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Abstract

The dominant cost for integration factor (IF) or exponential time differencing (ETD) methods is the
repeated vector—matrix multiplications involving exponentials of discretization matrices of
differential operators. Although the discretization matrices usually are sparse, their exponentials are
not, unless the discretization matrices are diagonal. For example, a two-dimensional system of N x
N spatial points, the exponential matrix is of a size of N2 x N2 based on direct representations. The
vector—-matrix multiplication is of O(N%), and the storage of such matrix is usually prohibitive even
for a moderate size N. In this paper, we introduce a compact representation of the discretized
differential operators for the IF and ETD methods in both two- and three-dimensions. In this
approach, the storage and CPU cost are significantly reduced for both IF and ETD methods such that
the use of this type of methods becomes possible and attractive for two- or three-dimensional systems.
For the case of two-dimensional systems, the required storage and CPU cost are reduced to O(N?)
and O(N3), respectively. The improvement on three-dimensional systems is even more significant.
We analyze and apply this technique to a class of semi-implicit integration factor method recently
developed for stiff reaction—diffusion equations. Direct simulations on test equations along with
applications to a morphogen system in two-dimensions and an intra-cellular signaling system in
three-dimensions demonstrate an excellent efficiency of the new approach.

Keywords

Integration factor methods; Exponential time differencing methods; Stiff reaction-diffusion
equations; Morphogen systems; High spatial dimensions

1. Introduction

Integration factor (IF) or exponential differencing time (ETD) methods are popular methods
for temporal partial differential equations. In these methods, the linear operators of the highest
order derivative are treated exactly. As a result, the stability constraint associated with the
highest order derivatives are totally removed, and large time steps can be used. However, the
exact treatment of the differential operator requires evaluating exponentials of the
approximation matrix for the linear differential operator. For periodic systems, this calculation
is cheap both in CPU and storage because the approximation matrix can be diagonalized in the
Fourier space [1-7]. For non-periodic systems, in which the approximation matrices are not
diagonal, storage and calculation of exponentials of the matrices are significantly more
expensive. In two or three spatial dimensions, this computational cost becomes prohibitive for
any practical use, consequently neither IF nor ETD methods have been used for non-periodic
systems.
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Toillustrate this, we apply the IF or ETD methods to reaction diffusion equations of this form:

Ju
—=DAu+F(u),
ot u+F(w) (1)

where u € R™ represent a group of physical or biological species, D € R™M is the diffusion
constant matrix, Au is the Laplacian associated with the diffusion of the species u, and F(u)
describes the chemical or biological reactions. The first step of constructing the IF or ETD
schemes is to reduce the (1) to a system of ODEs using method of lines:

u;=Cu+F (u), )

where Cu is assumed to be a finite difference approximation of the differential operator DAu.
Let n denote the total number of spatial grid points (the sum of the points in every dimension
of R™) for the approximation of the Laplacian Au, then u(t) € R™Mand C representing a spatial
discretization of the diffusion is a block matrix with each block of a size n x n. In a one-
dimensional system with one diffusion, C is a tri-diagonal matrix for a second order central
difference approximation on the diffusion.

The next step of the construction is to multiply (2) by ¢ and to integrate it in time. Different
approximation of the integral involving nonlinear term & (u) results in either the integration

factor (IF) method or the exponential time differencing (ETD) method [8]. For example, the
second order integration factor Adams—Bashforth method (IFAB2 [9]) has the form

3 1
U 1=eN g+ At (—eCAfﬂuk) — ~e®MF ()|
2 2 3)

and the second order ETD method [2,9] has a form:

(4)

In (3) and (4), « is a matrix of size n x n for a system with only one diffusive species, and
Uy is the approximate solution at the kth time step. The computational cost for updating Uy+1
at one time step is of order of nZ due to the three vector-matrix multiplications associated with
> and « in (3). During the temporal updating, these two matrices remain the same for a fixed
At, and they only need to be evaluated once initially from C and be stored. All IF or ETD
methods require storage of these types of exponential matrices because re-calculating them at
each time step is not efficient.

For a system in one spatial dimension, the size of e usually can be handled [9,5,8]. In two or
three spatial dimensions, corresponding to a large n, the required storage of <~ may become
prohibitive if the one-dimensional approach [9,5,8] is directly applied to the higher dimensional
system. For instance, in a three-dimensional system with a moderate number of spatial grid
points such as 40 x 40 x 40, it yields n = 6.4 x 10%. The required storage is O(n?) = O(10°);
that is not manageable for a typical machine. This bottle-neck limits application of IF and ETD
methods for non-periodic systems in two or three spatial dimensions.
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In this paper, we reduce the required storage by introducing a compact representation for the
matrix approximating the differential operator. The new compact form, in the case of equal
spacing in each spatial direction (for simplicity of illustration), involves storage only
proportional to the number of unknowns, i.e., the dimension of u, unlike the non-compact
approach, which is proportional to the square of the unknowns. For example, in a two-
dimensional system of N x N grid points, the unknown values of u at the grid points are stored
as a N x N matrix analogous to its natural spatial partition [10]. As a result, the exponential of
the discretized Laplacians in ETD and IF methods is N x N. The new approach needs only O
(N2) storage and O(N3) operations, compared to the O(N*) storage requirement and an O(N*)
operation count in the non-compact approach. In three-dimensions, the improvement for the
new approach is even more significant. For a system with N x N x N grid points, the new
approach needs O(N3) storage and O(N*) operations, compared to O(N6) storage and O(NS)
operations using the non-compact representation.

The compact representation can be easily used in IF and ETD methods without altering the
stability properties of these methods. Their implementations are straightforward, and the
number of grid points in each spatial direction does not need to be the same. The new technique
is tested for simple linear systems as well as nonlinear systems arising from biological
applications in both two- and three-dimensions, using a class of semi-implicit integration factor
(I1F) method developed recently for systems with stiff reactions [8].

In Section 2, we derive the semi-implicit integration factor methods using the compact
representation, along with a stability analysis. This is done for both two- and three-dimensions.
In Section 3, we test the new methods on linear systems and a couple of nonlinear models in
cell and developmental biology.

2. Compact implicit integration factor (clIF) in high spatial dimensions

2.1. Two-dimensions

To distinguish the new compact implicit integration factor method from the standard I1F, we
denote it as clIF. In this section, we illustrate the new method by applying the IIF method with
the new compact representation to a two-dimensional reaction—diffusion equation with
periodic boundary conditions in the x direction and Neumann boundary conditions in the y
direction:

w=p (;f_+f;_) +Fu), (x,y) € Q={a<x<b, c<y<d};
(a,y, )=2(b,y, )=0;
u(x, ¢, )=u(x,d,t), §(x,c,0)=5(x,d,1. 5

We first discretize the spatial domain by a rectangular mesh: (xj, yj) = (@ + i x hy, ¢ +j x hy)
where hy = (b —a)/(Ny + 1), hy=(d —c)/(Ny + 1) and 0<i<Ny+land 0 <j<Ny+ 1. Using
the second order central difference discretization on the diffusion, we obtain a system of
nonlinear ODEs

du; j D [Mm.j - 2”i.j+ui—1.j+ui.j+l = 2u j+ui j-1

+F ii)e
dr W2 h? ) (®:)

(6)

Next we define three matrices U, A and B by
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uir  ur2 um{‘, ul.N_v+L
Ue u%.l u2..2 te ”:ANA‘, u2.Ny+1 ’
uN,\.l MN.\-2 o uN—“N" MN"‘N-"H Nxx(Ny+1) (7)
1 =2 1
D 1 -2 1
A=— X )
7 -
1 -2 1
5o ®)
and
-2 1 0 0 1
1 -2 1 0 0
D 0 1 -2 1 0
B=— X
W
0 0 1 -2 1
1 0 0 1 -
(Ny+Dx(Ny+1) 9)

In terms of these three matrices, the semi-discretized form (6) becomes

dU
E_AU+UB+T(U). (10)

This formulation is based on a compact representation previously developed for solving a two-
dimensional Poisson’s equation and other related separable equations [10].

To apply the integration factor technique to the compact discretization form (10), we multiply
(10) by exponential matrix e~At from the left, and e B from the right to obtain

deAue®) _,, B
dr =e " F () (11)

Integration of (11) over one time step from t,, to t,+1 =ty + At, where At is the time step, leads
to

U, 1=, eBA 1AM ( f Sle*ATT(U(Lﬁr))e*BTdr) eBA 12
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To construct a scheme of rth order truncation error, we approximate the integrand in (12),
6 = e M F UG, +1)e ™, (13)

using a (r — 1)th order Lagrange polynomial at a set of interpolation points t+1, tp,..., th+o—r:

r=2
Pr)= Y ANFU, )ePpir), 0<T <AL
j=—1 (14)

where

r=2

T+kAt
pi(m) = l_[ k= A
=-1

k#j (15)

The specific form of the polynomial (15) at low orders is listed in Table 1. In terms of P(z),
(12) takes the form,

Up1=e U, P 1A [YP(rdr) B, .

So the new r-th order implicit schemes are

Jj=0 17)

where a4, og, 0—1,", d_r+2 are coefficients calculated from the integrals of the polynomial in
P(v),

r=2
1 T+kAt
_i=— —dr, -1 <j<r-2.
Ao Hl k= A" 7=

k#j (18)

In Table 2, the value of coefficients, a_j, for schemes of order up to four are listed.

In particular, the second order approximation of f ﬁtg(f)dT
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Al F(U,)+e ANF (U, e BY
0 G(r)dr ~ > At (19)

leads to the second order IIF scheme (clIF2)

At At
Uy 1=eAY (Up+ = F (Up) | P2+ —F (Uns1).
2 2 (20)

Like the one-dimensional form [8], the nonlinear reaction term at t,,+1 in (20) is decoupled from
the diffusion terms. As a result, only a local nonlinear system needs to be solved at each spatial
grid point. The two matrices eAAtand eBAtare Ny x Ny and (Ny + 1) x (N, + 1), respectively.
Both are orders of magnitude smaller than the size of the matrix, Ny(Ny + 1) x Ny(Ny + 1), in
the non-compact representation. As to be demonstrated in direct numerical simulations in
Section 3, this saving in storage is critical for carrying out simulations with even moderate
numbers of spatial grid points. Also, the new approach requires fewer operations. In the non-

compact approach, a matrix—vector multiplication with operations of the order of 1\/'%(1\/).+1)2
dominates the computational cost at each time step. In the new approach, the corresponding

calculations are two matrix-matrix operations of an order of N (N,+ 1)2+N_§(N‘.+1), which is
significantly smaller. Also, because of the smaller size of those matrices, the initial calculations
of the exponentials of those matrices become cheaper as well. Therefore, the new method is
advantageous in both CPU time and memory savings.

Remark 1—The compact explicit IF (cIF) can be derived in a similar way. For example, the
compact form of the IFAB2 (3) takes the form:

3 1
U,,+1=eAA’UneBA'+A’(zeAA'T(Un)eBA’ - zeZAA'T(U..neZBA')' (21)
21

Remark 2—The compact semi-discretization system (10) can also be used for other types of
methods, such as the ETD methods. In the derivation of ETD schemes based on a non-compact
representation, only the & in the integrand (an integral similar to the one in (12)) is
approximated by an interpolation polynomial, with the exponential function unchanged in the
integrand; then a direct integration of the approximate integrand leads to the ETD methods

[8].

For a compact system with (12), one needs to evaluate

fﬁle_ATP(T)e_BT dr

(22)
where P(t) is a polynomial matrix, and matrices A, B have dimensions Ny % Ny, Ny % Ny,
respectively. After assuming that

P(T):ZC(”)T’),
P (23)
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(22) takes the form of

A _ ,
Zfore ATC@)rPe~Bryr
P (24)

If the matrices A, CP), and B commute with each other, (24) can be simplified as

At
ZC(”) f Ole A+B)Tpgr.
P (25)

The integral in (25) can be integrated explicitly through integration by parts, and the matrices

c®and [ Sle"(AJ'B)TT” dr have the same dimension N = N = N,. The total operation of
evaluating (25) is O(N3) due to the matrix—matrix multiplication in (25). The overall
computational cost is similar to the clIF methods discussed above.

If matrices A, C(P), and B do not commute, one may need to consider the eigenspace of matrices
A and B in order to evaluate (22) explicitly [11,12]. Assuming an eigenvalue decomposition

A=V diag(ay,..., aN,)V * and B = W diag(by,..., bNy)W‘l, then the (i, n)th element of matrix
(24)is

N. Ny

—1~(p) -1
Z Z _fjm Vijij Ckl Wlm W]n”’
P jk=1Lm=1 (26)

At _(q: R . .
where fjm=’ 0’e @i*bmTrPdr can be evaluated recursively through integration by parts. The

operation count of (26) is O(N_%Nf.), and it leads to an operation count ofO(NfN_f ) for generating
the whole matrix (24). The cost associated with such an approach is even more expensive than
the non-compact approach.

To obtain the ETD type methods that do not require any commutativity properties on the
matrices A and B, and have the same order of operation count as that of the clIF schemes, one
may leave only one of the exponential functions unchanged and apply the polynomial
approximation to the rest of the integrand in (12). To illustrate this approach, we first
approximate the integrand

G(1) = F(U(t,+1))e >, @7)

using a r — 1th order Lagrange polynomial at a set of interpolation points t+1, tp,-.., th+o—r:
= 1 THkA
P(r) = U,_j)e/BN —_—
() jzl"f( e k [1 e

k#j (28)
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Then (12) becomes

Al
U,y =eMU,eBA 1AM ( f 0 € ATP(T)dT) eBA,

(29)
A first order implicit approximation to ¢(t) of the form
P)=F (Ups1)e Y, 0 <7 <AL (30)
leads to a first order implicit scheme
Uy =e U +A T @A — DF (Uni). 31)
A second order implicit approximation to ¢(t),
P(T)zi[ FU)(AL = D+F (Upi)e P7], 0 <7< At )
leads to a second order implicit scheme
Unit :eAA’UneBA’+${[ AT = A+ AAT AV IF (Un)eP Y+ A2 = 1) — AAT IF (Uil .

Like the implicit ETD methods based on the non-compact representation, the nonlinear
function of U1 in the compact implicit ETD (33) is also multiplied by terms involving the
approximated differential operators and their exponentials. This non-local coupling makes the
implicit ETD method inefficient. In contrast, in IIF [8] and clIF, the diffusion term and
nonlinear reaction term are decoupled. This makes IIF more desirable.

The compact explicit ETD (cETD) methods can be derived similarly. For example, the compact
form of the second order ETD method (4) becomes

U,,+1:eAA’UneBA’+AlIA’2{[ (I+AtA)eAY — [ — 2AIATF (Up)eB — [eAD — T — ATA]F (Up_q)e?B2). 0

2.2. Stability analysis of cllF methods

The linear stability of the high-dimensional clIF methods can be analyzed by an approach
similar to that for the one-dimensional system [2,13,8]. We test the linear stability on the the
following linear equation

u,=— qiu — qou+du with g, g,>0, (35)

J Comput Phys. Author manuscript; available in PMC 2009 October 5.
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where g1 and g, represent diffusions in the x and y directions, respectively. The boundaries of
the stability region, a family of curves for different values of (q; + g») At, based on the test
problem (35) are presented for the second and third order implicit integration factor methods.
The quantity (g1 + g2) At involves the ratio between the time step and the spatial grid for the
discretization of the reaction—diffusion Eq. (1).

To obtain the stability region, we apply cllF2 (20) to the Eq. (35), then substitute u,, = ei"? into
the resulted equation. This leads to

glf= M (1 + l/l) e 920y l/lem,
2 2 (36)

where A = dAt. The equations for Ay, the real part of 4, and 4;, the imaginary part of 1, become

2( 1 —072(‘11“12 )/\1)

r— (l_c—(([l+([:iA1)2 +2(1+cos0)e=(@179DA! ’
4(sing)e 12N

i (lfc—(qlfqz )Ar)z+2( 1+C05())6_(‘11“11 YAt * (37)

Since g1 + g2 > 0, we have A, > 0 for 0 < 6 < 2z. Therefore, the stability region is in the left

half complex plane. This implies that the second order IIF is A-stable. In Fig. 1, the stability
region of the method is plotted for (q; + gp) At = 0.5, 1, 2. The exterior of the closed curves

located on the complex plane at A, > 0 is the stability region.

When gy + g — 0, the stability region will coincide with the domain 4, < 0; and when q; +
g2 — o, the stability region becomes the entire complex plane excluding the point (2, 0).

For the third order two-dimensional clIF scheme:

d 2 1
Un+1 =eAA1uneBA[+AI _7:(””+1 )+ _eAA’f(un)eBAI - _CZAAIT(MH— 1 )GZBAI .

We can perform a similar analysis for the stability to obtain 4

elf _ e~ (q1+q2)A1

- f—zei"+§e*(‘ll+‘/l>m — Le2Aqi+q)A-i0"

12

(39)

As seen in Fig. 2 for (g1 + g2) At=0, 0.45, 0.5, 0.6, 1.0, the third order scheme is not A-stable.
Similar to the one-dimensional case, the stability region sensitively depends on the value of
(g1 *+ g2) At. The size of the region is an increasing function of (g1 + gy) At. For(qy + gp) At <
0.54, the stability region is in the left half of the complex plan 4 bounded by a closed curve.
For (g1 + g2) At > 0.55, the stability region contains the entire left half plane and most of the
right half plane. When q; + g, — oo, the stability region becomes the entire complex plane
excluding one point on the real axis.

The stability analysis for cETD schemes is similar to the stability analysis of ETD [2,14,6,7,
9], and the stability analysis of clIF presented above.
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2.3. Three-dimensions

duiji

The compact representation of the Laplacian operator like (10) for two-dimensional systems
can be extended to higher dimensional systems. In this section, we present a derivation for a
three-dimensional reaction—diffusion equation in a cube with no-flux boundary conditions:

w=DAu+F(u), (x,y,2) € Q={a;<x<ay, bj<y<b,,c;<z<c,};
n-Vu=0, (x,y,2)€9dQ (40)

where n is the unit outward normal direction of 0Q.

Let Ny, Ny, N, denote the number of spatial grid points in x, y, z-direction, respectively, hy,
hy, h, be the grid size, and uj j « represents the approximate solution at the grid (x;, yj, zx)- A
second order central difference discretization on the Laplacian operator yields

Wil jk — 2U; jk+Uio1 jk LMk = 2u; At 1k | Mk — 2u; kUi e

dr

g

+F (Ui ji)-
hy hy h? ) (41)

Define A.\':ﬁAN. XNy ? A}':%AN_\vay, and A':QA}\EX,\/:, where

e /1%

-2 2 0
1 -2 1
A 0o 1 =2

- O O
o O O
o O O

PxP (42)

Then (41) has the following compact representation

Ny Ny N
U= Z(Ax)i.lul. j.k+Z(A_v) j.]ui.l.k‘*'Z(A:)kAlui. i [+FU)
=1 =1 =1 (43)

where U = (uj j k) and & (U) = (#(uj j k) The three summation terms in (43) are similar to the
two vector—matrix multiplications in the two-dimensional case in (10). In addition to a left
multiplication and a right multiplication in (10), there is a *‘middle’ multiplication in (43).

Define an operator £, (t) by

N. 2 N.\' N

LOU=| Y > > € nle™) ™ gt |

n=lm=1I=1 (44)

Taking derivatives of (44) yields

J Comput Phys. Author manuscript; available in PMC 2009 October 5.
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d(L(HU e Y AL
{ ; ) )=£(1) U, - Z(A.x')i.lul,j,k+z(A_\')j./”i.l.k‘*‘z(A:)k./”i.j.l]]-
d =1 =1 =1 (45)
Letting £ (t) act on both sides of (43), and using (45), we obtain
d(L(nU)
dr =LOF V). (46)

Integrating (46) over one time step from t;, to t,+1, and using a transformation s = t,, + t for the
integration, we obtain

L(lll+1)UIT+l :L(’n)Un+-£(ln)f§’-£(7)7:(U(ln+T))dT- (47)
Applying £ (—t,+1) on both sides of (47) yields

Uni1=L-A0U,+L-00  [o'6ar),

(48)
where
G)=L()F (Ut,+1)). (49)
To derive (48), we’ve used two identities:
L(=r) L(rnU=U (50)
and
L(=rn L(sU=L((s — nnU (51)

for any two scalars r and s. Both (50) and (51) can be easily proved based on the definition of
L.

Similar to the construction for the two-dimensional system, the approximation of G(t) using a
r — 1th order Lagrange polynomial results in a scheme with truncation error of rth order.
Specifically, a second order approximation,

7:(Un)‘|’-£(AI)7-(IJn+I)Al

A
) G(n)dr ~ >

J Comput Phys. Author manuscript; available in PMC 2009 October 5.
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leads to the second order IIF (clIF2) method for a three-dimensional system:

At At
Un+1 :L(_At) (Un+ _f(Un)) + _T(U)H 1 )
2 2 (52)

The scheme (52) has a form similar to the one- and two-dimensional case. The evaluation of
the nonlinear term & at tp4+4 is still local and decoupled from the global diffusion term such
that a nonlinear system of the size of &# needs to be solved at each spatial grid point.

To evaluate £ (—At) in (52), three square matrices exAt, eAyAt and eAzAt have to be pre-

calculated and stored. The size of the three matrices is N7, Ny, and N2, respectively. The size
of U is of order NyNyN,. In a non-compact representation, the matrix which needs to be stored

has a size of the order of NfN\zN2 Clearly, the storage requirement for the new approach is
smaller by orders of magnitude. Even for moderate Ny, Ny and N, the storage requirement for
the non-compact representation usually becomes prohibitive even for computers with large
memory, as seen in the numerical examples in Section 3. In contrast, the new approach can
easily handle the same system with even higher spatial resolutions.

In addition, the new approach takes considerably fewer CPU operations. The operation count
for evaluating £ (—At)U is of the order of N_fN‘.N:+N\-N\2.N:+N\-N\VN:2_. This is much smaller

than NfN‘ZN2 the operation count for the corresponding matrix—vector multiplication in a non-
compact representation. The savings in CPU and memory for the new approach are more
significant as Ny, Ny, N, becomes larger.

Remark—(43) can be re-written in the following form

U, = 4,@U + 4,@U + 4.0U + F(U)
(53)

by defining three operators,

Ny
(A.\'@U)f_j,ﬁ- = Z(A.r),'_lf“!.j.k 3
=1

(54)
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N,

AJ'@”);‘,;,& — AJ' j,f”e',.l’-ke

(55)

and

(A@U), 5 = D (AN -
=1

(56)

As a result, the Eq. (44) for £ (t) becomes

L (E) U= EA;m@c,‘[,.m@cfi_,m@U:

(57)

and cllF2 (52) becomes

U B .1 A At Ay s U "d” }- U "'j'" .F U
n+l = @'e- @:f @' rJ-I_T [ .-r} +T ( .Iri-l]l

(58)

which has a form similar to its two-dimensional counterpart (20).

One can also easily obtain other types of cIF and cETD schemes similar to the two-dimensional
case. For example, the second order implicit cETD takes the form:

U..] — .E[_—ﬂ.f}l_-ln + ﬁ‘{ A.‘ :I::'; _ L:-I..'I.r::I + ﬂ.f..-‘i" Ic.l..—b]@fr..ir@t.f;.-\r@df(u"}

+[A (" — 1) — MA | @F (Upar)

(59)
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and the second order explicit cETD takes the form:

I ¢ '
Uyy = L(=ANU, + m .: (A, -I:” + Atd, el vy A4, :,]I:E:.:r. l'@h. i lr@.-,'-":['--'.-.]

[, (™Y = F = Atd,)| @e* ¥ @e* M@F (U, ) }.
(60)

3. Numerical simulations

To study the efficiency and accuracy of the new approach for the IF methods, we will implement
and test the second order implicit integration factor method using the new approach (clIF2).
We will compare it with I1F2 [8] and with a regular second order Runge—Kutta method (RK?2).
In addition to testing them on linear systems in two- and three-dimensions, we will also
demonstrate the efficiency of clIF2 by applying it to two reaction—diffusion systems arising
from models in developmental and cell biology.

Inthe calculation, the exponential of the square matrix is computed using a scaling and squaring
algorithm with a Pade approximation as implemented in “expm” of Matlab similar to the one
dimensional case [8].

Because the matrix exponentials depend only on the spatial grid size, the time step, and
diffusion coefficients, during the entire temporal updating they only need to be calculated once
initially for a fixed numerical resolution. The local nonlinear systems resulting from 11F2 and
cllIF2 are solved using a fixed point iteration procedure similar to that used in the one-
dimensional case [8].

3.1. Tests on simple systems

3.1.1. A linear problem in two-dimensions—We consider a linear reaction—diffusion
equation

2=0.2 (%Mj—:‘) +0.1u, (x,y) € Q={0<x<2m, 0<y<2n};

(0, y, )=2(2n, y, 1)=0;

u(x, 0, H)=u(x, zrr, 1)=0;

u(x, y, 0)=cos(x)+sin(y). .

The exact solution of the system is
u(x, y, y=e""(cos(x)+sin(y)). 62)

Because of the simple structure of the clIF2 scheme, it can be easily implemented using
MATLAB. The simulation is carried up to t = 1 at which the L* difference between the
numerical solution and the exact solution is measured. For the convenience of comparison
between 11F2 and clIF3, we also set hy = hy for this case.

As seen in Table 3, the 11F2 method on a workstation with 1GB-RMB runs out of memory
when N = 80 because IIF2 needs to store matrices with a size of N2 x N2, In contrast, clIF2
implemented on the same machine can handle much larger N. For smaller N such as N = 40,
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although the machine has enough memory for I1F2, it needs almost 2000 times more CPU time
to achieve the same accuracy as clIF2. On the other hand, RK2 can run because of its small

memory requirement, but its stability constraint (At must be proportional to /%) demands a
much smaller time step, and consequently results in more CPU time than clIF2 for the same
accuracy. Overall, clIF2 is more efficient than both I1F2 and RK2.

3.1.2. A linear problem in three-dimensions—In three-dimensions, we consider a
similar system

w=dAu+au, (x,y,z)€Q,
n- Vu=0 (x,,2) € 09, (63)

where Q={0<x<z, 0<y<mx, 0<z<x}, nisoutward normal of 02, and d = 0.2, a=0.1.

The exact solution of (63) has a form similar to (62). The initial condition in the simulations

is taken from the exact solution of (63) at t = 0. The computation is carried up to t = 2 at which
the error is measured. We also chose hy = hy = h; for convenience of comparisons with other
methods.

Similar to the two-dimensional case, the machine quickly runs out of memory for the 11F2 in
three-dimensions when N > 15. For three dimensional systems, the required memory for 11F2
is so large that I1F2 is practically impossible to handle any moderate spatial resolutions.

When clIF2 is compared to RK2 which needs much less memory, clIF2 shows superiority in
CPU times as seen in Table 4. As expected, RK2 does not converge if At is set to the same
value as used in clIF2 for most values of N. Because of the sever stability constraint on At,
RK2 requires a much smaller time-step and becomes more expensive. As shown in Table 4,
clIF2 requires less CPU time than RK2 but achieves the same accuracy.

3.2. Applications to two models in biology

Many models in developmental and cell biology take the form of reaction—diffusion Eq. (1).
In such systems, the rate constants in biochemical reactions in F usually vary by more than
five orders of magnitude. As demonstrated in one-dimensional systems [8], a standard IF, ETD
or RK method is not efficient, and the implicit integration factor method (I1F) is much more
desirable for such applications with stiff reactions. In this section, we apply clIF2 to two
different models for the study of embryonic patterning and cell signaling, one in two-
dimensions and one in three-dimensions.

3.2.1. A two-dimensional model for dorsal-ventral patterning—For proper
functioning of tissues, organs and embryos, each cell is required to differentiate appropriately
for its position. Positional information that instructs cells about their prospective fate is often
conveyed by concentration gradients of morphogens bound to cell signaling receptors.
Morphogens are signaling molecules that, when bound to cell receptors, assign different cell
fates at different concentrations [15,16]. This role of morphogens has been the prevailing
thought in tissue patterning for over half a century; but only recently have there been sufficient
experimental data and adequate modeling for us to begin to understand how various
morphogens interact and patterns emerge [17-19].

One example is the dorsal-ventral patterning in Drosophila embryos, a well-known regulatory
system involving several zygotic genes. Among them, decapentaplegic (Dpp)promotes dorsal
cell fates such as amnioserosa and inhibits development of the ventral central nervous system;
and another gene Sog promotes central nervous system development. In this system, Dpp is
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produced only in the dorsal region while Sog is produced only in the ventral region. For the
wild-type, the Dpp activity has a sharp peak around the mid-line of the dorsal with the presence
of its “inhibitor” Sog. Intriguingly, mutation of Sog results in a loss of ventral structure as
expected, but, in addition, the amnioserosa is reduced as well. It appears that the Dpp
antagonist, Sog, is required for maximal Dpp signaling [20-23]. In [24-26], simulations and
analysis for a simplified one-dimensional dynamic Dpp—Sog model were carried out along
with experimental studies. The robustness and temporal dynamics of the morphogens were
investigated under various genetic mutations [24-26].

Recently, motivated by experimental study of over-expression of the receptors along the
anterior-posterior axis of the embryo [26], a two-dimensional model was developed [27] to
examine the Dpp activities outside the area of elevated receptors in a Drosophila embryo. In
this paper, we apply the clIF2 to obtain accurate numerical solutions for this two-dimensional
system [27].

Let [L], [S], [LS], [LR] denote the concentration of Dpp, Sog, Dpp—-Sog complexes, and Dpp-
receptor complex, respectively. In the model formulated in [25,27], the dynamics of the Dpp-
Sog system is governed by the following reaction diffusion equations:

aLl_,, (62[L] O’ L]

ALS] ((’)2[LS] (LS|

Xz " or?
_jon[LJ[SJ“‘(jorf"'Tjdcg)[LSJ+VL(X’ Y)

or - ) — kon[ LI(R(X, Y) — [ LR])+kost[ LR]

O[LR
[(_w )l LIRCX, ) = [LRI) = (otr+haes)| LR]

)+jonlLJ[SJ - (jolf+jdcg)[LSJ

aT ax2 | or?

S| LS] IS1) . .
=D, + - LIS+ jogl LS|+VS(X,Y
a7 -~ Ds ( ax2 ore Jon[ LILS 1+ o[ LS ] X,Y) 64
in the domain 0 < X < Xmax, 0 <Y < Ypax, Where
th X< X/n
R(X,Y)=
&) { Ry, X>X),. (65
v,, Y<iYnp
V X,Y - LY 2 £ max»
L( ) { 0, Y > ILYmax- (66)
1Y,
Vy(X, Y):{ A
Vg, Y > LY. (67)

The boundary conditions for [L], [LS], and [S] are no-flux at X = 0 and X = Xax, and periodic
atY=0andY = Ynax R(X, Y) is the concentration of the initially available receptor in space;
X = Xp, is the boundary between the two regions with different level of receptors; V| (X, Y) and
Vs(X, Y) are the production rates for Dpp and Sog, respectively; D, D s, Dg are diffusion
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coefficients; 7 is the cleavage rate for Sog; and other coefficients are on, off and degradation
rate constants for the corresponding bio-chemical reactions.

The initial concentrations of all morphogen molecules are zeros. Both Xy and Ymax are taken
to be 0.055 cm, based on the Drosophila embryo size at its appropriate developmental stage
[26].

To study the performance and convergence of clIF2, we list in Table 5 the error, order of
accuracy and CPU time for simulations using clIF2 to solve (64) for the set of parameters
presented in Fig. 3 without the receptor over-expression. In this case, the spatial resolution is
fixed as N = 40 in both directions. The error at At is measured as a difference between this
solution, uxt, and the solution u,, for time step size 2Atat T = 10, i.e.,

En=lluar — uopill,eo - (68)

The clIF2 clearly shows a second order of accuracy in time as expected. As demonstrated in
Table 3, the I1F2 for this case will be much slower than clIF2 for small N, and it runs out of
memory for N > 40.

Next we study the over-expression experiments in [26] by setting R;, = 9 uM in the region 0 <
X <X =0.02 cm [26]. The concentrations of Dpp, Dpp-receptor, Dpp—Sog and Sog are plotted
in Fig. 3. It is worth of noting that in the simulations the over-expression of receptor induces
a local boost of Dpp-receptor activities near the boundary of two different concentration
regions of receptors, similar to the experimental observations [26]. This two-dimensional
spatial effect was not modeled in the previous study [26]. A more systematic study on the
receptor over-expression will be reported in [27].

3.2.2. A three-dimensional model for intra-cellular signaling—When a hormone or
growth factor binds to a cell-surface receptor, a cascade of proteins inside the cell relays the
signal to specific intra-cellular targets. A class of proteins referred to as scaffolds are thought
to play many important roles during this process [28-30]. Scaffold usually binds dynamically
to two or more consecutively-acting components of a signaling cascade. Experimental work
suggests that scaffolds may promote signal transmission by tethering consecutively acting
kinases near each other [31,32]. However, it has also been experimentally observed that some
scaffold inhibit signaling when over-expressed [33-35]. In support of these observations,
computations of non-spatial models have demonstrated that scaffold proteins may either
enhance or suppress signaling, depending on the concentration of scaffold. In [36], a model of
generic, spatially localized scaffold protein was developed for one and two spatial dimensions,
and the model indicated that a scaffold protein could boost signaling locally (in and near the
region where it was localized) while simultaneously suppressing signaling at a distance.

In this paper, we present simulations for the set of reaction—diffusion equations formulated in
[36] that describes a spatially localized scaffold and freely diffusing products and reactants in
three dimensions. The model contains a scaffold protein (S), which can bind to two other
proteins (A and B). In the absence of the scaffold protein, A and B can bind directly to each
other. In the presence of the scaffold protein S, first A binds to S, forming AS. Next B binds to
AS forming ASB. Finally, A and B bind to each other on the scaffold and an AB complex is
released. The symmetrical path, where B binds to the scaffold before A, is also available. Denote
[ ] as the concentration of the proteins, the mass reaction equations with diffusion take the
form,
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M: /(m([ ”S]"'[B”S])"'.ioﬂ‘([AS]"'[BS])'*'jcon[ABS]’
fé, =jon([Al[S1~ [AS1[BI) - jor([AS 1~ [ABS]),

U] jon(I BILS 1~ [ BS1[A]) — jor(I BS | — [ABS)),
U251 = jon(L AS 1 BI+[ BS1[A]) = (2jost+jcon) | ABS],

‘”"” =DA[A] — kol All Bl+kot AB] = jon(LA1[S 1+[ BS 1l A+ josi(| AS 1+[ ABS]),
“L’,"—DA[ B = kon[ A1l Bl+kotl AB] = jon(I BI[S 1+[AS 1l B)+ jose(| BS 1+[ ABS)),

UEBL=DALAB]+kon| All B = kot AB]+ jeon| ABS]. (69)

In the system (69), D is the diffusion constant; ko, Koff are the on and off rates for the off-
scaffold reactions, jon, joff: jcon are the rate constants for the on-scaffold reactions. The system
(69) holds in the cell: 2 = {0 <x <10 um,0 <y <10 pm,0 <z <10 pm}, with no-flux boundary
conditions for A, B, AB.

First, we test the convergence of clIF2 when it is applied to the system (69). In this simulation,
the initial concentrations of A and B are set at 1 uM, and they are uniformly distributed
throughout the cell. And the scaffolds initially are localized in part of the cell: 4 pm <x2 + y2
+ 72 <9 pm, with [S] = 50 uM in this region. The diffusion and rate constants are chosen to be
D=1um2s koy = 0.1 (uMs) L, Kor = 0.3 572, jon = 1 (uMS) 2, jogs = 0.005 71, and jeon =
0.1 (uMs)~L. In Table 6, the error and order of accuracy are estimated at T = 1 second using a
spatial resolution N = 40 in three-directions. As expected, the clIF2 converges in second order
in time, and it has excellent efficiency. And for the IIF, the machine runs out of memory for
this spatial resolution: N = 40.

Next, we present a case study on the effect of scaffolds in Fig. 4. Due to the symmetry of
chemical reaction pathways between A and B, we only need to show four different products.
In this simulation, the initial distribution of each protein and the scaffold are the same as in
Table 6. The concentration of each component is represented using density of dots: more dots
represent more proteins.

Compared to the case without scaffolds but with other reaction rates being the same, the desired
product AB, in the case of Fig. 4, is more concentrated in the region where scaffolds are initially
distributed, and it is suppressing away from the scaffold region in the meantime. This unevenly
distributed AB results from an intimate interaction between reactions and diffusions. Itis similar
to the corresponding one- or two-dimensional systems studied in [36], in which a detailed
analysis has been carried out on the condition under which the boost and the suppressing of
AB simultaneously occur. Although the qualitative features of the system remain the same in
different spatial dimensions, we have observed the expected quantitative differences arising in
these systems.

4. Conclusions and discussions

In integration factor (IF) and exponential time differencing (ETD) methods, the linear operator
with the highest order spatial derivatives in the differential equation is treated exactly in time
discretization. This temporal integration involving exponentials of the differential operator
leads to unconditional stability associated with that term; however, the computational cost
resulting from the approximation usually is very expensive for systems with general boundary
conditions, and often it becomes prohibitive in two- or three-dimensions.

In this paper, we introduced a compact representation of the linear differential operator in two-
and three-dimensions. Such a representation in IF and ETD methods reduces the computational
cost significantly in both storage and CPUs, and it makes IF and ETD in two- and three-

J Comput Phys. Author manuscript; available in PMC 2009 October 5.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Nie et al.

Page 19

dimensions efficient and attractive methods. We analyzed and implemented such an approach
for an implicit integration factor (11F) method for stiff reaction—diffusion equations. The new
compact IIF (clIF) preserves the stability property of the I1F; and our direct simulations on
linear and nonlinear systems in both two- and three-dimensions demonstrated that clIF is much
more efficient than the 1IF.

Although we only implemented the new compact approach for reaction—diffusion equations,
this technique may be applied to other type of systems, such as equations involving higher
order derivatives. Also, the tensor-like representation of the linear differential operators
presented in the remark of Section 2.3 can easily be extended to systems in dimensions higher
than three. In addition, its excellent stability condition (assuring unconditional linear stability
with respect to both diffusions and reactions) along with its compact structure and CPU
efficiency make clIF particularly suitable and useful for spatially adaptive methods. Currently,
we are incorporating cllF with AMR (Adaptive Mesh Refinement) in two- and three-
dimensions, and good performance has been observed [37].
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A qAt=0.5 l

gAt=1

Fig. 1.
Stability regions (exterior of the closed curves) for clIF2 with (g1 + qo) At =0.5, 1, 2, where

g=0ds* 2

J Comput Phys. Author manuscript; available in PMC 2009 October 5.



1duosnuey Joyiny vd-HIN 1duosnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Nie et al.

Page 22

50 T T T

401

301

201

STABLE

—40t

-50 .
-100 -50 0 50 100

Fig. 2.
Stability regions for the third order clIF scheme with (q; + g») At=0, 0.45, 0.5, 0.6, 1.0, where

g=0ds* 2
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Fig. 3.
Concentrations of [L], [LR], [LS], [S] atT = 7200 s for the two-dimensional Dpp—Sog system
(64) when receptors are over-expressed. At = hy = hy =0.001375 in the simulation. Parameters

are D =Dy g=Dg=85um?s1 v, = 1nMslv5 80nMslk0n—04pM Ls7L kotf = 4
x 1070571 Kgeg =5 % 1074 571 jor = 95uM L s7L; jogr = 4 x1070 571 jueg = 0.54 571 7= 1;
Ro = 3uM.
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Fig. 4.

Concentrations for A, B, AB and ABS at T = 10 s. The dot density represents the level of
concentrations. The parameters are D = 1 um2 s71, ko = 0.1 (uMs) 2, kogf = 0.3 571 o, = 100
(uMS)il, joff = 0.05 Sil, jcon = O.l Sil.
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Table 1
A list of polynomials defined in (15) that correspond to the second, third and fourth order methods
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Order 2 3 4

p_4(7) /At (t + A(2AE) ot + At)(z + 2A1)/(6AL)

Po(t) (At - 1)/At — (T + At)(x — At)/A — (t— At)(z + At)(z + 2At)/(2At%)
py(v) 0 (t — AY/(2A1) (t - Atyr(z + 2A)/(2A8)

pa(7) 0 0 — (t— Attt + At)/(6AL)
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Coefficients for clIF schemes with localized nonlinear systems

Table 2
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Order oy (L) a_q a_y

1 1 0 0 0

2 i l 0 0
2 2

3 5 2 1 0
12 3 12

4 9 19 5 1
24 24 24 24
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Table 5
Error, order of accuracy, and CPU time for clIF2 applied to a two-dimensional system
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At Ext Order CPU (s)
1.375 % 107 1.76 x 1078 - 7.54
6.875x 1074 4.40x107° 2.00 15.08
3438 x10°* 1.10x10°° 2.00 30.20
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Table 6
Error, order of accuracy, and CPU time for clIF2 applied to a three-dimensional system
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At Eat Order CPU (s)
2.5x1072 2.09x10™* - 18.91
1.25x1072 5.24x10°° 2.0 37.64
6.25x10"° 1.32x10°° 1.99 75.37
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