constant properties given by

(1)

(2)
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where i; j = 1, 2, 3, ui are the velocity components, p is the pressure, and where ρ and ν are the
fluid density and kinematic viscosity.

The Navier-Stokes equations (2) are discretized using a cell-centered, collocated (non-
staggered) arrangement of the primitive variables (ui, p). In addition to the cell-center velocities
(ui), the face-center velocities, Ui, are computed. The equations are integrated in time using
the fractional step method of Van-Kan [46] which consists of three sub-steps. In the first sub-
step of this method, a modified momentum equation is solved and an intermediate velocity
u* obtained. A second-order, Adams-Bashforth scheme is employed for the convective terms
while the diffusion terms are discretized using an implicit Crank-Nicolson scheme which
eliminates the viscous stability constraint. In this sub-step, the following modified momentum
equation is solved at the cell-nodes

(3)

where  and  are the convective and diffusive terms respectively, and

 corresponds to a second-order central difference. This equation is solved using a line-SOR
scheme. Subsequently, face-center velocities at this intermediate step U* are computed by
averaging the corresponding values at the grid nodes. Similar to a fully staggered arrangement,
only the face velocity component normal to the cell-face is calculated and used for computing
the volume flux from each cell. The following averaging procedure is followed:

(4)

(5)

(6)

(7)

(8)
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where γw, γs and γb are the weights corresponding to linear interpolation for the west, south
and back face velocity components respectively. Furthermore, cc and fc denote gradients
computed at cell-centers and face-centers respectively. The above procedure is necessary to
eliminate odd-even decoupling that usually occurs with non-staggered methods and which
leads to large pressure variations in space. The second sub-step requires the solution of the
pressure correction equation

(9)

which is solved with the constraint that the final velocity  be divergence-free. This gives
the following Poisson equation for the pressure correction

(10)

and a Neumann boundary condition imposed on this pressure correction at all boundaries. This
Poisson equation is solved with a highly efficient geometric multigrid method [3] which
employs a Gauss-Siedel line-SOR smoother [38]. Once the pressure correction is obtained, the
pressure and velocity are updated as

(11)

(12)

(13)

These separately updated face-velocities satisfy discrete mass-conservation to machine
accuracy and use of these velocities in estimating the non-linear convective flux in equation
(3) leads to a more accurate and robust solution procedure. The advantage of separately
computing the face-center velocities was initially proposed by Zang et al. [53] and discussed
in the context of the Cartesian grid methods in Ye et al. [51].

2.2 Immersed Boundary Treatment
The current immersed boundary method employs a multi-dimensional ghost-cell methodology
to impose the boundary conditions on the immersed boundary and is similar in spirit to the
methodology proposed by Majumdar et al.[21] and employed by Ghias et al. [10,11] among
others. However, unlike these previous efforts, the current solver is designed from the start for
fast, efficient and accurate solution of flows with complex three-dimensional, moving
boundaries. In Ghias et al.[11] in particular, similar ideas have been used for simulating
compressible flows with 2D stationary immersed boundaries. As discussed in detail in that
paper, the methodology used here has a general similarity to the ghost-fluid method of Gibou
et al. [12] which also employs ghost-cells for imposing the boundary conditions on the
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immersed boundary. However there are some key differences between the two methodologies
and these will be discussed briefly later in the paper.

Within the context of the categorization put forth by Mittal & Iaccarino [29], this method
employs a “discrete forcing” method wherein the effect of the immersed boundary is
incorporated into the discretized governing equations. This is in contrast to methods such as
that of Peskin[36] and others that incorporate the momentum forcing into the continuous
equations and then discretize this modified equation. The current method is a “sharp” interface
method in that the boundary conditions on the immersed boundary are imposed at the precise
location of the immersed body and there is no spurious spreading of boundary forcing into the
fluid as what usually occurs with diffuse interface methods [29]. In the rest of this section we
provide an overview of the salient features of this method.

2.2.1 Geometric Representation of Immersed Boundary—The current method is
designed to simulate flows over arbitrarily complex 2D and 3D immersed stationary and
moving boundaries and the approach chosen to represent the boundary surface should be
flexible enough so as not to limit the type of geometries that can be handled. In addition, the
surface representation method should be such as not to lead to excessive computational
overhead (in terms of both memory and CPU time) for geometric operations associated with
the immersed boundary(IB) surface. Finally, another factor to be considered here is the
compatibility between the current solver and CAD programs which oftentimes provide the
geometry of the immersed boundary and other pre- and post-processing softwares such as Alias
MAYA [8] (animation), Rhino [7] (surface modeling and modification) and Tecplot
(visualization) which are useful in the modeling and articulation of the geometries and analysis
of these complex flows.

A number of different approaches are available for representing the surface of the immersed
boundary including level-sets [35], NURBS [37] and unstructured surface meshes [5]. In the
current solver we choose to represent the surface of the IB by a unstructured mesh with
triangular elements. This approach is very well suited for the wide variety of engineering and
biological flow configurations that we are interested and as will become clear later in the paper,
is very compatible with the immersed boundary methodology used in the current solver.

Many fast and efficient algorithms exist for generation of such meshes [4,23] and accurate and
efficient representation of surfaces can be obtained through the use of non-uniform, non-
isotropic meshes. Figure 2 shows the surface mesh over a porpoise which is being use to
examine the fluid dynamics of drafting in cetaceans and the figure shows how the surface mesh
non-uniformity allows us to provide enhanced resolution in regions such as the flippers that
have finer geometric features. Because of these capabilities such meshes are ubiquitous in
computational mechanics and virtually all commercial solid modeling, CAD, rapid
prototyping, animation, graphics and visualization softwares are able to take input and/or
provide output in this format. Such surface meshes are also easy to modify through operations
such as smoothing, triangle subdivision/decimation and surface properties such as areas and
normals are also available through simple operations. Finally, level-set representations can be
obtained from the surface mesh quite easily if needed.

2.2.2 Ghost-Cell Formulation—The unstructured surface mesh is “immersed” into the
Cartesian volume grid and Fig. 3 shows this for the particular case of the body in Fig. 2. The
next step is to develop all the computational machinery that is needed to implement the ghost-
cell methodology for such an immersed boundary. The method proceeds by first identifying
cells whose nodes are inside the solid boundary (termed “solid cells”) and cells that are outside
the body (termed “fluid cells”). A straightforward method for this as depicted in Fig. 4 is to
determine the surface element closest to a given node and taking a dot-product of the vector
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extending from this element to the node  with the surface normal of this element . A positive

(negative) value of the dot-product  then indicates that the node is outside(inside) the
body. For stationary boundaries, this determination needs to be done just once at the beginning
of the simulation and therefore represents only a small fraction of the total turnaround time.
For moving boundaries, this determination needs to be done at every time-step. However given
that the immersed boundary can only travel a distance of the order of the nominal grid spacing
in one time-step, the solid-fluid demarcation from the previous time-step can be used to
minimize the number of grid nodes for which the above process has to be carried out. Thus,
even in the moving boundary case, the solid-fluid demarcation only takes a very small fraction
of the total CPU time. Once the solid-fluid demarcation has been accomplished, the next step
is to determine the so-called “ghost-cells”. These are cells whose nodes are inside the solid but
have at least one north, south, east or west neighbor in the fluid. This is easily depicted for a
2D case and the schematic in Fig. 5 shows the various types of cells for a 2D boundary cutting
through a Cartesian grid. The overall approach now is to determine an appropriate equation
for these ghost cells which leads to the implicit satisfaction of the boundary condition on the
immersed boundary in the vicinity of each ghost-cell. In order to accomplish this, we extend
a line segment from the node of these cells into the fluid to an “image-point” (denoted by IP)
such that it intersects normal to the immersed boundary and the boundary intercept (denoted
by BI) is midway between the ghost-node and the image-point.

The identification of the body-intercept (BI) point, although conceptually simple, presents
significant complications during implementation. The type of immersed bodies that are of
interest to us can have highly complex shapes and we would like the solver to be robust even
in situations where the resolution of the surface mesh and/or the Cartesian volume grid is not
high enough to adequately resolve the geometrical features of the surface. The BI has a crucial
link to the robustness of the solution algorithm. In principle, the BI is the point on the immersed
surface which has the minimum distance to the immersed boundary. In most cases, this is
uniquely determined by the normal-intercept from the ghost-cell to the immersed boundary.
However, as shown in Fig. 6, even for a simple 2D case, one can encounter degenerate situations
where determination of a unique BI which represents the closest point on the surface is not
straightforward. The situation is significantly more complicated for 3D boundaries. Correct
identification of BI is crucial since an incorrectly identified BI can lead to an excessively large
interpolation stencil for the ghost-cell and can severely deteriorate the iterative convergence
of the governing equations.

To avoid these problems we have adopted an approach whereby we first determine surface
element vertex which is closest to the ghost-cell. The vertex closest to a node can be determined
uniquely and therefore no complex logic is needed for this step. Next, we identify the set of
surface elements that share this vertex and search for a normal-intercept among these elements.
In cases where multiple normal-intercepts are found, the body-intercept point is chosen to be
the normal-intercept point that has the shortest intercept. For cases where no normal-intercepts
are found on the surface, we first repeat the search over a larger region of the surface
surrounding the closest vertex. If the search is still unsuccessful, we revert back to first set of
surrounding elements and search for the point on this set of elements that is closest to the ghost-
cell, keeping in mind that this closest point could even be on the edge or vertex of an element.
This procedure although somewhat complex, increases significantly the robustness of the BI
identification scheme and allows us to perform simulations with very complex geometries.
Note also that this complexity can be viewed as one of the costs of retaining a sharp-interface
method since these issues would typically not arise in diffuse interface methods. However, in
our view, the cost is well worth the ability of retaining a sharp-interface treatment especially
given the vortex dominated flows that are of interest to us.
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Once the BI and the corresponding IP have been identified, a tri-linear interpolant of the
following form is used to express the value of a generic variable (say ϕ) in the region between
the eight nodes surrounding the image-point:

(14)

The eight unknown coefficients can be determined in terms of the variable values of the eight
surrounding nodes

(15)

where

(16)

is the vector containing the eight unknown coefficients and

(17)

are the values of the variables at the eight surrounding points. Furthermore, [V ] is the
Vandermonde matrix[38] corresponding to the trilinear interpolation scheme shown in Eq. 14
and has the form

(18)

where the subscripts in the above equation are identifiers of the eight surrounding nodes. Once
the coefficients are determined from Eq. (15), use of Eq. (14) at the image-point gives a final
expression for the variable at the image-point of the form

(19)

In the above equation, β's depend on C's as well as the coordinates of the image-point. Since
all of these depend only on the geometry of the immersed boundary and the grid, β's can be
determined as soon as the immersed boundary and grid are specified.

Note that in the above procedure, a situation may be encountered (and in fact often is) that one
of the eight nodes surrounding the image-point is the the ghost-node itself. In this case the row
in the Eq. (15) corresponding to the ghost-node is replaced by the boundary condition at the
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BI point. This ensures that the interpolation procedure for the ghost-node is well-posed without
affecting the accuracy of the interpolation. It may also be the case that the interpolation stencil
for a given ghost-cell contains other ghost-cells. This situation does not pose any consistency
issues although it does imply that ghost-cell values are coupled to each other as well as the
fluid nodes and a fully coupled solution procedure is required in order to solve for the flow
variables at the ghost-cells. In the current solver, we use a point Gauss-Siedel method for this
solution and it is found to converge very rapidly.

Following this, the value of variable at the ghost-cell (denoted by GC) is computed by using
a central-difference approximation along the normal probe which incorporates the prescribed
boundary condition at the boundary intercept. Thus, for Dirichlet and Neumann boundary
conditions, the formulas are:

(20)

and

(21)

respectively where Δlp is the total length of the normal line segment. Equations (20) and (21)
can now be combined with Eq. (19) to give an implicit expression for the ghost-node values
ie.

(22)

and

(23)

respectively for these two types of boundary conditions. These equations are then solved in a
fully coupled manner with the discretized governing equations (2) and (10) for the neighboring
fluid cells along with the trivial equation ϕ = 0 for the internal solid cells. Using this procedure,
the boundary conditions are prescribed to second-order accuracy and this along with the
second-order accurate discretization of the fluid cells leads to local and global second-order
accuracy in the computations. This will be verified later in the paper through a grid refinement
study.

As described in Ghias et al. [11], the current ghost-cell methodology has some general
similarities with the ghost-fluid method (GFM) of Gibou et al. [12] which also employs ghost-
nodes to impose the boundary conditions on the immersed boundary. There are however some
key differences between the two methods that have an impact on the accuracy, robustness and
efficiency of the two methods. First, GFM performs interpolation along the Cartesian directions
whereas the current method constructs the interpolation along the boundary normal directions.
The computational stencils for the ghost-cell in Cartesian interpolations do not involve
neighbors along the diagonal directions and this can be advantageous when using iterative
solvers such as line successive-overrelaxation (SOR). The disadvantage of Cartesian
interpolation is that implementation of Neumann boundary conditions is more difficult whereas
it is easily done for the current method. The second significant difference is the use of the
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normal probe and image-point in the current interpolation scheme which ensures that the
interpolation is well behaved in the limit of the boundary-intercept point approaching the ghost-
node. In contrast, the three-point linear interpolation scheme used in GFM becomes ill-
conditioned in situations where the boundary is close to the external node in the interpolation
stencil.

2.2.3 Boundary Motion—Boundary motion can be included into the above formulation with
relative ease. In advancing the field equations from time level n to n + 1 in the case of a moving
boundary, the first step is to move from its current location to the new location. This is is
accomplished by moving the nodes of the surface triangles with a known velocity. Thus we
employ the following equation to update the coordinates (Xi) of the surface element vertices

(24)

where Vi is the vertex velocity. The vertex velocity can either be prescribed or it can be
computed from a dynamical equation if the body motion is coupled to the fluid. The next step
is to determine the ghost-cells for this new immersed boundary location and recompute the
body-intercepts, image-points and associated weights αs. Subsequently, the flow equations (3–
13) which are written in Eulerian form are advanced in time. Note that this same velocity as
in Eq. (24) is used as the velocity boundary condition in advancing the flow equations (Eqs.
3–13) which ensures that at the end of the time-step, the boundary and flow velocities are
compatible. The general framework described above can therefore be considered as Eulerian-
Lagrangian, wherein the immersed boundaries are explicitly tracked as surfaces in a
Lagrangian mode, while the flow computations are performed on a fixed Eulerian grid.

For sharp interface methods, one issue encountered with moving boundaries is the so called
“fresh-cell” problem[44,45]. This refers to the situation where a cell that is in the solid at one
time step, emerges into the fluid at the next time-step due to boundary motion. Figure 7 shows
a 2D schematic where boundary motion from time-level n to n + 1 leads to the appearance of
two fresh cells. Note that since the fluid flow simulations are limited by the CFL constraint,
the boundary velocity is also subject to a similar constraint. Therefore at any given time-step
the layer of fresh-cells can at most be one cell deep. Now considering the solution of Eq. 3 for

a fresh cell, it can be seen that terms such as , ,  and  are not readily available. In
the context of fluid flow simulations, Ye et al. [51] devised a simple and consistent
methodology for this problem for their cut-cell based Cartesian grid method and we have
adapted this same method for the current finite-difference based immersed boundary method.
Referring to Fig. 7, the value of the intermediate velocity  at time-level n+1 for the fresh-cell
is obtained by interpolation from neighboring fluid nodes. The procedure adopted in order to
perform this interpolation is consistent with the approach taken for the ghost-cell interpolation.
As shown in Fig. 7, a normal intercept is extended from the fresh-cell node to the boundary
and this intersects at the boundary-intercept “BI” point. An image-point “IP” corresponding
to the boundary-intercept is then obtained and the eight (four in 2D) nodes surrounding the
image-point identified. One of these nodes is necessarily the fresh-cell node itself. An
interpolation stencil for the fresh-cell values is now obtained by performing a tri-linear
interpolation in the hexahedron defined by the seven-nodes surrounding the image point (all
nodes except for the fresh-cell node) and the boundary-intercept point. In the 2D case shown
in Fig. 7, this region of interpolation is a quadrilateral and the interpolation stencil for one
fresh-cell is shown schematically in this figure.
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The above methodology is not only easy to implement in the context of the current ghost-cell
interpolation scheme, it is also eminently consistent with it. This becomes clear if we note that
any cell that is a fresh-cell at a given time-step was necessarily a ghost-cell at the previous
time-step. Thus, the stencil that is employed for the fresh-cell consists mostly of nodes that
were in the stencil for the node when it was a ghost-cell in this previous time-step. This allows
for a smoother transition in the nodal value as the cell changes phase from solid to fluid.
Furthermore in the special situation where the fluid node is exactly coincident with the
immersed boundary, both the ghost-cell and fresh-cell interpolation schemes default
automatically to the same boundary value.

Once the intermediate velocity is obtained, the pressure for the fresh-cell can be obtained as
for the other cells by solving the pressure Poisson equation (Eq. 10). The final cell-center and
face velocities i.e.  and  respectively as well as final pressure pn+1 are subsequently
obtained by solving Eqs. (13).

3 Results and Discussion
In this section we assess the accuracy and fidelity of the solver and also demonstrate the solver's
ability to handle highly complex boundaries. We first describe a grid convergence study which
examines the accuracy of the solver for a prototypical flow. Following this, a number of two-
(2D) and three-dimensional (3D) flows with stationary boundaries are simulated and results
compared with established experimental and numerical data sets. Next simulations of flows
with moving immersed bodies are conducted and results validated against other studies.
Finally, we simulate flows with highly complex, non-canonical geometries in order to
showcase the capabilities of the solver.

3.1 Grid Convergence Study
In addition to the second-order accurate spatial discretization used for the regular fluid cells,
care has been taken to maintain a second-order accurate treatment in the imposition of the
boundary condition on the immersed boundary. Thus, we expect the solver to exhibit second-
order global and local accuracy. The second-order accuracy for the cells in the vicinity of the
immersed boundary is especially important for the resolution of thin boundary layers that
develop on the immersed boundary for moderate to high Reynolds number flows. Here we
examine the spatial accuracy of the solver for flow past a circular cylinder at Red = U∞d/ν =
100 where d is the cylinder diameter, U∞ is the free stream velocity and ν is the kinematic
viscosity. For this test, we employ a uniform Cartesian grid on a 2d × 2d computational domain
size.

Since an exact solution for this case does not exist, we use the solution computed on a highly
resolved 630 × 630 grid as a baseline for computing the truncation error. A uniform time-step
of 0.0001d/U∞ is used and we integrate the solution for 2000 time-steps. The resulting solution
is shown in Fig. 8a. The same flow is then computed on a hierarchy of grids (210×210, 126×126,
a 90×90, and a 70×70) with the same time-step size as the 630×630 grid. The distribution of
error magnitude in the u1 velocity component for the 126×126 grid is shown in Fig. 8b. As can
be seen from this figure, the largest error in velocity is located around the cylinder. This implies
that this error is a true measure of the error of the immersed boundary treatment and therefore,
examination of this error provides an accurate view of the order of accuracy of the boundary
treatment.

The L1, L2 and Lmax norms of the error for a solution on a N × N grid can now be computed.
It should be noted that on one end, the L1 error-norm is a good measure of the global error
whereas on the other, the Lmax error-norm effectively captures the local error around the
immersed boundary. Fig. 9 shows the variation of the L1, L2 and Lmax error norms in the two
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velocity components for the three grids on a log-log plots. Also included in the plot is a line
denoting second-order convergence. Both error norms show nearly second-order convergence
thereby confirming that the current immersed boundary solver is globally and locally second-
order accurate.

3.2 Flow Past a Circular Cylinder
The flow past a circular cylinder has become the de-facto standard for assessing the fidelity of
Navier-Stokes solvers. Up to a Reynolds number of about 47 the flow is steady and symmetrical
about the wake-centerline. At Reynolds numbers higher than this value, the flow becomes
unstable to perturbations and leads to periodic Karman vortex shedding. The flow remains two-
dimensional up to a Reynolds number of about 180 [50] beyond which the flow becomes
intrinsically three-dimensional [24,50]. We have performed 2D simulations at Reynolds
numbers of 40, 100, 300 and 1000 and compared the computed results with available numerical
and experimental results. Figure 10 shows the grid used for the Red = 1000 simulations and as
can be seen from the figure, we employ a non-uniform Cartesian grid wherein high resolution
is provided to the region around the cylinder as well as the wake.

Figure 11 presents spanwise vorticity contour plots for for Red = 300 and 1000 at one time-
instant and both plots indicate the presence of Karman vortex shedding. The vortex shedding
leads to the development of time-varying drag and lift forces and in Fig. 12 we have plotted

the temporal variation of the drag and lift coefficients, defined as  and

 respectively where FD and FL are the drag and lift forces respectively. It can
be observed that for Red = 300 the vortex shedding reaches a stationary state at a non-
dimensional time tU∞/d of about 70 where as the Red = 1000 case attains this state at a non-
dimensional time of about 60.

In order to validate the simulations we have computed a number of key quantities including
mean drag and base pressure coefficient Cpb, where pressure coefficient at any location is
defined as . The vortex shedding Strouhal number St = fd/U∞ where f is
the vortex shedding frequency has also been computed from the temporal variation of the lift
coefficient. All of these flow quantities are computed from data accumulated after the flow has
reached a stationary state.

Figure 13a shows the variation of Strouhal number with Reynolds number obtained from the
current simulations. Also presented are the results from a number of established experimental
and numerical studies and we find good agreement between the present study and past
numerical studies. The agreement with the experiment of Williamson[49] is also good up to
about Red = 200 beyond which the present study as well as other numerical studies deviate
from the experiment. This is due to the fact that at these Reynolds numbers, the flow is
intrinsically three-dimensional [50,24] and predictions from 2D simulations tend not to match
experiments well in this regime.

Figure 13b shows a comparison of the mean base suction pressure coefficient −Cpb compared
to past 2D numerical simulations of Henderson [14] and Mittal & Balachandar[26] and
experiments of Williamson and Roshko[48]. Note that the simulations of Henderson[14]
employed a spectral element method whereas those of Mittal & Balachandar[26] employed a
highly accurate spectral collocation method. It is found that the predictions from the current
study match these previous numerical studies over the entire range of Reynolds numbers
simulations here. As before, the match with experiments is quite good up to about Red = 200
beyond which intrinsic three-dimensional effects in the experiments lead to a significant
mismatch.

Mittal et al. Page 11

J Comput Phys. Author manuscript; available in PMC 2010 March 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Finally, in Table 1 we compare the mean drag coefficient predicted by the current solver with
some other numerical studies that have conducted 2D simulations of this flow. The Reynolds
number range varies from 40 to 100 and comparisons are made with highly accurate spectral
element [14] and spectral collocation [26] as well as another sharp interface, immersed
boundary solver [22]. In general, we find very good agreement with these other numerical
simulations and this further confirms the accuracy of the current solver a relatively wide range
of Reynolds numbers.

3.3 Flow Past an Airfoil
In addition to circular cylinder simulations, we have also performed 2D simulations of flow
past a NACA 0008 airfoil at two different angles-of-attack (α = 0° and 4°) at chord based
Reynolds number (Rec) of 2000 and 6000. These configurations have particular relevance for
micro-aerial vehicles [31] where Reynolds numbers tend to be in the range from 102 to 104. A
nonuniform 926 × 211 Cartesian grid is used in the current simulations and a relatively large
domain size of 9c × 12c where c is the chord length of the airfoil is employed. The grid and
domain were chosen after a systematic grid refinement and domain dependence study. Figure
14 shows a flow visualization for the Rec = 6000 and α = 4° case and the simulations indicate
that the flow separates from the suction side of the airfoil. Figure 15 presents the temporal
variation of the drag and lift coefficients. The simulations are run for a relatively large time
duration of tU∞/c = 20 at which point the force on the foil reaches a nearly constant value.
These lift and drag coefficients are compared with the numerical simulations of Kunz & Kroo
[19] which were carried out using conventional body-conformal grid methods. Table 2
compares these quantities and we find that the current methodology provides a reasonably good
prediction of these key quantities.

3.4 Flow Past a Sphere
Flow past a stationary sphere is a canonical flow that allows us to test the fidelity of the solver
for three-dimensional flows. A number of experimental [6,40,34], and numerical studies[27,
15,28] have examined this flow at low to moderate Reynolds numbers which are accessible
via direct numerical simulation. Flow past a sphere is axisymmetric and steady below a
Reynolds number (based on the diameter) of 210 [32]. Between Reynolds numbers of 210 and
about 280, the flow is non-axisymmetric but steady and beyond that the flow is non-
axisymmetric and unsteady.

In the current study we have performed simulations of flow past a stationary sphere with
Reynolds numbers ranging from 100 to 350 and made qualitative as well as quantitative
comparisons with established data. The Cartesian grids employed have up to 192×120×120
grid points and are non-uniform with grid clustering provided around the sphere and in the near
wake. For Red = 100 and 150 the computed flow is steady and axisymmetric and Figure 16a
shows the streamline pattern on one plane of symmetry for Red = 100. For these axisymmetric
flows, we can identify the center (coordinates (xc, yc)) of the flow recirculation pattern in the
wake of the sphere. In Figure 16a this location is denoted by a small white circle. We can also
determine the length of the recirculation zone from the back of the sphere denoted by Lb. The
values of these parameters for Red = 40 and 150 are compared with previous studies in Table
3 and found to be very much inline with these previous studies.

For Red = 300 and 350, the flow is non-axisymmetric and unsteady and Fig. 16b shows a
visualization of the enstrophy fields for Red = 350. As has been seen in past studies, the wake
at these Reynolds numbers is found to be dominated by vortex loops which exhibit a planar
symmetric topology[27]. These simulations are run for a long enough time period so as to reach
a well established stationary state. Average quantities such mean force coefficients and vortex
shedding Strouhal number are computed based on stationary state data. Figure 17a shows the
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temporal variation of the drag and side force coefficient for Red = 350 case and these flow
quantities clearly show that the flow has reached a stationary state. In Fig. 17b we compare the
computed mean drag coefficient with a number of previous experimental and numerical studies
and find that the values match quite well with these past studies as well as the correlation of
Clift et al.[6]. The temporal variation of pressure in the wake has been used to estimate a vortex
shedding Strouhal number and as can be seen in Table 3, this quantity also matches well with
past studies.

3.5 Simulation of Flow Past Suddenly Accelerated Bodies
All of the cases simulated so far have been with stationary immersed boundaries. In the current
section we describe simulations of flow past moving bodies with the objective of demonstrating
the fidelity and accuracy of the current solver for such flows. The focus is on bodies which
instantaneously accelerate from zero to a finite velocity Uo in a stagnant fluid. Accurate
prediction of the temporal variation of the drag force and wake evolution requires that the thin
vorticity layer that develops on the accelerating body be adequately resolved in time and space.
Therefore, such flows offer a severe test of both the spatial and temporal accuracy of the method
for moving boundaries.

3.5.1 Suddenly Accelerated Normal Plate—This first case of a moving immersed
boundary is of an infinitesimally thin finite flat plate of height h accelerating normal to its
surface. The Reynolds numbers based Reh = Uoh/ν is chosen to be 126 and 1000 in order to
match the simulations of Koumoutsakos & Sheils [18]. These authors employed a vortex
particle method for simulating this flow which is particularly well suited for such flows since
at least for early times, the vorticity is confined to a small subregion of the domain thereby
easing the computational requirements for the simulations. Figure 18 shows the evolution of
the separation bubble behind the plate at four different time-steps and these plots compare well
with the corresponding Figs. 5 and 8 in the paper of Koumotsakos & Sheils[18]. Figure 19
shows the temporal variation of the computed bubble length (which is the length of the region
of reverse flow on the centerline behind the plate normalized by plate height) obtained from
the current simulations. Also included in the plot are results from the experiments of Taneda
& Honji [43] and simulations of Koumoutsakos & Shiels [18] and we find an excellent match
between the three data sets. Note also that this case demonstrates the ability of the solver to
handle infinitesimally thin (membraneous) bodies. Membraneous entities such as insect wings
and fish fins abound in biology. Infinitesimally thin interfaces are also encountered in flows
involving bubbles and drops and therefore, the ability to handle such geometries significantly
enhances the operational envelope of the solver. The key issue in dealing with such boundaries
is to allow for ghost-cells on both sides of the immersed boundary. Furthermore for such cases,
a given ghost-node is also concurrently a fluid-node. In the current solver we have handled this
through the use of auxiliary arrays that store ghost-cell nodal values separately from fluid values
at a given ghost-cell. Pointers are used to access this auxiliary storage thereby simplifying the
solution algorithm for such bodies.

3.5.2 Suddenly Accelerated Circular Cylinder—Next we present results of simulated
flow past suddenly accelerated circular cylinder. Flow is simulated at two different Reynolds
numbers (Red = Uod/v) of 550 and 1000, both of which have been simulated using a vortex
particle method by Koumoutsakos & Leonard[17]. The current simulations employ dense 541
× 161 grids in order to resolve the extremely thin boundary layers that develop on the cylinder
surface. Figure 20 shows four stages in the evolution of the vortex behind the cylinder at the
two Reynolds numbers. These figures compare well with corresponding figures in the paper
of Koumoutsakos & Leonard[17]. In Fig. 21 we have plotted the temporal variation of the
computed drag coefficient along with available results from [17] for both cases. It is noted that
the current immersed boundary calculations match the results of these previous calculations
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very well, thereby providing further confidence in the ability of the solver to simulate accurately
the production and subsequent convection of vorticity from moving and rapidly accelerating
bodies bodies as well as the transient fluid-dynamic forces.

Also included in Fig. 21 is the temporal variation of force on a suddenly accelerated sphere at
a Reynolds number of 550. For this simulation, we have employed a 541 × 161 × 161 grid
which is based on the grid used for the Red = 550 suddenly accelerated cylinder. Although
there is no other computational or numerical data available for comparison, we provide this
data so that it may be used as a benchmark for moving 3D bodies in the future.

3.6 Simulation of Flow Past Complex Moving Bodies
With the solver validated systematically for two- and three-dimensional stationary and moving
boundaries, we now turn to demonstrating the ability of the current solver to simulate flow
with highly complex boundaries.

3.6.1 Fish Pectoral Fin Hydrodynamics—The first case chosen is that of a fish pectoral
fin. The particular fish which is the subject of this study is the bluegill sunfish, which has been
studied extensively by Lauder and co-workers [20,30]. This fish was videotaped swimming
steadily in a current of water moving at a speed of about one body-length per second. In this
particular swimming mode, the fish uses only its pectoral fins to produce propulsive force and
is therefore a good case to study pectoral fin based (“labriform”) propulsion. Two high-speed,
high-resolution video cameras are used simultaneously to record the motion of the fin and the
videos are used to construct an accurate, three-dimensional, time-varying reconstruction of the
fin kinematics. The fin is a thin membranous structure supported by slender bony rays and can
therefore be modeled as a membrane in the simulations. The fin position at three stages in the
stroke is shown in Fig. 22 and it can be seen that the fin undergoes significant deformation,
both active as well as flow-induced as it moves through the fluid. All of this deformation is
captured in the videos and incorporated with high fidelity into the reconstructed fin kinematics.
The stroke frequency of the fin is about 2Hz and using the length of the longest ray which is
4cm as the length scale and the freestream velocity of 0.16 m/s as the velocity scale, we estimate
the Reynolds numbers (Re = U∞LS/v where LS the the spanwise size of the fin) and Strouhal
numbers (St = fLS/U∞ where f is the stroke frequency) for this flow to be approximately 6300
and 0.54 respectively. In addition to the fin kinematics, these non-dimensional parameters are
also matched in the simulation. Simulations are carried out on two different grids, one with
about 2.78 million grid points and the other with about 6 million grid points and here we present
results from the larger grid. Simulations are run for over four fin strokes and the results
presented are for the fourth stroke. Figure 23 shows a sequence of flow visualizations at three
stages in the fin stroke. The fish body is shown for reference purposes only and is not actually
included in the simulations. Instead, the fin is put next to a flat-plate which is oriented in the
x – y plane. The plot shows streamlines as well as isosurface plots of the imaginary part of the
complex eigenvalue of the velocity deformation tensor[41] denoted by Λi. The plots show the
formation of a complex system of distinct vortices including a strong abduction tip-vortex from
the fin. As this vortex system convects downstream it coalesces into a nearly spherical
agglomeration of vortex structures. An ongoing study is examining the thrust production,
energetics and associated flow mechanism and a parameter survey of this flow is also being
undertaken. Results from this study will be presented in a future publication.

3.6.2 Dragonfly Flight Aerodynamics—In this section, we present results from a
simulation devised to examine aerodynamics of dragonfly flight with a significant level of
complexity and realism including the role of wing-wing interaction and wing-body interaction.
The results presented here are primarily intended to show the complexity of the flow for such
a configuration and the ability of the solver to handle a case which includes a combination of
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multiple moving/stationary membranes and solid bodies. The dragonfly body and wing
anatomy is based on images of a variegated meadowhawk (Sympetrum corruptum) which is a
medium-sized dragonfly. Figure 24a shows the final body configuration as well as the surface
mesh for dragonfly model which consists of 8832 triangular elements. A Cartesian grid of size
161 × 177 × 113 is used which provides high resolution around the dragonfly and the wake as
shown in Fig. 24b. Actual kinematics of dragon-flies in free-flight including, rolling amplitude,
pitch angles, inclination of wing stroke-planes, wing beat frequency and phase-relation
between the fore- and hind-wings, is available from a number of sources[33,47]. In the current
model, we choose a relatively simple representation of the wing kinematics wherein each pair
of wings undergoes a sinusoidal pitching-rolling motion where the roll axis is situated at the
inner (closer to body) tip of the wing and the pitching is along a spanwise axis located at 10%
wing chord. Furthermore, pitching leads the rolling motion by 90° in phase and the forewings
also lead the hindwings by 180° in phase. In the specific case presented here, the Reynolds
number (Re = U∞c/v) based on the maximum chord length of the fore-wing is 320 and Strouhal
number (defined as St = Af/U∞ where A is the peak-to-peak amplitude of the tip of the forewing,
and f is the wing flapping frequency) is 0.5. Alias MAYA animation software [8] is used to
incorporate the prescribed kinematics into the model and the animation is input into the IBM
solver as a sequence of surface velocity files. Figure 25 demonstrates the flow structures of the
dragonfly case at three different stages in the flapping cycle. In Figs. 25a and b the two wing
pairs are at the extreme positions of their flapping motion and are at the stage of reversing their
respective motions. At these stages, the dominant features in the flow are the remnants of the
tip and wake vortices created during the stroke. In contrast, Fig. 25c shows the wings at the
end of the cycle at which stage both wings are at the center position with the forewings rolling
upwards and the hindwings rolling downwards. At this stage, the dominant vortices features
in the flow are the detached leading-edge vortices which can be found on the lower(upper)
surface of the fore(hind) wings. These vortices are stronger towards the wing-tips where wing
velocity is the highest. This dragonfly configuration is being further refined with more realism
injected into the wing kinematics from detailed experimental observations [47] and will then
be used for a detailed investigation of dragonfly flight aerodynamics.

4 Conclusions
A highly versatile immersed boundary method for simulating incompressible flow past
complex three-dimensional moving boundaries is described. The immersed boundary method
is based on a discrete-forcing scheme that allows for a “sharp” representation of the immersed
boundary. The immersed boundary method developed is closely coupled with a unstructured
grid surface representation of the immersed boundary and salient feature of the IB methodology
and the implications of using an unstructured structured mesh are discussed.

A number of diverse two- and three-dimensional canonical flows are simulated and computed
results compared with available data sets in order to establish the accuracy and fidelity of the
current solver. Reynolds numbers for these flows range from O(101) up to O(103). Simulations
are also conducted for flows with moving boundaries and we show that even for rapidly
accelerated bodies, the current solver predicts accurately, the temporal variation of the fluid
dynamic forces and the evolution of the vorticity field. Finally, we demonstrate the ability of
the solver to handle some extremely complicated three-dimensional moving boundaries by
showing selected results from a fish-pectoral fin simulation as well as simulation of a dragonfly
in flight. These two cases show that the solver can handle complex, highly deformable
membranous objects as well as multi-component bodies with membranous as well as non-
membranous components in complex relative motion.

Mittal et al. Page 15

J Comput Phys. Author manuscript; available in PMC 2010 March 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Acknowledgments
RM would like to acknowledge support for this work from ONR-MURI grant N00014-03-1- 0897, AFOSR Grant
F49550-05-1-0169 and NIH Grant R01-DC007125-0181. FM has been supported by the Department of Energy
through the University of California under subcontract B523819.

References
[1]. Baghchi P, Ha MY, Balachandar S. Direct numerical simulation of flow and heat transfer from a

sphere in a uniform cross flow. J. Fluids Eng 2001;123:347.
[2]. Balaras E. Modeling complex boundaries using an external force field on fixed Cartesian grids in

large-eddy simulations. J. Comput. Phys 2004;33:375.
[3]. Bozkurttas M, Dong H, Seshadri V, Mittal R, Najjar F. Towards numerical simulation of flapping

foils on fixed Cartesian grids. AIAA Paper 2005-0081. 2005
[4]. Borouchaki H, Lo SH. Fast Delaunay triangulation in three dimensions. Comp. Meth. Appl. Mech.

Engr 1995;128:153–167.
[5]. Canann SA, Liu YC, Mobley AV. Automatic 3D Surface Meshing to Address Today's Industrial

Needs. Finite Elements Anal. Des 1997;25:185–198.
[6]. Clift, R.; Grace, JR.; Weber, ME. Bubbles, Drops and Particles. Academic Press; New York: 1978.
[7]. Cheng, RKC. Inside Rhinoceros 3. Onward Press; 2003.
[8]. Derakhshani, D. Introducing Maya 8: 3D for Beginners. Maya Press; 2006.
[9]. Fadlun EA, Verzicco R, Orlandi P, Mohd-Yusof J. Combined immersed boundary finite-difference

methods for three-dimensional complex flow simulations. J. Comput. Phys 2000;161:30.
[10]. Ghias R, Mittal R, Lund TS. A non-body conformal grid method for simulation of compressible

flows with complex immersed boundaries. AIAA Paper 2004-0080. 2004
[11]. Ghias R, Mittal R, Dong H. A sharp interface immersed boundary method for viscous compressible

flows. J. Comput. Phys. 2007 To appear in.
[12]. Gibou F, Fedkiw RJ, Cheng LT, Kang M. A second-order-accurate symmetric discretization of the

Poisson equation on irregular domains. J. Comput. Phys 2002;176:205.
[13]. Goldstein D, Handler R, Sirovich L. Modeling an no-slip flow boundary with an external force field.

J. Comput. Phys 1993;105:354.
[14]. Henderson RD. Details of the drag curve near the onset of vortex shedding. Phys. Fluids 1995;7(9):

2102.
[15]. Johnson TA, Patel VC. Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech

1999;378:19.
[16]. Kim J, Kim D, Choi H. An immersed boundary finite-volume method for simulations of flows in

complex geometries. J. Comput. Phys 2001;171:132.
[17]. Koumoutsakos P, Leonard A. High-resolution simulations of the flow around an impulsively started

cylinder using vortex methods. J. Fluid Mech 1995;296:1.
[18]. Koumoutsakos P, Shiels D. Simulations of the viscous flow normal to an impulsively started and

uniformly accelerated flat plate. J. Fluid Mech 1996;328:177.
[19]. Knuz, PJ.; Kroo, H. Analysis and Design of Airfoils for use at Ultra-low Reynolds Numbers. In:

Mueller, TJ., editor. Progress in Astronautics and Aeronautics. 2001. p. 35
[20]. Lauder GV, Madden P, Mittal R, Dong H, Bozkurttas M. Locomotion with flexible propulsors: I.

Experimental analysis of pectoral fin swimming in sunfish. Bioinsp. Biomim 2006;1:25.
[21]. Majumdar S, Iaccarino G, Durbin PA. RANS Solver with Adaptive Structured Boundary Non-

conforming Grids. Cent. Turbul. Res. Annu. Res. Briefs 2001:353.
[22]. Marella S, Krishnan S, Liu H, Udaykumar HS. Sharp interface Cartesian grid method I: An easily

implemented technique for 3D moving boundary computations. J. Comput. Phys 2005;210:1.
[23]. Mavriplis DJ. An advancing front Delaunay triangulation algorithm designed for robustness. J.

Comput. Phys 1995;117:1, 90–101.
[24]. Mittal R, Balachandar S. Effect of three-dimensionality on the lift and drag of nominally two-

dimensional cylinder. Phys. Fluids 1995;7(8):1841.

Mittal et al. Page 16

J Comput Phys. Author manuscript; available in PMC 2010 March 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



[25]. Mittal, R.; Balachandar, S. On the inclusion of three-dimensional effects in simulations of two-
dimensional bluff-body wake flows. Symposium on Separated and Complex flows, ASME Summer
meeting; Vancouver. 1997.

[26]. Mittal R, Moin P. Suitibility of upwind biased schemes for large-eddy simulation of turbulent flows.
AIAA J 1997;35(8):1415.

[27]. Mittal R. A Fourier-Chebyshev spectral collacotion method for simulating flow past spheres and
spheroids. Int. J. Numer. Meth. Fluids 1999;30:921.

[28]. Mittal R, Wilson JJ, Najjar FM. Symmetry properties of the transitional sphere wake. AIAA Journal
2002;40(3):579.

[29]. Mittal R, Iaccarino G. Immersed boundary methods. Ann. Rev. Fluid Mech 2005;37:239.
[30]. Mittal R, Dong H, Bozkurttas M, Lauder GV, Madden P. Locomotion with flexible propulsors: II.

Computational modeling of pectoral fin swimming in sunfish. Bioinsp. Biomim 2006;1:35.
[31]. Mueller TJ, DeLaurier JD. Aerodynamics of small vehicles. Ann. Rev. Fluid Mech 2003;35:89.
[32]. Natarajan R, Acrivos A. The instability of the steady flow past spheres and disks. J. Fluid Mech

1993;254:323.
[33]. Norberg, RA. Hovering flight of the dragonfly Aeschna juncea L., kinematics and aerodynamics.

In: Wu, TY.; Brokaw, CJ.; Brennen, C., editors. Swimming and Flying in Nature. Plenum Press;
NewYork: 1975. p. 763

[34]. Ormieres D, Provansal M. Transition to turbulence in the wake of a sphere. Phys. Rev. Lett 1999;83
(1):80.

[35]. Osher S, Fedkiw RP. Level Set Methods - An Overview and some recent results. J. Comp. Phys
2001;169:463.

[36]. Peskin CS. Flow patterns around the heart valves. J. Comput. Phys 1972;10:252.
[37]. Piegl L. On NURBS: A Survey. IEEE Computer Graphics and Applications 1991;11:55.
[38]. Press, WH.; Flannery, BP.; Teukolsky, SA.; Vetterling, WT. Numerical Recipes in Fortran.

Cambridge University Press; 1992.
[39]. Saiki EM, Biringen S. Numerical simulation of a cylinder in uniform flow: application of a virtual

boundary method. J. Comput. Phys 1996;123:450.
[40]. Sakamoto H, Haniu H. The formation mechanism and shedding frequency of vortices from a sphere

in uniform shear flow. J. Fluid Mech 1995;287:151.
[41]. Soria, J.; Cantwell, BJ. Identification and classification of topological structures in free shear flows.

In: Bonnet, JP.; Glauser, MN., editors. Eddy Structure Identification in Free Turbulent Shear Flows.
Kluwer Academic Publishers; Netherlands:

[42]. Taneda S. Experimental investigation of the wake behind a sphere at low Reynolds numbers. J.
Phys. Soc. Japan 1956;11(10):1104.

[43]. Taneda S, Honji H. Unsteady flow past a flat plate normal to the direction of motion. J. Phys. Soc.
Japan 1971;30(1):262.

[44]. Udaykumar HS, Mittal R, Shyy W. Computational of solid-liquid phase fronts in the sharp interface
limit on fixed grids. J. Comput. Phys 1999;153:535.

[45]. Udaykumar HS, Mittal R, Rampunggoon P, Khanna A. A sharp interface Cartesian grid method for
simulating flows with complex moving boundaries. J. Comput. Phys 2001;174:345.

[46]. Van Kan J. A second-order accurate pressure-correction scheme for vicous incompressible flow.
SIAM J. Sci. Stat. Comput 1986;7:870.

[47]. Wakeling JM, Ellington CP. Dragonfly flight, (2). velocities, accelerations and kinematics of
flapping flight. J. Exp. Biol 1997;200:557. [PubMed: 9318255]

[48]. Williamson CHK, Roshko A. Measurment of base pressure in the wake of a cylinder at low Raynolds
numbers. Z. Flugwiss. Weltraumforsch 1990;14:38.

[49]. Williamson CHK. The natural and forced formation of spot-like' vortex dislocations' in the transition
of a wake. J. Fluid Mech 1992;243:393.

[50]. Williamson CHK. Vortex dynamics in the cylinder wake. Ann. Rev. Fluid Mech 1996;8:477.
[51]. Ye T, Mittal R, Udaykumar HS, Shyy W. An accurate Cartesian grid method for viscous

incompressible flows with complex immersed boundaries. J. Comput. Phys 1999;156:209.

Mittal et al. Page 17

J Comput Phys. Author manuscript; available in PMC 2010 March 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



[52]. You D, Wang M, Mittal R, Moin P. Study of rotor tip-clearance flow using large eddy simulation.
AIAA Paper 2003-0838. 2003

[53]. Zang Y, Streett RL, Koseff JR. A non-staggered fractional step method for time-dependent
incompressible Navier-Stokes equations in curvilinear coordinates. J. Comp. Phys 1994;114:18.

[54]. Zhang HQ, Fey Y, Noack BR. On the transition of the cylinder wake. Phys. Fluids 1995;7(4):779.

Mittal et al. Page 18

J Comput Phys. Author manuscript; available in PMC 2010 March 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Schematic describing the naming convention and location of velocity components employed
in the spatial discretization of the governing equations.
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Fig. 2.
Example of the type of surface mesh with triangular elements used to represent all immersed
bodies in the current solver. This particular body is based on a CT scan of a harbor porpoise
(Phocoena phocoena).
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Fig. 3.
Representative example showing the harbor porpoise of Fig. 2 immersed in a non-uniform
Cartesian grid.
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Fig. 4.
Schematic showing the procedure for computing whether a node is inside or outside the body.
The cube represents a fluid cell and its node for which this determination is to be made. Vector

 is the position vector between this node and the surface triangle closest to the node and 
is the outward pointing surface normal of this triangular element.
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Fig. 5.
2D schematic describing ghost-cell methodology used in the current solver. Schematic depicts
an immersed boundary cutting through a Cartesian grid and identifies three particular ghost-
cells (GC) that form the basis for discussion in this section. BI and IP denote body-intercept
and image-point respectively.
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Fig. 6.
2D schematic showing two degenerate situations that can be encountered in the identification
of the body-intercept point for a ghost-cell. (a) Case where there are two possible body-intercept
points and (b) case where there is no body-intercept point detected on the body.
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Fig. 7.
Schematic showing the formation of fresh-cells due to boundary motion and the interpolation
stencil (in grey) for one representative fresh-cell.
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Fig. 8.
(a) Contours of u1 (line contours) and u2 (greyscale contours) for numerical solution on the
630 × 630 grid. (b) Distribution of error in u1 component of velocity on the 126 × 126 grid.
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Fig. 9.
L1, L2 and L∞ norms of the error for the streamwise velocity u1 and transverse velocity u2
components versus the computational grid size.
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Fig. 10.
Non-uniform grid employed in the vicinity of the circular cylinder for the Red = 1000
simulations.
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Fig. 11.
Computed spanwise vorticity contour plots for (a) Red = 300 and (b) 1000 at one time-instant.
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Fig. 12.
Computed temporal variation of drag and lift coefficients for the (a) Red = 300 and (b) 1000
cases.
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Fig. 13.
Comparison of computed (a) vortex shedding Strouhal number (St) and (b) computed base
suction coefficient (−Cpb with established computational and experimental results.
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Fig. 14.
Contour plot of spanwise vorticity at one time-instant for the NACA 0008 airfoil at Rec = 6000
and α = 4°.
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Fig. 15.
Temporal variation of force coefficients for NACA 0008 airfoil at α = 4° for Rec = 2000 and
6000 (a) Drag coefficient (b) Lift coefficient.
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Fig. 16.
(a) Computed streamline pattern on one plane of symmetry for Red = 100 sphere case. (b)
Isosurface of enstrophy at one time-instance for Red = 350 sphere case.
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Fig. 17.
(a) Temporal variation of drag and side force coefficients on a sphere in a uniform flow for
Red = 350. (b) Comparison of computed mean drag coefficient with experimental and
numerical data.
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Fig. 18.
Computed spanwise vorticity contours for a suddenly started normal flat-plate at four stages
in the start-up process. Upper and lower halves of each figure correspond to Reh = 126 and
1000 respectively. (a) tUo/h = 0.5 (b) 1 (c) 2 and (d) 3.
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Fig. 19.
Time evolution of computed bubble length behind flat plate at Reh = 126 and 1000 compared
to established experimental and computational results.
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Fig. 20.
Computed spanwise vorticity contours for a suddenly started cylinder at four stages in the start-
up process. Upper and lower halves of each figure correspond to Reh = 1000 and 550
respectively. (a) tUo/d = 0.5 (b) 1 (c) 1.5 and (d) 2.
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Fig. 21.
Time evolution of computed drag coefficient for suddenly started cylinder at Red = 550 and
1000 compared to established experimental and computational results. Also included in the
figure is the temporal variation of drag-coefficient for a suddenly started sphere at Red = 550.
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Fig. 22.
Grid employed in the pectoral fin simulations and fin configuration at three stages in its motion.
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Fig. 23.
Isosurfaces of ∧i and corresponding streamlines at three stages in the pectoral fin stroke of the
bluegill sunfish. (a) t × f = 1/3 (b) t × f = 2/3 (c) t × f = 1. Body of the sunfish is shown for
reference only and not included in the simulations.
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Fig. 24.
(a) Surface mesh used to define the geometry of the dragonfly body and wings. (b) Two-
dimensional view of the dragonfly model immersed in the fluid grid.
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Fig. 25.
Isosurfaces of ∧i at three stages in the flapping cycle of a modeled dragonfly. (a) t × f = 0.25
(b) t × f = 0.75 (c) t × f = 1.
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Table 1

Comparison of computed mean drag coefficient with results from previous 2D cylinder simulations.

Red → 40 100 300 1000

Present Study 1.53 1.35 1.36 1.45

Henderson[14] 1.54 1.35 1.37 1.51

Marella et al.[22] 1.52 1.36 1.28 -

Mittal & Balachandar[26] - - 1.37 -
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