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Abstract

A global numerical model for shallow water flows on the cubed-sphere grid is proposed in this paper. The model is
constructed by using the constrained interpolation profile/multi-moment finite volume method (CIP/MM FVM). Two
kinds of moments, i.e. the point value (PV) and the volume-integrated average (VIA) are defined and independently
updated in the present model by different numerical formulations. The Lax–Friedrichs upwind splitting is used to update
the PV moment in terms of a derivative Riemann problem, and a finite volume formulation derived by integrating the gov-
erning equations over each mesh element is used to predict the VIA moment. The cubed-sphere grid is applied to get
around the polar singularity and to obtain uniform grid spacing for a spherical geometry. Highly localized reconstruction
in CIP/MM FVM is well suited for the cubed-sphere grid, especially in dealing with the discontinuity in the coordinates
between different patches. The mass conservation is completely achieved over the whole globe. The numerical model has
been verified by Williamson’s standard test set for shallow water equation model on sphere. The results reveal that the
present model is competitive to most existing ones.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

How to represent the spherical geometry is one of the key points to the numerical simulations on the
large scale circulation of the Earth’s atmosphere. In the context of finite difference formulation, latitude–
longitude (LAT/LON) grid has gained a greater popularity compared to other grids for spherical geometry,
such as the icosahedron geodesic grid [30,35] and the cubed-sphere grid [29] which were proposed more than
30 years ago though. The standard LAT/LON grid, however, meets substantial difficulties in regions close
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to the poles, i.e. the singularities in the governing equations and the convergence of meridians. Although the
numerical barriers in the LAT/LON grid can be circumvented to some extent by using special numerical
techniques, for example the polar cap [9], the semi-Lagrangian/semi-implicit formulation [5] and the reduced
LAT/LON grid [26], the large ratio in the grid spacing seriously prevents the uniformly resolved numerical
solutions on the whole sphere. Moreover, these problems are getting worse as the spatial resolution is
increasingly refined.

Other grids with more uniform resolution for the whole globe began to draw more attention since the
middle of 1990’s, an age from which the GCM simulations with high resolution became technically possible
due to the rapid development of computer hardware. Two representatives of the grids for spherical geom-
etry, i.e. the gnomonic or conformal cubic grid [18,19,25,27,28] and the icosahedron geodesic grid
[8,16,31,34] have been adopted in global models for either shallow water models or atmospheric models.
The cubed-sphere grid is generated by mapping the sphere onto an inscribed cube using the gnomonic pro-
jection. A expanded spherical cube is composed of six identical patches connected to each other by 12 edges
which are also called patch boundaries. A gnomonic projection results in a more uniform grid spacing, but
the mesh on each patch is not orthogonal. Furthermore, the coordinate across a patch boundary is not con-
tinuous. As commentated in [25], the ‘‘breaking” of the coordinate along the patch boundaries requires
extra numerical treatments that usually degrade the accuracy of numerical solution. A remedy to the
non-orthogonality of the gnomonic cubic grid is the conformal cubic grid [25]. McGregor [18] implemented
the semi-Lagrangian method on the conformal cubic grid and constructed a global atmospheric model with
some special numerical technique [20].

More accurate numerical formulations on the cubed-sphere grid have been recently devised by implement-
ing some advanced numerical methods, i.e. the spectral element method [7,32] and the discontinuous Galerkin
(DG) method [23,24]. The DG method [4] computes the volume-integrated value over each control volume
(mesh cell) via a finite volume formulation, which then guarantees the numerical conservation. High order
reconstruction can be built locally in a DG method by increasing the local degrees of freedom. The DG
method, however, involves numerical quadrature which is computationally expensive, and moreover, the
CFL condition for a high order DG method is much restrictive as discussed in [44].

We have recently developed another type of high resolution scheme, namely constrained interpolation
profile/multi-moment finite volume method (CIP/MM FVM) for fluid dynamic simulations. Different from
the conventional finite volume methods, the CIP/MM FVM employs at least two kinds of quantities
which are generically called ‘‘moment” in our context, e.g. the point value (PV) and the volume-integrated
averages (VIA) of a field variable, as the prognostic variables. The moments are put forward in time sep-
arately using different numerical algorithms. For example, the PV is updated by solving a point-wise Rie-
mann problem or a semi-Lagrangian procedure, while the VIA has to be computed via a finite volume
scheme of flux-form to assure the conservation. A CIP/MM FVM allows larger CFL number for stability
and is more computationally efficient. The interpolation reconstruction, which is required for the compu-
tations of the Riemann problem and the numerical flux, is built in terms of both PV and VIA, thus the
mesh stencil used in the reconstruction is very compact. Using multi-moments as the model variables in
constructing FVM has been implemented to CFD problems so far in [10,11,37,38]. The multi-moment for-
mulation may result in numerical dispersion property different from the conventional finite difference
methods. In [39], for example, the numerical dispersion of the simplest multi-moment finite volume
method for the geostrophic adjustment was discussed. In [10], a high order advection scheme was devel-
oped for unstructured grid where a cubic interpolation function is constructed over a single triangular
mesh by using both PV and VIA moments. The local reconstruction makes the CIP/MM FVM well suited
not only for the unstructured grid but also for the numerical treatment of the patch boundary in the
cubed-sphere grid.

We present in this paper a CIP/multi-moment finite volume scheme for shallow water equation model on
cubed-sphere grid with equiangular gnomonic projection. The PV moment is defined at the vertices and the
middle points of the boundary edges, while the VIA is defined over the 2D quadrilateral control volume
for each mesh element. Only one layer of ghost cells are required across the patch boundaries during updating
PV. The computation over the patch boundaries of the gnomonic cube can be carried out by mapping the
ghost cells from the neighboring patch.
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This paper is organized in the following way. In Section 2, a brief introduction to the gnomonic cubed
grid and the governing equations developed for curvilinear coordinates are given. Then a detailed descrip-
tion of our multi-moment numerical model for solving two-dimensional shallow water flow on a curvilinear
grid and the numerical treatments of the patch boundary are presented in Section 3. Several numerical tests
on the sphere are carried out in Section 4 to verify the present scheme. Finally, some conclusions are given
in Section 5.

2. The cubed-sphere grid

2.1. Cubed-sphere geometry

On a cubed-sphere, the sphere surface is divided into six identical patches by projecting the six rectangular
sides of an inscribed cube onto the sphere surface, shown in Fig. 1. For every patch, identical local coordinates
can be constructed. The governing equations written in the local coordinates have the same appearance for all
patches. A cubed-sphere grid can get around the polar singularities in the LAT/LON grid, and is able to gen-
erate very uniform grid spacing over the whole globe.

Two kinds of projections are often adopted to construct the local coordinates on cubic-sphere, i.e. the gno-
monic projection originally proposed by Sadourny [29] and used in [19,23,34,25,27,28] and the conformal pro-
jection proposed by Rancic [25] and used in [18,2]. The gnomonic projection produces a more uniform grid on
the sphere, but encounters the discontinuity of the coordinates at the boundary edges between the different
patches. Moreover, the coordinate system in a gnomonic projection is not orthogonal and the governing equa-
tions appear to be more complicated than in an orthogonal coordinate system. The conformal projection, on
the other hand, gives a continuous patch connection and a simpler form of the governing equations. However,
a conformal projection results in a converged grid lines around the eight vertices of the inscribed cube and
there are no analytic metric terms for conformal projection. Recently, the uniformity of conformal cubic grid
is improved by Adcroft et al. [see [2], Fig. 7].

We adopt the gnomonic projection in present study. In order to minimize boundary regions among differ-
ent patches and to construct the interpolation required for exchanging data more efficiently, two kinds of
moments are used and the reconstruction is carried out on a local base. The resultant numerical algorithm
is more convenient to deal with the boundaries with broken coordinates and maintain the numerical
conservation.

In a gnomonic equiangular projection, the local grid on each patch is constructed by intersection of two
sets of angularly equidistant great circles, see their Fig. 1 for patch one in [27]. The location of any point on
patch one can be determined by central angles ða; bÞ which are the angles between the great circles passing
this point and the great circles passing the center of the patch in n and g directions respectively. This pro-
cedure can be repeated six times to produce the grids on six patches covering the whole globe. The central
Fig. 1. The cubed-sphere.
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angles ða; bÞ vary in ½� p
4
; p

4
� for every patch. In our study the local coordinates ðn; gÞ are defined as length of

the arcs, n ¼ Ra and g ¼ Rb, instead of the original angular variables where R ¼ 6:371220� 106 m is the
radius of the Earth.

The projection relations of patch one are shown in Fig. 2. P is a point on the sphere surface and P 0 is the
corresponding point on the cube’s surface. The transformation laws between spherical LAT/LON coordinates
ðk; hÞ, where k is the longitude and h is the latitude, and the local coordinates ðn; gÞ for patch one can be
deduced from the geometrical relations as
n ¼ Rk;

g ¼ R arctanðtan h cos�1 kÞ:

�
ð1Þ
The transformation laws (1) are satisfied for any patch in rotated LAT/LON coordinates with the origin lo-
cated at the center of the corresponding patch. With the application of the transformation formulations be-
tween the rotated and the original LAT/LON coordinates [17], the transformation laws for any other patch
can be obtained. The detail expressions can be found in ([24], Appendix A).

In a non-orthogonal grid, two sets of base vectors are needed to describe a vector field, which are the covar-
iant vector and contravariant vector, the corresponding velocities are covariant velocity ðu; vÞ and the contra-
variant velocity ð~u;~vÞ. Given the covariant (tangent) base vector as a1 and a2, the covariant velocity vector is
defined as u ¼ v � a1 and v ¼ v � a2, the contravariant velocity satisfies v ¼ ~ua1 þ ~va2, where v is the velocity vec-
tor. The velocity vector ðuk; uhÞ in spherical LAT/LON coordinates ðk; hÞ and contravariant velocity vector are
related by
uk

uh

� �
¼ J

~u

~v

� �
; ð2Þ
where J is a 2� 2 matrix
J ¼ R
cos h 0

0 1

� � ok
on

ok
og

oh
on

oh
og

" #
: ð3Þ
The metric tensor Gij for local curvilinear grid is then obtained by Gij ¼ JTJ, and Gij has the same expression
for all six patches [24] as
Fig. 2. Projection relation for patch one.
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Gij ¼
1

q4 cos2 a cos2 b

1þ tan2 a � tan a tan b

� tan a tan b 1þ tan2 b

� �
; ð4Þ
where q2 ¼ 1þ tan2 aþ tan2 b, and
ffiffiffiffi
G
p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGijÞ

p
¼ q�3 cos�2 a cos�2 b is the Jacobian of transfor-

mation.
The covariant and contravariant components of velocity vector are related by
~u

~v

� �
¼ Gij u

v

� �
; ð5Þ
where Gij is the inverse of the metric tensor, Gij ¼ ðGijÞ�1.

2.2. Shallow water equations on cubed-sphere

The shallow water equations with vector invariant form of the momentum equation are adopted in present
model. In the local non-orthogonal curvilinear grid on each patch, the shallow water equations can be
expressed in flux form as [25,29,23]
oh
ot ¼ � 1ffiffiffi

G
p

o
ffiffiffi
G
p

~uhð Þ
on þ o

ffiffiffi
G
p

~vhð Þ
og

� �
;

ou
ot ¼

ffiffiffiffi
G
p

~vðfþ f Þ � o
on ½Uþ K�;

ov
ot ¼ �

ffiffiffiffi
G
p

~uðfþ f Þ � o
og ½Uþ K�;

8>>>><
>>>>:

ð6Þ
where U ¼ gðhþ hsÞ is geopotential, g is gravitational constant, h is the height of the fluid over the bottom
mountain, hs is the height of the bottom mountain, K ¼ 1

2
v � v ¼ 1

2
ðu~uþ v~vÞ is the kinetic energy, f the Coriolis

parameter defined as f ¼ 2X sin h, X ¼ 7:292� 10�5 s�1 is the rotation speed of the Earth and f is relative vor-
ticity defined as 1ffiffiffi

G
p ðov

on� ou
ogÞ.

Eq. (6) can be re-written as [23],
oQ

ot
þ oE

on
þ oF

og
¼ S; ð7Þ
where Q ¼ ½
ffiffiffiffi
G
p

h; u; v �T, E ¼ ½
ffiffiffiffi
G
p

h~u; Uþ K; 0 �T, F ¼ ½
ffiffiffiffi
G
p

h~v; 0; Uþ K �T, and S ¼
½ 0;

ffiffiffiffi
G
p

~vðf þ fÞ; �
ffiffiffiffi
G
p

~uðf þ fÞ �T. From (5) and considering the relation G12 ¼ G21 ¼ G, the flux terms

can be expressed as
E ¼

ffiffiffiffi
G
p

hðG11uþ GvÞ
gðhþ hsÞ þ 1

2
G11u2 þ Guvþ 1

2
G22v2

0

2
64

3
75 ð8Þ
and
F ¼

ffiffiffiffi
G
p

hðGuþ G22vÞ
0

gðhþ hsÞ þ 1
2
G11u2 þ Guvþ 1

2
G22v2

2
64

3
75: ð9Þ
3. CIP/Multi-moment FVM in two dimensions

In our multi-moment numerical model, more than one kind of moments are defined and updated indepen-
dently in time. A high-order scheme can be constructed on a more localized stencil than the traditional single-
moment methods. For the numerical model on the cubed-sphere grid, our scheme is more convenient to main-
tain the numerical conservation of the mass and deal with the boundaries between the different patches. In the
present study, we choose two kinds of moments, i.e. point value (PV) and volume-integrated average (VIA), as
the model variables.
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For control volume Cij shown in Fig. 3, the moments for a field variable wðn; gÞ are defined as

� The point value (PV moment)
Pwi�1
2j�1

2
¼ w ni�1

2
; gj�1

2

� �
; at the four vertices;

Pwij�1
2
¼ w ni; gj�1

2

� �
; at the midpoints of two n edges;

Pwi�1
2j ¼ w ni�1

2
; gj

� �
; at the midpoints of two g edges

ð10Þ
� The volume-integrated average (VIA moment)
V wij ¼
1

jV ijj

Z
Cij

wðn; gÞdv; ð11Þ
where j V ij j¼ Dn� Dg is the area of Cij in terms of the local curvilinear grid, the true area of the control vol-
ume is represented by lij j V ij j where lij ¼

R
Cij

ffiffiffiffi
G
p

dv.

The point value at the center of each element, Pwij, is not treated as an independent moment, nor a model
variable. Instead of being updated independently in time, it is calculated by the above two kinds of moments at

every time step. A 2D Simpson’s integration rule [1] is used here to compute Pwij as
Pwij ¼
9

4
V wij �

1

16
P wi�1

2j�1
2
þ Pwi�1

2jþ1
2
þ Pwiþ1

2j�1
2
þ P wiþ1

2jþ1
2

� �
� 1

4
Pwi�1

2j þ Pwiþ1
2j þ P wij�1

2
þ Pwijþ1

2

� �
: ð12Þ
3.1. Updating the PV moment

The semi-Lagrangian scheme is often adopted in numerical models to advance the PV moment. It directly
applies the characteristic information in the hyperbolic systems, some practical applications are given in
[10,11,37,38,40,41,43]. In the present model, however, an Eulerian framework is adopted to update the PV
moment by solving the local Riemann problem point-wisely. It is more convenient to apply the high-order
time integration algorithm and to deal with the source terms in the governing equations cast in a non-orthog-
onal coordinate system on the cubed-sphere.
Fig. 3. The control volume (Cij) for multi-moment discretization.
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With the terms related to the topographic effect separated from the flux, the governing equations (7) are
recast into
oQ

ot
þ oE0

on
þ oF0

og
þ ST ¼ S; ð13Þ
where E0 and F0 denote the flux functions without the topographic terms which are incorporated into the addi-
tional source terms ST ¼ ½0; o

on ðghsÞ; o
og ðghsÞ�

T.

The PV moments are updated by computing (13) point-wisely at ðni�1
2
; gj�1

2
Þ, ðni; gj�1

2
Þ and ðni�1

2
; gjÞ. The key

point here is how to evaluate the spatial derivatives of the flux functions.
We re-write the derivatives of the flux functions into
oE0

on
¼ A

oQ

on
þ SCn ð14Þ
and
oF0

og
¼ B

oQ

og
þ SCg; ð15Þ
where A and B are the Jacobian matrices of fluxes E0 and F0,
A ¼ oE0

oQ
¼

G11uþ Gv
ffiffiffiffi
G
p

G11h
ffiffiffiffi
G
p

Gh
gffiffiffi
G
p G11uþ Gv Guþ G22v

0 0 0

2
64

3
75 ð16Þ
and
B ¼ oF0

oQ
¼

Guþ G22v
ffiffiffiffi
G
p

Gh
ffiffiffiffi
G
p

G22h

0 0 0
gffiffiffi
G
p G11uþ Gv Guþ G22v

2
64

3
75: ð17Þ
Since
ffiffiffiffi
G
p

and the matrix Gij are the functions of the space location ðn; gÞ, we have two extra terms SCn and SCg

written as
SCn ¼

ffiffiffiffi
G
p

hu oG11

on þ
ffiffiffiffi
G
p

hv oG
on

� ghffiffiffi
G
p o

ffiffiffi
G
p

on þ 1
2
u2 G11

on þ uv oG
on þ 1

2
v2 oG22

on

0

2
664

3
775 ð18Þ
and
SCg ¼

ffiffiffiffi
G
p

hu oG
og þ

ffiffiffiffi
G
p

hv oG22

og

0

� ghffiffiffi
G
p o

ffiffiffi
G
p

og þ 1
2
u2 G11

og þ uv oG
og þ 1

2
v2 oG22

og

2
64

3
75: ð19Þ
Because the first-order derivatives of the piecewise interpolation functions are not continuous at cell bound-
aries where the PV moments need to be predicted, we use a local Lax–Friedrichs splitting scheme in terms of
the derivatives, which is similar to the scheme used in [24,23] and the detailed expressions can be referred to
Appendix in [23]. The flux derivative in n-direction is then calculated by
oE0

on
¼ 1

2
A

oQ

on

þ
þ oQ

on

�� 	
þ a

oQ

on

þ
� oQ

on

�� 	� �
þ SCn; ð20Þ
where superscriptions ‘‘+” and ‘‘�” denote the values calculated using the interpolations respectively con-
structed on the left and the right stencils.

The parameter a is chosen as the maximum of the absolute values of the characteristic velocities at the
corresponding point. From j A� knI j¼ 0, we obtain the characteristic velocities in n-direction as

kn ¼ ~u�
ffiffiffiffiffiffiffiffiffiffiffiffi
G11gh

p
(see [23], Appendix), thus a ¼ j~uj þ

ffiffiffiffiffiffiffiffiffiffiffiffi
G11gh

p
.
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Similarly, in g-direction, the flux derivative is
oF0

og
¼ 1

2
B

oQ

og

þ
þ oQ

og

�� 	
þ b

oQ

og

þ
� oQ

og

�� 	� �
þ SCg; ð21Þ
and the parameter b equals to j~vj þ
ffiffiffiffiffiffiffiffiffiffiffiffi
G22gh

p
which is obtained from the eigenvalues of Jacobian matrix B.

To calculate the derivatives in (20) and (21), a four-point asymmetric difference formulation is adopted. For
the PVs defined at the vertices of the control volume, i.e. at point ðni�1

2
; gj�1

2
Þ in Fig. 4, the derivatives of any

field variable w can be computed by
ow
on

þ

i�1
2j�1

2

¼ 1

3Dn
2Pwij�1

2
þ 3Pwi�1

2j�1
2
� 6Pwi�1j�1

2
þ Pwi�3

2j�1
2

� �
; ð22Þ

ow
on

�

i�1
2j�1

2

¼ 1

3Dn
�Pwiþ1

2j�1
2
þ 6Pwij�1

2
� 3Pwi�1

2j�1
2
� 2Pwi�1j�1

2

� �
; ð23Þ

ow
og

þ

i�1
2j�1

2

¼ 1

3Dg
2Pwi�1

2j þ 3Pwi�1
2j�1

2
� 6Pwi�1

2j�1 þ Pwi�1
2j�3

2

� �
; ð24Þ

ow
og

�

i�1
2j�1

2

¼ 1

3Dg
�Pwi�1

2jþ1
2
þ 6Pwi�1

2j � 3Pwi�1
2j�1

2
� 2Pwi�1

2j�1

� �
: ð25Þ
For the midpoints of the boundary edges, when one evaluates ow
og at ðni; gj�1

2
Þ and ow

on at ðni�1
2
; gjÞ (see Fig. 4), a

similar four-point formulation requires the point value, Pwij, at the center of the control volume. We compute
Pwij from the known moments by (12).

On the other hand, the flux derivatives aligning the grid line, i.e. oE0

on at ðni; gj�1
2
Þ and oF0

og at ðni�1
2
; gjÞ, are cal-

culated by applying the Simpson’s rule [1] with the flux derivatives at the vertices given above,
oE0

on ij�1
2

¼ 3

2

oE0

on

� 	
ij�1

2
� 1

4

oE0

on i�1
2j�1

2

þ oE0

on iþ1
2j�1

2

 !
ð26Þ
and
Fig. 4. Reconstruction stencils for evaluating the derivatives of the state variables.
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oF0

og i�1
2j
¼ 3

2

oF0

og

� 	
i�1

2j �
1

4

oF0

og i�1
2j�1

2

þ oF0

og i�1
2jþ1

2

 !
; ð27Þ
where
oE0

on

� 	
ij�1

2
¼

E0iþ1
2j�1

2
� E0i�1

2j�1
2

Dn
ð28Þ
and
oF0

og

� 	
i�1

2j ¼
F0i�1

2jþ1
2
� F0i�1

2j�1
2

Dg
ð29Þ
are the line-integrated averages along the boundary edges of the control volume Cij for the corresponding flux
derivatives respectively.

Special attention must be paid around the patch boundaries in the cubed-sphere grid. We include one-layer
ghost cells along the patch boundaries. Fig. 5 shows the case for the boundary edge between patch one and
patch four. The PVs on the points denoted by the solid markers should be calculated by the known PVs and
VIAs from the neighboring patches. Firstly the positions of the ghost points are determined by the geometrical
relation. Since the position is fixed, it is calculated at the initial step and stored as ðn; g; i; j; kÞ which denotes
the ghost point belonging to the control volume Cij of the kth patch and located at ðn; gÞ in local curvilinear
coordinates. Then the ghost PVs are calculated from the interpolation
Wijðn; gÞ ¼ c00
ij þ c10

ij n� ni�1
2

� �
þ c01

ij g� gj�1
2

� �
þ c11

ij n� ni�1
2

� �
g� gj�1

2

� �
þ c20

ij n� ni�1
2

� �2

þ c02
ij g� gj�1

2

� �2

þ c21
ij n� ni�1

2

� �2

g� gj�1
2

� �
þ c12

ij n� ni�1
2

� �
g� gj�1

2

� �2

þ c22
ij n� ni�1

2

� �2

g� gj�1
2

� �2

: ð30Þ
The coefficients of (30) are determined by the nine independent moments (including eight PVs and one VIA) of
the corresponding cell on the neighboring patch. The detailed expressions of the coefficients are given in the
appendix. Provided the values at these ghost points, we can compute the whole patch (including the boundary
edges) by the numerical procedure described above. As we will see from the numerical tests later, using inter-
polation (30) to communicate data across patch boundaries does not degrade the numerical accuracy of the
whole model.
Fig. 5. The ghost cells for the boundary edge between patch one and patch four.
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During the computation, the PVs on the boundaries will be updated in different patches, for example, the
point denoted by solid circle in Fig. 6 is located on the boundary edge between patch one and patch four.
The PV moment defined at this point can be updated on patch one or four with the ghost cells built from
either side. In general, the results obtained from the different patches are not identical. In the present model,
a simple algebraic averaging of the edge-point values computed from different patches is adopted. For scalar
h, the PV is computed by averaging the different results directly. For the velocity vector, the projection rela-
tions between different local coordinates should also be taken into account in this averaging procedure. Sim-
ilarly, to update the PV moment defined on the vertices of the inscribed cube, this averaging will involve
three adjacent patches.

For the problems involving a bottom topography, the ‘‘exact C-property”, which means the stationary state
should be exactly preserved when the numerical model is applied to the stationary case, i.e. hþ hs ¼ constant
and hv ¼ 0, is of particular importance [3,42]. We have made two manipulations in the numerical model to
assure the numerical balance at the discretization level. The first one is to modify the difference terms of con-
tinuity equation. Considering that fluid height h, the derivatives of the mountain height and
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tinuous at the control volume boundary, the following relations hold
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where ht ¼ hþ hs is the total height.
In the numerical model, we use the right-hand side formulations in the above expressions when discretising

the continuity equation (the first equations in (20) and (21)), which assure the fluid height calculated from con-
tinuity equation remains unchanging when ht ¼ constant. The second modification is to the topographic
source term in the momentum equations (the second and third equations in (20) and (21)). The derivative
of the mountain height oðghsÞ

on is calculated as
oðghsÞ
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2
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at points ðni�1
2
; gj�1

2
Þ, ðni�1

2
; gjÞ (see Fig. 4), and the ‘‘+” and ‘‘�” derivatives are calculated by (22) and (23). At

point ðni; gj�1
2
Þ the derivative is computed by
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where
oðghsÞ
on ij�1

2
¼
ðghsÞiþ1

2j�1
2
� ðghsÞi�1

2j�1
2

Dn
: ð34Þ
Fig. 6. The derivative Riemann problem on the boundary edge.
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Similarly, the source term oðghsÞ
og is calculated as
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at points ðni�1
2
; gj�1

2
Þ and ðni; gj�1

2
Þ, and the ‘‘+” and ‘‘�” derivatives are calculated by (24) and (25). At point

ðni�1
2
; gjÞ the derivative is computed by
oðghsÞ
og
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where
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2
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2j�1
2

Dg
: ð37Þ
In the second modification, we use the same formulation to calculate the derivatives of the fluid height and the
mountain height, then the derivatives of the fluid height h in flux terms can be rewritten into derivatives of the
total hight ht after being combined with derivatives of mountain height hs in topographic source terms. It is
easy to show that with these modifications the ‘‘exact C-property” of the topographic source terms is always
satisfied.

The derivatives in source term SðQÞ are calculated by a five-point central difference formulation.

3.2. Updating the VIA moment

The VIA moment is updated by a flux-form finite volume formulation at each time step to guarantee the
numerical conservation. For control volume Cij shown in Fig. 3, we denote the boundary edges by

l1 � P i�1
2j�1

2
P iþ1

2j�1
2
, l2 � P i�1

2j�1
2
P i�1
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2
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2jþ1
2
P iþ1

2jþ1
2

and l4 � P iþ1
2j�1

2
P iþ1

2jþ1
2
.

To update the VIA, (7) is integrated over the control volume. With the application of the Gauss theorem, a
semi-discretised formulation is written as
o

ot
ðVqmÞij ¼ �

1

jV ijj
X4

k¼1

Z
lk

Tm � nlk dlþ
Z
Cij

sm dv

 !
ðm ¼ 1; 2; 3Þ; ð38Þ
where the equations of m ¼ 1; 2; 3 denote the continuity equation and the momentum equations in n and g
directions, qm, em, fm and sm are used to represent the components of vectors Q, E, F, S in (7) respectively.
Tm ¼ ðem; fmÞ is the corresponding flux vector with em and fm being the components in n and g directions.
nlk is the outward unit normal vector of edge lk.

Given the PVs computed through the procedure discussed above, the update of the VIA moment is straight-
forward. The fluxes crossing boundaries are calculated directly from the PV moment defined on the boundary
edges of the control volume. The involved line-integration and surface-integration are computed by the 1D
and 2D Simpson’s formulas [1].

The line-integrations of numerical flux are calculated as follows:
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and the surface-integration of the source term is calculated by
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where the values of source term at boundary edges of the control volume have been calculated when updating
the PV moment, the value at the center of the control volume is computed by calculating the derivatives in
source term with the same five-point central difference formulation.

3.3. Time marching scheme

We have so far described the spatial discretizations of the evolution equations (13) for the PV and (38) for
the VIA moments. With all spatial discretizations accomplished, the evolution equations for both PV and VIA
moments can be cast into a form as
ow
ot
¼ LðwÞ; ð44Þ
where w denotes any moment, and LðwÞ represents the spatial discretization formulation.
Provided the value of w at time step tn, wn, the value for the next time step wnþ1 can be computed by a stan-

dard 4th-order Runge–Kutta scheme [1] as
wnþ1 ¼ wn þ Dt
6
ðk1 þ 2k2 þ 2k3 þ k4Þ; ð45Þ
where
k1 ¼ LðwnÞ;

k2 ¼ L wn þ 1

2
Dtk1

� 	
;

k3 ¼ L wn þ 1

2
Dtk2

� 	
;

k4 ¼ L wn þ Dtk3ð Þ:

ð46Þ
In this section, we have described the basic numerical formulations of using the multi-moment to construct
shallow water model on the cubed-sphere. Before ending this section, we highlight the major features of
the present model as follows.

Two kinds of moments, i.e. PV moment and VIA moment, are treated as the predicted variables in present
model. The moments, which are coupled through the local reconstruction based on both kinds of moments,
are updated independently by governing equations of different forms, i.e. point-wise differential form (13) for
the PV moment and the cell-integrated flux form (38) for VIA moment. The derivatives of the flux functions in
(13) are approximated by local derivative Riemann solvers. For the PV moment on the vertices of the control
volume, two discontinuous derivatives of independent variables, i.e. ow

on

þ
and ow

on

�
or ow

og

þ
and ow

og

�
, are calculated

from high order multi-moment reconstructions in each direction. Special attention should be paid to the PV
moments located at the midpoints of the control volume edges where reconstructions required for the local
approximate Riemann solvers in different directions have to been built in different ways. Once the PV
moments on the cell boundary are calculated, the fluxes required to update the VIA moment in the finite vol-
ume formulation are obtained by numerical quadrature. A multi-step Runge–Kutta scheme is used for time
integration to assure the numerical accuracy in time.

Compared to the conventional finite volume method where only one kind of moment is used as the model
variable, a multi-moment formulation requires more memory storage space and computational overhead due
to the increase in the number of the degrees of freedom (DOF). Similar to other advanced schemes that make
reconstructions in terms of locally increased DOF and use multi-step Runge–Kutta integration for high accu-
racy in time, such as the discontinuous Galerkin method, the current method is more computationally expen-
sive than the conventional methods that make use of simpler reconstructions and single-step updating.
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Nevertheless, it should be notified that the increase in DOF in the present method does not necessarily lead to
a more restrictive CFL condition for computational stability that usually applies to a conventional single-
moment scheme when a finer grid is used for higher resolution. Furthermore, the spatial reconstruction is
required only for predicting the PV moment, which can be then directly used in the numerical fluxes for updat-
ing the VIA moment.

The extension of the present method to 3D is straightforward. A 3D reconstruction can be built with one
VIA and 26 PVs within a single-cell. The derivatives of flux function needed to update the PVs at the vertices
of a cubic element can be computed through the derivative Riemann problem in each direction respectively,
while for the middle points of line segments or surface segments special formulations in terms of the con-
straints on cell-integrated quantities should be used. With all PVs on the surface of the control volume found,
the VIA moment can be advanced by the finite volume formulation.

4. Numerical tests

In this section, numerical experiments are carried out to verify the present numerical model. Firstly, advec-
tion tests with smooth initial distributions on the cubed sphere are conducted to numerically verify the con-
vergence rate of the present scheme with gradually refined grids. We then present several widely used
benchmark tests to evaluate the performance of the numerical model in spherical geometry for both pure
advection and shallow water flows. Most of the tests are introduced in Williamson’s standard test set [36].

To quantify the numerical errors, the following normalized error measures [36] are used in this section
l1 �
R

S jw� wtjdsR
S jwtjds
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R
Sðw� wtÞ

2 ds
h i1

2

R
S w2

t ds

 �1

2

; l1 �
max jw� wtj

max jwtj
; ð47Þ
where S is the computational domain, w is the numerical result and wt is the exact solution.

4.1. Advection equation tests

4.1.1. Convergence rate evaluation

The convergence rate of present scheme on the cubed sphere is examined by numerical tests with an advec-
tion problem on sphere. The governing equation in this case is written as (continuity equation in (7))
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To check the performance of the present scheme in different flow directions, the initial condition is given in
rotated LAT/LON coordinates as
hðk0; h0Þ ¼ cosp h0 sin kk0; ð49Þ

where the origin of rotated coordinates is located at ð0; aÞ in the original LAT/LON coordinates. By using the
formulation given in [17], the ðk0; h0Þ is calculated from ðk; hÞ as
k0 ¼ arctan cos h sin k
cos h cos k cos aþsin h sin a

� �
;

h0 ¼ arcsin sin h cos a� cos h cos k sin að Þ:

(
ð50Þ
A divergence-free velocity field is given by [36]
uk ¼ u0ðcos h cos aþ sin h cos k sin aÞ;
uh ¼ �u0 sin k sin a;

�
ð51Þ
where u0 ¼ 2pR=ð12 daysÞ and the parameter a represents the angle between the rotation axis and polar axis of
the Earth.

In this test, we specify p ¼ 4 and k ¼ 4. The CFL number of 0.25 is adopted. The tests in different flow
directions of a ¼ 0, a ¼ p

4
and a ¼ p

2
are carried out on grids of different resolutions. Because of the symmetry
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of the cubed-sphere grid, the results of the advections along the equator and the meridian produce identical
numerical results. For a cubed-sphere, the case of a ¼ p

4
is of much interest. In this case, the flow trajectory

passes two complete boundaries and four vertices of the inscribed cube. The results of the tests on different
grid resolutions and in different flow directions are shown in Table 1–3.

It is revealed that the numerical treatments along the patch boundaries do not degrade the numerical accu-
racy. We achieved the 4th-order convergence rate in all tests along three different flow directions.

4.1.2. Cosine bell advection test

Being the first test of Williamson’s standard set [36], the solid rotation of a cosine bell on the sphere was
computed. The initial height field is given as
Table
Conve

Grid

10� 1
20� 2
40� 4
80� 8

Table
Same

Grid

10� 1
20� 2
40� 4
80� 8

Table
Same

Grid

10� 1
20� 2
40� 4
80� 8
h ¼
h0

2


 �
1þ cos pr

r0

� �
if r < r0;

0 otherwise;

(
ð52Þ
where r is the great circle distance between point ðk; hÞ and the initial center ðk0; h0Þ ¼ ð3p
2
; 0Þ. Other constants

are specified as h0 ¼ 1000 m and r0 ¼ R
3
.

The same divergence-free flow field is given as (51) in the previous test. It is also suggested [36] that the
advections in different rotating directions should be carried out in this test. Again, three directions of
a ¼ 0, a ¼ p

4
and a ¼ p

2
are chosen here. The grid resolution of 32� 32� 6 and the CFL number of 0.5 are

adopted.
The height field advected by the flow in the direction of a ¼ p

4
after one revolution is given in Fig. 7. The

normalized errors for the advections in different directions are given in Table 4. Compared with the results
calculated by the semi-Lagrangian scheme on both the gnomonic cubic grid (see [19], Fig. 7) and conformal
1
rgence rate of CIP/MM advection scheme on the cubed-sphere in the direction of a ¼ 0

l1 l2 l1

Error Order Error Order Error Order

0� 6 1.5837e�2 – 1.8592e�2 – 1.8731e�2 –
0� 6 1.2281e�3 3.69 1.4410e�3 3.67 1.5120e�3 3.63
0� 6 8.2611e�5 3.89 9.7250e�5 3.89 1.0210e�4 3.89
0� 6 5.2864e�6 3.97 6.2334e�6 3.96 6.5316e�6 3.97

2
as Table 1, but in the direction of a ¼ p

4

l1 l2 l1

Error Order Error Order Error Order

0� 6 1.6827e�2 – 1.6924e�2 – 1.3349e�2 –
0� 6 1.1879e�3 3.82 1.1993e�3 3.82 9.3661e�4 3.83
0� 6 7.7420e�5 3.94 7.8026e�5 3.94 6.1634e�5 3.93
0� 6 4.8992e�6 3.98 4.9353e�6 3.98 3.9280e�6 3.97

3
as Table 1, but in the direction of a ¼ p

2

l1 l2 l1

Error Order Error Order Error Order

0� 6 1.6408e�2 – 1.9294e�2 – 1.9144e�2 –
0� 6 1.2546e�3 3.71 1.4717e�3 3.71 1.5198e�3 3.65
0� 6 8.3681e�5 3.91 9.8352e�5 3.90 1.0213e�4 3.90
0� 6 5.3194e�6 3.98 6.2679e�6 3.97 6.5277e�6 3.98
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Fig. 7. Result of the cosine bell advection test on 32� 32� 6 grid in the direction of a ¼ p
4
. The contour lines plotted are from 100 m to

900 m by an interval of 160 m. The solid line indicates the numerical result and the dashed line is the true solution.

Table 4
Errors of cosine bell advection test in different directions on 32� 32� 6 grid

Direction l1 l2 l1 Maximum Minimum

a ¼ 0 3.6248e�2 2.3704e�2 2.1207e�2 �1.5726e�3 �2.1207e�2
a ¼ p

4 3.2008e�2 1.9274e�2 1.4880e�2 �2.4309e�3 �1.2957e�2
a ¼ p

2 3.6310e�2 2.3721e�2 2.1215e�2 �1.5548e�3 �2.1215e�2
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cubic grid (see [18], Fig. 4) with the similar resolution, our scheme produces much smaller errors when using
the same CFL number. A flux-form semi-Lagrangian transport scheme based on PPM interpolation is pro-
posed in [14] on the LAT/LON grid. Compared with the results by using FFSL-3 scheme (see [14], Table
6) on the 256� 128 grid, a resolution doubly finer than that we used in this test, our numerical results look
quite competitive in regard to all norms. Our numerical results are much better than those in [28] with the
similar grid resolutions.

The time evolution of the normalized errors in different directions are given in Fig. 8. No obvious noises are
generated by the patch boundaries and the numerical errors look almost independent of the flow direction.
The present model guarantees the exact conservation of the mass. Shown in Fig. 8, the fluctuation of the total
mass error is within the round-off limit.

It should be noted that we did not use any limiting projection to enforce the monotonicity of the numerical
solutions in these tests though, a slope limiter proposed in the CSL3 reconstruction profile [40,11] has been
proved quite effective in suppressing the spurious oscillations around the discontinuities, and can be adopted
straightforwardly in the multi-dimensional reconstruction used in the present scheme.

4.1.3. Deformational flow test
The deformational flow test introduced in [22] is also presented here. It is considered to be more challenging

than the solid rotation test. In rotated LAT/LON coordinates, the initial height field is specified by
h ¼ 1� tanh
q
c

sin k0
� 	

; ð53Þ
where q ¼ q0 cos h0 is the radius of the vortex. We specified q0 ¼ 3 and c ¼ 5 as suggested in [24]. The flow field
includes two opposite vortexes located at the two poles of the rotated coordinates. The angular velocity in the
rotated LAT/LON coordinates is
x ¼
3
ffiffi
3
p

sinh2q tanh q
2q if q 6¼ 0;

0 if q ¼ 0:

(
ð54Þ
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The analytic solution to this problem is known as
h ¼ 1� tanh
q
c

sin k0 � xtð Þ
� �

: ð55Þ
A detailed description of this test can be found in [21].
The initial height field is given by the top-left panel in Fig. 9. The contour lines ranging between 0:5 and 1:5

are plotted from right to left. The origin of the rotated coordinates is located at ð� p
4
;� 3p

10
Þ, thus a vortex is

centered at one of the vertices of the inscribed cube. The test is carried out on the unit sphere (R ¼ 1) and
the time step of Dt ¼ 2p

256
is used on a 32� 32� 6 grid. The numerical result after integration for 128 steps

is illustrated in the bottom-left panel of Fig. 9. The true solution at the same time is given in top-right panel
for comparison. No visible difference can be found between the numerical result and the true solution. The
absolute error (numerical result minus analytic field) is given in the bottom-right panel. The normalized errors
are l1 ¼ 1:2286� 10�5, l2 ¼ 5:0733� 10�5 and l3 ¼ 4:3632� 10�4 on 32� 32� 6 grid.

4.2. Shallow water equation tests

The shallow water flows in spherical geometry are solved in the following numerical tests.

4.2.1. Steady state geostrophic flow

In this test, the initial height field is defined as
gh ¼ gh0 � RXu0 þ
u2

0

2

� 	
ð� cos k cos h sin aþ sin h cos aÞ2; ð56Þ



Fig. 9. Results of deformational flow on 32� 32� 6 grid. Displayed are the initial height field (top-left), the analytic solution (top-right),
the numerical result (bottom-left) and absolute error (bottom-right). The contour lines are from 0.5 m to 0.95 m by dashed lines and 1 m to
1.5 m by solid lines with an interval of 0.05 m for flow field, errors are plotted from �8� 10�4 m to �2� 10�4 m by dashed lines and
2� 10�4 m to 8� 10�4 m by solid lines with an interval of 2� 10�4 m.
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where gh0 ¼ 2:94� 104 and u0 ¼ 2pR=ð12daysÞ and a is the angle between the rotation axis and polar axis of
the Earth.

The divergence-free initial velocity field, same as previous advection test, is specified by (51). The Coriolis
parameter is calculated as
f ¼ 2Xð� cos k cos h sin aþ sin h cos aÞ: ð57Þ

The balanced geostrophic relation holds in the initial distribution. So, both the height and flow fields should
remain unchanging during the simulation. Again, using different values of the parameter a, we tested the mod-
el with zonal flows of different orientations. The numerical results of height and wind fields after 5 model days
for the flow in the direction of a ¼ p

4
are given in top panel of Fig. 10, and the absolute error of height field is

given in bottom panel. We examined the convergence rate on three gradually refined grids with resolutions of
16� 16� 6, 32� 32� 6 and 64� 64� 6. The normalized errors and convergence rates of the height field after
5 model days are given in Table 5 for northeast flow. According with the observation in the advection case, the
4th-order convergence rate is obtained. We also checked the convergence rate with flows in the directions of
a ¼ 0 and a ¼ p

2
, the results give the same convergence rate of 4th-order.

A steady state nonlinear zonal flow test with compact support was also suggested in [36]. The flow field is
similar to the above one except that the geostrophically balanced flow is limited to a belt region. The initial
flow field is given analytically, but the initial height field should be obtained by numerical integration. The
detailed description of this test can be found in [36]. We have run test in two flow directions, i.e. a ¼ 0 and
a ¼ p

3
. The numerical result on 32� 32� 6 grid after 5 days in the direction of a ¼ p

3
is shown in Fig. 11.

The normalized errors of flows in both directions are shown in Table 6.
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Fig. 10. Numerical result of steady state geostrophic flow in the direction of a ¼ p
4

on 32� 32� 6 grid. The height field and wind field at
day 5 (top),contour lines are plotted from 1150 m to 2950 m with an interval of 200 m. The absolute error of height field (bottom), contour
lines are plotted from �0.015 m to �0.003 m by dashed lines and 0.003 m to 0.015 m by solid lines with an interval of 0.003 m.

Table 5
Errors and convergence rate of steady state flow in the direction of a ¼ p

4

Grid l1 l2 l1

Error Order Error Order Error Order

16� 16� 6 2.4438e�5 – 3.2519e�5 – 9.7940e�5 –
32� 32� 6 1.6008e�6 3.93 2.1202e�6 3.94 5.8647e�6 4.06
64� 64� 6 1.0199e�7 3.97 1.3462e�7 3.98 3.3126e�7 4.15
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Fig. 11. Numerical result of steady state geostrophic flow with compact support in the direction of a ¼ p
3

on 32� 32� 6 grid. Contour
lines are plotted from 2150 m to 2950 m with an interval of 100 m.
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Table 6
Errors of steady state flow with compact support in different directions on 32� 32� 6 grid

Direction l1 l2 l1

a ¼ 0 7.0866e�6 1.2036e�5 7.3831e�5
a ¼ p

3 7.9558e�6 1.5021e�5 7.7302e�5
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4.2.2. Zonal flow over an isolated mountain

This test is used to check the performance of the numerical model in solving a problem including a topo-
graphic term. A zonal flow is the same as in steady state flow test in Section 4.2.1 except the parameters are
modified as h0 ¼ 5960 m and u0 ¼ 20 m=s. A bottom mountain is centered at ðkc; hcÞ ¼ ð3p

2
; p

6
Þ, and the height

of the mountain is analytically given as
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Fig. 12. Results of the zonal flow over an isolated mountain on 32� 32� 6 grid. Shown are the total height at day 5 (top), day 10 (middle)
and day 15 (bottom). Contour lines are plotted from 5050 m to 5950 m with an interval of 50 m.
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hs ¼ hs0 1� r
r0

� 	
; ð58Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
where hs0 ¼ 2000 m, r0 ¼ p
9

and r ¼ min½r0; ðk� kcÞ2 þ ðh� hcÞ2�.
The analytic solution to this test is not available. We compared our results with a reference solution from a

spectral model with high resolution. The numerical results for height field by the present model at day 5, 10
and 15 are given in Fig. 12. The resolution used is 32� 32� 6. The numerical result calculated by a spectral
method on the T213 grid (see [13], Fig. 5.1) is taken as the reference solution for validating our numerical
model. From the comparison, we found that our numerical model accurately reproduces the height field.
Meanwhile, the oscillations occurring at the boundary of the mountain are effectively eliminated by using
the well-balanced formulation for the topographic source term, as described at the end of Section 3.1. The
evolution of normalized errors of total mass, total energy and potential enstrophy is given in Fig. 13. Our
scheme conserves the total mass to the machine round-off precision, the errors of the total energy and poten-
tial enstrophy are competitive to the results by the spectral transform method on the T63 grid (see [12],
Fig. 5.5). Compared with the results by TVD wave propagation method on 128� 128� 6 grid (see [28],
Fig. 9), the total energy error is one order smaller and the error of potential enstrophy has the similar
magnitude.

4.2.3. Rossby–Haurwitz wave

A 4-wave Rossby–Haurwitz wave is adopted as test 6 in Williamson’s standard test set. The divergence-free
flow field is given by the stream function as
w ¼ �R2x sin hþ R2K cosr h sin h cos rk; ð59Þ

and the initial height field is specified as
gh ¼ gh0 þ R2Aþ R2B cos rkþ R2C cos 2rk; ð60Þ

where x, r and K are the constants, x ¼ K ¼ 7:848� 10�6 s�1 and r ¼ 4. A, B, C are the functions of the
latitude. The detailed expressions can be found in [36]. Some comments on the properties of Rossby–Haur-
witz wave and its numerical solutions from some global models can be found in [33]. Due to its intrinsic
dynamic instability, this might not be a proper example for testing the long-term performance of a numer-
ical model. Nevertheless, the Rossby–Haurwitz wave still provides a good test bed for global middle-term
simulations. The numerical results up to 14 days calculated by the spectral method on the T213 grid (see
[13], Fig. 5.5) are widely accepted as the reference solutions that reasonably reflect the dynamic behavior
of the system.

We plot our numerical results of the height fields after 7 and 14 days on 48� 48� 6 grid in Fig. 14 together
with the initial height field. It is evident that our numerical results agree well with the reference solutions [13].
The evolution of normalized errors of total energy and potential enstrophy on 32� 32� 6 grid is given in
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. Evolution of the normalized conservation errors of total mass (left), total energy (middle) and potential enstrophy (right) on
2� 6 grid for the zonal flow over an isolated mountain test.
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Fig. 14. Numerical results of Rossby–Haurwitz wave on 48� 48� 6 grid. Displayed are the initial height (top), the height fields at day 7
(middle) and day 14 (bottom). Contour lines are plotted from 8100 to 105,00 m with an interval of 100 m.

C. Chen, F. Xiao / Journal of Computational Physics 227 (2008) 5019–5044 5039
Fig. 15. Compared with the results by a flux-form semi-Lagrangian model on a LAT/LON grid of same res-
olution (see [15], Fig. 7), the error of the total energy is one order smaller and the error of potential enstrophy
is only half in the present results. Even compared with the results using the spectral transform methods on T63
grid (see [12], Fig. 6.7), the total energy error of our model is smaller and the potential enstrophy error looks
quite competitive. Moreover, the present model exactly guarantees both local and global conservation of the
total mass.

4.2.4. Barotropic instability test

The barotropic instability test introduced in [6] is a useful complement of Williamson’s standard test set,
particularly for a numerical model built on the cubed-sphere grid.
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Fig. 15. Evolution of the normalized conservation errors of total energy (left) and potential enstrophy (right) on 32� 32� 6 grid for
Rossby–Haurwitz wave test, results are competitive to the results by reference spectral method on T63 grid.
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The zonal flow field is given by
ukðhÞ ¼
0 if h 6 h0;

umax

en
exp 1

ðh�h0Þðh�h1Þ

h i
if h0 < h < h1;

0 if h P h1;

8><
>: ð61Þ
where umax ¼ 80 m/s, h0 ¼ p
7
, h1 ¼ p

2
� h0 and en ¼ exp½�4=ðh1 � h0Þ2�.

The basic balanced height field can be obtained by integrating the following balance equation
ghðhÞ ¼ gh0 �
Z h

�p
2

Rukðh0Þ f þ tanðh0Þ
R

ukðh0Þ
� �

dh0; ð62Þ
where h0 ¼ 10000 m.
An initial perturbation of height field is added to the balanced flow to initiate the instability as
h0 ¼ ĥ cosðhÞ exp � k
a

� 	2

� h2 � h
b

� 	2
" #

; ð63Þ
where ĥ ¼ 120 m, a ¼ 1
3
, b ¼ 1

15
and h2 ¼ p

4
.

This test is very challenging for the numerical model constructed on the cubed-sphere. The height field
changes with a much larger gradient near the patch boundaries than Williamson’s test 2. Meanwhile, the initial
instability is located on the boundary between patch one and patch five. So, the numerical errors generated by
the discontinuous coordinates along the boundaries easily pollute the numerical results. We run the multi-
moment model on the gradually refined grids of 32� 32� 6, 64� 64� 6, 96� 96� 6 and 128� 128� 6.
The height fields after 6 days are shown by contour plots in Fig. 16.

As expected, the numerical result on the 32� 32� 6 grid is significantly affected by the boundary errors.
The 4-wave phenomena in relative vorticity field is observed. With increasing the resolution, the numerical
results converge to the reference solution (see [6], Fig. 4) on the finer grids. Though the result on the
64� 64� 6 grid still influenced by the 4-wave errors, the results on the last two grids look very similar and
accord with the reference solution. Furthermore, no explicit diffusion is added during the computation in
our test, and the small scales in the numerical solution can be captured better by our model.

5. Summary

A numerical model for global shallow water flows by the CIP/multi-moment finite volume method on the
cubed-sphere grid has been developed. With the application of the cubed-sphere grid to the spherical geom-
etry, a structured computational grid with uniform mesh spacing and free of polar singularity is obtained on
the whole globe. A 4th-order numerical model is constructed by making use of multi-moment concept that
leads to a very compact computational stencil. The multi-moment formulation also makes the numerical treat-
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ments across the patch boundary much easier. With one of the moment, i.e. the volume-integrated average
updated by a finite volume formulation of flux form, the rigorous numerical conservation is achieved.

The numerical model has been extensively verified by numerical experiments including the widely used
benchmark problems. The numerical results reveal that the model is competitive to the most existing ones
regarding robustness, accuracy and computational efficiency. We can expect the present model as a promising
numerical framework for global geophysical fluid dynamics.
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Appendix A

Given the VIA and PVs, the constrained conditions for (30) of control volume Cij are imposed as the fol-
lowing set of equations
Pwi�1
2j�1

2
¼ c00

ij ;

Pwij�1
2
¼ c00

ij þ c10
ij

Dn
2
þ c20

ij
Dn2

4
;

Pwiþ1
2j�1

2
¼ c00

ij þ c10
ij Dnþ c20

ij Dn2;

Pwi�1
2j ¼ c00

ij þ c01
ij

Dg
2
þ c02

ij
Dg2

4
;

Pwiþ1
2j ¼ c00

ij þ c10
ij Dnþ c01

ij
Dg
2
þ c20

ij Dn2 þ c02
ij

Dg2

4
þ c11

ij
DnDg

2

þc21
ij

Dn2Dg
2
þ c12

ij
DnDg2

4
þ c22

ij
Dn2Dg2

4
;

Pwi�1
2jþ1

2
¼ c00

ij þ c01
ij Dgþ c02

ij Dg2;

Pwijþ1
2
¼ c00

ij þ c10
ij

Dn
2
þ c01

ij Dgþ c20
ij

Dn2

4
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ij Dg2 þ c11
ij

DnDg
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þc21
ij

Dn2Dg
4
þ c12

ij
DnDg2

2
þ c22
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Dn2Dg2
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2jþ1

2
¼ c00
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þ c12
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:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð64Þ
Solving (64), one gets the coefficients of the interpolation function as
c00
ij ¼ Pwi�1

2j�1
2
;

c10
ij ¼ 1

Dn �3Pwi�1
2j�1

2
þ 4Pwij�1

2
� P wiþ1

2j�1
2

� �
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� �
;

c01
ij ¼ 1

Dg �3Pwi�1
2j�1

2
þ 4Pwi�1

2j � P wi�1
2jþ1
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� �
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� �
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[5] J. Côté, S. Gravel, A. Méthot, A. Patoine, M. Roch, A. Staniforth, The operational CMC-MRB global environmental multiscale
(GEM) model. part I: design considerations and formulation, Mon. Weather Rev. 126 (6) (1998) 1373–1395.

[6] J. Galewsky, R.K. Scott, L.M. Polvani, An initial-value problem for testing numerical models of the global shallow-water equations,
Tellus 56A (2004) 429–440.

[7] F. Giraldo, T.E. Rosmond, A scalable spectral element Eulerian atmospheric model (SEE-AM) for NWP: dynamical core tests, Mon.
Weather Rev. 132 (1) (2004) 133–153.

[8] R. Heikes, D.A. Randall, Numerical integration of the shallow-water equations on a twisted icosahedral grid. part I: basic design and
results of tests, Mon. Weather Rev. 123 (6) (1995) 1862–1880.

[9] W. Hundsdorfer, E. Spee, An efficient horizontal advection scheme for the modeling of global transport of constituents, Mon.
Weather Rev. 123 (12) (1995) 3554–3564.

[10] S. Ii, M. Shimuta, F. Xiao, A 4th-order and single-cell-based advection scheme on unstructured grids using multi-moments, Comput.
Phys. Commun. 173 (1–2) (2005) 17–33.

[11] S. Ii, F. Xiao, CIP/multi-moment finite volume method for Euler equations: a semi-Lagrangian characteristic formulation, J.
Comput. Phys. 222 (2) (2007) 849–871.

[12] R. Jakob, J.J. Hack, D.L. Willamson, Solutions to the shallow water test set using the spectral transform method, Tech. Rep. NCAR/
TN-388 + STR, National Center for Atmospheric Research, 1993.

[13] R. Jakob-Chien, J.J. Hack, D.L. Williamson, Spectral transform solutions to the shallow water test set, J. Comput. Phys. 119 (1)
(1995) 164–187.

[14] S.J. Lin, R.B. Rood, Multidimensional flux-form semi-Lagrangian transport schemes, Mon. Weather Rev. 124 (9) (1996) 2046–2070.
[15] S.J. Lin, R.B. Rood, An explicit flux-form semi-Lagrangian shallow water model on the sphere, Quart. J. Roy. Meteorol. Soc. 123

(544) (1997) 2477–2498.
[16] D. Majewski, D. Liermann, P. Prohl, B. Ritter, M. Buchhold, T. Hanisch, G. Paul, W. Wergen, J. Baumgardner, The operational

global icosahedralhexagonal gridpoint model GME: description and high-resolution tests, Mon. Weather. Rev. 130 (2) (2002) 319–
338.

[17] A. McDonald, J.R. Bates, Semi-Lagrangian integration of a gridpoint shallow water model on the sphere, Mon. Weather. Rev. 117
(1) (1989) 130–137.

[18] J.L. McGregor, Semi-Lagrangian advection on conformal-cubic grids, Mon. Weather. Rev. 124 (6) (1996) 1311–1322.
[19] J.L. McGregor, Semi-Lagrangian advection on a cubic gnomonic projection of the sphere, Atmos.-Ocean. Memor. Vol. (1997) 153–

169.
[20] J.L. McGregor, C-CAM: geometric aspects and dynamical formulation, Tech. Rep. CSIRO Atmospheric Research Tech. Paper No.

70, CSIRO, 2005.
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